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INTRODUCTION

In [3], using probabilistic methods, Bismut generalized his heat kernel proof of
Atiyah-Singer index theorem to give a local index theorem for a family of Dirac operators.

The main purpose of the present work is to give a proof of Bismut’s theorem based on
the classical expansion of heat kernels. We employ the method, introduced in [5], of
expressing the heat kernel of the Laplacian of a vector bundle as an average over the
holonomy group. In particular, as in [5], the =/-genus is naturally related to the Jacobian of
the exponential map on a frame bundle.

Let us summarize the content of this article.

In [9], Quillen introduces a Chern-Weil theory with superconnections which, in the
finite dimensional case, is easily seen to produce differential form representatives for the
Chern character of a difference bundle: let #"=#""@ %"~ be a supervector bundle
on a manifold B. A superconnection on #  is an odd operator D on the space
o (B, %" )=/ (B)Y® o[ (B, #°) of # -valued differential forms on B, which satisfies

0.1 D(wo)=(dw)p +(—1)**°wD¢ for we o/ (B), pe (B, #").
Thus, the square of the operator D is given by
(D*d)(x)= R(x) p(x),

where Re.«Z(B, End #7) is a matrix with differential form entries. The supertrace noted
str(e " ®) of the matrix e~ ® is a differential form which represents the (non-normalized) Chern
character of the difference bundle [ #"*1—-[#""1.

0 . . . .
Letu= be an odd hermitian endomorphism of #". We consider u as a family of

+

odd endomorphisms (u,).. The index bundle Ind u={Ker u*]~[Ker u~] is well defined
as an element of K(B). If B is compact, the equality Ind u=[#"*]—[#%""] holds in K(B).

Any superconnection may be expanded according to the exterior degree on B as
D=p©4+DpM 4+ Dy where D! is a connection on % preserving the
grading and DYVes//(B)QEnd(#), for j#1. In particular D! is a family of odd endo-
morphisms. For t>0, let §, be the automorphism of 2/(B) such that Jw=:"%w for
wes/(B). Then D, =t/25,0D=5 ! is again a superconnection and

D,=t'2pOly pitlp~12plaly

If R is the curvature of D, then the curvature of R, is t3(R).
We prove (theorem 1.1.9) that, when u,= D"} is hermitian and has constant rank, the
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matrix ¢ "*® has a limit when ~ = and this limit is e "% where R, is the curvature of the
connection on Ker u given by the orthogonal projection of the connection component DU/
of D.

Bismut's theorem on the local index of a family of Dirac operators is based on an infinite
dimensional analogue of Quillen's construction. Let # = %#""@® # '~ be an infinite dimen-
sional vector bundle and u={(u,).. be a family of odd self-adjoint Fredholm operators, so
that the index bundle Indu is well defined as an element of K(B). Let D be a superconnection
on ¥ with zero-exterior degree term equal to u, let R be the curvature of D. If the semi-
group e~ '® can be defined, the differential form d(¢t)(str e ~*®) should represent the Chern
character of Ind u”, for every ¢>0. This generalization of Mac-Kean-Singer formula was
proven by Bismut for a family of Dirac operators. It is not difficult to see that our homotopy
argument extends to this infinite dimensional situation, thus giving an easier and more
transparent proof of the Bismut heat equation formula for a family.

The Atiyah-Singer index density [2] is obtained at the other end of the homotopy, when
r—0, bv asymptotic calculations which can be handled by probabilistic methods or. as well,
as hopefully shown, by classical methods of analysis.

The situation is the following: Let ©: M — B be a fibration where the fibers (M ).z are
compact Riemannian manifolds of even dimension. Let VM be the tangent bundle along the
fibers. Let us assume that ¥'M has a spin structure. Consider the bundle ¥ = *@.% ~ over
M whose fiber %, at a point yeM is the space of vertical spinors. Let & be an auxiliary vector
bundle over M with an hermitian connection. For each xeB, consider the Dirac operator D,
acting on % f=T(M,, ¥*®&). The family PD=(ID,).p can be considered as an odd
endomorphism of the infinite dimensional bundle # = (#")..5. The operator D is elliptic.
self-adjoint, so that the index bundle of the family D=(ID,).., is well defined. The
corresponding element of K(B) was identified in topological terms by Atiyah-Singer [2]. In
particular a cohomological formula was given for its Chern character.

In [3], Bismut constructs a remarkable superconnection on the infinite dimensional
superbundle # " =%""@% ~ whose term of exterior degree 0 is the family of Dirac
operators (D,)..5. We denote the Bismut superconnection by B and its curvature by [. Thus,
for xeB, I eAT*B®End(#). Then I is given by a formula analogous to Lichnerowicz
formula for the square of a Dirac operator. In particular I, is a second order differential
operator with principal symbol given by the Riemannian metric of M, so that the semi-
group e "/~ can be constructed and is given by a kernel

(yile™ "y ) eATEBQ Hom((# ®8),,, (¥ ®6),,).

By scaling the metric in the fibers M, Bismut obtains for each t>0 a superconnection B,
which in fact coincides with the deformation B,=t'26,B-5,'. The supertrace
d,-(str e~} is defined as a differential form on B by

de(stre™), =J Sifstr {yle ™=y ) dy.
M.

It is a closed form, its cohomology class is independent of ¢, and it represents the Chern
character of Ind D ([3] Theorem 2.6 or Theorem [.2.4. below).

The main result of Bismut is to show that when r—0 the index density
S, (str { yle ""+|y >)dy associated to this particular superconnection B has a limit and to ident-
ify this limit as the highest term with respect to the coordinates of the fiber M, of .</(V'3]) ch&.
In the present paper we obtain the existence and computation of the above limit by the
following method: the heat kernel of an operator of the form A+ ¥V, where A is the
horizontal Laplacian of a vector bundle and V is a potential, is written as an average, over
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the structure group, of a heat kernel on the frame bundle, considered itself as a Riemannian
manifold. This gives integral formulas for the coefficients of the Minakshisundaram-Pleijel
expansion of the heat kernel e “** """ {Theorem 11.2.20) which are of interest in a variety of
computations. Recall that if & is a vector bundle with connection V on a compact
Riemannian manifold P, the heat kernel of the associated Laplacian has an expansion

dim P dir.y? N
Cule™uw'y=@nt)" "2 e Y U uu)

i=0

. dim P
+0( Y72 for wuu'eP,

the first term is given by

Uylu, )= (det BP(u, )~ 2 2(u, u),

where 67 is the Jacobian of the Riemannian exponential map and t is the geodesic parallel
transport in & with respect to V. When P is a principal bundle over a manifold M. with
structure group G, the Jacobian 0°(u, uexp A), for A in the Lie algebra of G, is given by an
explicit formula involving the curvature of the fibration P—M (Proposition 11.1.3). Apply-
ing this averaging method to the operator I on M, it is easy to see on the integral formula
for d,(str {yle~"*|y ») that the limit when t—0 exists and can be computed using only the
first term Ug(u, u exp A) on the frame bundle. The appearance in the limit of the product
(VM) ch & is readily seen from the above factorization of U,. The elimination of the
singular part in the asymptotic expansion of ,(str { yle "“*|y D) is reduced to the following
simple lemma in functional calculus: let ¢ be a nilpotent element in an algebra 2/ (here an
exterior algebra), P a polynomial in one variable, then,

(x=9?
P(&)=lim(4nt)~ 17 J e ¥ P(x)dx.
R

t—=0

Our study is very much simplified by the description which we give of the Bismut
superconnection (I11.1.13): as in [3] we consider a connection for the fibration m: M — B, ic.,
a family of horizontal tangent subspaces in 7M. This defines an isomorphism
TM ~n*TB@® VM. We consider the vector bundle n*TB® VM @n*T *B and define on it a
connection V (I11.1.4) which is a natural generalization of the Levi~Civita connection on a
Riemannian manifold. In particular its curvature satisfies a symmetry relation (II1.1.8)
which generalizes the symmetry R;;,= R,,; of the Levi-Civita curvature. Then the Bismut
superconnection B is constructed out of V as a generalization of the usual Dirac operator.
The formula for I = B? follows in a way quite similar to the computation of the square of the
Dirac operator. The symmetry relation above comes in to relate the ./-genus to the
Jacobian of the exponential map on the frame bundle.

A noteworthy difficulty arises from the fact that the holonomy group of ¥ is not
compact: it appears as a parabolic subgroup of the orthogonal group of an indefinite metric.
This “defect” is built in the requirement that B be a superconnection. In fact, using the
deformation of the Clifford multiplication into the exterior one, B appears as the limit when
£—0 of a Dirac operator D, on the Clifford bundle #®n*AT*B®& over M, when M is
given a Riemannian metric g, through the choice of a small metric on the base B. (This is
how Bismut proves the formula for B? ([3], theorem 3.5)). We use this deformation to write
I as a limit of operators I(g) to which the averaging method can be applied.
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I. SUPERCONNECTIONS AND THE CHERN CHARACTER
1. The finite dimensional case

.1 Let C,, C, be Z,-graded associative algebras. We denote by C,®C, the graded
tensor product of C, C,. ie, the tensor product C,®C, with the multiplicative law:

(d’x@@bz)'(d”l@(ﬁz):(— l)mcg galdes M)¢1¢’1®¢2¢,2~
If W, (i=1,2) is a graded module over C, then C,®C, operates on W, ® W, by:
(01 ®b1)(w; ®w,)=(—1)4Bo00EG 4 @@,0,.

These sign conventions on actions will hold throughout this article.

Let B be a manifold and # =%""@®¥% ~ be a finite dimensional super vector bundle
over B. Denote by «/(B, #7) the space of sections of AT*BQ#". It has a Z x Z,-grading,
thus a total Z,-grading. For ieZ, w€ A(B, %), »" will denote the term of exterior degree i of
.

Let «/(B, End ¥ )=I(AT*B®End #"). It acts fiberwise on /(B, %).

A superconnection V, as defined by Quillen, [9], is an odd operator on «/{B, #") such
that

1.2, Vio dy=dw ¢ +(— 1) 90V

for we+/(B) and ¢so/(B, #°).

As d- =0, we have
1.3. Vip=R¢,
where R is an even element of .«/(B, End &), which it is natural to call the curvature of the
superconnection V.

Define the Chern character form

cho(# ", Vy=str(e ™).

Itis aclosed even form on B and its de Rham cohomology class is independent of the choice
of the superconnection V. More precisely, for 2eC*, choose a square root of 4 and let J; be
the automorphism of AT *(B) defined by d,wV=4772wY. (For even forms 3, does not
depend on the choice of 2'?). Extend d; to an automorphism of #/(B). Then 8,,.chy(#", V)
represents the Chern character of the difference bundle [# "] —[%""].

1.4. For >0, let §, be the automorphism of AT *B defined by 5,0/ =t~/ Extend 4, to
an automorphism of «/(B, #°). If V is a superconnection on %7, then V,=¢'24,-V-3,! is
again a superconnection on #~. We have

V=t VO iy gy

where VE: T(A*T*BR #)—T(A* " T*B® #") raises the exterior degree by i. The operator
Vi1is a "usual” connection on %", which preserves the decomposition % = %" @ # ™. The
operator V! (i# 1) is given by the action of an element of exterior degree i of .2/(B, End #").
We will be mainly concerned by the term VI°. It is an odd endomorphism of %~ which we
denote by u.

It will be convenient in parts IT and 111 to associate to a superconnection a differential
form on a principal bundle. Thus, assume that #” is associated to a principal bundie P over
B with structure group G and a representation p of G in a vector space W=W"@ W ~. We
suppose that p preserves this decomposition and we write p=p*@p~. Let g be the Lie
algebra of G. For Xeg, we denote also by X the vertical vector field on P generated by the
action of G on P and we denote by i(X) the contraction on /(P). Let (=/(P)® W)’ be the
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space of G-basic W-valued differential forms on P. that is the space of ¢e(=/(P)® 1N such
that i(X)$ =0 for every Xeg. Then «/(B, %) identifies with (=/(P)® W) <
Let 6 be an odd element of («/(PY®End 1) such that

L.5. i(X)8=p(X) forevery Xeg.
Such an element will be called a superconnection form. Define an operator on .2/(P)® W by
1.6. Vo=do+9¢.

Then V preserves the space of basic forms and the restriction of V to
(/(PYR WY = o/(B, #7) is a superconnection in the sense of 1.2. It is easy to see that every
superconnection on ¥ " is of this form. The usual notion of connection corresponds to a 1-
form on P, while in this generalization # can have arbitrary exterior degree. We write 6 = 61!

+8M 4+ . .. for the decomposition of 8 in homogeneous components. We have
1.7. Vip=R¢
where
R=d6 +600(/(P)QEnd W)’ = /(B, End #).
If
V, =125,V 1,
then
Vig=(d+6)¢

with

0= 26,(0) =" 2010 4 gL 4 gL

The term 6'! is the connection form on P for the “usual” connection V!l The term
AlOe(/°(P)R®End ~ W)Y identifies with the odd endomorphism u of %",

1.8. Let ussuppose that #™ %, # ~ have hermitian structures, and that u is hermitian so that
u” is the adjoint of u™. Let, for t >0, R,=3,R=3, ! be the curvature of the superconnection
V.. Then the cohomology class of str(e ™ ®¢) is independent of ¢, and represents the (non-
normalized) Chern character of the difference bundle [# 71— [% "] In [9], Quillen asks
whether str{fe "% has a limit as a current on B. when r—=c. This does not seem to be true
without further conditions, at least when x —u_ 1s not analytic. However, when u has constant
rank there is a limit in the space of differential forms and it is what it should be: consider then
the vector bundle #,=Keru=%"3@# 5 where #'J=Keru®, #§=Keru~. Let Py
# —%", be the orthogonal projection of ¥ on ¥ ;. Then V,=PyVIH:P, defines a (usual)
connection on %, (preserving % 5, #75 ), which we call the projection of the connection V()
on %, We prove:

THEOREM 1.9. Let ¥ =W "@ W ~ be an hermitian vector bundle with a hermitian odd
endomorphism u of constant rank. Let %" = Ker u™. Let V be a superconnection on %~ whose
term of exterior degree 0 is equal to u. Let, for t>0,

V,=tY26,:Veg, b=V u+ V4
be the dilated connection, R, its curvature. Let V, be the projection on %, of the connection

VUL R, its curvature. Then e™® converges to e *° in </(B, End #°) when t—oc.

Proof. Since the result is local, we may assume that %" and #7, are trivial superbundles,
W =Bx W, #o=Bx W, Thus V=d+0 with 0e«/(BY®FEnd W. Let W, =W} In the
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decomposition W= W, @ W, we write

o B
6 =
~ 91

then #01= B9 =101 =0, 9% = w{ W, Denote 64! by w, u| ¥, by v. Then #!1is the connection
form for V, and v is an invertible hermitian operator on W/,. Let us write the curvature
0 p 1

£

B
R=df+6-8as R= c b We have

01— 4011 4121 = ) N
APT= 40 =0, AP =dw+ oo+ kit
BI=Q, B“]=ﬂ[ur,

C(O]=0, C[”=v7“],

DOt = 2,

Thus AP — BUM(DOY ! Cl=d + ww is the curvature of V.
The Theorem will follow from Lemma 1.17 below.

1.10. Let W be a hermitian finite dimensional vector space. Let A= @ 4, be a Z-graded
jz0

finite dimensional algebra, with 4,=C. Consider the algebra A®End W with its Z-
gradation induced by the gradation of 4. For t>0, we denote by J, the automorphism of
A®End W given by é,(a)=t"¥2a, for acA’® End W. Assume that W is an orthogonal direct
sum W=W,eW,.

a b
Levua 111, Let r=< d>eA®End W. Assume that al®'=a11=0, h91=cl%"=0 and
¢
that d'®is a self-adjoint negative definite operator on W,. Put ro=al*1—pl1 (4%~ 1l Then

roeAPI®End W,. We have:

lim %" =

t—

e 0
ol
Proof. We use the expansion formula:

1
A+B A 4 -~51)A4
112, e**B=¢e +[ R A
JO

+J ghdBels:msdp | BelnTsovdpellTaddgg o ds,
A

where A, is the simplex 0<s, <5, < ... <s5,<1in R™
We put
a 0 0 b
A=t , B=t .
0 d ¢ 0

Since b and ¢ have no O-degree term, the sum (1.12) is actually finite. Let us write

X, Y,
Z, Ul
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We then have:
X, =e¢“+X,(0+ ... +X. 0+ ...

U=e"+U,0+ ... +U. 0+ ...
Y=Y+ ... + Y, 0+ .
Z=Z,(t+ ... +Za, D+

with

Xz,i(t)=t3"J‘ gsitap elsamsutdp glssmsata el Tsmliadg o s,
Azn

Uz,,(t)-——rz"J T TN:
Aan

Y2"+1(t)___tln+lj eslmbe(sz—sl)ldc b CH—SZ"”)‘ddSX L dSZn-:-I-

Azney

Zz,,H(t):tz"“J ghtdp gliamsitap  pesmeatide o ds,, .

An+t
Let us show that

lim 5,(x2n([))=J erallpetss=snalile o pelt=sin-0alilqs - dg,
Ap

t—
with
f= —pUYO) L (1]

so that (by 1.12) lim 4,(X,) will be equal to a1+ Consider the case where n=1 first. ie.,

t—x

X,(0)= tzj gstitp glsa s ell msaltadg (s,
A,

Consider as new variables s, 5;—§, =X, so that

1 (1 =sy)
XZ([)=t2J\ esua(J< b exztdc e—x:tadxz> e(1 _Sl)mdSl.
0 0

Our hypotheses are

limé,(ta)=at"!

t—=x

limé, (¢! 2b)=bt")

1= x

limé,(t!2c)=ct!!

t—=x

lim 8,(d) = d'°.
t—x

In particular limd, e® exists and is e*", limg, e} ~31"@ = (1 ~snal?

1= = x

TOR 26:4-C
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Consider

1.1

(V%]

Ot x)=t"he e e

Let us see that for 2 >0,

A
.14, limé, | Q(t, x)dx= —pligton =t 01
[~ 0
The change of variables rx =y gives
A ta » .

(5,’ Ofr. x)dx = [ O,(t12h) e (112c) e Ty,
JO JO
As d'"is a negative operator, there exists £,>0 and 7>0 such that:

1.1

W

6 (e*)lj<Me™ for y>0 t>1,

(This follows for instance from the expansion formula applied to d®+ 7' 2d0i+ 1),
Therefore we obtain by dominated convergence,

limé:J Q([, x)dx:J. b“]e-""[olcmd_v: —b“]ld[ol)* 1(.[12~

0 0

= x

and the desired formula for limd, X ,(r).

{— x
For arbitrary n, consider the map A,,—4, given by s=(5,,5,, ....5:,)5=
($,.854,55s - -« , 82, ¢) Write an element of A,, as (5,5, +X2,53,53+ X4, .. ., Sapo FX3,).

Then the fiber of the map s — " is the product of intervals
o= o Xa0) 0, <K<s3—5y, ... 0y, =55, (|

The integral for X,,(} is thus:

~

J esan(t x7)e(53_51)qu([ ‘C4) e(Ss—Ss)m e Q([ X, )ell ~Sin- ”"‘drd\"
+ 2 L 1 -vY2n - .
I

JS'EA,

so that by 1.14, we obtain the desired result for limd, X,,(t).

t—=

Let us prove that limo,U,,(t)=0. We have

[ Sl 9

1.16. 1S i< M, |16t 3¢l < M,

1o < My e ™, ||3(e™)|| <My, for 0<s<1,

so that
H(S(Uz,,(t)[[<Cl"J g it Tty e Tl msandligg
Azn
Let I=[0, 1]. Write an element of A,, as s=(x,, X5, X, + X3, X4, Xy + X5, . . . . X2,). We obtain

110, U 5t SC["J g Mg TRNT | eT Xt Tl mxamitig ¢

12n

The integrand is a product of (n+ 1) exponentials. As

L o
IJ e“"’dngw e "dx=7y""!
0 0
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we have
10U 50l <c(ty) ™.

Similarly for 8,Y,,. (), (or 6,Z,,.(t)), we use the estimates 1.16 to show

Hézyz,.+1(l)ﬂ<6t"+lf'3j e—(s:-sx)rye—(s.-—ss)ty L e-—u—s:n”)r;dsldsl . dSZn—1-
A+

‘3

The integrand is a product of (n+ 1) exponentials and we obtain |0, Y, « (Ol <cy 1712
This finishes the proof of the Lemma 1.11.

It is clear that a lemma similar to 1.11 holds for a graded tensor product A End W". Let
W7, W~ be two hermitian vector spaces. Consider W=W"@ W™ Let A= ® A; be a Z-

jiz0

graded finite dimensional algebra. Consider the graded tensor product AQ End W, with its
Z-gradation induced by A. For >0, denote by J, the automorphism of A@End W given by
da=t"72q, for ae A,QEnd W. Let W=W,® W, with W =Ws@W!, W =Ws;oWw;
decomposed in orthogonal direct sums.

b -
Lemma 117, Consider r=<a d>eA®End W. Suppose d°)eEnd(W,) is an even
c

endomorphism of W, and suppose that d'® is hermitian negative definite on W ,; Suppose
that a®=a"1=0, p1°1=0, I%1=0. Put

ro=at?l—plt (4O~ 1 MA@ End W,
Then

limd, e =

r—~x

e” 0
0 o

It is also clear that if a(x), b(x), c(x) depend smoothly on parameters, an estimate as 1.16
can be obtained uniformly, as well as similar bounds for derivatives. So we obtain the
Theorem 1.9.

2. Superconnections and the Chern character of the index bundle of a family of elliptic
operators

We turn now to the sttuation where we have a family (M,)..; of compact Riemannian
manifolds, a family of superbundles &, =%; @.%, over M, and where #” is the bundle
over B with infinite dimensional fiber #° =T(M,, ¥ ). To be more precise, we consider a
fibration n: M—B and a hermitian finite dimensional superbundle ¥ =%*@®%~ over M.
For xeB, let M, be the fiber 7~ }(x) and let &, be #|M_. Let g, be a Riemannian metric on
M, and ¥ .=T(M,, ¥,). Using the hermitian structure on . and the Riemannian volume
on M., we define a prehilbert structure on #7,. Let

0 ug
u=(ux)xeB=<u+ 0 >

be a smooth family of odd elliptic formally self-adjoint first order differential operators on

¥ .. One can define the index bundle Ind u as an element of K(B). When Ker(u,) has

constant dimension, then Ind(u)=[%#"¢g]—[%"5 ], with (#°7),=Keru}, (#°5),=Keru;.
We define I'(B, #") as (M, &) and

24(B, W)=/(B) @ T(B, #)=T(M, n*AT*BR ).

20(8)
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2.1. A superconnection on # is therefore an odd operator D on I'(M, n*AT*B® %)
which satisfies [.1.2. In addition we will suppose that D is a first order differential operator.
Let D be such a superconnection with u as its zero-degree term and let [{x) be the curvature
of D. Thus I(x)eAT¥B®End(#,) is a second order differential operator. We make the
following assumptions:

2.2. The principal symbol of u} is scalar and given by the metric of M.
2.3. I(x) has the same principal symbol as uZ.

Remark. Given the family u, satisfving 2.2, we can always construct a superconnection
which satisfies these conditions: choose a connection V on % and a connection on the
fibration 71 M—B, ie.,, a smooth family 7'M = T,¥M of horizontal subspaces. Define a
connection V on I'(B, #)=T(M, &) by Vy¢=V,*¢ for XTB. Then D=u+V is a super-
connection with zero degree term equal to w. Its curvature is given by D* =u? + Vu+V* and
clearly satisfies 2.3. Bismut superconnection, which will be introduced in part I1I, is not of
this form (one must add higher degree terms) but it also satisfies condition 2.3.

Using the scalar product on ¥, denote by P, the orthogonal projection on ¥, =Keru.

The following infinite dimensional generalization of theorem 1.1.9. holds.

THEOREM 2.4. Let (u ).z be a family of odd elliptic formally self adjoint first order
differential operators, satisfying condition 2.2. Assume moreover, that (W ",). = Keru, has
constant ( finite) dimension. Let D be a superconnection on #~as in 2.1, with zero degree term
w. which satisfies condition 2.3. Let Ry, be the curvature of the connection on ¥, defined by the
orthogonal projection Py>D!1s Py of the connection component DMV of D. Then 8,(e ~""'™) has a
limit (in the operator norm on the prehilbert space ¥ ) when t— ¢ which is equal to e~ e

The idea of the proof is the same as in the finite dimensional case. We need an
expansional formula similar to 1.12, and this follows from the existence and unicity of the
heat kernel for I{x). We refer to [1] for details.

Let D be a superconnection satisfying conditions 2.1, 2.2, 2.3. Then by [3, Prop. 2.10] the
differential form stré,(e ™) is closed and its cohomology class does not depend on .
Moreover, [3, p. 121] one can construct by a standard argument in K-theory another family
u, and a superconnection D’ with zero degree term u such that

(1) Keru, has constant dimension.

{2) The index bundles of (u,),.p and (i), have the same Chern character (in cohomology).

(3) Letting ['(x) be the curvature of D', the differential forms str (e ") and str §,(e /")
are equal in cohomology.

Therefore the following generalization to families of Mac-Kean-Singer heat equation

Theorem, due to Bismut, can be more naturally deduced from 2.4.

TueorEM 2.5 [3]. Let D be a superconnection with zero degree term (u.).g. Under
conditions 2.1, 2.2, 2.3, the differential form str 8,,,(e """} represents for all t >0 the Chern
character of the index bundle of (u.) cp.

II. ASYMPTOTIC EXPANSION FOR LAPLACIANS ON VECTOR BUNDLES

In this section, G is a compact Lie group with Lie algebra g. M is a Riemannian manifold

and P5M is a principal bundle over M with structure group G and connexion o. We
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e

choose on g a G-invariant positive inner product. For ueP, the tangent space T,P is the
direct sum of the horizontal space TP identified with T .M and the vertical space identified
with g. This turns P into a Riemannian manifold, (the metric depends on w).

1. The Jacobian of the exponential map on a principal bundle

For u and v in P sufficiently close, we denote by 6°(u, v): T,P— TP the derivative of the
map exp, at the point exp, (v). The object of this paragraph is the computation of 8%y, r)
when « and v =ug are in the same fiber.

1.1. Let ¥ be a Euclidean vector space with orthonormal basis 1, We consider on A2V the
inner product with orthonormal basis ; A ;. We identify A*V with so(V) via the map 1
A*V—so(V) given by (t(w)., ;> =2{w,¥; A Y;>. We identify V and V.

We denote by R the curvature of the connection w. It is a horizontal g-valued 2-form on
P. Thus for ueP, we consider R, as an element of A*(T*P)*®g. For aeg, the contraction
(Id®i(a)yR, is an element of AX(T"Py*, we denote it by (R,,a). Then t(R,,a) is an
antisymmetric transformation of T!P.

If ¢ is a vector field on M, we denote by Z its horizontal lift to P. For aeg, we denote also
by a the corresponding vertical vector field on P. Denote by V* (respectively V%) the
Levi-Civita connection on M (respectively P). From the equation dw + 1/2[w, @] =R, one
easily verifies the following:

LemMa 1.2. Let &, ' be vector fields on M and a, b elements of g, then

(1) ViI= (ViSRG D)
&) VPI=1t(R, a)-&=Via
(3) VP-b=1[a, b]

In particular, for ueP and aeg, we have exp,{a)=u exp a and the fibers of PS5 M are
totally geodesic.

Fix xeM and let V=T M. For ueP such that n(u) = x, identify 7"P with V and TP with
V@g. Let aeg. Then the derivative 68°(u, u exp a) is identified with a linear map from V@g to
itself which we denote by J(u, a).

ProrosiTioN 1.3. J(u, a) preserves V and g and

l_e—ada
(1) S, @lg=-—=-
1_e—-'5r(Ru.ﬂl
(2 [y =———.
t—) .](I.l, a)l& %T(Ru. a)

Proof. (1) is well-known. For (2) we need to compute d;/de exp,(a+ex) for xeV. In-
troduce u(s, 1) =exp, s(a +tx), u(s) =exp,(sa). Put ¥(s)=d/dt u(s, t)|,-o. Then ¥{(s) is a vector
field on P along the curve u(s) and J(u, a)x = Y(1). Let C be the curvature of the manifold P.
The Jacobi vector field Y{s) is determined by the differential equation:

VEVE Y(s)= C(,i, Y(s) >-.3
RS Cs és

(1.4) Y(0)=0

Ve Yis)—o=x.
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Let ¢ be a vector field on M. By the G-invariance of the connection w, we have
(Ve Dy = H (1R wapsa @)™ =3 (x(Ry, a)d) .

As Vi-a=0, [a. Z]=0, Cla, ) a=V,V%a= (}t(R,, @))*.Z The relation (1.4) implies that
¥(s) remain horizontal, hence identifies with an ¢lement y(s) of V; The differential equation
(1.4) reads

(i+%f(Rw a)) W) =GR, @) 1)
and we obtain (2).

2. Asymprotic expansion for Laplacians on associated vector bundles

Let #7+M be a vector bundle. Consider a second order elliptic operator H on I'(#7) with
principal symbol [{¢]|21d. Then there exists a connection on ¥~ such that H=A" + F where F
is a potential. When the holonomy group G of the connection is compact, we give an
integral formula for the asymptotic expansion of the heat kernel of H on the diagonal. In the
applications, ¥~ will be of the form #"*®4&, with ¥ =% *@ % ~ a supervector bundle and
& an auxiliary bundle. We begin by the case where F=0.

2.1. Let (p, W) be a representation of G. Let # = P x ;¥ be the associated vector bundle
on M. We identify the space ['(M, #") of sections of #~ with the space (C?(P)® W) of
functions ¢: P— I such that

dlug)=plg) " 'd(u) for ueP, geG.

We denote by V the covariant differentiation on ¥~ associated to the connection w.
Let A* be the Laplacian on I'(#). If &, is a local orthonormal frame of TM, then

A" = —Z<V§|V§x - va:)

Let A” be the scalar Laplacian of P acting on C*(P). Let E; be an orthonormal basis of g

and let C=Zp(Ej)2 be the Casimir operator (thus C is scalar when W is irreducible).
7

ProposiTion 2.2. A* coincides with the restriction to (C*(PYQ W)E of the operator
AP@1+1®C.

Proof. By (1) of Lemma 1.2, we have
AP = Y&~ (VHE)™ — Y E;.
i j
For ¢el (%) =(C*(P)® W)%, we have

Ejd’ = _p(Ej)¢'

Let us consider the semi-groupse ~4” on (%) and e "* on C*(P). The Schwartz kernel
of e=" with respect to the Riemannian density of M is denoted by

{xle -1 l[y>eHom (#7,, #7,).

It can also be considered as an End W-valued function (u, w)— {ule ™" |u’> on P x P which
satisfies Cugle ™™ |u'g’> = plg) ™ Wule ™" [ > p(g").
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From 2.2, we have

! H

(e 2" p)ug)=e "€ <uO§e_‘“P§u>¢(u)du=e“CJ (J <u0[e_'Aplug><15(ug)dg>d.\'.
w\Jg

JP

/

Thus:

ProposITION 2.3.
<“o!e—mw1“> :eﬂCJ‘ Cugle ™ ugdply) ™ dg.
G

This simple observation will be the starting point in the computation of the asymptotic of
n
{xle™" X,

2.4, Let us now consider a second order operator H=A+1" where V" is a potential. We
introduce a filtration on potentials, analogous to Getzler filtration [6].

Let & be an auxiliary vector bundle over M, with hermitian metric and hermitian
connection V. The group G acts on the space ['(P,n*&) and T'(M,&® # ) identifies with the
space (I(P.n*&)® W)° of sections é: u—@(u)es ® W, for ueP and x=r(u) which satisfy
dug)={1®plg~)¢(u). In the same way, the space I'(M, End(§® %)) identifies with

(MP.r*End £Y®End W)U, Let #(g)= U U(g) be the enveloping algebra of g with its
ji=0

natural filtration. The elements F of (T(P,n*End £)®%/(g) )¢ will be called potentials of g-
degree j. Extend p to a representation of #(g). Then (1@ p)(F)= p(F) is defined as an element
of [(M, End(&® #7)).

Let us consider the tensor product connection V on §® % and form the corresponding
Laplacian A9®* acting on [(M,6® #7). Let F be a potential of g-degree 1. We consider the
operator H=H(P, w, p, &, F)on I'(M, @ #') given by

2

h

H=A5®% 4 p(F).

The main result of this part will be an integral formula for the asymptotic expansion of the
heat kernel of H.

2.6. We introduce some notations. We have #g)=C®yg, hence F=F°+F! where
Fo¢(End £,) and Fle(End §,)®g, for ueP and n(u)=x. Thus for aeg, the contraction
(FL. a)eEnd & is well defined.

2.7. Let ¢ be a C* function on g with compact support. The function

lafl? dimg [* ~llali?
tHJe' W dla)da=t 2 je & P(tt2a)da
3 g

has an asymptotic expansion near t =0 in powers of t'/* which depends only on the Taylor
series of ¢ at 0. We denote the corresponding formal power series in t''? by

llal}?
2.8. f]ge‘ st P{a)da.
g

When ¢ does not have compact support, we still make sense of 2.8 by cutting off ¢. Let
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O, a)= Z t'¢pda) be a formal power series in ¢ with coefficients in C*(g). We denote by
i=0

;o |lal)?
?e’ + Ofr, a)da
g

[laii?

the formal series Y zf3Ee" 3 ¢ fa)da.
i=0 g

Xi2__amX2
2.9. Let E be a real vector space. For XeEnd E, we put j(X)= detb-(e——\/—). We select

2142

an analytic square root j;*(X) near X =0 by the condition j;'*(0)= 1. For asg, we write jy(a)
for jylada).

2.10. As in 2.3, we view the kernel of e ™' as a section (u, u)—{ule “*#ju’> of the bundle
T*E@n*E*@End W over P x P. Thus for ueP with w(u)=x, ule”*#|udeEnd £ ® End W.
To simplify the statement of the theorem below, we suppose here that the Casimir C of the
representation p of G in W is scalar.

THEOREM 2.11. Let H=A%®% + p(F) where F is a potential of g-degree 1. Assume that C
is scalar. Take ueP with n(u)=x. Put V=T M. There exist C* functions ¢, on g with values in
End & such that {ule™"*"|u> has an asymptotic expansion equal to

M8

) dim M +dim g ICHERNE .
e — Sge‘ S Ui (@@ plexpa)da
q

i=0

Furthermore

dola) :J'gh‘z(a)j; 172(51(&,, a) >e’ L2(Fh @)

Remark. In the application, p will be a super-representation and we will study the
supertrace of (ule™*[u). Then as str(¢ (@)@ plexp a))=tr ¢,(a) str p(exp a), the integral
above is an integral with respect to the measure str{p(exp a))da. This will eliminate poles in
t. Furthermore the above factorization of ¢(a) will lead to the factorization of the index
density as the product of the .»/-class and the Chern character of &.

Proof. The first step is to write H as the restriction to I'(M, §Q@ %) =(T'(P, n*&)® W)°©
of a carefully chosen second-order elliptic operator H” on P. We will thus obtain an integral
formula similar to 2.3. Then we will apply the well-known asymptotic expansion of the heat
kernel (ule "**u’>. In order to define H” we associate to the potential F a connection V' on
n*& as follows: First pull back V¢ to a connection V9 on n*&. Then define V' by

2.12. (Vip)u) =(Vip)u) if CeT!P,
(Vo)) =(Vip¥w) +HFy,a) p(w)  for asg.
Let A’ be the Laplacian of the bundle n*& defined by the Riemannian structure of P and

the connection V'.

Lemwma 2.13. There exists feT(P, End n*&)° such that the operator H is the restriction 1o
T(M, EQ W )=(T(P, T* &)@ W0 of (A +/)®1+ 1QC.
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Proof. Let E; be an orthonormal basis of g. Then
N==Y(V5P =V, = S(Ve )
i i j
The Babylonian method (completing squares) gives the lemma with

F=Y(FL E)+FY.
j

For ug, ueP with xo = m(ug), x = (), let us denote by k(t. uy, w)eHom(& , ) the kernel
of e "3 7N Asin 2.3, we have

2.14. uple ™ Hu) =f ke, ug, ug)®e " “ply)~ 'da.
G

We now recall the well known expansion {(see [4], [8]).

gimP _dwow? [N _dimep
2.15. k(t.ug, wy=(4mr)~ "2 e = (Z U {uo, u)>+0<t'\_ 2 )

(=0

where d(ug, u) is the geodesic distance on P, U; are smooth sections of n*§@n*&*.
Furthermore the first term does not depend on f and is given by

2.16. Uolu, ty=det 88(u, v) " 4220, v) 7 Y,

where 67 is the Jacobian of the Riemannian exponential map on P and t(u, t)}eHom(& . &)
is the geodesic parallel transport in n*& with respect to the connection V'. We have

LesMa 2.17. For ueP and aeg

t(u, uexpay=e~ V3AFLA,

Proof. The function t—1t{t)=t{u, u exp ta) is the solution of the differential equation

0.

i

C%T(I) + HF i exp  @)27(0)
Now, for any geG, (Fj,;, a)=(F}, g.a). Thus (F} .., . @)=(F}. a) for all t and we obtain the
Lemma.

In order to complete the proof of the Theorem 2.11, we observe that we may use
exponential coordinates in 2.14 to compute the asymptotics of (ule ~*#ju). Let ¢ be a cut-off
function on g near 0. Since the heat kernel k(t, u, ') is rapidly decreasing outside the
diagonal, we have, for all N,

Qule ™y = J‘ k(t, u, uexp a)®e " “plexp —a) dla)j,(a)da+0(tY).

q

Thus the theorem follows from 2.15, using 2.17 and the computation of 8°(u, uexp a) (1.3).

2.18. In the application to the family index, the situation will be as follows: # — M is a
vector bundle over M, with connexion V. However the given structure group of #~ is
smaller than the holonomy group of V. In other words consider a subgroup G, of a compact

Lie group G. Let P,>M be a principal bundle with structure group G,. Let p, be a
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representation of G, in a vector space H and consider # =P x W Let wel.o/{(P)Rg)%"
be a g-valued connexion form on P,. (I.1.3). ie.

(i X ) wy=X, for X,zq,.
Let & be an auxiliary vector bundle over M with connection V. Consider
FYsT(P,, m*(End &))°°
FlelT(Py. n*End £))®4g)“".

Suppose that there exists a representation p, of G in W extending the representation p, of
Go. Then p(w)e/{Po)®End I defines a connexion form for # , thus a covariant differen-
tiation Von # . We also denote by V the tensor product connection on ¥ '®4. Denote by A
the associated Laplacian. Put

pUF)=F°+p (FHel(M, End(# ®&)).

Consider the operator

(2.19) H=A+p(F) on T(M, ¥ ®E)

Indeed, this operator is of the type 2.5

We can enlarge P, in P=P, x ;, G which is now a principal bundle with structure group G.
Then there exists a unique (ordinary) connection form w,&(.«/*(P)®g)“ such that ¢, Py = .
Similarly, we can define uniquely Fle[(P. z*End £ ®g)“ such that F}|Py=F" on P,. Let
F,=F!'4+F°% Then H=H(P, v, p,. §. F|). Remark that for ueP, above x, if we consider
the curvature R=dw +4i[w. ©] of the “small™ connexion, then the form R, I’y on TP,
depends only on the projection of J and " on T.M =1} thus defines an element
RN V*®qg. We fix a G-invariant inner product on g, and define (R,, a), (F', a). We can
restate theorem 2.11 in terms of the “small” data v and F.

THeoREM 2.20. Ler H be the operator defined in 2.19. Assume the Casimir p (C) is scalar.
Then for ueP,, with n(u)=x there exist C* functions ¢; on g with values in End &, such that

dim M ~dimg I ~jalit/ 2 \
Cule M uy ~{4me)” 2 ¢ e # | Y FfO a@p,(expa) )da.
v k=0

Furthermore
-1 2(Fk.a)

Dy(a)=/i *a) j; ' *3r(R,. a))e
3. Calculus with Grassmann and Clifford variables

Let ./ be a finite dimensional supercommutative algebra with unit. (In application, .=/
will be an exterior algebra). Let =(, .. .. Z,) be a n-tuple of even nilpotent elements of
</ Let ¢ be an ./-valued C*-function on R". We define

| o
3.1 (b(x+§)=j;nﬁ Joixy &, for xeR™

In particular
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-

LeviMma 3.2, Let ¢ be an o/ -valued C”-function on R" slowly increasing at infinity (as well
as all its derivatives). Let Z=(Z,, ..., ) be an n-tuple of even nilpotent elements of o/. Then

~

Jix = 3§12
lim(4m)"‘2J &7 E glx)dx=g(d)
t—0 R

Proof. 1f @ is a function in the Schwartz space, we have

J((D(xﬁ-é)-—(b(x) Jdx=}) (J—L 0’¢(V)d‘c> =0.
JFo\JJ!

Thus

fix=32 [1x1}2

e’ w0 olxd J TTH ¢(x+ &)dx
=2
J

(J s 8’¢(x)dx> &

At the limit, we obtain 3.2.

3.3. Let V be an oriented Euclidean vector space with orthogonal basis ¢, . ... ¢,
Consider on the exterior algebra AV the inner product such that the elements Y, =
Wi, A ... Ay, form an orthonormal basis. For weAV, we denote by T{w) the coefficient of

the highest degree term o™ of w. We denote by exp,w the exponential of w in AV. Identify

=A2V with so(}) via t (1.1). Identify g* with g through the scalar product. By the
universal property of the symmetric algebra, the injection g—A ¥} extends to an algebra
homomorphism from S(g*) to A* V which we denote by A. We further extend A4 first to the
algebra $(g*) of formal power series on g, then to C*(g) by composing with the Taylor series
expansion at 0. Finally we extend 4 to a map from C*(g)@AV to AV by A(e®@y,)
= A(p) A ;. Let us describe A in coordinates. Let ; be an orthonormal basis of V, we
identify g with RY2""~Y by writing X = Y x;;; A ;. An element f of C*(g)® AV can thus

i<j

be identified with a C* function f(x;;) on RY*"*~ D Then A(f)=/(y; A ) is defined as in
3.1, ie, in the expression f(x;})= Zf, x; ¥, we replace the commutative variable x;; by
¥; A, Denote by y the column vector (y, . . . ¥,). Then yny* is the antisymmetric matrxx
with coefficients y; A ;. Thus we will also write

A(N)=fpy™).

3.4. The group O(}) acts on V, AV, S(g), etc. ... The map A: C*(g)—»A~V commutes
with the action of O(¥). As constants are the only O(¥)-invariant elements of AV, we have
P(yy*)=P(0). if P is a scalar valued function on g which is invariant by the full orthogonal
group.
The following proposition is the crucial technical tool leading to the elimination of the
singular part of the heat kernel index density.

ProposiTion 3.5. Let P be a smooth slowly increasing AV-valued function on g. Then

t=0

) _dimg X112 X
lim(4nt)” 2 J T P(X)epr( >dX A(P).
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Proof. Let X = Z XA As (Y, Ay )? =0, the Babylonian method gives:

i<j

_lixyE X 1 5
e~ 3 2Xpa 5 =exp, ~4—[Z (X,-j*lf//i/\ll’j)‘

i<j

and we apply lemma 3.2.

3.6. Let C(V) be the Clifford algebra of V. Denote by C the representation of C(}) in AV
given by C(xyo=xAw—ix)w for xeV, weAV, where i(x) is the contraction by x. We
identify C(V) as a vector space to AV by the map y—C(y)1. We denote by x>y the product
on AV inherited from C(¥). Then Yoth; = — 1, Y2\, + 2, =0 if i # /. We denote by C* (V)
the subalgebra of C(V) generated by the products of an even number of elements in V. We
denote by expg{w) the exponential of weAV with respect to the Chfford product.

Suppose dim F'=n=2/. Consider the spin representation p of C(¥) in the spinor space
S. Recall that S=S*®S ™ is the sum of even and odd spinor space and that the algebra
C*(V) leaves S™ and S~ stable. We denote by p* the corresponding representation of
C* (V) in S*. Define the supertrace of an element aeC(¥V) by:

3.7. str(a)=2'i "' T{a).

Then, for aeC*(V), str(a)=tr p*(a)—trp ~(a).

3.8. The bijection t: g=A?¥—s0(}) can be interpreted in terms of the Clifford algebra.
The space g=A°V is a Lie subalgebra of (AV, s). The space V is invariant under the map
v—aov—v2a, for asg. The endomorphism of V' thus defined coincides with t(a)eso(}).

The universal covering group G=Spin(¥) with Lie algebra g can be realised as a
subgroup of the group of invertible elements of C*(¥). The map exp: g— G coincides with
the exponential map in C*(V). As (Y= )*=—1 (i<)), if v is the restriction to G of a
representation of C*(¥), then the Casimir acts by the scalar —(dim g) in the space of v. We
denote by the same letters p, p* the restrictions to G or g of the spin (even, odd)
representation of C (V).

In the next proposition, we compare the exponentials in the Clifford algebra and the
exterior algebra.

X/2 _ ~—Xi2
Recall thath(X)=detV<e—~Xe——->, for XeEnd V. For aeg, we write j,(a) for j,(t(a)).

The function (j,(a))"? is analytic on g, O(})-invariant and j;-*(0)=1. For XeEnd V
sufficiently small, define g(X)=(det,((e¥? +e~%7%)/2)'/%. For aeg, we write g(a) for g(t(a)).
th X/2
Consider g(X):( X/Z/
For geGL(V) we still denote by g the automorphism of the exterior algebra extending g.

1/2
> eGL(V), for XeEnd V. For X =1(a), we denote g(t(a)) by g(a).

ProprosITION 3.9. expc(a) = qg(a) expa(g(a).a)=q(a) g(a)expala).
Proof. 1t is enough to prove this in the case n=2 and a=0y, Ay,, where it is easily

verified.

Lemma 3.10. Let weAV. Consider the AV-valued function on g given by f(X)=g(X)™ '.w,
then f(Yyy*)=o.
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Proof. It is enough to verify that for veV, t(yy*)r=0. But, if w=Zwy,; and
X=Ix; 0 A, t(X)o==2 Y oxi, hence t(Yy*lo=—2 Y oy, Ay;Ay=0.
i<j A i<j ‘
Let 6, be the automorphism of AV such that ;0w =t""2w, for weA'V.

ProrosiTioN 3.11. Let P be a AV-ralued slowly increasing smooth function on g, then

. dim g llall? a
lim{4mt)™ 2 Je‘ 4 o,<expc5> P(a)da= A(P).
s 2

t—0

Proof. We prove that for any weAV,

dim llal|2
lim(4n:t)’*?'gj‘ e "47"T<(3,<expC g) P(a)w> =T(A(P)A w).
a 2

t—=0

t
-1
=q<‘2—’> det g@) T(exm(%) Ag@ (Pl@),
=jb"2<§> T(exm<%> A g<§> (Plaj))

*
Then we apply 3.5 and recall that j}/* <£g—~>=1 and, by 3.10,

o(25) " v =

Remark. Consider V' with the given quadratic form Q. Consider, for teR, the form
tQ. Denote the corresponding Clifford algebra structure on AV by C,. Then we have
expe(a)=g(ta) exp(g(ta)a), and q(0)=1, g(0)=1d. This relation is a refinement of the
fact that the product on C, tends to the exterior product, when ¢ tends to zero. Proposition
3.11 shows that in the limit, we can replace Clifford variables by Grassmann variables. A
similar approximation argument was used by Getzler to give a simple proof of
Atiyah-Singer theorem for a single operator [7].

3.12. For applications to the family index, we consider the situation, where ¥ is an
orthogonal direct sum V=V,®V, and V, is even dimensional. Let S;=S5 ®S,; be a
spinor space for ¥V, and let p, be the representation of C(V,) in S,. Denote by C, the
representation (3.6) of C(V,) in AV,. As C(V,®V,) is isomorphic to the graded tensor
product C(V)®C(V,), it acts on AV, ®S, by the representation p,:

P1(X o) (0®3)=(—1)*F 0@ py(Xo)s,
PiX ) (0®s5)=C (X )o®s,

for XoeVo, X €V, weAV, se§,. Denote by T° AV,—C the highest degree term with
respect to V,, and denote also by T° the map Id®T% AV,QAV,—AV,. Let str’
End(S,)—C be the supertrace relative to S, and denote also by str® the map

Id®str® End(AV,)®End(S,)—End(AV)).
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For weC(V)~AV we have p,(w)eEnd(AV,)®End Sy. Note the formula:

(9%}

3.1 stro(p () )1 =22 T%w).

We denote by d, , the automorphisms of AV, and AV, ®AV, which extend the dilatation
S f)=t"V2 f for feV',. As

pThmYo 5 (To%w) = T°(5,(w)),

note the obvious corollary to 3.11.

CoroLLary 3.14. Ler P be a scalar-valued slowly increasing smooth function on g, then

. dim Vo +dimg -~ lall? . a dim Vg
lim{4me)~ 2 e P(a)OIV,T"(expC 5>da:(4n)‘ 2 TOPOpy™)).
t=~0 g Z

IIL. BISMUT SUPERCONNECTION FOR A FAMILY OF DIRAC OPERATORS. THE INDEX DENSITY
OF A FAMILY

I. Bismut superconnection

I.1. We consider a fibration M — B where the typical fiber M is a compact C *-manifold.
We denote by VM (V as vertical) the tangent bundle along the fibers. We assume that the
bundle VM is oriented and is given a Euclidean metric, which we denote by g,. For xeB,
denote the fiber =~ !(x) by M. We will assume that a spin structure exists and has been
chosen on VM. Put no=dim M, let V', be R™ with its canonical metric, basis, orientation.
Denote by P, the principal bundle of oriented orthonormal frames of ¥’ and denote by
P the principal bundle with structure group Spin(},) which defines the spin structure.
We assume that ny=2I, and consider the space of spinors S,=5;@S;. Let
Fo=(Py x S)/Spin(V,) be the associated bundle of spinors along the fibers. For xeB, we
denote by VO the Levi-Civita connection on 7M, and on So|M, = ,.

We suppose given an auxiliary complex vector bundle & over M with hermitian metric
and hermitian connection, and we also denote by V° the tensor product connection on
(Fo®E)\M,. These data define a smooth family D =(ID,),.z of Dirac operators, where ID,
acts on W ,=I'(M,, ¥, @)

In order to compute the Chern character of the bundle Ind ID, Bismut constructed a
particular superconnection B with zero exterior degree term equal to ID. The construction of
the Bismut superconnection B requires two more choices:

First choose a connection for the fibration n: M — B that is a smooth family of horizontal
tangent spaces "M, yeM such that 7,M =V, M@ T% 3. We will identify the horizontal
tangent bundle T"# to the pull back n*TB.

Secondly, we fix a torsion-free connection V2 on the basis B (Later, we will also assume
that V2 is trace-free). We will however see that the superconnection B depends on the choice
of T"M but not on the connection V2.

1.2. The choice of a horizontal tangent bundle T"M gives rise to a canonical metric
connection V° on VA{ which extends the Levi-Civita connection on the fibers. It can be
defined as follows: choose a metric § on TM which extends g, and for which VM and TﬁM
are orthogonal; then define V° as the projection on VM of the Levi-Civita connection of §.
One verifies easily that V° does not depend on the choice of §.

The formula for the curvature of the Bismut superconnection, as well as the final
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computation of the family index will be rooted in a crucial symmetry property of the
curvature of V° [Proposition (1.7)] generalizing the relation R;;, = R,,;; of the Riemannian
curvature. We describe this symmetry and the Bismut superconnection itself, by introducing
the bundle

¥ =n*TB®VM@n*T*B=TM®r*T*B

together with a symmetric bilinear form g and connection ¥ on ¥,

1.3. Take yeM, x=n(y). On ¥,=T,B® T,M . @TZ¥B, g, is defined by the following condi-
tions: T,M, and T.B®T*B are orthogonal, the restriction of g, to T,M, is g,. the
restriction of g, to T.B@T ¥B is given by the canonical duality. Thus g,(X, f)=<X.f) for
XeT B, feT*Bwhile T B, T *B are totally isotropic. Note that the orthogonal space to 7 B
with respect to g, is T¥B®T M.

Recall that we have chosen a connection V2 on TB. It induces connections on 7 *B and
7*T*B which we also denote by V&,

ProposITION 1.4. There exists a unique connection ¥V on " =TM@®n*T*B such that

1.4.1. V preserves n*T *B and coincides on it with V.
1.4.2. V preserves the bilinear form g
1.4.3. For X, Ye[(TM), we have

VY-V, X=[X, 1]

Remark. We do not assume that ¥ preserves 7M. Thus condition 1.4.3 includes the
condition that V¥ —V,X belongs to TM.

Proof. The proof is similar to the case of the usual Levi-Civita connection. For X ;. X ,,
X ,el(TM), YeI'(r*T *B), conditions 1,2,3 imply
LS. 2g(vx1X:, X=X 9(X5 X3)+Xy9(X5, X)) - X59(X . X3)
+9([ Xy, X5 X3)—g([ X5, X531 X ) +9([X5, X, ], X),
L6. g(vxlxz, V)=X,9(X, Y)—g(X,, 7\'1' 7).

This proves the unicity of V. Conversely 1.5 and 1.6 determine VXX-XZ and one verifies
easily that the operator V is a connection on ¥~ which satisfies 1.4.1, 1.4.2, 1.4.3.
Let R be the curvature of V.

ProrosiTiON [.7.
1.7.1. For X, X», X,e[(TM),
R(X |, X3).X;+R(X, X3).X,+R(X5 X,).X,=0
1.72. For X, X,e[(TM), X3, X ,e[(TM®n*T*B)
gR(X \, X)X 5 X)+9(X3, R(X,, X2)X,)=0
1.7.3. For X,, X,, X, X e[ (TM),
gR(X 1, X)X 3, X)=g(R(X 3, X)X, X))

Proof. 1.7.1 follows from 1.4.3 and 1.7.2 follows from 1.4.2. The relation 1.7.3 1s a
consequence of 1.7.1 and 1.7.2.
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From L3, it follows that the connection V° on VM defined in 1.2 coincides with the
projection of V on ¥"M. Let R® be the curvature of V°. We obtain the desired symmetry
property of R®:

CorovLary 1.8, For X, X, in [(TM), X, X, in [(VM)
go(RO(Xp Xz)Xs’ X4):Q(§(X3v X)X, Xs)

Proof. This is 1.7.3, since the left hand side is equal to g(R(X,, X,)X 3, X.).

19. Let n, =dim B.

Put V', =R" and consider on V'=V,@®V,@ V'} the bilinear form Q defined similarly
to g, on ¥",: the spaces V', and V, @ V'} are orthogonal, the restriction of Q to R™ is the
Euclidean scalar product, the restriction of Q to ¥, @V} is given by the canonical duality.
Let C(V,Q) be the Clifford algebra over (¥, Q) generated by the vectors xe} and
relations x-v+yx=—2Q(x,)). Let S=AV*®S,. Let p, be the representation of C(V,)
in So. The space § is the spinor space for C(V, Q), the Clifford multiplication being defined
by

X 0®s) =(—1D** 0@ py(X).s, for XeV,, weAV,, seS,
XMo@ s)= - 2i(X)o®s, for XeV,
PN(0®s)=fA0®s, for feV*.

Consider now the vector bundle & =n*AT*B)® ¥, over M and the bundle of Clifford
algebras C(¥7) with fiber C(¥7),=C(¥",, g,) for yeM. Then, similarly, §”y is 2 module for
C(¥7), ie., # is a Clifford module for C(¥"). We also denote by p the action of ¥~ on .

1.10. The connection ¥ on ¥~ gives rise naturally to a connection on .%. We describe this: let
so(V, Q) be the Lie algebra of infinitesimally orthogonal transformations of (¥, Q). Let b be
the subalgebra which preserves V'¥. Then } is the set of matrices:

b 0 0
A=|w a 0 |,
z  —w* —p*

where aeso(V,), begl(V)), zeA*V¥<Hom(V,, V'¥), [weHom(V,V,)] and * denotes the
transposition. We will also consider the subalgebra b, =} of elements A such that b=0.

As in I1.3.6, we have a canonical identification of C(V, Q) with the exterior algebra AV
(as vector spaces). We denote by - the Clifford multiplication on AV. Thus, if X<} and
X*eV'* is defined by (Y, X*>=0Q(Y, X), we have, for weAV, XeV,

Xoo=XAo—iX*o.

Let g=A?V. For Aeg, the map t(A)x=A=x—x>A preserves ¥'< C(¥, Q) and defines an
isomorphism of g with so(V, Q). The restriction of p to g defines the spin representation of
so(V, Q) in S. The group Spin(¥, Q) is also considered as a subset of C(¥, Q) and p is its spin
representation. We will consider in particular the restriction of the representation p to

Spin(V,) x GL(V,)< Spin(V, Q).

Denote by Py the bundle of frames of TB and consider the principal bundle
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P'=Pyx ~m*Pg over M, with structure group Spin (V) x GL(V,). We have
¥ =P x Spin (Vo) coLo (Vi@ Ve@ V1)
F =P x Spin (Vo) XGL(VHS’

The covariant differentiation V on ¥ gives rise (I.1.6) to an b-valued form:

L1l Bes \(P)®b.
Consider p(f)e/(P)®End 3.

This is a connection form for .Z, thus defines a covariant differentiation on &, still denoted
by V. It satisfies

112 Vid(Y)=p(Y)Vy+p(Vy.Y), for XeTM, Yel'(¥).

With the above preparations we can now define the Bismut superconnection. Consider
the tensor product connection on #Z®¢& and denote it also by V. Consider the following
Dirac-looking operator on I'(#®§&). Let X,, 1 <x<n,, be a local basis of TB and let X,
n,+1<i<n, +ngy, be a local oriented orthonormal basis of VM. Let X*, 1<i<n, +n, be
the dual basis in VM @n*T*B. Thus X* =X, for n, <i<n, +n,, while X*=f, is the dual
basis of {X,} in T*B. Put

1.13. B= Y (pXH®LVy,

1<igni+no

= Z fzvxﬂ' Z PO(X")VX.-

l<a<gn ny+1<ign +ng
Let ¥ =#""@®% ~ be the infinite dimensional supervector bundle over B such that
WI=T(M, SE®E). We have an identification of [(#®&) with «/(B) ® T[(B. ).
. - .TIO(BJ
The even (respectively odd) part of (F®&) is [(F* ®&) (resp. [(F~®&)).

ProposiTION 1.14. Assume V5 is trace-free. Then

(1) The operator B is a superconnection, i.e. B maps T(F*®¢&) into [(F~®&) and rice-
versa, and satisfies:
B(wd)=(dw)p +(—1)** “wB¢

for wed(B), pel(F R E).

(2) The term of exterior degree O of the superconnection B is given by the family D =(D,) of
the Dirac operators in the fibers % .

(3) The superconnection B does not depend on the choice of the torsion-free, trace-free
connection V5.

Proof. (1) Itis clear that B is an odd operator on ['(#®¢&). For begl(V,)cso S V. 0), we
have on AVI®S,,

1.15. p{b)=b® 1 +4tr b, where we still denote by b the natural derivation of AV¥. Thus, we
see that if V& is trace-free, we./(B), se[ (Z® &), we have

Vdws)=(VEw)s+(—1)**“wV,s.

As V2 is torsion-free, dw=Zf,(V§xw) and we obtain (1).

TOP 25:4-3
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{2) For se[{¥,®&). we have

BOls= Y PolX ) (Vy 5oL

n+1<i<n; ~ag

But clearly (V. 5)°! =V 5, hence the result.

(3) Let B', B? be associated to V5, V¥ Because of the superconnection property, it is
enough to verify that B' and B? coincide on ['(#,®¢&). From formula 1.5 giving the
connection V on ¥, it is clear that the difference of connection matrices OX)~B,(X) is

valued in sl(¥)<so(F, Q). Therefore from (1.15) we see that (§~7§{K_—V§i).(1®so)=0.

Remark. When the fiber M is reduced to a point, Bismut superconnection B is just the

usual covariant differentiation on «/(B) ® [(&).
+9(B)

1.16. Let I (xeB) be the curvature of the Bismut superconnection B (1.1.3). Thus I, is the
operator on the fiber ¥ defined by

(B*@)x)=1.0(x) for ¢peT(F®E)=/(B, #)

(ie, Px)AT B Y =T(M,, ¥@8).

We fix xeB. The restriction of the connection V to M defines a connection on FIM .
Let A, be the associated Laplacian. Let r be the scalar curvature of the Riemannian
manifold M. Let QF be the curvature of the auxiliary bundle &.

THeoreMm L.17. ([3]. theorem 3.5)

-~ r - -
1-‘=A*+Z+ Y PXFXHRY(X,, X).

1gi<jgsni+np

Proof. The proofis very similar to the computation for the usual Dirac operator. Using
the commutation relation 1.12, the torsion property 1.4.3 of the connection V on ¥~ and the
anticommutation relations in the Clifford algebra C(V, Q), we obtain

B :=A+} Y BXFXP QX X))

1gijsn +no
where Q is the curvature tensor of Z®4&. Since
QX X)=pRX. X))®1+100%(X, X))
it remains to prove that

PIXEXNPRIX X)) =

1<i,j<n +ng

[SS N

This is proven by a standard computation, using the symmetry formulas 1.7.1, 1.7.2 and the
orthogonality relations in TB@® VM@ T *B with respect to the bilinear form g.

2. The index density of the family (ID,).

2.1. Let D=(D,) be the family of Dirac operators on the fibers. Let B be the Bismut
superconnection, ({,)..5 its curvature operator.

As in (I.1.4), we consider the automorphism &, of AT*B given by t7¥2 on AT *B and
extend J, to a linear automorphism of &. Then B, =1'/25,-8:5," ! is again a superconnection
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on MFRE=TI(B, # ) with curvature
[ =0l )0, "

Lzt xeB. By theorem 1.17, I, is a second order differential operator actingon ATfB @ # ',
with principal symbol the Riemannian metric of the manifold M. Therefore we can form
the semi-group e”"* (r>0) acting on AT¥*B® # . It is given bv a C* kernel
(e ™I Ye AT B @Hom(F 4 ®8),, (£ o®8),), ¥, y'eM , where AT ¥B acts on itself by
exterior multiplication.

By theorem 1.2.5. the cohomology class ch{lnd D) is represented, for every r>0. by the
closed differential form on B given by

1

d:i:;(SIr(e‘fl() )

We have

n
Saindstrie ™)) = 5:[xz(5tf0<}‘|e_”xl.\’>)d}'~
JM

where we have extended str’: End(&,®6),—~C by Id®str® to A(T B*QEnd(¥,®9),.

We fix x&B, denote [, by I. We fix a basis X, of 7B identifying 7 .B with }7, =="". We
denote by §, , the dilatation on AV¥ given by 6, (M) =¢~"?wl. Consider the decomposi-
tion T,M = V", @ T, M, in horizontal and vertical subspaces. Let 7% A(T,M)*—>A¥'] be the
map given by taking the highest degree term in the vertical direction. Recall that we have a
connection V° on "M and a connection on &. We use these connections to construct the

Chern-Weil differential forms .=/{}°3) and ch(&). <Reca11 that .=/ is associated to the

3

X2 —X 2\ ~-1
. . . € —¢ . . . . . -
invariant function <detb)?—> > The aim of this section is to give a proof of the

following theorem of Bismut ( [3]).

THEOREM 2.3. For yeM . the index density &, »i(strdyie "=|y> has a limit when t—0
which is equal to T/ (V' Mch(&))

By integration over M,. this theorem clearly implies the cohomological theorem of
Ativah-Singer [2]:

CoroLLARY 2.4, Let D =(D,) be the family of Dirac operators associared to a fibration m:
M—B and an auxiliary bundle &. Then

ch(ind Dy=n (J (VM) ch(&)).

Our proof of the theorem 2.3 is based (as in [5] ) on the method of the heat equation on
principal bundles developed in II. However in the situation where dim B> 0 the Laplacian
A, is associated to a connection V on .#| M, which is valued in the non-compact Lie algebra
by so that II does not apply right away. This non compacity is due to the Grassmann
multiplications which appear in the Bismut curvature operator I.. Replacing Grassmann
multiplications by Clifford ones, we will define an operator I(¢) associated to a connection
with compact holonomy group. Let us explain this construction.

2.5. Consider the vector space w= AV, @V =AV @ (V,® VH@A T It carries a Lie
algebra structure isomorphic to b, given by the embedding w= C(V, 0V, @ VF.0). We
denote by [x,y], this Lie algebra law. The subspace A’} is then a subalgebra g,
isomorphic to so(V,) while (V,® F*I@A?V* is a nilpotent ideal of b,.
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Consider the principal bundle P, = PyjM, with structure group G,=Spin V,. Let g

P — M _ be the projection. We have

1M = Px g (1, @V, 1)

TSHM =P o, (V@ V)

FIM =P, x5 [AVE®S,).
From the formulae 1.7.2, 1.7.3, we see that the connection ¥ on ¥ JM_ is associated to a w
valued form 6 on P,. We also consider the curvature R of the connection V. It is the 2-form
2.6. R=dP+1{0, 0l e/} P)Rw.

The connection V on #|M, is associated to

2.7. PP (PYRENdAV*®S,).

Denote by A=A _ the Laplacian on F®EIM , associated to the tensor product connec-
tion. Consider the potential

r

It Y AXFXN®QX. X))
1gi<j<

ny +ng

It is of the form p(F), where F=F°+F!,

28 F%I(M, End &),
F'e(T(P,, q, End £)®w)*,
with FO !
4
F'= Y QXL X)R(XFAKY

l<i<jgn+no

where X;, 1<i<n, +n, is a basis of ¥V, @ V. (Thus (X)), is a basis of T,M, for ueP,, and
y=gq(u), and X* is a basis of V¥® V). We have:

29. =&+ p(F).

However, as said before, we cannot apply the results of (I1.2) to this operator, as the
holonomy group of the connection p(#) is not compact.

We now introduce a deformation I(¢) of I. Fix a positive inner product on }'* and
consider the Clifford algebra C(V,@ V'¥) associated to the direct sum inner product on
Vo@ V¥, The embedding of the vector space w=C(V,@ F¥) defines on w another Lie
algebra bracket which we denote by [x, y],. We denote by g the Lie algebra (w,[.],). We
denote by G the spinor group Spin(¥,@ V¥)=Spin(n,+n,) considered as a subset of
CVo@VT). Then g is the Lie algebra of G. It has an inner product (,). Consider the
representation p, (11.3.12) of C(VI® V) on AVI®S, (here V| is identified with F'*) given
by

pUX M 0®35)=(— 122 0@ py(X).s, for XeV,, weAV*, seS,,
o (M Ho®@s)=(fAo-—-io)®s, for feVF.

Then p, induces a Lie algebra representation of g and a representation of G. Denote by 4§, ,
the automorphism of AV¥, A(V,@ V), AVI®S,, etc. .., which extend the dilatation
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3, . (f)=¢"'2 fon ¥'*. Consider the Lie bracket [x.3],=0,,.[(6,; 7 'x. (3,7 "y] on w.
Then lim [x, y],=[x. v]o- Define px)=d, 50 ((3,,) ' x)xd; ) 7" for xew. Then p, is a
£—0
Lie algebra representation of (w, [.],). We have

Pl X Hw®s)=(— 1" °0®pyX)s,  for XeV,
N o®s)=(fA o —Cci(w)Rs. for feb*,

so that lim p,(x) = p{x) for xew.
e—0

Consider the form
PP/ (PIREndAV*RS,).

Then it is easy to see that p,(f) is a connexion form (1.1.5), thus defines a connection V. on
FIM . Let A, be the Laplacian on (F®&)| M, associated to the tensor product connexion.

Consider I{e)= 4, + p,(F).

Then (e) is again a 2%order differential operator on I'(M,. &) with principal symbol the
metric of M. Recall that we have asymptotic expansions:

Gle ™ lyy ~ 172 5 R 4, (y),
k=0

Gle™ 0y ~ o772 ) <A, ().
k=20

where A,(y), A, (y) are obtained by recurrence relations ([8] ). It follows from the continuity

of the operator I(e) that limA, (v)=A,(3). We have, for yeM
£—0

A, (MeEnd(AVH)®End(#?)
Ady)eAVTIR®End(S)) = End(AVH®End(#Y),
where AV¥ acts on AV¥ by exterior multiplication. Thus, we have
lim strO(A4, ,(y) ) 1 =str®(4,(y)).
£~0

We will see that, for every ¢ #0, the asymptotic expansion of , (str®(yle ~*®]y>-1) has no
singular part. Put

2.10. w(e, y)=1im &, (str®yie " E(y>-1).
=0

Thus, the asymptotic expansion of d, (str°yle"/|y>) has no singular part, and

limJ, (stryle ™" yd) =lim w(e, v).
t—0 =0

[t is easy to compute (e, ¥), as we can apply to the operator I(g) the results of (11.2):
Consider the groups G, =Spin(V,), G =Spin(V,@ V¥). Let g = g. For e> 0, consider the
g-valued connection form and g-valued potentials given by

0,=67 1D (PYRg
Fl=06{H{FYe/ (P)®q
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r
Fr=F"=
F.=Fl<F
Consider the representation 3, , p,:0; ! of g (or G). Then
puAly=0d,, 0 (0) 57,
PAFY=0, 0 (F) 00,

Thus. the operator I(¢) is the operator H on [1M . .# ) associated to (P, .. F.. 0, ;:p 1))
[11.2.19].
For agg, we have

211 (FL8, . a)=IF* a).
Let R, be the curvature of §,. Then

R, =07 MdD)+ (071 D, 57 10]
and, for aeg

.
—
12

lim(R,, 6, ,a)=(R, a).

e—Q

We now apply theorem 11.2.20 to I(z). For ugP} above veM , there exist C* functions ¢!
on g with values in End &, such that

Haliz x| . . .
Cule™ 1 ud ~ (4mg) =1 2 T’é;e_ - Z Uola)®(0, :pi(expa)-dy)da
a J

j=0
with
(b%(“):jj 2(£7)j;01,': l%fu—,(R ay) e VAFLa)
From this, we obtain

Oy Astrule TPy 1) ~

v ] Ua”! P o
(dmt)~ 1’3‘"°'d’“‘\"0‘1_6<¢ Z trr plla)d, (stro(p (exp a))-l)da).

a

ot

We have str (expa)!=2°"°T%(expca) (11.3.13). Thus by 3.14. the asymptotic
expansion of d, , ((str®Cule ")) 1) has no singular part and we obtain:

W, =(2im) 70, (TA(P)))
with
Play=j; ! Hry (R, a)) trie ™ o),
By 2.11, 2.12, we have

lim (e, y)=(2ir) " P(yy*)
£—0
with

o
—_
(V%)

P@)=/7 ey (R, @) tre™ 7).
NOW, as

(Fl.oa)=) Q% (X, X)xy

i<j
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we have
tr(e vy =ch (&),

In the expression (2.13) R is the curvature of the connection V of the bundle ¥ M and
aeA (V@ V), ie., ReAVERA (V,2 1V and (R, a)=(1®i(a) ))ReA? V& xso(Vy).
Consider the curvature R? of the bundle V¥ over M for the Euclidean connection V?, ie

RP°eA(VERVHI®so( Vo).
By the fundamental symmetry property of the curvature R (1.8) we have
(I®ila)yR=(i{a)® DR
(This equation corresponds to the theorem 4.14 of [3] ). Thus
o 2wy (Ro ) = o/ o( VM),

where .p/AQ is defined, as in [9], by omitting the factor 1;/2in. This finishes the proof of
Theorem 2.3.
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