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THE EQUIVARIANT INDEX AND KIRILLOV'S CHARACTER 
FORMULA 

By NICOLE BERLINE and MICHELE VERGNE 

To Marianne and Nicolas 

Introduction. Let G be a compact Lie group acting by positive iso- 
metries on a compact oriented Riemannian manifold M of even dimen- 
sion. Let CV be a G equivariant Clifford module over M and let 

D:FP(V+) - (V-) 

be the Dirac operator. The spaces Ker D and Coker D are finite dimen- 
sional representation spaces for G. The equivariant index of D is defined to 
be 

(index D)(g) = tr(g, Ker D) - tr(g, Coker D). 

Our main result, Theorem 3.18, is a formula which expresses (index 
D) (exp X) as an integral over M of a form /x which depends analytically 
on X near the origin in the Lie algebra g of G. Of course, for X = 0, it 
coincides with Atiyah-Singer index formula. We also obtain a similar for- 
mula for (index D)(b exp X) for any element b e G, with X in the Lie 
algebra of the centralizer of b, as an integral over the fixed point set of b. 

Our main tool is a localization formula for differential forms (Theo- 
rem 2.8) generalizing results of R. Bott [11], [12]. Denote byX* the vector 
field on M generated by exp tX, denote by c(X*) the contraction with X8, 
denote by d the exterior derivation; we consider the operator 

dx = d - 2i-rc(X*) 

acting on differential forms. This operator was also introduced, indepen- 
dently, in [27], and related in [2] to equivariant cohomology. In [8], given a 
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G-equivariant principal bundle with a G-invariant connection, we have de- 
fined a moment map and equivariant characteristic forms, which are 
dx-closed forms analogous to Chern-Weil characteristic forms. 

In our formula 

(index D)(exp X) =| x 
M 

the form ILx is defined in terms of such equivariant characteristic forms, 
associated to the geometric data. 

Theorem 2.8 expresses the integral over M of a dx-closed form as an 
integral over the zero-set Mo of X*. Using this, our formula for the equiva- 
riant index follows from the theorem of Atiyah and Segal [4] which ex- 
presses the equivariant index at a point g E G as an integral over the fixed 
point set of g. 

When M is a regular admissible orbit (9 of the coadjoint representa- 
tion of G, our formula gives Kirillov's formula for the character of the cor- 
responding representation To (cf 3.21). As is well known, in this case the 
equivariant index theorem at a regular element g E G reduces to the 
Lefschetz-trace formula of [1] and is equivalent to Weyl's character for- 
mula. On the other hand, Kirillov's formula reads [19] 

tr T (exp X) = ei< ,x>ec/2rj-1/2(ad X) 

where w is the canonical 2-form on the orbit (9 and 

ead X/2 - ad /2 

ig(ad X) = det adX 

The integrand in the right-hand side coincides with the form yx. 
Consider now a noncompact semi-simple Lie group G with discrete 

series. The square-integrable representation To associated to a regular ad- 
missible elliptic orbit can be realized in the space of LP-solutions of the 
twisted Dirac operator on 0 [22], [25]. Furthermore, the formula 

tr To0(exp X)= |IYx 
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holds [24], when the trace is considered as a generalized function on a 
neighborhood of 0 in g. This expresses the L2-equivariant index in terms of 
equivariant characteristic forms. In this situation no Lefschetz fixed point 
formula seems to hold over the whole noncompact group G. However the 
localization formula 2.8 remains true when exp tX is a relatively compact 
subgroup of G [7]. Thus on a compact torus T of G (but only there) can 
tr To (g) be given alternatively by a fixed point formula, or by the integral 
formula above. 

In the case of a homogeneous Riemannian manifold, Connes and 
Moscovici have obtained a formula for the L2 index of the Dirac operator 
[14] involving the form /x, for X = 0. Similarly, we expect the range of 
validity of our equivariant index formula to extend to noncompact situa- 
tions. 

The results of this article have been announced in [9]. 
A particular case of the localization formula gives a formula of Duis- 

termaat and Heckman [16], [17], for the moment map of a symplectic 
manifold with a Hamiltonian G-action (cf 2.10). We have used some ideas 
in [17] to simplify our original proof. The localization formula 2.8 has also 
been obtained in [2] using topological methods. 

We thank Victor Kac for the proof of formula 2.9. Michel Duflo sug- 
gested us to model the formula for (index D) (b exp X) on Harish-Chandra 
description of the distribution O(b) [18]. 

We also thank R. Bott, A. Connes, V. Guillemin, G. Heckman and 
H. Moscovici for conversations on this subject. 

I. Moment map, group actions on vector bundles and equivariant 
characteristic forms. 

1.1. LetMbe a C-manifold. Denote by (i(M) = ?(i(M) the alge- 
bra of differential forms on M and by a+(M) the commutative subalgebra 
of even forms. We denote by d the exterior differentiation. If t is a vector 
field on M, we denote by c(t): (i(M) -+(3(M) the contraction, ?(t) the Lie 
derivative. We have 

1.2 2Q) = d * c() + c() * d. 

1.3. Let G be a Lie group acting on M. Let g be the Lie algebra of G. 
For X E g, we denote byX , or simply X*, the vector field on M defined by 
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(X* f)(m) = d f(exp tX * m) I t=O . 
dt 

We have: [X*,Y] =Y-[X, Y]*. 
The operator dx = d - 2i-rc(X*) is an antiderivation of (i(M), which 

respects the gradation in even and odd forms. By 1.2, (dx )2 - 

-2i7rJC(X*). Let (ix be the subalgebra of forms pt E (i(M) such that 

C(X*)/t = 0. Then the square of the operator dx is zero on (ix. We define 
as in [8]: 

Z(M, dx) =Ker dx 

B(M, dx) = dx((x) 

Thus B(M, dx) C Z(M, dx) C (ix. We note by H*(M, dx) the algebra 
Z(M, dx)/B(M, dx). It is clear that, if XM = 0, H*(M, dx) is the usual 
De Rham cohomology ring H*(M) of M. 

1.4. A map X -+ ltx from g to (i(M) will be called an equivariant 
form, if 

ltx E Z(M, dx) 

/Ig.x=g -/lx for gEG,Xeg. 

We will study group actions on principal bundles with connections and see 
that such a situation leads naturally to the construction of equivariant 
forms on M. 

Let H be a Lie group with Lie algebra 1. Let P -+ M be a principal 
bundle with structure group H. If U E h, we denote by r(U) (or simply U) 
the vector field on P generated by the right action of H on P, i.e. 

d 
(U* (p)(p) = -p (p exp tU)I =0. 

Let a be a connection form on P, D the covariant differentiation associated 
to a and Q the curvature of a. 

Suppose the action of G on M lifts to an action of G on P commuting 
with the action of H. For X E g, let Xp the corresponding vector field on P. 
The function defined on P by Jx = a(Xp*) satisfies Jx(ph) = h Jx(p). 
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1.5 LEMMA. 

DJX + c(Xp )Q = ?(X*) * a. 

Proof. AsJx(ph)= h-Jx(p), we have 

DJx = dlx + [a, Jx] dc(Xp))a + [a, Jx]I 

Now Q = dia + (1/2) [a, a]. Thus 

c(Xp)Q = c(Xp)da + - [Jx, a] - [a, Jx] = c(X*)da + [Jx, a], 
2 2 

DJx + c(X2)Q = dc(X] )a + c(Xp4)da ?-(Xp*) * a. 

1.6 Definition. If G acts on P and preserves the connection az, the 

map J:P -+g* 0* defined byJx = ai(Xp*) is called the moment map of the 
action. 

1.7 PROPOSITION. The moment map J has the following properties: 

a) J is G X H equivariant, 
b) DJx + c(Xp )Q = 0, 
c) [Jx, Jy] -J[X,Y] = Q(XP, Ypr). 

Proof. Let us prove c): 

1 
Q(Xp, Yp) = da(Xp, YP) + -[a, a] (Xp* A Yp) 

2 

=XPa* oa(YP) -YP* Ya(XP)- a([Xp, YP1) + [Jx, JyJ 

As ae is invariant by Xp, Yp, we have 

(Xp*oa)(Y*) = az[Xp*, YP*] = -a([X, Y1P*) = Jx[, 

and we obtain c). 
As Q is a horizontal form, the form c(Xp)Q, as well as Q(X*, Yp*) 

depends only of the horizontal component of X*, i.e. of X*and a. We will 
reformulate the conditions a), b), c) in a slightly different form. 

Let b be the Lie algebra of H and consider the vector bundle P(b) = 
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P X )/H, where H acts on h by the adjoint action. We denote by F(P(b)) its 
space of sections. The map Jx can be considered as a section of P(b) and 
the curvature Q of ax as a section of A2 T*M (? P(b). As the bundle P(b) is a 
bundle of Lie algebras, given two sections so and so' of P(h), [s?, sot] is again 
a section. Let us consider the covariant differentiation D on P(b) deduced 
from oa. The conditions b) and c) read also as follows: 

b ') DJX + c(X )Q 0 O, as sections of T *M O P(h) 

c') [Jx, Jy] - J[xy] Q(XM, YM) as sections of P(b). 

Following Kostant [21], we now prove the converse. 

1.8 THEOREM. Let (P, a) be a prinicipal bunidle over M with struc- 
ture group H and connection a. Let G be a simply conniiected group of 
automorphisms of M. Suppose there exists a linlear map J: g -- P(P(b)) 
such that: 

1) DJx + c(X*) = 0 

2) Q(XM, YM) = [JX, JY] JIX.Y] 

then the action of G on M lifts unziquely to ani actioni of G oni P comnmnuting 
with H, leaving invariant the connectioni a, anid such that JX = a(X*). 

Proof. If t is a vector field on M, we denote by (l its horizontal lift to 
P. Define (Xp)1, =(X*)h + r(Jx(p)). Thus a(X*) = JX. As Jx(ph) 
h-1 Jx(p), the vector field X* is invariant under the action of H, and it 
follows from 1.5 that X* preserves the connection a. 

Let us see that [X4, Ypf -[X, Y] . As Xp projects to XM, the 
difference between left and right hand side is a vertical vector. Thus, we 
need only to verify that 

aZ([Xp, yp4]) = -a([X, Y]P) -J[x, Y] 

Consider Q = da + (1/2) [a, a]. Then: 

Q(X*, Yp*) = (da)(X*, Yp*) + [Jx, Jy] 

Xa* * a(Yp*)-YP* 
- Ya(X*) - a[X*, YP*4 + [Jx, Jy] 

= a[XP*, YP*] - a[Yp*,XP* - a[Xp*, YP*] + [jx,Jy], 
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as a is invariant under Xp, 

= a([XP, YPf) + [Jx ,J]* 

The condition 2) implies then the desired equality. 
It remains to see that the vector field Xp is complete. Let x E M, p a 

point of P above x. Consider x(t) = (exp tX) * x. Consider -y(t) the horizon- 
tal lift of x(t) to P such that -y(O) = p. The equation DJx + c(Xm)o = 0 
implies in particular that (X) X = 0. Thus Jx is constant along the 
curve -y(t). 

Define p(t) = -y(t) exp tJx(p). Remark that 

Jx(p(t)) = eUxJx(P)Jx(-y(t)) 

e-tJx(P)Jx(p) 

= Jx(p). 

As H leaves invariant horizontal subspaces, the tangent vector to the curve 
-y(t + 0)exp tx(p) is (X*)h. The tangent vector to -y(t)exp(t + 0)Jx(p) is 
r(Jx(p)) = r(Jx(p(t)). Thus the tangent vector to p(t) at the point t is 

(Xp*)P(t), q.e.d. 

1.9. Let (P, ae) be a principal bundle over M with structure group H 
and connection a. Let p be a representation of H in a vector space V. We 
denote also by p the corresponding infinitesimal representation of 1 in V. 
Let 'V = P X V/H be the associated vector bundle and F(V) its space of 
sections. Consider the linear bundle connection D on F(V) defined by a. 

Suppose G acts on (P, ae). Let Jx:P -+ f be the associated moment 
map. The function p -+ p(Jx(p)) can be identified with a section of the 
bundle F(End V). The group G acts on F(V) by (g * s)(m) = g * s(g-Im). 
Let ?(X) be the corresponding infinitesimal representation of g in F(V). 

1.10 LEMMA. 

?(X) = -Dx + p(JX) 

Proof. If we identify the space of sections of F(V) to V-valued func- 
tions on P satisfying ~o(ph) = p(h)1- * (p), the action of G on F(CV) be- 
comes (g * so)(p) = (g-1p). Thus 

2(X) f= -X* = -(XM)h * - r(Jx(p)) o. 
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But r(Jx(p)) - - =-P(Jx(p)) * p, and we obtain the lemma. 

1.11. In particular, let m eM such that (Xm)m = ?then the infini- 
tesimal action of X on 'Vm is given by p(Jx). 

1.12. Recall the context of symplectic geometry where the moment 
map was originally defined. Let (M, w) be a symplectic manifold. Let fo be 
a function on M. The Hamiltonian vector field H,, of so is the vector field on 
M such that dp =c(H4) * w. Define the Poisson bracket of the functions s?, 
so by 

{I s, sp'} = w(H,', Hg,) 

1.13. Let G be a group of symplectic transformations of M. We say 
that the action of G on M is Hamiltonian if there exists a G-equivariant 
linear mapf from g to functions on M such that 

a) dfx + c(Xm)w = 0. 

The G-equivariance off and the condition a) implies: 

b) { fx, fy} = f[x,Yi - 

Reciprocally, if the group G is connected, the conditions a) and b) 
implies the G-equivariance. 

The mapf: g -? ((M) was then defined to be the moment map of the 
Hamiltonian action. 

Suppose we have an Hermitian line bundle (L, oa) over (M, c) with 
curvature form K = -iw. Such a line bundle exists if and only if 1/2ir is 
integral. Consider the associated principal bundle with structure group the 
one-dimensional torus T. As T is commutative, the conditions 1), 2) of 
Theorem 1.8 can be simply rewritten as 

1) dx + c(Xm)K = O 

2) K(XM, Ym) = J[x,Yl. 

If G lifts to a group of Hamiltonian transformations of M, the condi- 
tions of Theorem 1.8 are satisfied with Jx =-ifx. Thus the action of G on 
M lifts uniquely to an action of G on L preserving the connection al and 
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such that a(XL) =-ifx. Remark that if (XM)m = 0, the action of exp tX 
on M leaves stable the point m and acts on the fiber by e -itfx(m). 

1.14. An important example of Hamiltonian action arises as follows 
[20], [21]. Let G be a Lie group with Lie algebra g. Let (9 C g* be an orbit 
of the coadjoint representation. For f E 9, let G(f) be the stabilizer of f. The 
group G(f) has Lie algebra 

g(f) = {X E g; Q[X, Y] = 0, for all YEg}. 

The tangent space Te(O9) to ( at f is g * f = {X - f} C g*. Define the 2-form 
w on (9 by we(X 4?, Y 4f) = Q([X, Y1). The manifold ((, w) is then a sym- 
plectic manifold and G acts by symplectic transformations on (9. 

If X E g, the vector field X* on (9 is given by (X*)e = X* Q?. Letfx(t) = 

- (, X) be the restriction to (9 of the linear function -X on g*. It is imme- 
diate to verify that 

a) dfx + c(X*) ( 0 

b) { fx,fy} f=[X,Y] 

Thus if co/2r is integral, there exists a line bundle (L, a) over (9 and an 
action of G on (L, a), such that if X E g(f) the action of (exp tX) in the fiber 
Le of L above Q is given by multiplication by eit(eX). In particular, there 
exists a character Xe of G(f) of differential if. This is Kostant's integrality 
criterion for co/2ir to be integral [21]. 

1.15. Let us consider a Hamiltonian action of G on (M, C). Define 
PX =fx - c/2i7r. As dfx + c(X*)w = 0, d& = 0, we see that dx(vx) = 0. 
The map X -v zx is thus an equivariant form on M. 

1.16. We return now to the general situation of a manifold M and a 
G-equivariant principal bundle (P, a) with structure group H and connec- 
tion form az. Let D be the covariant differentiation on P, Q the curvature of 
a, Jx the moment of X. Then Jx - Q/2iir is a h-valued form (not homoge- 
neous, but even) on P. From Bianchi's identity DQO = 0, it follows that 
(D - 2i-rc(X*)) (Jx - 0/2iir) = 0. This relation is the analogue of the 
equality (d - 2i7rc(X*)) (fx - w/2iir) = 0 relating the moment map of a 
Hamiltonian action to the symplectic form w. Let so be a H-invariant poly- 
nomial function on t. We extend s? by multilinearity to a polynomial func- 
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tion on (i+ (P) 0f b with values in (i+(P). It is easy to see that the form sP(Jx 
- 0/2ixr) projects on a form on M denoted so(X, a). Recall 

1.17 THEOREM. [8] 

1) O(X, a) e Z(M, dx). 
2) The class sp(X, P) of so(X, &) in H*(M, dx) is independent of the 

G-invariant connection a. 

In particular suppose V is a G-equivariant vector-bundle with a 
G-invariant linear connection a. Let P be the associated principal bundle, 
with structure group H = GL(n, C). Denote by Ck the coefficients of the 
characteristic polynomial 

n 

det(1 + tA) tk ck(A). 
k=~O 

The corresponding form Ck (JX -Q/2i7r) coincides for X = 0 with the 
kth-Chern form. The last one, det(Jx - 0/2iwr), will be denoted by 
x(X, V). It will occur in the localization formula of Section II. 

In Section III, we will express the equivariant index theorem in terms 
of equivariant characteristic forms. 

II. A localization formula. The structure of H*(M, dx) is particu- 
larly simple to describe when the one parameter subgroup (exp tX) is rela- 
tively compact in G and M is a compact manifold. In this section, we will 
thus assume that T is a compact torus with Lie algebra t acting on a com- 
pact manifold M. (These hypotheses may be relaxed in applications.) We 
fix X E t. The zeros of X*form a submanifold of M denoted by Mo. 

2.1 . PROPOSITION. The restriction map i*:H*(M, dx) '- H*(Mo) 
is an isomorphism. 

Remark. As the operator dx was shown to be related to equivariant 
cohomology in [2], this result follows from Quillen [23]. Nevertheless we 
give a proof, as it is very simple in our differential forms setting. This proof 
will follow from the next lemmas: 

2.2 LEMMA. Let Y be a manifold with a G-action. Let X E g. Sup- 
pose there exists a 1-form ae on Y such that 
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a) o(X*) = 1 
b) ?(X*)oz = 0. 

Then, if ,u eZ(X), ,u = dx(oa(do - 2i-x) 1/). 

Proof. This is clear, as dxo =do -2iz-x and (do - 2iz-) is an in- 
vertible element of Z(M, dx). 

2.3. If Y is a manifold with a G-invariant Riemannian structure g, 
such a 1-form oa can be constructed on the complement of the zeros of X* 
by setting 

a(Q) - 

g(X*, 1) ()g(X*' X*) 

In particular, we obtain: 

H*(M - MO, dx) = 0. 

Remark. If T = exp tX is a torus, oa is a connection form for the 
bundleM - Mo- M - MO/T. 

2.4 LEMMA. Let U be a T-invariant open subset of M containing 
Mo. The restriction map i* :H*(M, dx) -+ H*(U, dx) is an isomorphism. 

Proof. Choose a T-invariant Riemannian metric g on M. Let ^b be a 
T-invariant function on M, identically equal to 1 on a neighborhood of Mo 
and whose support is contained in U. Let oa be the 1-form on M -Mo 
constructed as in 2.3. If A E Z(U, dx), the form /L - dx((l - b)o(do - 

2i-x) -' /) represents the same element of H*(U, dx), and is compactly sup- 
ported in U, thus can be considered as a form on M. Therefore the restric- 
tion map is surjective. Let now /L be a form in Z(M, dx) such that /L = dxf 
on U. The form /t' = /- dx(^6f) is a form on M, which is identically 0 in a 
neighborhood of Mo. Thus /t' = dx (a(da - 2iir)- 1 '). 

2.5. Let N be the normal bundle to Mo in M. Identify, via the metric 
g, N< to a subspace of TX(M) and letN, = {(x, v); x EMo, v ENx; II v II < 
c }. For c sufficiently small, the exponential map E(x, v) = exp" v is de- 
fined and is a diffeomorphism of N, onto an open tubular neighborhood of 
Mo in M. Consider the homothety H(t) along the fibers of N given by 
H(t) (x, v) = (x, et v). Denote by H the corresponding vector field. Let i: Mo 
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N be the embedding of Mo in N as the zero section, p the projection map 
(x, v) -x of Nto Mo. If t < 0, H(t) sends N, toN, and if t - oo, the map 
H(t) tends to the map i p. 

2.6. Define h: (i(Ne) - (i(Ne) by 

hw = H(-t)*(c(H) * w)dt. 
0 

We have 

(dh + hd)w = w -p*i* 

as 
00 

(dh + hd)w = H(-t)*(dc(H) + c(H)d) wdt 
0 

oo 

= H(-t)*(2(H) co)dt 
0 

=-i dt (H(-t)*w)dt 
= dt 

Let us now prove the Proposition 2.1. From 2.4, it is sufficient to 
prove that the restriction map i*:H*(Ne, dx) -+ H*(M0) is an isomor- 

phism. If w is a closed form on Mo, p *w is a closed form on NE. As X* is a 
vertical vector field, c(X*)p *c = 0. Thus p *c is an element of Z(N,, dx) 
restricting to w. 

Now let w be a form on NE such that i*wk = 0 on Mo0. Consider hw; as 
X* and H commute, c(X*)h = -hc(X*). Thus 

dx(hwo) = d(hwo) - 2i-xc(X*)hCo 

= dhwo + 2i-rhc(X*)co 

= (dh + hd)co 

= Wo. 
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2.7. We will now compute the integral over M of an element , E 
Z(M, dx) in terms of its restriction to Mo. 

Let /L = EH[r] be a form on M. If Y is a connected oriented compact 
submanifold of M, we write Iy/ for I y[dim Y]. If Y =U Yi is a finite dis- 
joint union of compact oriented submanifolds (of possibly different dimen- 
sions), we write Iy/ for Ei XIy. If Y is invariant under exp tX and /L is dx- 
closed, ly/ depends only on the class of /L in H*(M, dx). 

The normal bundle N -+ Mo over Mo can be provided with a T-invari- 
ant complex structure. This may be seen as follows. The infinitesimal 
transformation Jx acting on Nx = T (M)/T,(Mo) (x E MO) is invertible. 
As T is compact, the eigenvalues of Jx on Nx are purely imaginary. For X E 
R, define 

N = { v E NX OR C; JXV i=v } 

and define 

Nx+ =( N'x. 

If a complex structure N+ on N is chosen, the orientation of M deter- 
mines an orientation M+ of Mo. 

We now state: 

2.8 THEOREM. If ,u E H*(M, dx) 

M M+(Mo)x(X,N+-. 

Remark. Recall that the term x(X, N+) is constructed as follows: 
Choose a T-invariant linear connection D on N+. Let Q be its curvature, 
considered as a section of A2T*Mo ( End N?+. LetJx E F(End N+ ) be the 
infinitesimal action of X in N+. Then X (X, N+) is the class in H*(Mo) of 
the form det(Jx - 0/2i-r). As T is compact, the eigenvalues of Jx on 
Nx OR C are locally constant functions of x. The form det(Jx - 0/2i-r) is 
then a closed form on Mo, whose term of degree 0 is the nonvanishing lo- 
cally constant function det Jx. Thus the class x(X, N+) is invertible in 
H*(Mo). 

The following proof is a simplification of our original proof, using 
some ideas in [17]. 
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Consider NE and identify it to the tubular neighborhood E(NE) of MO 
in M. Suppose oao is a 1-form on N - MO invariant by exp tX and such that 
c(X*)ao = 1. Using a T-invariant partition of unity (sov, so) for the covering 
(NE, M - MO) and the form a on M -MO of 2.3, the form a' = so?ou + 
so? still satisfies the conditions ?(X*)a' = 0, c(X*)a' = 1 and coincides 
with ao in a neighborhood of MO. 

We will construct oao as follows: Choose a T-invariant complex struc- 
ture on N. Choose a T-invariant Hermitian structure on the complex vector 
bundle N -+ M. Let D be a T-invariant linear connection on N preserving 
the Hermitian structure h and let Q be the curvature of D. If t is a tangent 
vector on N, denote by (l its vertical component determined by D. The 
vector field XN is the vertical vector field given by (XN)(X,V) = Jx(x) v. Let 

0a0(Q) = h(', XN) 

h(XN, 4) 

Let pt E Z(M, dx). Recall that, by Lemma 2.2, on M -MO 

/ = (d - 2irc(X*))(a'(dc'-2i-110. 

Thus 

[dim M] / [ = d (u (du a - 2i7r) H) [(di M) 
- I 

Let a(NE) = {(x, v) E N; II v= ce}. By Stokes' theorem: 

/ = lim = -lim al(dal - 2i7r)-Y1/. 
M E-0 JM-Ne e- O (N ) 

Let /to = , I Mo, p:N MO the projection, then , - p*(,o) is an 
element of B(NE, dx) (2.1). We therefore have: 

t = =-lim a oa'(du' - 2i7r)p*(/o). 
M E-0 a(Ne) 

For c sufficiently small, oa' coincides with ao on N E. Remark that ao is 
invariant by homotheties along the fibers. Let N1 = { (x, v); I v I = 1 }. 

The proper map pi: N' -+ MO of oriented manifolds determines a 
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push-forward p of forms by integration over the fibers. Theorem 2.8 fol- 
lows from the equality 

p1 
(ao(2i-r 

- daoY') = det(Jx 2i) 

We prove this equality in local coordinates. 
Let x0 be a point of Mo. Consider the Hermitian form h on N. We may 

construct for x in a small neighborhood U of xo in Mo, an orthonormal 
frame (e., e , e') of Nx by parallel transport from an orthonormal 
basis of NXO. Let <z, w> be the canonical Hermitian form on Cn. Identify 
locally N with U X Cn by (x, z) -+ (x, E zie-Y). The form h becomes hx(z, w) 

< (z, w> and Jx is identified with a fixed anti-Hermitian matrix J. If 
0 is the lu(n)-valued 1-form on U corresponding to the connection D in 
these coordinates, and if (Q, v) is a tangent vector to N at (x, z), its vertical 
component is v + 0(t)(x) * z. Remark that our frame is chosen such that 
=O 0. 

Letf be the 1-form on N given byf(Q) = h(Q', XN), Q the function 
h (XN, XN ). 

In these coordinates: 

f =(dz + Oz,J-z> 

Q = (Jz, Jz> 

df = -(dz,Jdz> + (dOz,Jz> - (Odz,Jz> - (Oz,Jdz>. 

We write, as aoO = Q-lf 

?o(2iw -duo)-' = Q-lf(2i - Q-ldf)-', asf2 = 0 

=f(2irQ -df)-1. 

At the point xo, Oxo = 0 and Qxo = (dO)xo. Considerf(2i-7rQ -df 
as a form on S' = {(xo, z); 1j zj = 1 }with values in AT* Mo0. 

Consider A = (J - 2i-x)xo as a matrix with entries in the commuta- 
tive ring Aeven TA*Mo. We have: 

(2irQ -df)xo = (2i7rAz,Jz> + (dz,Jdz> 
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and it remains to prove: 

2.9 <(dz, Jz>((2iwAz, Jz> + (dz, Jdz><' = (detA)1. 
s I 

The term of degree dim S' = 2n - 1 (as a form on S1) of this expres- 
sion is 

(_ l)n-1 ( 2iwrAz, Jz > -n (dz, Jz> (dz, Jdz>2-l. 

Now (dz, Jz> (dz, Jdz>n-1 = (det J)(dz, z> (dz, dz >(n for any 
Hermitian matrix J as it may be seen by diagonalizing J by a unitary trans- 
formation. Setting B = JA, we need to prove 

, (-)(n-1) <(2i7rBz, z>-n(dz, z> (dz, dz>n1I = (det B). 

Considering this as an algebraic identity with respect to the entries of the 
matrix B, it is sufficient to prove this equality when B is a positive definite 
Hermitian matrix with complex entries. 

Let it be the volume form of the sphere S1. We have: 

(-1)n- (dZ, z> (dz, dz>n- = - (-1)n(n - 1!(-20n 
2 

Thus the preceding equality is true, for B = 1, as vol S1 = 2w'2/(n - 1)!. 
By the change of variables z - B-1/2z, the integral 

,( _ l)(n- 1) < 2i7rBz, Z >-n<(dZ, z> <dz' dZ >(n-1 

is transformed to 

(det B)- 
I 

(_ 1)n- < 2ilrz, z>-n <dz, z=> {dz, dz >(n 1) 

SB 

where SB = {Z; <Bz, z > = 1I}. 
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Remark that the (2n - 1)-form (z, z > -n (dz, z > (dz, dz>(n-) is d- 
closed. Thus its integral on SB is equal to its integral on S, q.e.d. 

Remark. When MO consists of isolated points, this proof was given 
in [8]. 

2.10. Application to the moment map of a symplectic manifold with 
a Hamiltonian group action. 

Recall the notations of 1.12 to 1.15. Assume that the symplectic mani- 
fold M is compact and that the one-parameter group exp tX is relatively 
compact. Let M be of dimension 2n. By 1.15 we can apply Theorem 2.8 to 
the form 

( - 2i7r) = (x 2i7r) 2! (Ix- 2i) ? 

the component of degree 2n of which is 

illeil' i"efx 
(27)"n! 

We get the Duistermaat-Heckman formula [16], [17]. 

Coil ~ ~ K co 
e ____ = \ exp X( fN,)- 

(27)0"n! + 2i7r 

2.11. When M is a coadjoint orbit (9 of a compact Lie group G, the 
formula above gives Harish-Chandra formula for the Fourier transform of 
the invariant measure on (9. The proof of Theorem 2.8 can be adapted so 
as to give an analogous formula for a closed orbit of a noncompact semi- 
simple group on the set of elliptic elements of g [7]. For a regular elliptic 
orbit, this formula was obtained by Rossman [24]. 

III. The equivariant index for the Dirac operator. In this section 
we present a formula for the equivariant index of the Dirac operator as an 
integral over M of an equivariant form. 

We formulate the result (Theorem 3.18) in the context of a G-equiva- 
riant Clifford module, in order to avoid assuming that M admits a spin 
structure. 
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In particular, a coadjoint orbit, which is admissible in the sense of 
Duflo [15], carries always a canonical G-equivariant Clifford module, 
while not always a spin structure. In this case, our equivariant index for- 
mula gives Kirillov's universal formula for the character of the representa- 
tion of G associated to the orbit (3.21). 

Let M be a compact manifold with a G-action. Recall that if (P, oa) is a 
G-equivariant principal bundle with connection oa and structure group H, 
we have associated to any H-invariant polynomial function on 1 a charac- 
teristic form so(X, at), whose class sp(X, P) does not depend on the choice of 
the G-equivariant connection ae. Denote by I(f*) the algebra of H-invariant 
polynomial functions on b. The application s? -s (X, P) is a homomor- 
phism from I(b*) to H*(M, dx). 

Let I(b*) be the algebra of germs of H-invariant analytic functions on 
b. If sp is entire, sp(X, a) is a form on M, whose coefficients depend analyti- 
cally on X. If sp has a finite radius of convergence, we can define <(X, a) on 
any relatively compact open set of M, for X sufficiently small. 

Suppose 1 = gf(V). We denote by ch(X, P) the class in H*(M, dx) 
associated to the function A -- tr(eA). 

Let'V -v M be a G-equivariant vector bundle over M with typical fiber 
V and G-invariant linear connection D. If R(V) is its associated GL(n)- 
principal bundle of frames, we simply denote by ch(X, 'V) the characteris- 
tic class ch(X, R(V)). 

3.1 LEMMA. 

ch(X, 'V1 (OV2) = ch(X, 'VI) + ch(X, 'V2) 

ch(X, 'VI (?V2) = ch(X, RV2)ch(X, 'V2) 

Let Q E a, z" be an analytic function of one variable z. The function 
A = det Q(A) is an analytic function on gf(V). Let (-Vi, aei) (i = 1, 2) be 
two G-equivariant vector bundles over M with connections. It is clear that 
det Q(X, 'VI )'V2) = det Q(X, -V1)det Q(X, 'V2). 

The function j(z) = (ez/2 - e /2 )/z has an analytic square rootj 1/2 

in a neighborhood of 0, such that jl/2(0) = 1. We define 

J1I2(X, V) = detJI/2(X, 2) 

-1/2( a)= detj-1/2(X, V). 
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Let us remark now the: 

3.2 LEMMA. a) Let B be a nondegenerate symplectic form on V. 
Let Sp(B) be the group of symplectic transformations of (V, B) and ~p(B) 
its Lie algebra. The function detj(A) = det((eA/2-e -A/2 )/A) admits a 
Sp(B)-invariant entire square root j1/2 on Bp(B). 

b) Let Q be a nondegenerate symmetric form on V. Let O(Q) be the 
group of orthogonal transformations of (V, Q) and Bo(Q) its Lie algebra. 
The function detj(A) = det((eA/2 - e-A/2 )/A) admits a O(Q)-invariant 
entire square root 1on 12 o(Q). 

Proof. a) Let 1 be a Cartan subalgebra of Bp(B). There exists a basis 
el, e2, ...,e2n of V such that 

al 

a2 

0 

a,, 
1= H= ;ajEC 

- al 

0 -a2 

-a,,-- 

The Weyl group W of 1 in Sp(B) is generated by the permutations of the ai 
and the changes of signs. We have 

/ " eaj12 - e-aj12 \2 

detj(H) = e"I 2- ai /) 

The function 

1i eaj1/2 -e-aj/2 

sn(H)= HIeI- 
i=l ai 

is an entire function on 1, invariant by W. Thus, by Chevalley's theorem, s0 
is the restriction to f of an entire function sp on Bp(B), which is Sp(B)-invar- 
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iant. Clearly sp is a square root of detj, proving a). The proof of b) is en- 
tirely similar. 

3.3. Suppose that P is the trivial bundle M X H with G-action 
g * (m, h) = (gm, y(g)h), for a homomorphism -y: G -- H. Denote also by 
,y the corresponding infinitesimal map from g to b. Let ao be the flat connec- 
tion on P, reciprocal image of the Maurer-Cartan form on H. Then ae is G- 
invariant and (p(X, ae) is the constant function on M equal to S(Py(X)). 

Let p: G -O 0(V) be an orthogonal representation of G in a real vector 
space V. Let M be a closed G-invariant submanifold of V. Let N(M) be the 
normal bundle to M in V, T(M) its tangent bundle. Then N(M) (0 T(M) = 

M X V. Consequently: 

3.4 j 12(x2 N(M)) J1/2(X, T(M)) = 12 (p(X)). 

3.5. If Z is a compact group with Lie algebra 3 acting trivially on M, 
then for X E 3, the ring H*(M, dx) is the usual cohomology ring of M. 
Recall the description of the ring Kz(M) of equivariant K-theory of M 
[26]. Let , -- M be a vector bundle over M with trivial action of Z. Let 
(p, V) be a finite dimensional representation of Z. Consider the trivial bun- 
dle 'VP = M X V with action t * (m, v) = (m, p(t)v). Then the map L g) p 
-+ ?0 ' p determines an isomorphism of K(M) 0 R(Z) with Kz(M). De- 
note by u -- u(g) the evaluation map from Kz(M) to K(M) f0z C defined 
by (E 0 Vp)(g) = (tr p(g))6. If X E 3, by Lemma 3.1, 'v - ch(X, 'V) 
extends to a character on Kz(M). By 3.3 we obtain: 

3.6 LEMMA. If u E Kz(M), X e 3, ch(X, u) = ch(u(exp X)). 

3.7. Let V be a complex vector space. Denote GL(V)/?id by 
DL(V). The Lie algebra of DL(V) is gf(V). If g e GL(V), its class (g, -g) 
in DL(V) is denoted by g. We denote GL(n; C)/(?id) by DL(n). We refer 
to a principal DL(n)-bundle 'W as a pseudo vector bundle. 

If 'V -- M is a vector bundle, its frame bundle R(V) is a principal 
GL(n)-bundle, thus it determines a principal DL(n)-bundle '. The condi- 
tion that a pseudo vector bundle 'W is obtained from a vector bundle 'V is 
expressed by the vanishing of a class -w E H2(M, Z/2Z) described as fol- 
lows in Cech-cohomology. Let { Ui} be a contractible covering of M, c0j(x) 
continuous lifts to GL(W) of the transition functions c,j(x) e DL(W) of 'W. 
Then (i,j,k(x)Id c c(ij(x)ck(X)Cki(X) is a Cech-cochain representing e(W. 

If W, and W2 are vector spaces, the map (g1, g2) -l g1 g2 gives a 
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homomorphism of DL(W1) X DL(W2) in DL(Wl 0 W2). Thus if 'WI , 
'W2 are two pseudo vector bundles, &W W ? Q2 defined by this homomor- 
phism, is a pseudo vector bundle, and we have EIIOw2 = EW 2.1f Wl 
and W2 are two pseudo vector bundles with the same class Ev, = EV2' the 
pseudo vector bundle WI (1 W2 is well defined, and (Vl+V2) = (WI= 

3.8. We set notations for the half spin representations. 
Let E be a real vector space of even dimension n = 2f with a positive 

definite form Q. We denote by C(Q) or C(E) the Clifford algebra of Q. 
C(Q) is the quotient of the tensor algebra T(E (OR C) by the ideal generated 
by the elements {x Oy + y O3x + 2Q(x, y) }. Recall that C(Q) has a unique 
irreducible representation co in a complex vector space S. The space S is 
called the spinor space and the map (v, s) -- co(v)s the Clifford multiplica- 
tion. Thus, if c is any representation of C(Q) in a vector space V, there 
exists a vector space W and an isomorphism I between V and S 0 W, 
transporting the representation c to co 03 id. 

Suppose E is oriented and let e I, e2, . . ., e2p be an oriented orthonor- 

mal basis of E. The element ae = eIe2 ... e2-le2e of C(Q) is such that 
a2= (1), aei =-eia. We define then: 

S+ = {s ES , cO(a)S= is } 

5- = {s E S, co(a)s =-i- s } 

Then: 

S = S+ 5s- 

co(E)S+ C S 

co(E)S- CS+. 

LetE = El ?BE2 be an orthogonal sum of oriented euclidean spaces of 
even dimensions, S, Sl, 52 the corresponding spinor spaces. Then: 

5-51052, as C(E)OC(E2)modules 

5&Sso5+ + - S S-2 

5- s $'5+ + S+ oS- 
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Consider the universal covering group Spin(E) P SO(E) of SO(E). Let 
p1- (e) = (e, e). There exists a representation p of Spin(E) in S such that 
p(g)cO (x)p(g) - l= co (g - x) for all x E E, g in Spin(E) above g in SO(E). 
We have p(E) =-Id. The spaces S+ and S- are invariant under p and are 
called respectively the space of even and odd spinors. We denote by p+, p- 

the restriction of p to S+, S-. 
As p(E) = -Id, the homomorphism p: Spin(E) -- GL(S) defines 

homomorphisms 

p:SO(E) DL(S) 

p+ :SO(E) DL(S+) 

p_:SO(E)-DL(S-). 

Consider the SO(E)-invariant function on Bo(E) defined by 

D(X) = tr p+ (exp X) - tr p_ (exp X). 

We have: 

3.9 D(X)= (-1)det(1 - eX;E). 

Suppose that E has an Hermitian structure and that E is oriented ac- 
cordingly to the complex structure, then if X is an infinitesimally unitary 
matrix, we have 

3.10 D(X) = (-1)'detc(X) i 1/2 (X). 

If E = R" with its canonical form, we denote by SO(n), Spin(n), C, 
the corresponding orthogonal, spin group and Clifford algebra. 

3.11. Let (M, g) be a Riemannian oriented manifold of dimension 
n = 2f. The frame bundle F(M) = F of orthogonal oriented frames is a 
principal SO(n)-bundle. We denote by 8, S+, 8- the corresponding 
pseudo-bundles F X so(n) DL(S), F X SO(W) DL(S ), F X SO() DL(S ), de- 
duced from F and the homomorphisms p, p+, p_. We call 8, S+, 8- the 
spin pseudo-bundles. The existence of a spin-bundle 8 lifting the spin 
pseudo-bundles 8 (or 8+, 8-) is equivalent to the vanishing of the second 
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Whitney class w2(M) of M. Explicitly w2 is described as follows: Let (r,) be 
local sections of the frame bundle F over a contractible covering UO. Let 

co,,(x) be the SO(n)-valued transitions functions over Uf, nUo determined 
by ra(x) = ro(x)co,(x). Choose a continuous lift c,s,(x) of cfl(x) in 

Spin(n). Then wa,,),(x) = ja,;3(X)Jo,(x)Y,a,(X) takes values in the group 
(e, e) - Z/2Z and represents w2. In particular cs = es = c;_ = w2(M) 
and 8 = S+ (3 8-. 

3.12. Let G be a group acting on M by orientation preserving isome- 
tries. The group G acts on F, thus acts on 8, S+, S-. 

3.13. Let C(M) -- M be the bundle of Clifford algebras C,(M) 
C(TXM, gx) over M. A vector bundle 'v -, M is said to be a Clifford mod- 
ule, if there exists a bundle map c: C(M) X 'V -- 'V such that at each x the 
map c,: C. (M) ? Vx, V, is a representation of the Clifford algebra 
Cx (M)- 

Let G be a group acting on M by orientation preserving isometries. 
The bundle C(M) is G-equivariant. Let 'V be a G-equivariant vector bun- 
dle over M. If there exists a G-equivariant multiplication c: C(M) 0 'V 
V, 'V will be called a G-equivariant Clifford module. 

If W2 (M) = 0, there exists a principal bundle F covering F with struc- 
ture group Spin(n). Let 8 be the vector bundle associated to the representa- 
tion p of Spin(n) in S. The map (Q, v) -- co( )v from C,, (S to S determines 
a bundle map co: C(M) X S 8 which gives to 8 the structure of a Clifford 
module. If W is any vector bundle on M, consider & 0 W and define a 
Clifford structure on 8 (g W by co & id: e(M) (S 8 ?') -W 8 X W. It is 
easy to see that every Clifford module over M is obtained by this construc- 
tion [3]. 

3.14. In the general case, where w2(M) is not necessarily equal to 0, 
we will see that we can still associate to a Clifford module 'V a pseudo vec- 
tor bundle W, such that E2(W) = w2(M) and such that'v = WQO S. If 'V 
is G-equivariant, so will be W. 

We describe W as follows: 
Choose a system of local sections ri of the frame bundle F, over a con- 

tractible covering Ui. These define isomorphisms 

rX: TxM -R" 
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and 

Cx(M) f C,,. 

Thus we obtain a representation c' of C,, in Vx. By uniqueness of the Clif- 
ford representation, there exists an integer m and trivializations 

taking ci to the representation 1 0 co. Trivializations r' and R' as above 
will be called compatible trivializations of TM and V. 

Let c,i(x) E SO(n) be the corresponding transition function r ' o (r' ) - 
of the tangent bundle. Lift cii(x) to elements cj (x) of Spin(n). The map R' . 

o (R')' ? (1 p(J1(x))<1 commutes with 1 ( co. As co is irreducible, 
this implies that 

o(R h ii (x) & p(C i (x)). 

The GL(m)-valued maps hji(x) satisfies the relation: 

h(x) hjk (X) h(X) = X ijk(x)Id = ?Id. 

Thus the DL(m)-valued maps ha,(x) define a pseudo vector bundle W such 
that E2((W) = w2(M). 

Let us analyze the action of G in 'V. Consider the action of G on TM. 
Let g E G and let m ji(g, x) the SO(n)-valued functions defined on the sets 
{(g, x); x E Ui, g * x e U,} by the relation 

r ?g o j) = m(g,x). 

Let mhji(g, x) be a lift of m1j(g, x) to Spin(n). Using similarly the commuta- 
tion relation with 1 0 co, we see that necessarily the action of g on 'V is 
given by 

R'gx ? go (R')1 = nji(g, x) ( p(mh1(g, x)). 

The maps hi(g, x) provide then an action of G in the pseudo vector bun- 
dle W. 
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3.15. If 'V is a G-equivariant Clifford module, we denote by s I ('V) 
the G-equivariant pseudo-bundle W defined by compatible trivializations 
of 'V and TM. 

3.16. If 'V is a Clifford module over M, we define 'V+ and 'V as 
follows: Choose an oriented orthogonal basis eI, e2, ..., e2f of TVM, and 
consider the transformation 

x cx(el * e2 e2d) 

Define 

v = {v; axv i 'v} 

'v- = {V; xv = -iV}'v}. 

As G acts on M by orientation preserving isometries, the bundle 'V+ and 
'V are G-equivariant. 

Recall how an equivariant Clifford module 'V defines an element of 
equivariant K-theory of TM. Consider the map ir: TM -- M. The map ((x, 
t), v) -- ((x, t), c(t) v) defines a bundle map from wx*(V+) to 7r*('V-) 
which is an isomorphism on TM - M. We denote by d(V) the correspond- 
ing element of G-equivariant K-theory. 

Let W be the G-equivariant DL(m)-principal bundle s1 (V) deter- 
mined by 'V. Let , :H*(M) ---> H&J(TM) be the Thom isomorphism. Then 
[6]. 

3.17 LEMMA. -lch(d(V)) = (- 1)'chIV - 9 ?112(TM). We will now 
prove: 

3.18 THEOREM. For X in a neighborhood of 0 in g 

(index d(V))(exp X) = ch(X, V)J112 (X, TM). 
M 

Proof. We will deduce this theorem from the localization formula of 
Atiyah-Segal [4] and from our Theorem (2.8). We need some lemmas. 

Suppose Y is a compact Riemannian manifold of dimension 2m. Let Z 
be a compact group with Lie algebra 3 acting trivially on Y and let 'V be a Z- 
equivariant Clifford module over Y. Let V be the pseudo-bundle over Y 
determined by 'V. 
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3.19 LEMMA. ForXe3 

VJ1ch(d(V)(exp X)) = (-1)'71ch(X, W)g j/2(TY). 

Proof. If 'V = 23V(X) is the decomposition of 'V with respect to the 
locally constant eigenvalues of g E Z, each of the 2V(X) is a Clifford submo- 
dule of 'V. We have 

ch(d(CV))(g) = E X(g)ch(d(V(X))) 

1 ch(d(V))(g) = E X(g)( - 1)"' ch((W(X))J l/2 (TY), 

if W(X) are the pseudo bundles s (V(-)). But it is clear that W S E 
W()X) as a sum of pseudo vector bundles and that 

ch(X, W) = E X(exp X)ch(W(X)). 

Let us come back to the proof of the Theorem 3.18. Letg E G, T be the 
closure in G of the group generated by g, Mg be the submanifold of fixed 
points of g in M. Let Mg = U oe Mg be the decomposition of Mg in con- 
nected components. Suppose that Mg' is oriented and of even dimension 
2Qg'. Let N be the normal bundle to Mg in M, X - I N the element of K(Mg) 
defined by X 1 N = E (- 1)'A'N. Let i: TMg -- TM be the inclusion. Then 
we have, by [4], [6] 

3.20 index d(v)(g) 

= E (-1)g t -ch((i*d(V)) (g)) (ch (X N) (g)) lg-l(TM'). 
ol Mag 

Let us analyze i*d(V) over a connected component of Mg. Consider 
the orthogonal decomposition TM. = TxMg ) N.. Consider on N. the 
orientation determined by the orientation of M and Mg. Let dim NX = 2q. 
Let UXN = Cx(f (12 ... f2q- lf2q) be the endomorphism of 2Vx determined by 
the choice of an oriented orthonormal basis of Nx. Let 

(N,)x 
= {V E Vx; UN V 

= 
i-qV} 

(M2)x = {V E Vx; UN V = i-qVj. 
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Then ('VI)_ and (V2)X are stable under the action of Cx(Mg). Thus we 
have: 

i(V) = '1 V2 

where 'V and 'V2 are Clifford modules over Mg. Let 'V+ be the sub- 
bundles of 'VI, V2 determined by the orientation of Mg. Then 

a-Q = 1 (X2a 

and 

i*d(V) = d(V2) - d(V2) in K(TMg). 

Consider the normal bundle N to Mg; its oriented frame bundle is a 
principal SO(2q)-bundle. Let SN be the spinor representation of Spin(2q). 
Let S +, SJ be the pseudo-bundles over Mg determined by the homomor- 
phisms PN, PN of SO(2q) in DL(S+), DL(SN7). It is then easy to see that 

S-1(V2) -W(DSN- 

If g = exp X, then for X sufficiently small, the manifold Mg is the 
manifold Mo of zeros of X*. 

Let D(X) = tr p+ (exp X) - tr p (exp X). 

Then, by 3.6 

V-Ich(i*d(V)) (exp X) = (-1)gch(X, W)D(X, N) J 112 (TMg) 

ch(X_ -IN) (exp X) =-l 1)qD(X, N )2. 

Choose a T-invariant complex structure on N as in (2.8) then D(X, N) 
(-1)qX(X, N+)gJ112(X, N). From 3.20 we obtain 

indexd(CV)(expX) = ch(X, 8W) 112(X, N)J 112(TMg)X(X, N+)-. 
Mg 
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As T acts trivially on Mg, the class J 1"2 (X, N) 9jl2(TMg) is the re- 
striction to Mg of the class of the element J212(X, TM) of H*(M, dx). 
Similarly ch(X, VW) is the restriction to Mg of the element ch(X, SW) 
of H*(M, dx). Thus the theorem is deduced from the localization for- 
mula 2.8. 

3.21. Application to the Kirillov character formula. Let 'V -+ M be 
a G-equivariant Clifford module, V a G-invariant connection on 'V. We 
may then consider the Dirac operator D = E c(ei) V,i, where eI, e2, .... 

e,, is an orthonormal basis of TM. We denote by D? the restriction of D to 
r(V+), r(V-). The difference Ker D+ - Ker D- is then a virtual repre- 
sentation of G and the Atiyah-Singer index theorem [5] asserts that 

trKer D+ (g)- trKer D- (g) index d(V)(g). 

Every irreducible representation of a connected compact Lie group G is 
obtained by the following construction [131: Let (A = G * A be an orbit of 
the coadjoint representation of G in g*. Suppose A is admissible and regu- 
lar, then there exists a canonical Clifford module 'VA over (9A such that the 
virtual representation Ker D+ - Ker D- is the irreducible representation 

TA of G with character 

E E(w)ew- A 

w 

II (e'1'2 -- a/2 
a>O 

Suppose M is a submanifold of an orthogonal representation space 
(p, V) of G. Let NM be the normal bundle to M in V, then by (3.4) we may 
rewrite 3.18, as 

index d(V) (exp X) j 1/2 (p(X)) = c(X, V) j 1/2 (X, NM) 

as an equality of entire functions on g. As the normal bundle to OA in g* is 
trivial, the formula above reads in this case [101 

tr TA(exp X)gj1/2(ad x) ei('.x>dAQ() 
OA 
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which is the Kirillov integral formula for the character of the representa- 
tion TA. 

3.22. The Theorem 3.18 gives us the expression of index d(V)(g) as 
an analytic function of g near the identity element of G. We will now give a 
similar formula at every point b of G as an analytic function on the central- 
izer of b in G. 

We introduce characteristic classes adapted to this situation. 
Let Wbe a complex vector space. Consider a semi-simple transforma- 

tion B E GL(W). Let B be the corresponding element of DL(W). Let DB be 
the centralizer of B in DL(W). The Lie algebra gQ of DB is the subalgebra 
of gf(W) of matrices X commuting with B. 

The functions 

chB(X)= tr(BeX) 

VB(X) = det(1 - BeX) 

are DB-invariant functions on 9B. Remark that chB(X) is determined by B 
up to sign. 

Let Z be a compact Lie group with Lie-algebra 3 acting on a manifold 
Y. If eW is a Z-equivariant DB-principal bundle over Y, we can thus define 
the equivariant characteristicform X --+chB(X, W), on the Lie algebra 
3 of Z. 

Similarly, let (E, Q) be an oriented Euclidean space of dimension 2q. 
Let A e SO(E) and A E Spin(E) be an element above A. Let SOA (E) be the 
centralizer of A in SO(E), BOA its Lie algebra. Consider the SOA invariant 
functions on OA (E) defined by 

dA-(X) = tr p+ (A exp X) - tr p_ (A exp X). 

The function dA- is determined by A up to sign and 

d, (X)2 = (-l)qdet(1 -AeX; E). 

If 'g is a Z-equivariant principal bundle over Y with structure group SOA, 
we denote by X -- dA (X, SW) the corresponding equivariant form. 

Such principal bundles arise in our situation as follows: Consider our 
compact group G acting on (M, g). Let b E G and let Mb be the submani- 
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fold of fixed points of b. Let Z be the connected component of the central- 
izer of b in G. Consider a pseudo vector bundle SW on M with structure 
group DL( W). Let M' be a connected component of Mb. The restriction of 
SW to M' is a pseudo vector bundle over M' which we denote by V'. 
Choose a point p0 E V' As b acts trivially on Mb, there exists an element 
B E GL(W) with image B E DL(W) such that b po = poB. As the group G 
is compact, the action of b in VW is the same in each fiber, thus the set 

B= {p Ei W, b p = pB} 

is a DB-principal bundle over M? which is still Z-equivariant. It gives rise 
to an equivariant class X -- chB(X, SWB) on M?. This class is determined 
up to sign by the action of b in eW. To simplify the notations we will drop 
the subscript ce which identifies a connected component of Mb. 

Let N be the normal bundle to Mb in M. Suppose that Mb is oriented 
and of codimension 2q. The bundle F(N) of oriented orthonormal frames 
over Mb is a SO(2q)-principal bundle. Let so E F(N) and let A E SO(2q) be 
such that boso = soA. Consider the bundle FA(N) = {s E F(N), b s = 
sA }. This is a SOA-principal bundle over Mb, which is Z-equivariant. 
Choose an element A in Spin(2q) above A and consider dA (X). We denote 
by X -- dA(X, N) the corresponding equivariant characteristic form on 
Mb. This class is determined by the action of b on N up to sign. 

Let V be a G-equivariant Clifford module over M. Recall that com- 
patible trivializations of the tangent bundle TM and of the bundle V define 
a pseudo bundle SW = s -I (V). We will now make a particular choice of 
the elements B E GL(W) andA E Spin(2q) employed in the preceding para- 
graphs. We suppose that the trivialization r': TxM -- R2 is an isomor- 
phism of the direct sum of oriented Euclidean spaces 

TxM = Nx (? TxMb -- R2q R2((-q) 

for x E Mb, and that the action of b on Nx corresponds through r' to the 
action of A (b acts trivially on TxMb). Let S be the spinor space over R 
SN the spinor space over R2q and Sb the spinor space over R2(f-q). Then 

S = SN (0 Sb as C(2q) X C(2(f - q))-modules. Choose a trivialization 
Rx: Vx - W?(S such that the action of C(2Q) in Vx becomes 1 (g c. LetA 
be an element in Spin(2q) above A. The action of b in Vx - W?($SN (Sb is 
thus given by B (D p(A) (D 1 for some B E GL(W) determined by the choice 
of A. If A is changed to -A, B is changed to -B, thus the product 
chB(X, M ? )d(X, N) -1 is well defined and depends only on the action of b 
in V. Abusing notations, we denote it by 
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chb(X, bMW)db (X, N) 1 . 

The tangent bundle TMb over Mb is a Z-equivariant vector bundle. Thus 
the characteristic class X - 112(X, TMb) is well defined on 8. Using 
these notations, we then formulate the: 

3.23 THEOREM. Let G be a compact group acting on a compact ori- 
ented Riemannian manifold M of even dimension by orientation preserv- 
ing isometries. Let V - M be a G-equivariant Clifford module over M, 
W = s -sI (V) the G-equivariant pseudo vector bundle determined by V. 

Let b E G, Z be the centralizer of b in G, 8 its Lie algebra. Suppose the 
manifold Mb offixed points of b is a oriented submanifold of M. Let N be 
the normal bundle to Mb in M. Then for X E 8 in a small neighborhood of 0 

(index d(V))(b exp X) = chb(X, W)db(X, N) -,l/2(X, TMb). 
Mb 

Proof. It is entirely similar to the proof of the Theorem 3.18. We 
remark that for X E 8 small and g = b exp X, the manifold Mg of fixed 
points of g in M coincides with the set (Mb)o of zeros of X* in Mb. The 
Atiyah-Segal formula for index d(V)(g) as an integral over Mg = (Mb)o 
can be transformed to an integral over Mb of elements in H*(Mb, dx) by 
using the Theorem 2.8. 

Note added in Proof. It has been called to our attention that the 
operator dx was introduced and related to equivariant cohomology in H. 
Cartau, [Colloque de Topologie, Bruxelles, 1950, Centre Belge de Recher- 
ches Mathematiques Georges Thone, Liege]. 
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