
Improvement of Sections 2.4.b and 2.4.c in [Sab13]

Let X a smooth complex quasi-projective variety and let Y be a projective com-
pletion of X such that D = Y ∖X is a divisor with normal crossings in Y . Let ω be
an algebraic one-form on X, that we can also regard as a section of Ω1

Y (∗D) on Y .
For any xo ∈ D, let U(xo) be a local analytic chart in Y with local coordi-

nates (x, y) = (x1, . . . , xℓ, y1, . . . , yk) such that D = {x1 · · ·xℓ = 0}, and set Dℓ =⋂ℓ
i=1{xi = 0} with coordinates (y1, . . . , yk).

Definition 1 ([Moc11, Def. 2.1.2]). We say that ω is good wild along D if the following
property is satisfied. For any xo ∈ D and a local analytic chart U(xo) as above, there
exists

– a multi-index m ∈ Nℓ and a holomorphic function a(x, y) ∈ O(U(xo)) such that
a(0, y) is invertible,

– a logarithmic form η ∈ Γ(U(xo),Ω
1
Y (logD)),

such that ω|U(xo) = d(a(x, y)x−m) + η.

Note that, for a closed logarithmic one-form η along a smooth divisor, the residue
of η on this divisor is constant. If ω is closed and good wild along D, we denote by
Res(ω) ⊂ C the set of residues of ω along the irreducible components of D where it
has only a logarithmic pole.

Theorem 2. Assume that ω∈Γ(X,Ω1
X)=Γ(Y,Ω1

Y (∗D)) satisfies the following proper-
ties:

(1) ω is closed and good wild along D.
(2) ω has a pole along each irreducible component of D.
(3) The zero locus Z(ω) ⊂ X is compact.
(4) ω is non-resonant, that is, Res(ω) ∩ Z = ∅.

Then for each k ∈ N, we have the equality of dimensions

dimHk(X, (Ω
•
X ,d + ω)) = dimHk(X, (Ω

•
X , ω)).

We can relax condition (4) by introducing the set Λ(ω) = {λ ∈ C | λRes(ω)∩Z ̸= ∅}.
Then, by applying the theorem to λω we find that, for each k ∈ N and λ /∈ Λ(ω),
we have the equality of dimensions

dimHk(X, (Ω
•
X ,d + λω)) = dimHk(X, (Ω

•
X , ω)).

Example 3. Let f : X → Gm be a proper morphism from a smooth quasi-projective
variety X of dimension n. Assume that f has only isolated critical points. We choose
ω = d log f . Let F : Y → P1 be a projectivization of f such that both F−1(0) and
F−1(∞) are normal crossing divisors. We have Z(ω) = Crit(f), so it is compact.
On the other hand, near any point of D = F−1(0) ∪ F−1(∞), the logarithmic form
d logF has a pole along each irreducible component of D since F or 1/F is a local
equation of D. Furthermore, the residues are integers, so the set Λ(ω) is contained
in Q.
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(1) The coherent complex (Ω•
X ,d log f) has cohomology in degree n only, supported

on Crit(f), and this cohomology has dimension equal to the sum µ(f) of the Milnor
numbers of f at the critical points.

(2) To analyze the cohomology of the complex (Ω•
X ,d + λd log f), it is easier to

work on Gm by pushing forward the DX -module OX . Let Mk = fk
+OX be the k-th

pushforward in the sense of D-modules. Each Mk is a regular holonomic DGm
-mod-

ule with regular singularities and, due to the assumption of isolated critical points,
it corresponds to a locally constant sheaf on Gm if k ̸= 0.

The Mellin transform Mellin(Mk) of Mk is a C(λ)-vector space of dimension
χ(Gm,M

k) (Euler characteristic of the de Rham complex of Mk), cf. [LS91, Th. 1],
and we have

Hn+k(X, (Ω
•
X ⊗C C(λ),d + λd log f)) ≃ Mellin(Mk).

For k ̸= 0, we thus have χ(Gm,M
k) = rk(Mk)χ(Gm) = 0.

(3) For any regular holonomic D-module on a smooth curve C, or a perverse sheaf
on C, we have χ(C,M) = − rkM · χ(C) + µ(M), with µ(M) being the sum of the
dimension of the vanishing cycles of M at its singular points. On the other hand, due
to the compatibility between proper pushforward and vanishing cycles, we have

µ(M0) = µ(f).

(4) In conclusion, since χ(Gm) = 0,

dimHn(X, (Ω
•
X ,df)) = µ(f) = µ(M0) = χ(Gm,M

0) = dimC(λ) Mellin(M0)

= dimC(λ) H
n(X, (Ω

•
X ⊗C C(λ),d + λd log f)).

One can be more precise on the Mellin transform: there exists a finite set Λ ⊂ C mod-
ulo Z such that, considering the localized polynomial ringR = C[λ, ((λ−λi)

−1)λi∈Λ] =

O(C ∖ Λ), the cohomology Hn(X, (Ω•
X ⊗C R,d + λd log f)) is R-free of finite rank.

The set Λ can be chosen so that, for each λ ∈ Λ, exp(2πiλ) is an eigenvalue of the
local monodromy of M0 at t = 0 or at t = ∞. One can check that Λ ⊂ Λ(d log f).

The next example shows that condition (2) is not necessary and could be weakened.

Example 4. Assume that X is affine and f : X → Gm is a tame function in the sense
of Katz, that is, the critical set Crit(f) is finite and the cone of the natural morphism
Rf!QX → Rf∗QX has locally constant cohomology sheaves on Gm. Then one can
show that the DGm

-modules Mk satisfy the same properties as in Example 3, hence
also the conclusion.

Here is an example that can be related to Example 4.

Example 5. Let Y ⊂ PN be a smooth complex projective variety and let B ⊂ PN be
the base locus of a Lefschetz pencil on Y , so that B∩Y is smooth of codimension two
in Y . Consider the pencil f : Y ∖B → P1 and set X = Y ∖ (B ∪ f−1(0) ∪ f−1(∞)),
assuming that both hyperplane sections f−1(0) and f−1(∞) are smooth.
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Then ω = d log f satisfies the conditions (1)–(3) of the proposition but it is not
clear that it falls in the scope of Example 4. However, by blowing up B one can use
the new compactification Ỹ of X to check that we are in the setting of Example 4,
by showing that the perverse sheaf QX [n] does not have vanishing cycles with respect
to f along the exceptional locus B̃ ≃ B × P1.

Proof of the theorem

Lemma 6. There exists a neighbourhood V of Zan in Y an and a holomorphic function
f : V → C such that f|Z = 0 and ω|V = df .

Proof. Given any point x of Z, there exists an open neighbourhood Vx of x in Y an and
a unique holomorphic function fx : Vx → C such that fx|Z∩Vx

= 0 and dfx = ω|Vx
:

choose first a simply connected neighbourhood V ′
x of x in Y an, so that there a unique

fx : V ′
x → C such that dfx = ω|V ′

x
and f(x) = 0. Since Z ∩ V ′

x is the critical locus
of fx, it is contained in the critical fibers of fx. One can then shrink V ′

x to Vx so
that Z ∩ Vx is connected, hence contained in f−1

x (0). Then, for y ∈ Z ∩ Vx, we have
fx(y) = 0 hence, by uniqueness, fx|Vx∩Vy

= fy|Vx∩Vy
, showing that f is defined on

V :=
⋃

x∈Z Vx.

The case where D is empty. One can work with holomorphic objects, and we will forget
the exponent ‘an’ during the proof. We regard (OY ,d+ω) as a holomorphic rank-one
bundle with flat connection. The trivial metric is harmonic for this flat bundle, and
the associated holomorphic Higgs bundle is (E, ∂E , θ) with E = C∞

Y , ∂E = ∂ − 1
2 ω

and θ = 1
2ω. Set Ean = ker ∂E .

From [Sim92, Lemma 2.2] we have

dimHk(Y, (Ω
•
Y ,d + ω)) = dimHk(Y, (Ean ⊗ Ω

•
Y , ω)).

Since the complex (Ean ⊗ Ω•
Y , ω) is acyclic away from Z, we have

Hk(Y, (Ean ⊗ Ω
•
Y , ω)) = Hk(V, (Ean

|V ⊗ Ω
•
V , ω)).

On the other hand, Ean
|V ≃ OV via the multiplication by ef/2 on E. Note that we can

replace ω with λω for any λ ̸= 0.

The general case. The theorem is a direct consequence of the results of [Moc11], but
we will make explicit the way one derives it. By condition (1), (OY (∗D),d + ω) is a
good wild meromorphic flat bundle in the sense of [Moc11]. The point is to prove
the following lemma:

Proposition 7. If ω satisfies the conditions in the theorem, there exists a locally free
rank-one OY an(∗D)-module Ean such that

dimHk(Y an, (Ω
•
Y an(∗D),d + ω)) = dimHk(Y an, (Ω

•
Y an ⊗ Ean, ω)).

In this proposition, we consider analytic objects. The cohomology of the complex
in the right-hand term is supported on Z(ω) and, arguing as in the case where D is
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empty since Z(ω) ∩D = ∅, we find

Hk(Y an, (Ω
•
Y an ⊗ Ean, ω)) ≃ Hk(V an, (Ω

•
V an ⊗ Ean

|V an , ω))

≃ Hk(V an, (Ω
•
V an , ω)) ≃ Hk(Y an, (ΩY an(∗D)

•
, ω)).

By GAGA (cf. [Del70, Lem. II.6.5 & §II.6.6]), both terms in the proposition can be
computed by using the Zariski topology, and the equality in the proposition is now
that asserted in the theorem.

Proof of Proposition 7. We use the terminology of R-modules and R-triples as in
[Sab05, Moc07, Moc11], and we denote the twistor variable by z to avoid any
confusion with the variable λ used with a different meaning here.

Lemma 8. If ω satisfies conditions (1), (2) and (4), then M := (OY (∗D),d + ω) is
an irreducible holonomic DY -module.

Proof. It is a matter of proving that M is a minimal extension along the divisor D.
This is a local question. In a local chart U(xo) as above, set g(x, y) =

∏ℓ
i=1. It is

enough to check that, if e denotes the generator 1 of M , the roots of the Bernstein
polynomial of egs are not integers. Let j ∈ {1, . . . , ℓ} be such that mi ̸= 0 iff i ⩽ j.
Up to changing one coordinate xi for some i ⩽ j and the coordinates xi for i > j, one
can write

ω = d(x−m) +

j∑
i=1

bi(x, y)
dxi

xi
+

ℓ∑
i=j+1

ai
dxi

xi
,

with bi holomorphic in its variables and ai ∈ C ∖ Z. Then e satisfies the following
equations 

[
xmi
i xi∂xi − (mi + xmi

i bi(x, y))
]
· e = 0, i = 1, . . . , j,

(xi∂i − ai) · e = 0, i = j + 1, . . . , ℓ,

∂yi
e = 0, i = 1, . . . , k.

A simple computation shows that the polynomial b(s) =
∏ℓ

i=j+1(s+ai+1) induces a
Bernstein functional equation for egs, hence divides the Bernstein polynomial of egs.
The non-resonance condition ai /∈ Z yields the conclusion.

Since ω satisfies conditions (1), (2) and (4), we can apply the lemma to it, and we
deduce from [Moc11] that M comes by restriction to z = 1 from an RY -module M
which is part of an object T = (M,M, C) of the category of R-triples on Y underlying
a polarized wild twistor D-module, whose restriction to X ∖ D corresponds to the
harmonic flat bundle considered in the case where D is empty.

We thus have M = M/(z − 1)M and, setting Ean = M/zM that we regard
an OY -module with Higgs field 1

2ω, the push-forward theorem [Moc11, Th. 18.1.1]
applied to the constant map Y → pt implies the equality in the proposition, since
strictness is preserved by projective push-forward.
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It remains to be proved that Ean is a locally free OY (∗D)-module (of rank one).
Note that we already know that Ean

|X is equal to the rank-one Higgs bundle computed
in the case where D is empty. Recall (cf. [Moc11, §12.1]) that M is constructed
locally near each zo ∈ C, and the construction is seen to be independent of zo. The
local RY -module M(zo) is the RY -module generated by the OY -module denoted by
Q(zo)

<1 E in the family Q(zo)E of z-flat meromorphic bundles.
As we are only interested to Ean, we only need to consider the case where zo = 0,

so that the objects above are the objects P(0)
<1E and P(0)E , as explained in §11.1.1 of

loc. cit., and P(0)
<1E is a locally free OY |z=0-module of rank one. By working modulo z,

we find that Ean is the RY/zRY -module generated by the locally free OY -module
P(0)
<1E/zP

(0)
<1E =: P<1E0 in the meromorphic bundle P(0)E/zP(0)E =: PE0.

We identify RY/zRY with the ring grFDY = OY [T
∗Y ] of holomorphic functions

on T ∗Y which are polynomial in the fibers of the projection T ∗Y → Y . In a local
chart U(xo) as above, letting ξi denote the class of ∂xi

and ηi that of ∂yi
, we see that

the action of ξi via the Higgs field 1
2ω is

– by x−mi
i ui(x, y) for some invertible holomorphic function ui, if i = 1, . . . , j,

– by 1
2aix

−1
i , if i = j + 1, . . . , ℓ,

and the action of ηi is by zero. It follows that Ean = PE0, hence is a rank-one locally
free OY (∗D)-module.

References

[Del70] P. Deligne – Équations différentielles à points singuliers réguliers, Lect. Notes in
Math., vol. 163, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

[LS91] F. Loeser & C. Sabbah – “Caractérisation des D-modules hypergéométriques
irréductibles sur le tore”, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), p. 735–
738, erratum, ibid. 315 (1992), p. 1263-1264.

[Moc07] T. Mochizuki – Asymptotic behaviour of tame harmonic bundles and an appli-
cation to pure twistor D-modules, Mem. Amer. Math. Soc., vol. 185, no. 869-870,
American Mathematical Society, Providence, R.I., 2007.

[Moc11] , Wild harmonic bundles and wild pure twistor D-modules, Astérisque, vol.
340, Société Mathématique de France, Paris, 2011.

[Sab05] C. Sabbah – Polarizable twistor D-modules, Astérisque, vol. 300, Société Mathé-
matique de France, Paris, 2005, Errata: sabbah_ast_300_err.pdf.

[Sab13] , “Vanishing cycles and their algebraic computation”, Lecture notes, Notre
Dame, sabbah_notredame1305.pdf, 2013.

[Sim92] C. Simpson – “Higgs bundles and local systems”, Publ. Math. Inst. Hautes Études
Sci. 75 (1992), p. 5–95.

October 2, 2023

C. Sabbah, CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau
cedex, France • E-mail : Claude.Sabbah@polytechnique.edu
Url : https://perso.pages.math.cnrs.fr/users/claude.sabbah

https://perso.pages.math.cnrs.fr/users/claude.sabbah/errata/sabbah_ast_300_err.pdf
https://perso.pages.math.cnrs.fr/users/claude.sabbah/livres/sabbah_notredame1305.pdf

	Improvement of Sections 2.4.b and 2.4.c in cite
	References

