Improvement of Sections 2.4.b and 2.4.c in [Sab13]

Let X a smooth complex quasi-projective variety and let Y be a projective completion of X such that $D = Y \setminus X$ is a divisor with normal crossings in Y. Let ω be an algebraic one-form on X, that we can also regard as a section of $\Omega^1_V(*D)$ on Y.

For any $x_o \in D$, let $U(x_o)$ be a local analytic chart in Y with local coordinates $(x, y) = (x_1, \ldots, x_\ell, y_1, \ldots, y_k)$ such that $D = \{x_1 \cdots x_\ell = 0\}$, and set $D_\ell = \bigcap_{i=1}^{\ell} \{x_i = 0\}$ with coordinates (y_1, \ldots, y_k) .

Definition 1 ([Moc11, Def. 2.1.2]). We say that ω is good wild along D if the following property is satisfied. For any $x_o \in D$ and a local analytic chart $U(x_o)$ as above, there exists

– a multi-index $\mathbf{m} \in \mathbb{N}^{\ell}$ and a holomorphic function $a(x, y) \in \mathcal{O}(U(x_o))$ such that a(0, y) is invertible,

- a logarithmic form $\eta \in \Gamma(U(x_o), \Omega^1_Y(\log D)),$

such that $\omega|_{U(x_{\alpha})} = d(a(x, y)x^{-m}) + \eta$.

Note that, for a closed logarithmic one-form η along a smooth divisor, the residue of η on this divisor is constant. If ω is *closed and good wild* along D, we denote by $\operatorname{Res}(\omega) \subset \mathbb{C}$ the set of residues of ω along the irreducible components of D where it has *only a logarithmic pole*.

Theorem 2. Assume that $\omega \in \Gamma(X, \Omega^1_X) = \Gamma(Y, \Omega^1_Y(*D))$ satisfies the following properties:

- (1) ω is closed and good wild along D.
- (2) ω has a pole along each irreducible component of D.
- (3) The zero locus $Z(\omega) \subset X$ is compact.
- (4) ω is non-resonant, that is, $\operatorname{Res}(\omega) \cap \mathbb{Z} = \emptyset$.

Then for each $k \in \mathbb{N}$, we have the equality of dimensions

$$\dim H^k(X, (\Omega_X^{\bullet}, d + \omega)) = \dim H^k(X, (\Omega_X^{\bullet}, \omega)).$$

We can relax condition (4) by introducing the set $\Lambda(\omega) = \{\lambda \in \mathbb{C} \mid \lambda \operatorname{Res}(\omega) \cap \mathbb{Z} \neq \emptyset\}$. Then, by applying the theorem to $\lambda \omega$ we find that, for each $k \in \mathbb{N}$ and $\lambda \notin \Lambda(\omega)$, we have the equality of dimensions

$$\dim H^k(X, (\Omega^{\bullet}_X, d + \lambda \omega)) = \dim H^k(X, (\Omega^{\bullet}_X, \omega)).$$

Example 3. Let $f: X \to \mathbb{G}_m$ be a proper morphism from a smooth quasi-projective variety X of dimension n. Assume that f has only isolated critical points. We choose $\omega = \operatorname{dlog} f$. Let $F: Y \to \mathbb{P}^1$ be a projectivization of f such that both $F^{-1}(0)$ and $F^{-1}(\infty)$ are normal crossing divisors. We have $Z(\omega) = \operatorname{Crit}(f)$, so it is compact. On the other hand, near any point of $D = F^{-1}(0) \cup F^{-1}(\infty)$, the logarithmic form dlog F has a pole along each irreducible component of D since F or 1/F is a local equation of D. Furthermore, the residues are integers, so the set $\Lambda(\omega)$ is contained in \mathbb{Q} .

(1) The coherent complex $(\Omega_X^{\bullet}, d \log f)$ has cohomology in degree *n* only, supported on $\operatorname{Crit}(f)$, and this cohomology has dimension equal to the sum $\mu(f)$ of the Milnor numbers of *f* at the critical points.

(2) To analyze the cohomology of the complex $(\Omega_X^{\bullet}, d + \lambda d \log f)$, it is easier to work on \mathbb{G}_m by pushing forward the \mathcal{D}_X -module \mathcal{O}_X . Let $M^k = f_+^k \mathcal{O}_X$ be the k-th pushforward in the sense of \mathcal{D} -modules. Each M^k is a regular holonomic $\mathcal{D}_{\mathbb{G}_m}$ -module with regular singularities and, due to the assumption of isolated critical points, it corresponds to a locally constant sheaf on \mathbb{G}_m if $k \neq 0$.

The Mellin transform $\operatorname{Mellin}(M^k)$ of M^k is a $\mathbb{C}(\lambda)$ -vector space of dimension $\chi(\mathbb{G}_m, M^k)$ (Euler characteristic of the de Rham complex of M^k), cf. [LS91, Th. 1], and we have

$$H^{n+k}(X, (\Omega^{\bullet}_X \otimes_{\mathbb{C}} \mathbb{C}(\lambda), \mathrm{d} + \lambda \mathrm{d}\log f)) \simeq \mathrm{Mellin}(M^k).$$

For $k \neq 0$, we thus have $\chi(\mathbb{G}_m, M^k) = \operatorname{rk}(M^k)\chi(\mathbb{G}_m) = 0$.

(3) For any regular holonomic \mathcal{D} -module on a smooth curve C, or a perverse sheaf on C, we have $\chi(C, M) = -\operatorname{rk} M \cdot \chi(C) + \mu(M)$, with $\mu(M)$ being the sum of the dimension of the vanishing cycles of M at its singular points. On the other hand, due to the compatibility between proper pushforward and vanishing cycles, we have

$$\mu(M^0) = \mu(f).$$

(4) In conclusion, since $\chi(\mathbb{G}_m) = 0$,

$$\dim H^n(X, (\Omega_X^{\bullet}, \mathrm{d}f)) = \mu(f) = \mu(M^0) = \chi(\mathbb{G}_{\mathrm{m}}, M^0) = \dim_{\mathbb{C}(\lambda)} \mathrm{Mellin}(M^0)$$
$$= \dim_{\mathbb{C}(\lambda)} H^n(X, (\Omega_X^{\bullet} \otimes_{\mathbb{C}} \mathbb{C}(\lambda), \mathrm{d} + \lambda \mathrm{d}\log f)).$$

One can be more precise on the Mellin transform: there exists a finite set $\Lambda \subset \mathbb{C}$ modulo \mathbb{Z} such that, considering the localized polynomial ring $R = \mathbb{C}[\lambda, ((\lambda - \lambda_i)^{-1})_{\lambda_i \in \Lambda}] = \mathcal{O}(\mathbb{C} \setminus \Lambda)$, the cohomology $H^n(X, (\Omega^{\bullet}_X \otimes_{\mathbb{C}} R, d + \lambda d \log f))$ is *R*-free of finite rank. The set Λ can be chosen so that, for each $\lambda \in \Lambda$, $\exp(2\pi i \lambda)$ is an eigenvalue of the local monodromy of M^0 at t = 0 or at $t = \infty$. One can check that $\Lambda \subset \Lambda(d \log f)$.

The next example shows that condition (2) is not necessary and could be weakened.

Example 4. Assume that X is affine and $f: X \to \mathbb{G}_m$ is a tame function in the sense of Katz, that is, the critical set $\operatorname{Crit}(f)$ is finite and the cone of the natural morphism $Rf_!\mathbb{Q}_X \to Rf_*\mathbb{Q}_X$ has locally constant cohomology sheaves on \mathbb{G}_m . Then one can show that the $\mathcal{D}_{\mathbb{G}_m}$ -modules M^k satisfy the same properties as in Example 3, hence also the conclusion.

Here is an example that can be related to Example 4.

Example 5. Let $Y \subset \mathbb{P}^N$ be a smooth complex projective variety and let $B \subset \mathbb{P}^N$ be the base locus of a Lefschetz pencil on Y, so that $B \cap Y$ is smooth of codimension two in Y. Consider the pencil $f: Y \setminus B \to \mathbb{P}^1$ and set $X = Y \setminus (B \cup f^{-1}(0) \cup f^{-1}(\infty))$, assuming that both hyperplane sections $\overline{f^{-1}(0)}$ and $\overline{f^{-1}(\infty)}$ are smooth.

Then $\omega = d \log f$ satisfies the conditions (1)–(3) of the proposition but it is not clear that it falls in the scope of Example 4. However, by blowing up *B* one can use the new compactification \tilde{Y} of *X* to check that we are in the setting of Example 4, by showing that the perverse sheaf $\mathbb{Q}_X[n]$ does not have vanishing cycles with respect to *f* along the exceptional locus $\tilde{B} \simeq B \times \mathbb{P}^1$.

Proof of the theorem

Lemma 6. There exists a neighbourhood V of Z^{an} in Y^{an} and a holomorphic function $f: V \to \mathbb{C}$ such that $f_{|Z} = 0$ and $\omega_{|V} = \mathrm{d}f$.

Proof. Given any point x of Z, there exists an open neighbourhood V_x of x in Y^{an} and a unique holomorphic function $f_x : V_x \to \mathbb{C}$ such that $f_{x|Z\cap V_x} = 0$ and $df_x = \omega_{|V_x}$: choose first a simply connected neighbourhood V'_x of x in Y^{an} , so that there a unique $f_x : V'_x \to \mathbb{C}$ such that $df_x = \omega_{|V'_x}$ and f(x) = 0. Since $Z \cap V'_x$ is the critical locus of f_x , it is contained in the critical fibers of f_x . One can then shrink V'_x to V_x so that $Z \cap V_x$ is connected, hence contained in $f_x^{-1}(0)$. Then, for $y \in Z \cap V_x$, we have $f_x(y) = 0$ hence, by uniqueness, $f_{x|V_x \cap V_y} = f_{y|V_x \cap V_y}$, showing that f is defined on $V := \bigcup_{x \in Z} V_x$.

The case where D is empty. One can work with holomorphic objects, and we will forget the exponent 'an' during the proof. We regard $(\mathcal{O}_Y, d+\omega)$ as a holomorphic rank-one bundle with flat connection. The trivial metric is harmonic for this flat bundle, and the associated holomorphic Higgs bundle is $(E, \overline{\partial}_E, \theta)$ with $E = \mathcal{C}_Y^{\infty}, \overline{\partial}_E = \overline{\partial} - \frac{1}{2}\overline{\omega}$ and $\theta = \frac{1}{2}\omega$. Set $E^{\mathrm{an}} = \ker \overline{\partial}_E$.

From [Sim92, Lemma 2.2] we have

$$\dim H^k(Y, (\Omega_Y^{\bullet}, d + \omega)) = \dim H^k(Y, (E^{\mathrm{an}} \otimes \Omega_Y^{\bullet}, \omega)).$$

Since the complex $(E^{\mathrm{an}} \otimes \Omega^{\bullet}_{Y}, \omega)$ is acyclic away from Z, we have

$$H^k(Y, (E^{\mathrm{an}} \otimes \Omega^{ullet}_Y, \omega)) = H^k(V, (E^{\mathrm{an}}_{|V} \otimes \Omega^{ullet}_V, \omega)).$$

On the other hand, $E_{|V}^{an} \simeq \mathcal{O}_V$ via the multiplication by $e^{\overline{f}/2}$ on E. Note that we can replace ω with $\lambda \omega$ for any $\lambda \neq 0$.

The general case. The theorem is a direct consequence of the results of [Moc11], but we will make explicit the way one derives it. By condition (1), $(\mathcal{O}_Y(*D), d + \omega)$ is a good wild meromorphic flat bundle in the sense of [Moc11]. The point is to prove the following lemma:

Proposition 7. If ω satisfies the conditions in the theorem, there exists a locally free rank-one $\mathcal{O}_{Y^{\mathrm{an}}}(*D)$ -module E^{an} such that

$$\dim H^k(Y^{\mathrm{an}}, (\Omega^{\bullet}_{Y^{\mathrm{an}}}(*D), \mathrm{d} + \omega)) = \dim H^k(Y^{\mathrm{an}}, (\Omega^{\bullet}_{Y^{\mathrm{an}}} \otimes E^{\mathrm{an}}, \omega)).$$

In this proposition, we consider analytic objects. The cohomology of the complex in the right-hand term is supported on $Z(\omega)$ and, arguing as in the case where D is empty since $Z(\omega) \cap D = \emptyset$, we find

$$\begin{aligned} H^{k}(Y^{\mathrm{an}},(\Omega^{\bullet}_{Y^{\mathrm{an}}}\otimes E^{\mathrm{an}},\omega)) &\simeq H^{k}(V^{\mathrm{an}},(\Omega^{\bullet}_{V^{\mathrm{an}}}\otimes E^{\mathrm{an}}_{|V^{\mathrm{an}}},\omega)) \\ &\simeq H^{k}(V^{\mathrm{an}},(\Omega^{\bullet}_{V^{\mathrm{an}}},\omega)) \simeq H^{k}(Y^{\mathrm{an}},(\Omega_{Y^{\mathrm{an}}}(*D)^{\bullet},\omega)). \end{aligned}$$

By GAGA (cf. [**Del70**, Lem. II.6.5 & \$II.6.6]), both terms in the proposition can be computed by using the Zariski topology, and the equality in the proposition is now that asserted in the theorem.

Proof of Proposition 7. We use the terminology of \mathcal{R} -modules and \mathcal{R} -triples as in [Sab05, Moc07, Moc11], and we denote the twistor variable by z to avoid any confusion with the variable λ used with a different meaning here.

Lemma 8. If ω satisfies conditions (1), (2) and (4), then $M := (\mathcal{O}_Y(*D), d + \omega)$ is an irreducible holonomic \mathcal{D}_Y -module.

Proof. It is a matter of proving that M is a minimal extension along the divisor D. This is a local question. In a local chart $U(x_o)$ as above, set $g(x,y) = \prod_{i=1}^{\ell}$. It is enough to check that, if e denotes the generator 1 of M, the roots of the Bernstein polynomial of eg^s are not integers. Let $j \in \{1, \ldots, \ell\}$ be such that $m_i \neq 0$ iff $i \leq j$. Up to changing one coordinate x_i for some $i \leq j$ and the coordinates x_i for i > j, one can write

$$\omega = \mathbf{d}(x^{-\boldsymbol{m}}) + \sum_{i=1}^{j} b_i(x,y) \frac{\mathrm{d}x_i}{x_i} + \sum_{i=j+1}^{\ell} a_i \frac{\mathrm{d}x_i}{x_i},$$

with b_i holomorphic in its variables and $a_i \in \mathbb{C} \setminus \mathbb{Z}$. Then *e* satisfies the following equations

$$\begin{cases} \left[x_i^{m_i} x_i \partial_{x_i} - (m_i + x_i^{m_i} b_i(x, y)) \right] \cdot e = 0, & i = 1, \dots, j, \\ (x_i \partial_i - a_i) \cdot e = 0, & i = j + 1, \dots, \ell, \\ \partial_{y_i} e = 0, & i = 1, \dots, k. \end{cases}$$

A simple computation shows that the polynomial $b(s) = \prod_{i=j+1}^{\ell} (s+a_i+1)$ induces a Bernstein functional equation for eg^s , hence divides the Bernstein polynomial of eg^s . The non-resonance condition $a_i \notin \mathbb{Z}$ yields the conclusion.

Since ω satisfies conditions (1), (2) and (4), we can apply the lemma to it, and we deduce from [Moc11] that M comes by restriction to z = 1 from an $\mathcal{R}_{\mathcal{Y}}$ -module \mathcal{M} which is part of an object $\mathcal{T} = (\mathcal{M}, \mathcal{M}, C)$ of the category of \mathcal{R} -triples on Y underlying a polarized wild twistor \mathcal{D} -module, whose restriction to $X \setminus D$ corresponds to the harmonic flat bundle considered in the case where D is empty.

We thus have $M = \mathcal{M}/(z-1)\mathcal{M}$ and, setting $E^{\mathrm{an}} = \mathcal{M}/z\mathcal{M}$ that we regard an \mathcal{O}_Y -module with Higgs field $\frac{1}{2}\omega$, the push-forward theorem [Moc11, Th. 18.1.1] applied to the constant map $Y \to \mathrm{pt}$ implies the equality in the proposition, since strictness is preserved by projective push-forward. It remains to be proved that E^{an} is a locally free $\mathcal{O}_Y(*D)$ -module (of rank one). Note that we already know that $E^{\mathrm{an}}_{|X}$ is equal to the rank-one Higgs bundle computed in the case where D is empty. Recall (cf. [Moc11, §12.1]) that \mathcal{M} is constructed locally near each $z_o \in \mathbb{C}$, and the construction is seen to be independent of z_o . The local $\mathcal{R}_{\mathcal{Y}}$ -module $\mathcal{M}^{(z_o)}$ is the $\mathcal{R}_{\mathcal{Y}}$ -module generated by the $\mathcal{O}_{\mathcal{Y}}$ -module denoted by $\mathcal{Q}_{<1}^{(z_o)}\mathcal{E}$ in the family $\mathcal{Q}^{(z_o)}\mathcal{E}$ of z-flat meromorphic bundles.

As we are only interested to E^{an} , we only need to consider the case where $z_o = 0$, so that the objects above are the objects $\mathcal{P}_{<1}^{(0)} \mathcal{E}$ and $\mathcal{P}^{(0)} \mathcal{E}$, as explained in §11.1.1 of loc. cit., and $\mathcal{P}_{<1}^{(0)} \mathcal{E}$ is a locally free $\mathcal{O}_{\mathcal{Y}}|_{z=0}$ -module of rank one. By working modulo z, we find that E^{an} is the $\mathcal{R}_{\mathcal{Y}}/z\mathcal{R}_{\mathcal{Y}}$ -module generated by the locally free $\mathcal{O}_{\mathcal{Y}}$ -module $\mathcal{P}_{<1}^{(0)} \mathcal{E}/z\mathcal{P}_{<1}^{(0)} \mathcal{E} =: \mathcal{P}_{<1} \mathcal{E}^0$ in the meromorphic bundle $\mathcal{P}^{(0)} \mathcal{E}/z\mathcal{P}^{(0)} \mathcal{E} =: \mathcal{P} \mathcal{E}^0$.

We identify $\mathcal{R}_{\mathcal{Y}}/z\mathcal{R}_{\mathcal{Y}}$ with the ring $\operatorname{gr}^F \mathcal{D}_Y = \mathcal{O}_Y[T^*Y]$ of holomorphic functions on T^*Y which are polynomial in the fibers of the projection $T^*Y \to Y$. In a local chart $U(x_o)$ as above, letting ξ_i denote the class of ∂_{x_i} and η_i that of ∂_{y_i} , we see that the action of ξ_i via the Higgs field $\frac{1}{2}\omega$ is

- by
$$x_i^{-m_i}u_i(x,y)$$
 for some invertible holomorphic function u_i , if $i = 1, \ldots, j$,
- by $\frac{1}{2}a_i x_i^{-1}$, if $i = j + 1, \ldots, \ell$,

and the action of η_i is by zero. It follows that $E^{an} = \mathcal{PE}^0$, hence is a rank-one locally free $\mathcal{O}_Y(*D)$ -module.

References

- [Del70] P. DELIGNE Équations différentielles à points singuliers réguliers, Lect. Notes in Math., vol. 163, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [LS91] F. LOESER & C. SABBAH "Caractérisation des D-modules hypergéométriques irréductibles sur le tore", C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), p. 735– 738, erratum, ibid. 315 (1992), p. 1263-1264.
- [Moc07] T. MOCHIZUKI Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules, Mem. Amer. Math. Soc., vol. 185, no. 869-870, American Mathematical Society, Providence, R.I., 2007.
- [Moc11] _____, Wild harmonic bundles and wild pure twistor D-modules, Astérisque, vol. 340, Société Mathématique de France, Paris, 2011.
- [Sab05] C. SABBAH Polarizable twistor D-modules, Astérisque, vol. 300, Société Mathématique de France, Paris, 2005, Errata: sabbah_ast_300_err.pdf.
- [Sab13] _____, "Vanishing cycles and their algebraic computation", Lecture notes, Notre Dame, sabbah_notredame1305.pdf, 2013.
- [Sim92] C. SIMPSON "Higgs bundles and local systems", Publ. Math. Inst. Hautes Études Sci. 75 (1992), p. 5–95.

October 2, 2023

C. SABBAH, CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France • *E-mail* : Claude.Sabbah@polytechnique.edu