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Abstract. These notes explain a series of joint works with Javier Fresán and Jeng-
Daw Yu [8, 9, 10], motivated by conjectures made by Broadhurst and Roberts on
arithmetic properties of moments of Bessel functions [2, 5, 3, 4, 11, 6, 7]. The
purpose is to introduce the notion of irregular Hodge filtration, in the special case of
an exponential mixed Hodge structure, and to illustrate the interest of considering this
notion for computing Hodge filtrations of mixed Hodge structures related with Bessel
moments. A Betti variant of this method is also introduced, in order to compute
explicitly a period matrix of a pure motive associated to Bessel moments.
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INTRODUCTION

If you intend to convince an analyst that she should use Fourier trans-
formation to obtain simple proofs of some formulas, she would laugh
at you, answering that analysts are aware of that since two centuries.
If you similarly talk to an arithmetician, she would also remind you
that this is well-known to her since the works of Deligne, Katz, Lau-
mon...
I hope that algebraic geometers will not laugh at me if I try to con-
vince them that, sometimes, Fourier transformation can be useful for
computing Hodge numbers.

Periods, in the classical sense, are complex numbers computed from complex alge-
braic geometry, by integrating algebraic differential forms on a quasi-projective variety
over C against cycles with semi-algebraic support. The period pairings pair, via in-
tegration, de Rham cohomology classes with homology classes, and lead to period
matrices. Of special interest are the matrices obtained by choosing bases of de Rham
cohomology adapted to the Hodge filtration.

On the other hand, some integral identities relate periods to integrals which are
not periods in the above sense, as the differential forms they involve are not algebraic.
For example, the following relation was found by P.Vanhove:

1

2`

∫
xi>0

1

(1 +
∑`
i=1 xi)(1 +

∑`
i=1 1/xi)− 1

∏̀
i=1

dxi
xi

=

∫ ∞
0

I0(t)K0(t)`+1tdt.

Here, I0(t) and K0(t) are the modified Bessel functions, which are solutions of the
second order differential operator (t∂t)

2 − t2. They are expressed by explicit integral
formulas which involve the exponential function, and are not algebraic functions.
Furthermore, this differential operator cannot be a Picard-Fuchs operator since it has
an irregular singularity at t =∞.

This kind of relations suggests that
• some period matrices could be computed as period matrices related to dif-
ferential equations with irregular singularities,
• and that algebraic differential forms like tdt could have a Hodge-theoretic
interpretation in the framework of the Bessel differential equation, despite the
presence of an irregular singularity.





LECTURE 1

FOURIER AND HODGE

1.1. Introduction

Hodge theory in complex algebraic geometry is governed by mixed Hodge struc-
tures. Objects of MHS consist of triples ((VdR, F

•VdR), (VB,W•VB),per), where
• VdR is a C-vector space with a decreasing filtration F •VdR indexed by Z
(both possibly defined over a subfield K of C),
• VB is a finite dimensional Q-vector space and W•VB is a finite increasing
filtration of it indexed by Z,
• a period isomorphism per : C⊗Q VB

∼−→ VdR,
all subject to various conditions.

On the other hand, Simpson has introduced the category MTS of mixed twistor
structures, which governs the harmonic theory for algebraic vector bundles with flat
connections (possibly with irregular singularities). An object of MTS consists of a
vector bundle on P1 (the twistor variable) endowed with an increasing filtration which
is opposite to the Harder-Narasimhan filtration, so that its graded bundles have pure
slope. The Rees construction for the Hodge filtration and its conjugate associates to
a mixed Hodge structure an object of MTS, making MHS a subcategory of MTS. The
drawback of MTS is that there is no Hodge filtration (nor a Betti structure) attached
to an object of MTS.

One can construct a subcategory IrrMHS (irregular mixed Hodge structures)
of MTS, whose objects are vector bundles on P1 endowed with a connection having
a pole of order at most two at the origin and infinity, and no other pole, plus some
extra conditions, so that the fiber at 1 ∈ P1 of such vector bundles come naturally
equipped with a filtration, called the irregular Hodge filtration, denoted by F •irr. This
filtration is in general indexed by real numbers (rational numbers in the situations
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that will be of interest in this lecture). Objects of MHS are sent to IrrMHS and the
Hodge filtrations correspond.

Another approach to irregular Hodge theory has been proposed by Kontsevich and
Soibelman. The category EMHS of exponential mixed Hodge structures is the subcat-
egory of that of mixed Hodge modules (as defined by M. Saito) on the affine line A1

whose global cohomologies identically vanish. While this category also introduces a
parameter space A1, this parameter is very different from the twistor parameter intro-
duced by Simpson. Like the category MTS, it lacks of an associated Hodge filtration.
Nevertheless, there is a commutative diagram

MHS �
�

//
r�

$$

IrrMHS �
�

// MTS

EMHS

Fourier

OO

so that an object of EMHS also gives rise to an irregular Hodge filtration.
The main purpose of this lecture is to explain that, for some mixed Hodge structures

which naturally arise as exponential mixed Hodge structures, the computation of their
Hodge filtration can be simpler by computing the associated irregular Hodge filtration.

1.2. Short preliminaries on mixed Hodge modules (M. Saito)

X: smooth quasi-proj. var. of dimension n over C.
Category MHM(X): Objects are MH := ((M,F •M), (FQ,W•FQ),per), where

• M is a hol. DX -module (i.e., an OX -module with flat connection ∇, subject
to suitable coherence and dimension properties, e.g. OX -locally free),
• F •M is a (possibly infinite) filtration by coherent OX -modules such that
∇F pM ⊂ Ω1

X ⊗ F p−1M ,
• FQ is a Q-perverse sheaf on Xan,
• W•FQ is a finite filtration by perverse subsheves,
• per : C⊗Q FQ

∼−→ p
DR

an
M (period isomorphism),

subject to various compatibility conditions.

Example 1.1.
•

pQH

X =((OX ,d), triv.F -filtr.,QX [n], can) is a pure Hodge module of weight n.
• Admissible variations of MHS on X ⇐⇒ smooth objects of MHM(X).

Six operations and duality on Db(MHM(X)), lifting the six operations and duality
in Db

c (QX).
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1.3. Exponential mixed Hodge modules (Kontsevich-Soibelman)

In this section, we set X = A1 with coordinate θ.

Definition 1.2. EMHS is the full subcategory of MHM(A1) whose objects NH satisfy
Hk(A1,FQ) = 0 for all k (i.e., k = 0, 1, 2).

The category MHM(A1) has a tensor product (convolution):

NH

1 ? N
H

2 := Hsum∗(N
H

1 �N
H

2 ) ∈ Db(MHM(A1)).

Unit: δH = Hi∗QH, i : {0} ↪→ A1. Let j : Gm ↪→ A1 be the open inclusion. Then
Π : NH → NH ? (Hj!

pQH

Gm
) is a projector MHM(A1)→ EMHS with Π(δH) ' Hj!

pQH

Gm
.

Then (EMHS, ?) is a Q-linear neutral Tannakian category.

Remark 1.3. There is an embedding

MHS ↪−→ EMHS

V H 7−→ Π(Hi∗V
H).

The essential image EMHScst consists of objects of EMHS whose underlying perverse
sheaf is constant on Gm. This is compatible with the tensor structure, if MHS is
endowed with its natural tensor structure.

Definition 1.4 (De Rham fibre). For NH ∈ EMHS, the de Rham fibre is the C-vector
space

Coker[(∇+ dθ ⊗ Id) : N → Ω1
A1 ⊗N ] = H1

dR(A1, N ⊗ Eθ).

(Convolution induces ⊗ on H1
dR(A1, N⊗Eθ), andW•N inducesW•H1

dR(A1, N ⊗ Eθ)).

Remark 1.5.

(1) Assume that NH = Π(Hi∗V
H). Then (H1

dR(A1, N ⊗ Eθ),W•) ' (V,W•).

(2) The functor EMHS 3 NH → H1
dR(A1, N ⊗ Eθ) ∈ Vect(C) is faithful.

Theorem A (S-Y & F-S-Y). To any object of EMHS, one can associate canonically
a filtration F •irrH

1
dR(A1, N⊗Eθ) indexed by Q which is compatible with convolution

and tensor product. Furthermore, for each V H ∈ MHS with image NH ∈ EMHScst,
there exists an isomorphism of bi-filtered vector spaces, compatible with the tensor
structures:

(VdR, F
•
VdR,W•VdR) ' (H1

dR(A1, N ⊗ Eθ), F •irr,W•).
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1.4. Gauss-Manin exponential mixed Hodge modules

Let f : X → A1 be a regular function X (smooth, quasi-proj., dimX = n). The
push-forwards H r

Hf!
pQH

X and H r
Hf∗

pQH

X are objects of MHM(A1).

Definition 1.6 (Gauss-Manin exponential mixed Hodge modules)
We associate with (X, f) the following exponential mixed Hodge structures:

Hj
c(X, f) = Π(H j−n

Hf!
pQH

X),

Hj(X, f) = Π(H j−n
Hf∗

pQH

X).

Example 1.7.

(1) If f is proper, then Hj(X, f) = Hj
c(X, f) is pure of weight j.

(2) If X is affine and f is tame, then

Hj(X, f) = Hj
c(X, f)

{
= 0 if j 6= n,

is pure of weight n if j = n.

Remark 1.8. The de Rham fibres are given by the following formulas (? = c,∅):

Hj
dR,?(X, f) = Hj

?(X, (Ω
•
X ,d + df)).

Computation of the irregular Hodge filtration. We embed f : X → A1 in a commutative
diagram

(1.9)

X

f
��

� � // X

F
��

A1 �
�

// P1

with X smooth projective and X r X = D a simple normal crossing divisor. Let
P = F ∗(∞) be the pole divisor of F . For λ ∈ Q, consider the filtration

FλYu(Ω
•

X
(∗D),d + dF )

=
{

0→ OX([−λP ]+)
d + dF−−−−−−−→ Ω1

X(logD)([(−λ+ 1)P ]+)
d + dF−−−−−−−→ · · ·

d + dF−−−−−−−→ ΩnX(logD)([(−λ+ n)P ]+)→ 0
}
.

Theorem B (E-S-Y, Yu). The spectral sequence associated to

Hj
?

(
X,FλYu(Ω

•

X
(∗D),d + dF )

)
degenerates at E1 and the induced filtration F •YuHj

dR,?(X, f) does not depend on
the choice of the compactification of f as above. It is equal to the irregular Hodge
filtration F •irrH

j
dR,?(X, f).
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Remark 1.10. A sufficient condition for the jumping indices of F •YuHj
dR,?(X, f) to be

integers is that the monodromy of Rj−1f? QX (? =!, ∗) around infinity is unipotent.

1.5. The case of a product f = tg

We assume that X = A1
t × Y with Y smooth quasi proj. and f = tg, g : Y → A1.

Theorem C (F-S-Y). Under this assumption, Hj
?(X, tg) belongs to EMHScst for

any j. Furthermore, Hj
c(X, tg) ' Hj

c(A1 × g−1(0)) ' Hj−2
c (g−1(0))(−1).

Sketch of proof for ? = ∅. It will be a little simpler to work with D-modules instead
of perverse sheaves. Let Z = A1 × g−1(0) ⊂ X and let

a : X r Z ↪−→ X and b : Z ↪−→ X

denote the complementary inclusions. We have a distinguished triangle

Hb∗ Hb
!(

pQH

X) −→ pQH

X −→ Ha∗ Ha
∗(

pQH

X)
+1−−−→

in Db(MHM(X)). Since f ≡ 0 on Z, H j−n
Hf∗ Hb∗ Hb

!(
pQH

X) is supported at 0 ∈ A1,
hence Π(H j−n

Hf∗ Hb∗ Hb
!(

pQH

X)) ∈ EMHScst for all j. It is thus enough to prove that

Π(H j−n
Hf∗ Ha∗ Ha

∗(
pQH

X)) = 0 ∀ j,

and it is enough to prove that the de Rham fiber of this object of EMHS is zero.
We set NH

k = H k
H(Id×g)∗

pQH

X ∈ MHM(A1 ×A1). By a spectral sequence argument,
it is enough to prove

H`
dR(A1 × A1, (a+ a

+Nk)⊗ Etτ ) = 0 ∀ k, `,

where a now denotes the inclusion A1 × Gm ↪→ A1 × A1, and a+ denotes the direct
image in the sense of D-modules. We can write a+a+Nk = OA1 � a+a

+Mk, with
Mk = H kg+(OY ,d) and a : Gm ↪→ A1. We regard Mk as a C[τ ]〈∂τ 〉-module and
we have to compute the cohomology of the simple complex associated to the double
complex

C[t]⊗C Mk[τ−1]

∂t + τ

��

∂τ + t
// C[t]⊗C Mk[τ−1]

∂t + τ

��

C[t]⊗C Mk[τ−1]
∂τ + t

// C[t]⊗C Mk[τ−1]

The vertical maps are bijective, hence the simple complex is quasi-isomorphic to
zero.
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1.6. Mixed Hodge structures with an automorphism of finite order

We now consider the category MHSµ̂ of mixed Hodge structures with an automor-
phism of finite order. There is an embedding of MHSµ̂ in EMHS whose essential image
EMHSµ̂ consists of objects of EMHS whose associated perverse sheaf on A1 becomes
constant on Gm after pullback by a finite cyclic covering A1 → A1, θ 7→ θm (for some
m > 1).

It is known (Scherk-Steenbrink, 1985) that MHSµ̂ is endowed with a tensor struc-
ture, which is however not the natural one with respect to filtrations. If T is an
automorphism of finite order m of V H, we decompose its components with respect to
eigenvalues:

• (VB,W•) as (VB,1,W•)⊕ (VB,6=1,W•),
• (VdR, F

•) as
⊕

ζm=1(VdR,ζ , F
•) (over K(ζ)).

Define

W µ̂
` VB = W`VB,1 ⊕W`−1VB,6=1,

F p−aµ̂ VdR,ζ = F pVdR,ζ (ζ = exp(−2πia), a ∈ (−1, 0]).

Scherk-Steenbrink show that there exists a tensor structure ? on MHSµ̂ such that

W µ̂
` (V ′ ? V ′′) =

∑
`′+`′′=`

W µ̂
`′ (V

′)⊗W µ̂
`′′(V

′′),

F pµ̂(V ′ ? V ′′) =
∑

p′+p′′=p

F p
′

µ̂ (V ′)⊗ F p
′′

µ̂ (V ′′), p′, p′′ ∈ Q.

Theorem Aµ̂ (S-Y). For each (V H, T ) ∈ MHSµ̂ with image NH ∈ EMHSµ̂, there is
an isomorphism of bifiltered vector spaces compatible with the tensor structures

(V, F
•
µ̂V,W

µ̂
• V ) ' (H1

dR(A1, N ⊗ Eθ), F •irr,W•).

Theorem Cµ̂ (S-Y). Notation as in Theorem C. Then Hj
?(X, t

mg) belongs to
EMHSµ̂ for any m and j.



LECTURE 2

BESSEL AND AIRY

2.1. Introduction

Bessel and Airy functions are probably the special functions which are most used
by physicists. It is thus not a surprise that some new insights on these functions come
from physicists. The origin of the work explained below (F-S-Y for Bessel and S-Y
for Airy) are various conjectures of Broadhurst and Roberts (B-R) concerning the
motivic origin of Bessel moments, as expressed by the irregular periods∫ ∞

0

I0(t)jK0(t)jt` dt,

where I0(t),K0(t) are the modified Bessel functions defined by the formulas

(2.1)
I0(t) =

1

2πi

∮
e−(x+1/x)t/2 dx

x
,

K0(t) =
1

2

∫ ∞
0

e−(x+1/x)t/2 dx

x
(| arg t| < π/2),

which are annihilated by the modified Bessel operator (t∂t)
2 − t2. The function I0(t)

is entire and satisfies I0(t) = I0(−t). The function K0(t) extends analytically to a
multivalued function on C× satisfying the rule K0(eπit) = K0(t) − πiI0(t). Further-
more, B-R conjectured that one should be able to derive the functional equation for
the L function of the arithmetic analogues (moments of Kloosterman sums).

Let g : Gm → A1 be the Laurent polynomial x 7→ x + 1/x and let gk : Gkm → A1

be its k-th Thom-Sebastiani sum (xi) 7→
∑k
i=1(xi + 1/xi). The symmetric group Sk

acts in a natural way on Gkm and leaves gk invariant. The group µ2 = {±1} acts on
Gkm by xi 7→ −xi and also acts on the hypersurface K := g−1k (0). The pure motive
of weight k + 1 that governs the Bessel moments of order k is

Mk =
[
grWk−1 Hk−1

c (K )Sk×µ2,χ
]
(−1).
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The aim of this lecture is to explain how to compute the Hodge numbers of Mk by
means of Theorem A and by using Theorem C with g = gk, that is, by means of
computing an irregular Hodge filtration.

For the sake of simplicity, I will restrict from now on to the case where k is odd.
The case k even is a little more technical, due to the (isolated) singularities of K in
such a case.

Theorem D (F-S-Y). If k is odd, the Hodge numbers hp,k+1−p of Mk are equal to 1

if p = 2, 4, . . . , k − 1 and are zero otherwise. (A precise formula can also be given
if k is even.)

This result enables us to go further in the arithmetic direction, as one can apply
results of Patrikis and Taylor, which require this Hodge property, in order to derive a
functional equation for the corresponding L function. This leads to the interpretation
envisioned by B-R.

What about Airy? Airy moments are produced with the Airy (entire) functions

Ai(z) =
1

2π

∫
α0

ezx−
1
3x

3

dx

where α0 is the oriented path (−∞, 0]e−2πi/3 + [0,∞), and

Bi(z) = i
(
ζ−1 Ai(ζ−1z)− ζ−2 Ai(ζ−2z)

)
(ζ = e2πi/3).

These functions form a basis of solutions of the Airy differential equation ∂2z − z. The
arithmetic theory of Airy moments is less advanced mainly because they give rise
to “ulterior motives” in the sense of Anderson (1986), and the corresponding Hodge
structure is an object of EMHSµ̂. The pure ulterior motive of weight k + 1 governing
the k-moments of Airy reads

MAi
k = MAi

k,cl ⊕MAi
k, 6=1.

Here, the function g is 1
3x

3 − x, the hypersurface A ⊂ Ak is defined by gk =∑k
i=1( 1

3x
3
i − xi) = 0, and

MAi
k,cl =

[
grWk−1 Hk−1

c (A )Sk×µ2,χ
]
(−1),

MAi
k, 6=1 =

(
H1(A1, t3)⊗WkHk(U3)Sk×µ2,χ

)µ3

,

where U3 is the cyclic covering of order 3 of U = Ak r A .

Theorem E (S-Y). The nonzero Hodge numbers of MAi
k,cl and irregular Hodge num-

bers of MAi
k, 6=1 are equal to 1 (a precise formula can be given).
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2.2. The Kloosterman connection and its relation with Mk

The Kloosterman connection Kl2 is the trivial rank-two vector bundle on Gm (coor-
dinate z) endowed with the holomorphic connection defined as follows, starting from
the function

f : G2
m −→ Gm, (x, z) 7−→ x+ z/x.

Then Kl2 is the twisted Gauss-Manin connection attached to (OG2
m
,d + df) relative

to the projection π : (z, x) 7→ z. Working with global sections, it is the cokernel of
the injective C[z±]-linear morphism

C[z±, x±]
x∂x + (x− z/x)
−−−−−−−−−−−−−−→ C[z±, x±].

Let us denote by v0 (resp. v1) the image of 1 (resp. x). Then (v0, v1) is a C[z±]-basis
of Kl2. The action induced by 1/x is (1/x)v0 = z−1v1 and (1/x)v1 = v0, and the
connection ∇ on Kl2, induced by the action of dz +dzf = dz +(z/x)dz/z, has matrix

∇(v0, v1) = (v0, v1) ·
(

0 z

1 0

)
· dz

z
(hence [(z∂z)

2 − z]v0 = 0).

For k > 1, we consider the symmetric product Symk Kl2 and its de Rham cohomology,
which is the cohomology of the complex

Γ(Gm,z,Symk Kl2)
∇−−−→ Γ(Gm,z,Ω

1
Gm,z

⊗ Symk Kl2)

(because Gm,z is affine).

Lemma 2.2. We have H0
dR(Gm,Symk Kl2) = 0 and there are identifications

H1
dR(Gm,Kl⊗k2 ) ' Hk+1

dR (Gm ×Gkm, fk) := Ωk+1(Gk+1
m )/(d + dfk)Ωk(Gk+1

m ),

with fk =
∑k
i=1(xi+z/xi), and H1

dR(Gm,Symk Kl2) ' Hk+1
dR (Gm×Gkm, fk)Sk,χ, where

χ is the sign character.

According to Remark 1.8, we can thus interpret H1
dR(Gm,Symk Kl2) as the de Rham

fiber of the exponential mixed Hodge structure Hk+1(Gm × Gkm, fk)Sk,χ. It is then
convenient to use the notation H1(Gm,Symk Kl2) for the latter.

Sketch of proof. One can show that Symk Kl2, as a bundle (of rank k + 1) with con-
nection, is irreducible. Hence it has no nonzero global ∇-flat section.

Working with global sections, Hk+1
dR (Gm×Gkm, fk) is the simple complex associated

to the (k+1)-cube with vertices C[z±, x±1 , . . . , x
±
k ] and i-th arrows all equal to xi∂xi +

(xi − z/xi) (i = 1, . . . , k) and 0-th arrow z∂z −
∑
i(1/xi). The kernel for i = 1, . . . , k

is zero, and the cokernel for i = k is C[z±, x±1 , . . . , x
±
k−1]⊗C[z±] Kl2. By a decreasing

induction on k, we are left with the complex

Kl⊗k2

z∂z −
∑

(1/xi)−−−−−−−−−−−−−→ Kl⊗k2 ,

where the action of 1/xi is interpreted as above on the basis of the i-th component of
Kl⊗k2 . This complex computes H1

dR(Gm,Kl⊗k2 ).
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In order to understand the relation with Mk and to endow the vector space
H1

dR(Gm,Symk Kl2) with a mixed Hodge structure, it is convenient to pullback
Symk Kl2 by the degree-two morphism [2] : t 7→ z = t2. Setting K̃l2 = [2]∗Kl2, we
have similarly

H1
dR(Gm,Symk K̃l2) ' Hk+1

dR (Gm ×Gkm, f̃k)Sk,χ,

with f̃k =
∑
i(xi + t2/xi), that we rewrite, using the change of variables yi = xi/t,

f̃k = tgk(y) with gk(y) =
∑
i(yi + 1/yi). It follows from Theorem C that the ob-

ject Hk+1(Gm × Gkm, f̃k)Sk,χ of EMHS “is” a mixed Hodge structure, that we denote
by H1(Gm,Symk K̃l2), and H1

dR(Gm,Symk Kl2) underlies the mixed Hodge structure
H1(Gm,Symk K̃l2)µ2 , that we denote by H1(Gm,Symk Kl2):

H1(Gm,Symk Kl2) =
(

Hk+1(Gm ×Gkm, f̃k)Sk,χ
)µ2

' Hk+1(Gm ×Gkm, fk)Sk,χ,

where the second isomorphism, a priori regarded in EMHS, shows that the right-hand
side belongs to the image of MHS. This mixed Hodge structure has weights > k + 1.
The (exponential) Hodge realization of Mk (see Theorem C) is then isomorphic to
Wk+1H1(Gm,Symk Kl2).

2.3. Basis and de Rham intersection pairing for H1(Gm,Symk Kl2)

The computation of a basis of Mk,dR and of the de Rham intersection pairing in this
basis is much easier in the model Wk+1H1

dR(Gm,Symk Kl2). It relies on the following
non completely obvious result:

Wk+1H1
dR(Gm,Symk Kl2) = image

[
H1

dR,c(Gm,Symk Kl2)→ H1
dR(Gm,Symk Kl2)

]
=: H1

dR,mid(Gm,Symk Kl2).

Proposition 2.3. Assume k odd. Then the classes

ωi = [zivk0dz/z] (i = 1, . . . , (k − 1)/2)

form a basis of Wk+1H1
dR(Gm,Symk Kl2). Furthermore, the matrix (Sk;i,j) of the

de Rham intersection pairing Sk in this basis is lower right-triangular and all anti-
diagonal entries are equal and nonzero. (A similar result holds for k even.)

The proof of this proposition relies on simple computations on the solutions of the
differential equation attached to Symk Kl2 (the modified Bessel moment functions
Ii0K

k−i
0 ).
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2.4. Computation of the Hodge numbers of Mk (k odd)

The proof of Theorem D needs two lemmas.

Lemma 2.4. On noting that

Hk+1(Gm ×Gkm, fk) = Ωk+1(Gk+1
m )/(d + dfk)Ωk(Gk+1

m ),

the classes ωi correspond to the classes wi of zi(dz/z) · (dx1/x1) · · · (dxk/xk) in
(Ωk+1(Gk+1

m ))Sk,χ.

Lemma 2.5. For i > 0, wi ∈ F k+1−2i
irr Hk+1(Gm ×Gkm, fk).

Proof of Theorem D. Let us denote by GpH1
dR,mid(Gm,Symk Kl2) the subspace gener-

ated by ωi with 2 6 2i 6 k + 1− p. Then the previous lemma shows

GpH1
dR,mid(Gm,Symk Kl2) ⊂ F pH1

dR,mid(Gm,Symk Kl2).

Let us set dp = dim grpF and δp = dim grpG. Then
∑
q>p δq 6

∑
q>p dq for each p

with equality for p small and for p large. By Hodge symmetry, we have dk+1−q=dq.
Furthermore, the symmetry i 7→ (k+1)/2−i corresponds to q = k+1−2i 7→ 2i = k+

1− q, meaning that δk+1−q = δq. As a consequence, we also have
∑
q6p δq 6

∑
q6p dq

for all p, and it follows that dp = δp for all p. Since δp = 1 for p as described in the
theorem, and zero otherwise, this concludes the proof.

Proof of Lemma 2.5. We identify the set of Laurent monomials in z, x1, . . . , xk with
the Z-lattice Zk+1 in Rk+1 by taking the exponents m = (m0, . . . ,mk). The support
of fk =

∑k
i=1(xi + z/xi) is contained in the hyperplane h(m) = 2m0 +

∑k
i=1mi = 1.

The Newton polytope ∆(fk) ⊂ Rk+1 of fk, which is the convex hull of the support
together with the origin in Rk+1 has thus only one face that does not contain the
origin. Furthermore, for any facet σ of ∆ not containing the origin, there are no
solutions in Gk+1

m of z∂zfσ = x1∂x1
fσ = · · · = xk∂xk

fσ = 0: for example, if σ is the
maximal such facet, these equations read xi − z/xi = 0 for all i and

∑
i z/xi = 0,

which amount to
∑
i xi = 0 and xi = ±x1, and since k is odd, there is no solution.

As a consequence, fk is nondegenerate w.r.t. ∆.
In this case, a theorem of J.-D. Yu [12, Th. 4.6], relying on previous work by

Adolphson-Sperber [1, Th. 1.4], shows that the irregular Hodge filtration F •Yu on
Hk+1

dR (Gk+1
m , Efk) arises from the Newton filtration on monomials R>0∆(fk). In par-

ticular, if m ∈ R>0∆ is a monomial with Newton degree h(m) such that the top form
ω = mdz

z
dx1

x1
· · · dxk

xk
represents a non-trivial class in Hk+1

dR (Gk+1
m , Efk), then

(2.6) ω ∈ F pHk+1
dR (Gk+1

m , Efk) if p 6 k + 1− h(m).

In the case at hand, zj ∈ R>0∆ has degree h(zj) = 2j, hence the assertion.





LECTURE 3

BROADHURST AND ROBERTS

3.1. Introduction

In a series of papers, B-R have considered the period matrix Pk with i, j entry
(i, j = 1, . . . , b(k − 1)/2c) ∫ ∞

0

I0(t)iK0(t)k−it2j−1 dt

together with the Bernoulli matrix Bk with i, j entry (Bn=n-th Bernoulli number)

(−1)k−i
(k − i)!(k − j)!

k!

Bk−i−j+1

(k − i− j + 1)!
,

and they have cooked up a very clever inductive formula (on k) to construct a matrix
Dk such that the following formula holds (quadratic relation for the entries of Pk with
coefficients in Q):

Pk ·Dk · tPk = (−2πi)k+1 Bk .

In this lecture, I will explain that
• the matrix Pk is (up to normalizing constants) a period matrix for the Kloost-
erman motive Mk,
• the matrix Bk is an intersection matrix of k-cycles on Mk,
• a quadratic relation holds in a general setting, by replacing the matrix Dk
with the inverse of the de Rham intersection matrix Sk like the one seen in
Section 2.3.

This gives a topological explanation to the above quadratic relations. Furthermore,
this gives a way to compute the determinant of periods for the Kloosterman motive.
However, we were unable

• to explain the subtle inductive definition of Dk from the de Rham point of
view,
• to show that the entries of S−1k , which are a priori rational numbers, are in
fact integers, as seems to occur for the matrix Dk.

So a complete explanation of B-R quadratic relations from the point of view of topol-
ogy and algebraic geometry is still missing.
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3.2. Period structure of an exponential mixed Hodge structure

From a mixed Hodge structure V H = ((VdR, F
•VdR), (VB,W•VB),per) we only re-

tain the period structure Per(V H) = (VdR, VB,per) ∈ Per. For an exponential mixed
Hodge structure NH, we have described the de Rham fiber H1

dR(A1, N ⊗ Eθ). We
now make complete the description of the Betti fiber and the fiber period structure
attached to an object of EMHS and define a functor FPer : EMHS→ Per.

Let $ : P̃1 → P1 be the real oriented blowing up of P1 at ∞ (it is also denoted
by (P1)log by Kato-Nakayama). Let P̃1

mod ⊂ P̃1 denote the open subset where e−θ

has moderate growth: this is the union of A1an and of an open interval ∂modP̃1 in
∂P̃1 := $−1(∞) ' S1. We consider the open inclusions

A1an ↪
α−−→ P̃1

mod ↪
β−−→ P̃1.

Definition 3.1. The Betti fiber of NH is H0(P̃1, β!Rα∗FQ) = H0
c(P̃1

mod, Rα∗FQ).

In order to understand the fiber period isomorphism

per : C⊗Q H0(P̃1, β!Rα∗FQ)
∼−→ H1

dR(A1, N ⊗ Eθ),

it is convenient to compute the right-hand side on P̃1. For that purpose, we consider
the sheaf A mod

P̃1
on P̃1 whose local sections are holomorphic on A1an and have moderate

growth along $−1(∞). For example, θr (r ∈ C), (log θ)k are local sections of A mod
P̃1

near any point of ∂P̃1, while e−θ is a section of A mod
P̃1

near any point of ∂modP̃1

only. This sheaf plays the role on P̃1 of the sheaf OP1(∗∞) on P1. It is acted on by
holomorphic derivations on P1, so that one can define the complex p

DR
mod

(N ⊗Eθ)
on P̃1 by taking coefficients in A mod

P̃1
. Then per is obtained according to the following

properties:
• ∃ ! isomorphism β!Rα∗

p
DR

an
(N ⊗ Eθ) ∼−→ p

DR
mod

(N ⊗ Eθ) extending the
identity on A1an.
• Termwise multiplication by e−θ induces an isomorphism (on A1an)

p
DR

an
N

∼−→ p
DR

an
(N ⊗ Eθ).

• As a consequence, there exists a unique isomorphism p̃er : β!Rα∗FC
∼−→

p
DR

mod
(N ⊗ Eθ) extending e−θ ◦ per on A1an.

• H1
dR(A1, N ⊗ Eθ) =

p
H0

dR(A1, N ⊗ Eθ) = H0(P̃1,
p
DR

mod
(N ⊗ Eθ)).

• We set per = H0(P̃1, p̃er).

Proposition 3.2. There is a commutative diagram of functors

MHS

Per

��

Π ◦ Hi0! // EMHS

FPer

xx
Per
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3.3. Period structure of a Gauss-Manin EMHS

Given a Gauss-Manin exponential mixed Hodge module H(X, f) (see Section 1.4),
one can describe in terms of (a good compactification of) (X, f) the fiber period struc-
ture FPer(H(X, f)). The construction is similar to that done for a general object of
EMHS, but can be done here more geometrically. One chooses a good compactifica-
tion (diagram (1.9)) and consider the real blowing up $ : X̃ → X of the components
of D = X rX. This is a manifold with corners. One defines the open subset X̃mod,
consisting of points in the neighbourhood of which e−f has moderate growth, and the
corresponding inclusions α, β.

There is a similar sheaf of functions A mod
X̃

which satisfies

R$∗A
mod
X̃

= OX(∗D),

and a moderate de Rham complex

DRmod(Ef ) = (A mod
X̃

⊗$−1Ω
•

X
,d + df),

which has the big advantage to be (quasi-isomorphic to) its H0, which is equal to
β!α∗CX .

Then

Hj
dR(X, f) ' Hj(X, (Ω

•

X
(∗D),d + df)) ' Hj(X̃,DRmod(Ef )) ' Hj

c(X̃mod,C).

Furthermore, the above isomorphism, denoted per comes from a unique sheaf-
theoretical isomorphism p̃er extending the identity on X.

Proposition 3.3. Setting Hj
B(X, f) = Hj

c(X̃mod,Q), we have

FPer(Hj(X, f)) = (Hj
dR(X, f),Hj

B(X, f),per).

Dual realization. We replace the isomorphism per with a period pairing

Pj : HB
j (X, f)⊗Hj

dR(X, f) −→ C,

where HB
j (X, f) is the homology with rapid decay

HB
j (X, f) = Hj(X̃rd, ∂X̃rd,Q)⊗ e−f ;

If D = P tH, X̃rd = X̃modr$−1(H) and ∂X̃rd ⊂ $−1(P ). For a cycle γ ∈ HB
j (X, f)

and a (d + df)-closed j-form ω with class in Hj
dR(X, f), the pairing

Pj(γ, ω) :=

∫
γ

e−fω

is convergent and induces a pairing between homology and cohomology.
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3.4. Quadratic relations

On a compact complex manifold X of dimension n, one can consider
• the de Rham intersection pairing

Sj : Hj
dR(X)⊗H2n−j

dR (X) −→ H2n
dR(X)

(1/2πi)n
∫
X−−−−−−−−−−→ C,

• the Betti intersection pairing

Bj : Hj(X,Q)⊗H2n−j(X,Q) −→ H0(X,Q) −→ Q,

which are non degenerate. Compatibility between Poincaré duality and de Rham
duality is expressed by means of the period pairings

Pj : Hj(X,Q)⊗Hj
dR(X)

∫
−−→ C.

This leads to “quadratic relations” for the entries of the matrix of the period pairings:

±(2πi)n Bj = Pj ◦(S2n−j)−1 ◦ tP2n−j .

In particular, in the middle dimension

±(2πi)n Bn = Pn ◦(Sn)−1 ◦ tPn .

Proposition 3.4. The previous setup extends to the case of the GM exponential mixed
Hodge modules H(X, f).

In general, the computation of the intersection pairings B and S (coefficients of the
quadratic relations) may be difficult.

3.5. Bessel moments

Theorem F (F-S-Y). Assume k odd (there is a modified statement for k even).
There exist bases of M∨k,B and of Mk,dR such that the corresponding period matrix
P = (Pi,j) is the matrix of Bessel moments (i, j = 1, . . . , (k − 1)/2)

Pi,j = (−1)k−i 2k+1−2j(πi)i
∫ ∞
0

I0(t)iK0(t)k−i t2j
dt

t
.

Furthermore, the following quadratic relations hold:

(−2πi)k+1 B = P ◦S−1 ◦ tP,

with B defined as in the introduction, and S being lower anti-triangular with all
anti-diagonal elements equal to a rational number depending on k only.

One can regard this theorem either as showing that the matrix of Bessel moments
is “motivic”, or as giving a way to compute the period matrix of the pure motive Mk.
Its proof illustrates the fact that reducing to dimension one, despite the presence of
irregular singularities, simplifies much the identification of a basis of cycles and a basis
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of differential forms, making the expression of the periods integrals over an interval.
For example, the determinant of the period matrix is easily computable from this
formula.

Sketch of proof. Firstly, the period structure of Mk is identified to that of the cor-
responding exponential mixed Hodge structure Hk+1

mid (Gk+1
m , fk)Sk,χ (recall H•mid =

image[H•c → H•]), according to Proposition 3.2. A direct computation using the de-
scription of Section 3.3 is difficult. We first compute in dimension one, that will serve
as a model for finding the right cycles in higher dimension.

(1) We first define the period structure attached to H1
mid(Gm,Symk Kl2), with

de Rham component equal to H1
dR,mid(Gm,Symk Kl2). The Betti component,

in the dual setting, is the rapid decay homology with coefficients in the natural
Q-local system underlying (Symk Kl2)∇. The period pairing is simply given by
integration of the natural duality pairing existing on (Symk Kl2)∇.

(2) We already have determined a basis of H1
dR,mid(Gm,Symk Kl2) and com-

puted the de Rham intersection matrix Sk in this basis. We also determine a
basis of Hmid

1 (Gm,Symk Kl2), with Hmid
1 := image[Hrd

1 → Hmod
1 ], and we com-

pute the Betti intersection matrix in this basis. The coefficients of the cycles
are horizontal sections of Symk Kl2, which are expressed by means of moments
I0(t)iK0(t)k−i. The computation is elementary. We obtain the Bernoulli matrix
Bk.

(3) The identification of the corresponding period matrix Pk with the matrix
of Bessel moments Pk is just a matter of computations, and we deduce the
quadratic relations for Pk with coefficients Bk,Sk by the general theory.

(4) It remains to be checked that the period matrix Pk corresponds to a pe-
riod matrix P of Mk, equivalently of the (exponential) mixed Hodge structure
Hk+1

mid (Gk+1
m , fk)Sk,χ. Guided by the previous computation, and having already

lifted the basis of H1
dR,mid(Gm,Symk Kl2) to a basis of Hk+1

dR,mid(Gk+1
m , fk)Sk,χ

(see Lemma 2.4), we lift correspondingly the basis of Hmid
1 (Gm,Symk Kl2) to a

suitable basis of HB,mid
k+1 (Gk+1

m , fk)Sk,χ and obtain the same Betti intersection
matrix, and then the same period matrix as in dimension one.
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