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Abstract. We illustrate the Arinkin-Deligne-Katz algorithm for rigid irreducible
meromorphic bundles with connection on the projective line by giving motivicity
consequences similar to those given by Katz for rigid local systems [Kat96].
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1. Introduction

Let k : U ↪→ P1 be the inclusion of a proper Zariski open subset of the complex
projective line P1 and let (V,∇) be an irreducible algebraic bundle(1) of rank r with
connection on U . We say that (V,∇) is rigid if any other (V′,∇) on U having at each
puncture x ∈ P1∖U a formal structure isomorphic to that of (V,∇) satisfies (V′,∇) ≃
(V,∇). It is proved ([Kat96, BE04]) that, on P1, this property is equivalent to
cohomological rigidity, i.e., the rigidity index

rig(V,∇) := 2− h1dR(P1, k†+End(V,∇))

is equal to 2, where k†+ denotes the minimal extension in the sense of D-modules.

2020 Mathematics Subject Classification. 14F10, 32S40, 34M40.
Key words and phrases. Meromorphic bundle with connection, irreducible, rigid, quasi-unipotent,
exponential-geometric origin, Stokes filtration.
(1)In the following, bundle means algebraic vector bundle.



2 C. SABBAH

The Arinkin-Deligne-Katz algorithm [Ari10], which relies on the property that the
rigidity index is preserved by Fourier transformation ([BE04]) provides an inductive
way of checking whether a given irreducible (V,∇) is rigid by means of successive
specific transformations: (V,∇) is rigid if and only if the sequence of transforma-
tions in the algorithm reaches the trivial rank-one bundle with connection (OU ′ ,d) on
some open subset U ′ ⊂ P1. On the other hand, there is a one-to-one correspondence
between irreducible bundles with connection (V,∇) on some Zariski open subset of P1

and irreducible holonomic D-modules M on P1 by the inverse functors “middle exten-
sion” and “restriction to a suitable Zariski open set”, and the algorithm works with
the latter objects.

For N ∈ N∗, we say that a bundle with connection (V,∇) (or its middle exten-
sion M to P1) is N -quasi-unipotent if the eigenvalues of the formal monodromy at
each x ∈ P1 ∖ U belong to µN (N -th roots of the unity).

The results of this note concern quasi-unipotent rigid irreducible bundles with
connection on some proper Zariski open subset U ⊊ P1. They consist of applications
of the Arinkin-Deligne-Katz algorithm. A first application has already been given
in [Sab18], where it is shown that any rigid irreducible (V,∇) on U (without the
condition of quasi-unipotency) underlies an irregular mixed Hodge module structure
which is pure (of weight zero, say).

The motivation for this question came from various recent talks by Michael
Groechenig, Aaron Landesman and Daniel Litt on their respective works [EG18]
and [LL22]. Of course, the technique used here on P1 does not extend to higher
dimensions, but it opens the way to questions in higher dimensions in the setting of
irregular singularities. In another direction, the finiteness result of Haoyu Hu and
Jean-Baptiste Teyssier [HT22] looks promising.

Rank one. Any rank-one bundle with connection (V,∇) on U is isomorphic to one of
the form (OU ,∇reg + dφ), where ∇reg is a connection having regular singularities on
P1∖U and φ is a regular function on U . It is clearly irreducible and is cohomologically
rigid (because End(V,∇) = (OU ,d)). That it is rigid is seen as follows (a special
case of the criterion mentioned above): if (V′′,∇) := (V,∇)∨ ⊗ (V′,∇) is a rank-one
local system which has regular singularity at each x ∈ P1 ∖ U and has trivial local
monodromy there, it extends to a trivial bundle with connection on P1.

The bundle with connection (V,∇) is quasi-unipotent if and only if (OU ,∇reg)

is so, and this amounts to the property that a suitable tensor power (OU ,∇reg)⊗N is
isomorphic to (OU ,d).

Finiteness
Definition 1.1 (Minimally ramified polar part). Let p be an integer ⩾ 1 and let φ ∈
C((t1/p))/C[[t1/p]] be a nonzero ramified polar part of ramification order p. We say
that φ is minimally ramified if it is not the pullback of a ramified polar part in
C((t1/p′))/C[[t1/p′ ]] with p′ < p.

If φ is a minimally ramified polar part, it yields a p-dimensional C((t))-vector space
with connection, that we denote by El(φ), obtained as the pushforward by t1/p 7→ t
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of (C((t1/p)),d + dφ). By the Levelt-Turrittin theorem, any finite-dimensional
C((t))-vector space with connection can be written in a unique way as the direct sum
of terms El(φ) ⊗ Rφ, where φ runs in a finite set of minimally ramified polar parts
and Rφ is a finite-dimensional C((t))-vector space with regular singular connection
(see [BE04], see also [Sab08]). The minimally ramified polar parts entering the
Levelt-Turrittin decomposition are called the exponential factors (also called its
irregular values) of the C((t))-vector space with connection. Given a finite set Φ

of (possibly non minimally) ramified polar parts, we say with some abuse that the
exponential factors of (V,∇) belong to Φ if any suitably further ramified exponential
factor of (V,∇) belongs to Φ.

Property A (Finiteness). Given integers r,N ⩾ 1 and a finite set Φ of ramified polar
parts, there exists only a finite number of quasi-unipotent rigid irreducible bundles
with connection (V,∇) on U of rank r such that

• the order of quasi-unipotency is at most N ,
• At each x ∈ P1∖U , the exponential factors of (the formalization of) (V,∇) at x

belong to Φ.

Exponential-geometric origin. Let Z be a smooth complex quasi-projective variety.
We say that an algebraic vector bundle with an integrable connection (V,∇) on Z is
of exponential-geometric origin if there exist a Zariski dense open subset j : U ↪→ Z,
a morphism f : Y → U from a smooth quasi-projective variety and a regular func-
tion φ on Y such that j∗(V,∇), regarded as an holonomic DU -module, is a submodule
of Hkf+(O

r
Y ,d + dφ) for some r ⩾ 1 and some k ∈ Z. (This is an adaptation of the

definition of “geometric origin” in [EK21], see also [LL22]).
Roughly speaking, horizontal sections (or solutions) of such a (V,∇) on Uan can

be given an integral expression, with the integrand being of the form eφ · ω for some
algebraic differential form ω (see [HR08]).

Property B. Any quasi-unipotent rigid irreducible (V,∇) on U has exponential-
geometric origin.

Integral structure. To any bundle with connection (V,∇) on U is associated a Stokes-
filtered local system (L,L•) on the oriented real blow-up space P̃1 of P1 at the punc-
tures P1 ∖ U (see [Mal91, Sab13]). The local system L and the terms L• of the
Stokes filtration are sheaves of C-vector spaces. We say that the C-Stokes-filtered
local system has an integral structure if it comes by extension of scalars from Q[ζ]
to C (some ζ ∈ µN and some N ⩾ 1) from a Q[ζ]-Stokes-filtered local system with a
Z[ζ]-structure in the sense of Definition 4.5.

Property C (Integral structure). The Stokes-filtered local system associated to any
quasi-unipotent rigid irreducible bundle with connection (V,∇) on U ⊊ P1 has an
integral structure.

Remark 1.2. One can define the notions of irreducibility, rigidity and quasi-unipotency
for a Stokes-filtered local system. Due to the Riemann-Hilbert correspondence of
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Deligne and Malgrange (see [Mal91]), they correspond to those of the associated
bundle with connection. The previous proposition can be stated as the property
that a quasi-unipotent rigid irreducible Stokes-filtered local system has an integral
structure.

Example 1.3. A (possibly confluent) non resonant hypergeometric differential equation
is irreducible and rigid, and it is quasi-unipotent if its local exponents belong to 1

NZ
for some N ∈ N∗. In [DM89] and [Hie22], the authors compute the Stokes matrices
of confluent hypergeometric equations and the existence of an integral structure is
then clear from their formulas. On the other hand, in [BHHS22], as a particular
case of their results, the authors make explicit its exponential-geometric origin and
show that the associated enhanced ind-sheaf is defined on a cyclotomic extension of Q.

Example 1.4. In [Jak20], the author classifies rigid irreducible bundles with connection
(V,∇) on Gm with an irregular singularity at infinity of slope one at infinity and
differential Galois group G2. The family he obtains depends on various parameters
in C∗. Quasi-unipotency is equivalent to these parameters belonging to µN for some
N ⩾ 1, and Property C claims that, in such a case, the corresponding Stokes-filtered
local system has an integral structure. See also [Kat96, §8.4] and [DR10] for the
geometric origin in the tame case.

2. Finiteness

In this section we prove Property A. We consider the data (U,N,Φ) and quasi-
unipotent rigid irreducible bundles with connection of rank r with these data, i.e.,
defined on U , quasi-unipotent of order dividing N and with exponential factors con-
tained in Φ.

A first approach to Property A is by noticing that from the data (U,N,Φ), one
can cook up only a finite number of possible formal structures

⊕
[El(φ)⊗Rφ] at each

x ∈ P1∖U , with φ ∈ Φ, Rφ being regular and N -quasi-unipotent. For each such data
of formal structures at every x ∈ P1 ∖ U , there exists a smooth affine moduli space
of finite type over C such that the corresponding irreducible rigid (V,∇) are isolated
points of this space (see [BE04, Proof of Th. 4.10]). Finiteness follows.

We will now prove finiteness as a consequence of the Arinkin-Deligne-Katz algo-
rithm. This methods, being more constructive, is more quantitative, although it
uses the equivalence between rigidity and cohomological rigidity shown in [BE04,
Th. 4.10]. The proof is by induction on the rank r of V, and we denote by (A)r the
statement that Property A holds for bundles having any set of data (U,N,Φ) and of
rank r.

Proof of (A)1. We choose an affine coordinate t on P1 such that ∞ ∈ U . For each
x ∈ P1 ∖ U , we regard φx ∈ Φ as a polynomial in 1/(t − x) with no constant term.
Any choice of a family (φx)x∈P1∖U of elements of Φ (there are finitely many such
choices) yields a unique regular function φ on U (namely, φ(t) =

∑
x∈P1∖U φx(t−x)).

Given a bundle with connection (V,∇) of rank one on U with data N,Φ, there exists
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such a family (φx)x∈P1∖U such that (V,∇−dφ) has regular singularities at each point
x ∈ P1 ∖ U . Since the local monodromies at each such x belong to µN , there is only
a finite number of such bundles with connection.

We now assume r ⩾ 2 and (A)<r, and we will prove (A)r. We are given (U,Φ, N)

and we will prove (A)r for these data, a statement that we denote by (A)r(U,Φ, N).
• We can (and will) assume that #(P1 ∖ U) ⩾ 3.

Indeed, if #(P1 ∖ U) < 3, let U1 ⊂ U with #(P1 ∖ U1) ⩾ 3. By considering U ∖ U1

as apparent singularities for (V,∇), we have the implication

(A)r(U1,Φ, N) =⇒ (A)r(U,Φ, N).

Given (V,∇) rigid irreducible of rank r on U , there exists at most one x ∈ P1 ∖U
where (V,∇)x̂ is special with respect to the Katz algorithm (Case II of [Ari10, §4.1]).
By possibly adding an apparent singularity, we can thus assume that

• there exists x ∈ P1∖U which is either a special point or an apparent singularity.
There exists a finite number of automorphisms of P1 sending 3 points of P1 ∖ U to
0, 1,∞.

• We can thus (and will) assume that 0, 1,∞ /∈ U and ∞ is either the special
point or, if such a point does not exist, an apparent singularity.

It is then enough to show the finiteness
(a) of the set of quasi-unipotent rigid irreducible (V,∇) of rank r with data

(U,Φ, N) and having no special point and an apparent singularity at ∞,
(b) and of the set of quasi-unipotent rigid irreducible (V,∇) of rank r having data

(U,Φ, N) such that ∞ is special.

Proof of (a). Let us recall the A-D-K algorithm in this case. One shows that there ex-
ists a rank-one algebraic bundle with connection (L,∇) on U , completely determined
by (V,∇),

• satisfying (A)1(U,−Φ, N),
• and having monodromy χ at ∞, for some χ ∈ µN ∖ {1}, so that V ⊗ L has a

regular singularity with monodromy χ Id at ∞,
such that MCχ(V⊗ L,∇) has rank < r, where MCχ denotes the middle convolution
functor by the Kummer sheaf Kχ. We note that V ⊗ L has data (U,Φ′, N) with
Φ′ = Φ− Φ.

The formulas given in [DS12, Prop. 1.3.11] show the following:
• MCχ(V⊗L,∇) has singularities contained in P1∖U , the singularity at ∞ being

regular with monodromy χ−1 Id,
• at each x ∈ P1 ∖ (U ∪ {∞}), the set of irregular values of MCχ(V⊗L,∇) at x is

equal to that of V⊗ L at x,
• the eigenvalues of the formal monodromies at any x ∈ P1 ∖ U belong to µN .

It follows that MCχ(V⊗L,∇) has data (U,Φ′, N). Since V⊗L is non constant because
it is irreducible and has rank ⩾ 2, it can be recovered as MCχ−1

(
MCχ(V⊗ L,∇)

)
,

according to [DS13, Prop. 1.1.9]. We conclude by induction on r that (V,∇) belongs
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to the set obtained from a finite set of bundles with connections on U (satisfying
(A)<r(U,Φ

′, N)) by applying MCχ−1 , for some χ ∈ µN and by tensoring by a rank-one
bundle with connection belonging to the finite set of those satisfying (A)1(U,Φ, N).
This shows finiteness in Case (a).

Proof of (b). For (V,∇) having a special point at ∞, the A-D-K algorithm starts
by exhibiting a summand El(φ) ⊗ Rφ of (V,∇)∞̂ which is ramified of order ⩾ 2.
It could occur that, writing φ as a minimal ramified polar part

∑q
j⩾1 ajz

j/p, the
leading term aqz

q/p has exponent q/p (the slope of φ) which is an integer. If such
is the case, we set Φ1 = Φ ∪ {φ1}, where φ1 is the leading part of φ with integral
exponents, or is zero if the slope of φ is not an integer. Case II in [Ari10] shows that
there exists a rank-one algebraic bundle with connection (L,∇) on U , completely
determined by (V,∇), in particular satisfying (A)1(U,−Φ1, N), such that the Fourier
transform F(j†+(V⊗L,∇)) has rank < r and data (U ′, N ′,Φ′). The formal stationary
phase formula of [DS12, (1.3.5)] (after [Fan09, Sab08, GS13]) gives the precise way
(U ′,Φ′, N ′) is obtained from the data of (V⊗L,∇) (and thus depends only of these),
hence from (U,Φ, N). One notices that U ′ and Φ′ both depend on (U,Φ) (but not
only on U resp. Φ separately). We conclude by induction on r that (V,∇) belongs
to the set obtained from a finite set of bundles with connections on U ′ (satisfying
(A)<r(U

′,Φ′, N ′)) by applying inverse Fourier transform and twist by a finite set of
rank-one algebraic bundles with connection, ending thereby the proof for Case (b).

3. Exponential-geometric origin

In this section, we prove Property B. Let M be the the minimal extension of (V,∇)

on P1. It is a quasi-unipotent rigid holonomic DP1-module. Let us recall the basic
result that we will use for the proofs of Theorems B and C. As the proof in [Sab18]
is written in a sketchy way, we give a detailed proof in the appendix.

Proposition 3.1 ([Sab18, Prop. 2.69]). Let M be a quasi-unipotent rigid holonomic
DP1-module. There exist

(a) a smooth projective complex variety X and a strict normal crossing divisor
D ⊂ X, together with a subdivisor D1 ⊂ D,

(b) a projective morphism f : X → P1,
(c) a rational function g on X with poles contained in D and whose pole and zero

divisors do not intersect,
(d) a locally free rank-one OX(∗D)-module N = Nreg with a regular singular mero-

morphic connection ∇,

such that N is of torsion (i.e., N⊗N ≃ (OX(∗D),d) for some N ⩾ 1) and M is the
image of the natural morphism

(3.1 ∗) H0f+(N,∇+ dg)(!D1) −→ H0f+(N,∇+ dg).
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In loc. cit., M is assumed to be formally unitary and its is shown that N can be
chosen of the same kind. Applying the same proof, one finds that if M is quasi-
unipotent, then N can be chosen to be of torsion (see the appendix). It is therefore
enough to show that the right-hand side of (3.1 ∗) is of exponential-geometric origin.
Setting Y = X∖D, we can regard (N,∇) as a rank-one vector bundle with connection
on Y and, in the right-hand side of (3.1 ∗), we regard f as a morphism f : Y → P1.

Lemma 3.2. There exists a finite morphism ρ : X ′ → X such that D′ = ρ−1(D)

is a divisor with normal crossings, ρ : Y ′ := (X ′ ∖ D′) → Y is finite étale, and
ρ+(N,∇) ≃ (OY ′ ,d).

Proof. Let N∇ be the rank-one local system of horizontal sections of Nan on Y an.
Since N∇ is of torsion, the monodromies of N∇ around the various irreducible com-
ponents of D are roots of the unity, and there exists, after [Kaw81, Th. 17], a finite
morphism X ′′ → X with X ′′ smooth projective and the pullback D′′ of D being
a normal crossing divisor such that the pullback of N∇ extends as a rank-one local
system on X ′′, which is thus also of torsion. This local system becomes trivial after
pullback by some finite étale covering X ′ of X ′′, and the composition X ′ → X ′′ → X

is the desired ρ.

We conclude that, on Y , (N,∇) is a direct summand of ρ+(OY ′ ,d), since ρ : Y ′ → Y

is finite étale. Furthermore, we have H0(f ◦ρ)+ = H0f+ ◦ρ+ and thus the holonomic
DP1-module H0f+(N,∇+ dg) is a direct summand of H0(f ◦ ρ)+(OY ′ ,d + d(g ◦ ρ)).
Restricting to the open subset U of P1 where these holonomic DP1-modules are smooth
shows that (V,∇) is of exponential-geometric origin.

4. Integral structure

In this section we prove Property C.

4.a. Stokes-filtered local systems with a Z[µN ]-structure. Let us set k = Q[ζ]
for some complex N -th root ζ of 1 and some N ⩾ 1, and let o = Z[ζ] denote its ring
of integers.

Let L be a local system of finite-dimensional k-vector spaces on Uan. It extends
in a unique way as a local system of finite-dimensional k-vector spaces on the real
blow-up space P̃1 of P1 at each x ∈ P1∖U . We still denote by L this extended k-local
system. For each x ∈ P1 ∖U , let S1

x denote the fiber at x of the real blowing-up map
ϖ : P̃1 → P1, and let L(x) be the restriction of L to S1

x.
In order to define the notion of a Stokes filtration on each L(x), we first recall the

notion of order between ramified polar parts in a specific direction.
Let Φ ⊂ C((t1/p))/C[[t1/p]] be a finite set of ramified polar parts and let

ρ : S1
x,p −→ S1

x, z 7−→ t = zp

denote the cyclic covering of order p. We consider Φ as a subset of C((z))/C[[z]] and
we denote by θ mod 2π a point on S1

x,p. For φ,ψ ∈ Φ we consider the partial order
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in the direction θ, where we denote by nb(θ) a small open sector (θ− ε, θ+ ε)× (0, δ)

considered as an open subset of the punctured disc with coordinate z:

ψ ⩽θ φ ⇐⇒ ψ = φ or Re(ψ − φ) < 0 on nb(θ),

and ψ <θ φ if ψ ⩽θ φ and ψ ̸= φ. The subsets {ψ ⩽ φ} = {θ ∈ S1
x,p | ψ ⩽θ φ}

and ψ < φ are a union of open intervals in S1
x,p and we denote by βψ⩽φ the functor

composed of the restriction to {ψ ⩽ φ} and extension by zero to S1
x,p, also denoted

Γ{ψ⩽φ}; and βψ<φ has a similar meaning.
A graded k-Stokes-filtered local system index by Φ is a Φ-graded k-local system

Lp =
⊕

φ∈Φ Lp,φ on S1
x,p equipped with the family of nested subsheaves(2)

Lp,⩽φ =
⊕
ψ∈Φ

βψ⩽φLp,ψ, Lp,<φ =
⊕
ψ∈Φ

βp,ψ<φLψ.

Clearly, the following properties are satisfied:
• Lp,⩽φ/Lp,<φ = Lφ,
• for each θ ∈ S1

x,p, the family (Lp,⩽φ,θ)φ∈Φ is an exhaustive increasing filtration(3)

with respect to the partial order ⩽θ,
• for each θ, we have

(4.1) Lp,<φ,θ =
∑
ψ<θφ

Lp,⩽ψ,θ (sum taken in Lp,θ).

It is harmless to enlarge Φ by adding some ramified polar part η and set Lp,η = 0.
In such a way, we can (and will implicitly) assume that Φ is invariant by the auto-
morphisms induced by z 7→ νz with νp = 1.

Definition 4.2. A k-Stokes filtration L(x)• indexed by Φ of the local system L(x) on S1
x

consists of a family (L(x)⩽φ)φ∈Φ of subsheaves of k-vector spaces of the local system
ρ−1L(x) on S1

x,p such that
(1) locally on S1

x,p, the pair (L(x),L(x)•) is isomorphic to that of a graded
k-Stokes-filtered local system of finite-dimensional vector spaces,

(2) for any automorphism σ : S1
x,p

∼−→ S1
x,p induced by z 7→ νz with νp = 1, and

for any φ ∈ Φ, denoting by aσ(x) the canonical identification σ−1ρ−1L(x) ≃ ρ−1L(x),
the two subsheaves aσ(x)(σ−1L(x)⩽φ) and L(x)⩽σ∗φ of ρ−1L(x) are equal.

Remark 4.3. From 4.2(1) and the properties of a graded k-Stokes-filtered local system,
we deduce that, for each θ ∈ S1

x,p, the germs L⩽φ,θ (φ ∈ Φ) are ordered by inclusion
according to the partial order ⩽θ of their indices.

Furthermore, for each φ ∈ Φ, there exists a subsheaf L<φ well-defined by a formula
analogous to (4.1) and grφ L := L⩽φ/L<φ is a locally constant sheaf on S1

x,p. As a
consequence, (L(x),L(x)•) is locally isomorphic to the graded k-Stokes-filtered local
system (grL(x), grL(x)•).

Lastly, Property 4.2(2) also applies to the subsheaves L<φ.

(2)We implicitly add the element −∞ to Φ, which satisfies −∞ <θ φ for any φ ∈ Φ and any θ, with
Lp,−∞ = 0. In such a way, the set {ψ ∈ Φ | ψ < φ} is nonempty for any φ, and Lp,<φ is possibly
zero on some open set.
(3)By exhaustive we mean that Lp,θ =

⋃
φ∈Φ Lp,⩽φ,θ for any θ.
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Given a ramification ρ′ : z′ 7→ z = z′q, the pullback of a k-Stokes-filtered local
system (L(x),L(x)•) indexed by Φ is a k-Stokes-filtered local system indexed by ρ′∗Φ
and, conversely, any k-Stokes-filtered local system indexed by ρ′∗Φ which is invariant
by the automorphisms induced by z′ 7→ ν′z′ with ν′q = 1 comes by pullback of a
k-Stokes-filtered local system indexed by Φ.

Given two k-Stokes-filtered local systems, we can assume that they are indexed
by the same Φ. A morphism of k-Stokes-filtered local systems (L(x),L(x)•) →
(L′(x),L′(x)•) is then a morphism between the corresponding k-local systems whose
pullback by ρ is compatible with the Stokes filtration, and in particular induces a
morphism of the corresponding graded k-local systems.

These notions can be globalized to U : a k-Stokes-filtered local system on U indexed
by Φ consists of a k-local system on Uan together with a Stokes filtration indexed
by Φ on each L(x) for x ∈ P1 ∖ U . A morphism is defined correspondingly.

Theorem 4.4. The category of k-Stokes-filtered local system on U is abelian.

Proof. Since the category of k-local system on Uan is abelian, it is enough to consider
the category of k-Stokes-filtered local system on S1

x (x ∈ P1∖U). This is e.g. [Sab13,
Th. 3.1].

Definition 4.5. Let (L, (L(x)•)x∈P1∖U ) be a k-Stokes-filtered local system on U with
exponential factors contained in a finite set Φ of ramified polar parts. An o = Z[ζ]-
structure on (L, (L(x)•)x∈P1∖U ) consists of

(1) a local system Lo of o-modules of finite type on Uan such that L = k ⊗o Lo,
(2) for each x ∈ P1∖U , each φ ∈ Φ and each σ as in Definition 4.2(2), a morphism

λφ(x) : Lo(x)⩽φ → ρ−1Lo(x), where each Lo(x)⩽φ is a sheaf of o-modules of finite
type, and an isomorphism aφ,σ(x) : σ

−1Lo(x)⩽φ
∼−→ Lo(x)⩽σ∗φ such that

(a) for all φ, σ, σ′ we have, with aσ(x) as in Definition 4.2(2),

λσ∗φ(x) ◦ aφ,σ(x) = aσ(x) ◦ σ−1λφ(x),

aσ∗φ,σ′(x) ◦ σ′−1aφ,σ(x) = a(σσ′)∗φ(x);

(b) Id⊗λφ(x) : k ⊗o Lo(x)⩽φ → k ⊗o Lo|S1
x,p

= L|S1
x,p

induces an isomor-
phism onto L(x)⩽φ.

A morphism between k-Stokes-filtered local systems with an o-structure is a mor-
phism between the corresponding o-sheaves compatible with the morphisms λφ(x)
and aφ,σ(x) at each x ∈ P1 ∖ U .

Remark 4.6. In Definition 4.5, we do not impose that the sheaves grφ Lo(x) are local
systems of o-modules on S1

x,p. This is why we do not use the terminology “o-Stokes-
filtered local system”.

Corollary 4.7. The category of k-Stokes-filtered local systems with an o-structure is
abelian.
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Proof. The category consisting of objects (Lo, (Lo(x)•)x∈P1∖U ) satisfying 4.5(1)
and (2a) is an abelian category. The condition that it yields via (2b) a k-Stokes-
filtered local system by tensoring the objects with k does not break abelianity,
according to Theorem 4.4 and o-flatness of k.

Remark 4.8 (Extension of scalars). One can define similarly the notion of a C-Stokes-
filtered local system with a k-structure and obtain the corresponding abelian category.
We notice that the latter category is equivalent to the abelian category obtained from
the category of k-Stokes-filtered local systems by the extension of scalars from k to C.
Indeed, it is a matter of proving that, for a sheaf Fk of finite-dimensional k-vector
spaces on a locally path connected topological space Z, Fk is locally constant if and
only if FC = C⊗k Fk is so (this is mostly obvious).

As a consequence, the category of C-Stokes-filtered local system with an o-structure
is equivalent to the abelian category obtained from the category of k-Stokes-filtered
local systems with an o-structure by the extension of scalars from k to C.

Remark 4.9 (o-structures and Stokes matrices). The Stokes matrices (or Stokes multi-
pliers) of a C-Stokes-filtered local system with a k-structure, equivalently a k-Stokes-
filtered local system, are conjugate to matrices having entries in k. On the other
hand, in presence of an o-structure, we cannot assert in general the existence of
Stokes matrices with entries in o.

However, in the case of confluent hypergeometric systems considered in Exam-
ple 1.3, the computation of the Stokes matrices after a suitable ramification done in
[Hie22] provides Stokes matrices with entries in o if the local formal monodromies
belong to o.

On the other hand, given a locally constant sheaf of free o-modules on a punc-
tured P1 (without any assumption of irreducibility or rigidity, but one can add them),
the computation of the Stokes matrices of the Fourier transform of its associated
perverse sheaf on A1 done in [DHMS20] also provides Stokes matrices with entries
in o. Such an example, with o = Z, can be obtained as follows. Let f : Y → A1

be a regular function on a smooth affine complex variety Y of dimension n. Assume
that f is cohomologically tame (in the sense of [Sab06]), so that in particular f has
only isolated critical points in Y . Then the Stokes matrices at t = ∞ of the free
C[t, t−1]-module with connection

(V,∇) =

(
Ωn(Y )[t, t−1]

(dY + tdf)Ωn−1(Y )[t, t−1]
,dt + fdt

)
can be defined over Z. This result goes back to [Pha85]. Note that (V,∇), which is
of exponential-geometric origin by definition (with φ = tf on Y × Gm), is known to
be semi-simple, but is possibly not rigid.

4.b. Proof of Property C. Let us consider the data as in Proposition 3.1. Up to
blowing up X, we can achieve the following properties. There exist a Zariski dense
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open subset U of P1 and a diagram

Y = X ∖D = XU ∖HU ⊂ XU
� � //

fU
��

□

X

f
��

U �
�

// P1

such that
(i) the strict normal crossing divisorD decomposes asH∪P with P = f−1(P1∖U),
(ii) the pole divisor Pg of g decomposes correspondingly as Pg = H ′ ∪P ′ (and the

zero divisor of g does not cut Pg),
(iii) the pair (Xan

U , Han
U ) is smooth over Uan, i.e., fan is smooth on Xan

U and its
restriction to each stratum of the natural stratification of Han

U is smooth.

Lemma 4.10. Assume that the data (X, f,D, g) of Proposition 3.1 satisfy the proper-
ties (i)–(iii) above, and let N be a torsion locally free OX(∗D)-module with a regu-
lar singular meromorphic connection ∇. Let D1 be a sub-divisor of D. Then each
term of (3.1 ∗) is a vector bundle with connection on U whose associated C-Stokes-
filtered local system admits a Z[ζ]-structure for which the morphism associated to that
of (3.1 ∗) is a morphism of Z[ζ]-structures.

The idea of the proof is that the morphism between the C-Stokes-filtered local sys-
tems associated to (3.1 ∗) can be computed in a purely topological way, by considering
suitable real oriented blow-up spaces, from the local system N∇. The latter being
defined over o = Z[ζ], it follows that the corresponding Stokes-filtered local systems
and the morphism between them have an o-structure.

Proof, part one: the local systems on Uan. We start with the local systems on Uan. Let
us decompose D1 = H1 ∪ P1. We further decompose H1 as H ′

1 ∪ H ′′
1 such that the

components of H ′
1 are the components of H1 along which g has a pole.

Denoting by p
DR the analytic de Rham functor (shifted by the ambient dimension),

it suffices to show that p
DR (3.1 ∗) is a morphism of (shifted) local systems on Uan

defined over o. Due to the commutation of p
DR and direct images, this morphism

reads over U :
p
R0fU∗

p
DR

[
(NU ,∇+ dg)(!H1,U )

]
−→ p

R0fU∗
p
DR(NU ,∇+ dg),

and, setting Eg = (OX(∗Pg),d + dg), it also reads

(4.11) p
R0fU∗

p
DR

[
(NU ⊗ E

g
U )(!H

′′
1,U )

]
≃ p
R0fU∗

p
DR

[
NU (!H

′′
1,U )⊗ E

g
U

]
−→ p

R0f∗
p
DR(NU ⊗ E

g
U ).

Since the zero and the pole divisor of g do not intersect, the characteristic varieties
of (NU ⊗ E

g
U ) and of (NU ⊗ E

g
U )(!H1,U ) ≃ (NU ⊗ E

g
U )(!H

′′
1,U ) are union of conor-

mal bundles to the strata of the natural stratification of (XU , HU ). It follows from
Assumption (iii) that the cohomology sheaves of RfU∗

p
DR

[
(NU ,∇+dg)(!H1,U )

]
and

RfU∗
p
DR(NU ,∇ + dg) are locally constant of finite rank. As a consequence, these

cohomology sheaves are, up to a shift, equal to the perverse cohomology sheaves of
these complexes.
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We will compute these perverse sheaves on Uan and the morphism between them
by means of the real blowing up ϖU : X̃U → XU of the irreducible components of HU

and of f̃U = fU ◦ϖU : X̃U → Uan. Let X̃mod
U (g) denote the dense open subset of X̃U

consisting of points in the neighborhood of which the function e−g has moderate
growth. Let α : Y an ↪→ X̃mod

U (g) and β : X̃mod
U (g) ↪→ X̃U denote the open inclusions,

let f̃mod
U : Xmod

U (g) → Uan denote the restriction of f̃U , and let us set n = dimX. One
can define the moderate de Rham complex p

DR
mod

(NU ⊗ E
g
U ) on X̃U and a simple

computation shows that it is isomorphic to β!α∗N
∇
U [n], with α∗N

∇
U being a locally

constant sheaf on X̃mod
U . Furthermore, we have a natural isomorphism

Rϖ∗
p
DR

mod
(NU ⊗ E

g
U )

∼−→ p
DR(NU ,∇+ dg).

Therefore,

RfU∗
p
DR(NU ,∇+ dg) ≃ RfU∗Rϖ∗

p
DR

mod
(NU ⊗ E

g
U )

= RfU !Rϖ!
p
DR

mod
(NU ⊗ E

g
U )

= Rf̃U !
p
DR

mod
(NU ⊗ E

g
U )

≃ Rf̃U !Rβ!(α∗N
∇
U ) ≃ Rf̃mod

U ! (α∗N
∇
U ).

It follows that

• the locally constant sheaf α∗N
∇
U has the o-structure α∗N

∇
o,U ,

• the sheaf p
R0f∗

p
DR(NU ⊗ E

g
U )[−1] is isomorphic to the sheaf

Rn−1(f̃mod
U )!(α∗N

∇
U ) = C⊗o R

n−1(f̃mod
U )!(α∗N

∇
o,U ).

We claim that Rn−1(f̃mod
U )!(α∗N

∇
o,U ) is a locally constant sheaf of o-modules of finite

type. For that purpose, it is enough to show that f̃mod
U : X̃mod

U → Uan is a locally
trivial topological fibration. Recall that X̃U is a C∞ manifold with corners. It is
thus enough to show that, locally on Uan, any C∞ vector field on Uan can be lifted
to a C∞ vector field on X̃U tangent to the corners, and whose flow locally preserves
X̃mod
U . By using a C∞ partition of the unity, this is a local question on XU . By (iii),

we can assume that fU is the second projection (Cn−1, 0) × (C, 0) → (C, 0) and
HU = ({x1 · · ·xℓ = 0}, 0)×(C, 0). Furthermore, in this local chart, g can be expressed
as the product of a nowhere vanishing holomorphic function by a monomial x−m with
mi ⩾ 0 for i = 1, . . . , n− 1. In such a local setting, the description of X̃U and X̃mod

U

can be made explicit and the existence of such a lifting of a C∞ vector field on (C, 0)
is straightforward.

We compute similarly the left-hand side of (4.11). We denote by X̃mod
U,1 the com-

plement of ϖ−1
U (H ′′

1,U ) in X̃mod
U . We then have the corresponding open inclusions

α1 : Y an ↪−→ X̃mod
U,1 and β1 : X̃mod

U,1 ↪−→ X̃U ,

and a computation as above shows that the sheaf p
R0f∗

p
DR

[
NU (!H

′′
1,U )⊗ E

g
U

]
[−1] is

isomorphic to the sheaf

Rn−1(f̃mod
U,1 )!(α1,∗N

∇
U ) = C⊗o R

n−1(f̃mod
U,1 )!(α1,∗N

∇
o,U ).
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We argue as above to prove that Rn−1(f̃mod
U,1 )!(α1,∗N

∇
o,U ) is a locally constant sheaf

of o-modules of finite type.
Letting γ : X̃mod

U,1 ↪→ X̃mod
U denote the open inclusion, we have a natural morphism

Rn−1(f̃mod
U,1 )!(α1,∗N

∇
o,U ) = Rn−1(f̃mod

U )!(γ!α1,∗N
∇
o,U )

−→ Rn−1(f̃mod
U )!(γ∗α1,∗N

∇
o,U ) = Rn−1(f̃mod

U )!(α∗N
∇
o,U ),

showing that the morphism (4.11) is also defined over o.

Proof, part 2: the local Stokes structures. Since both terms of (3.1 ∗) are holonomic
DP1-modules, their exponential factors at the points of P1 ∖ U are contained in a
finite set of ramified polar parts Φ, of some ramification order p. We will not need to
compute explicitly this set and we will only use its existence.

We fix x ∈ P1 ∖ U and restrict the setting over a small disc ∆ centered at x.
We restrict all the data of the lemma as analytic data over ∆. In particular, U is
replaced with the punctured disc ∆∗. Otherwise, we keep the same notation with this
new analytic meaning.

Since we are only interested in computing Stokes filtrations, we consider the lo-
calized modules associated to both terms of (3.1 ∗), that we regard as meromorphic
flat bundles (V1,∇) and (V,∇), i.e., free O∆(∗0)-modules of finite rank with a con-
nection, and the natural morphism (V1,∇) → (V,∇) between them. They have
associated C-Stokes-filtered local systems (L1,L1,•) and (L,L•) with exponential fac-
tors contained in Φ. The local systems are the restriction to ∆∗ of those computed in
part one of the proof. In particular, we already know that they have an o-structure,
that we aim at expanding to the whole Stokes structure. For that purpose, we will
give a geometric construction of the corresponding Stokes filtrations by means of the
maps analogous to α, β, α1, β1.

We consider the oriented real blow-ups X̃(P ) and X̃ = X̃(D) of X along the
components of P and D respectively, so that we have a composition

ϖ = ϖP ◦ ρ : X̃ −→ X̃(P ) −→ X

and we extend the map f as a continuous map

f̃ : X̃
ρ−−→ X̃(P ) −→ ∆̃,

where ∆̃ is the oriented real blow-up of ∆ at the origin, with boundary ∂∆̃ ≃ S1 and
open inclusion ι : ∆∗ = ∆̃ ∖ ∂∆̃ ↪→ ∆̃. We denote by X̃⩽0(g) the open subset of X̃
consisting of points in the neighborhood of which e−g has moderate growth, and we
keep the similar notation as in part one of the proof for the maps α : X∖D ↪→ X̃⩽0(g)

and β : X̃⩽0(g) ↪→ X̃.
As in part one, we decompose D1 as D′

1 ∪D′′
1 , so that the polar components of g

contained in D1 are those of D′
1. We consider the open subset

X̃1,⩽0(g) = X̃⩽0(g)∖ϖ−1(D′′
1 ) ⊂ X̃⩽0
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and we keep the similar notation for the maps α1, β1. Similarly, f̃1 resp. f̃ denote the
restriction of f̃ to X̃1,⩽0(g) resp. X̃⩽0(g). From [Moc14, Cor. 4.7.5 & Lem. 5.1.6] we
obtain:

Lemma 4.12. There exists a commutative diagram

Rn−1(f̃1)!(α1,∗N
∇)|∂∆̃

��

≃ L1,⩽0

��

Rn−1f̃!(α∗N
∇)|∂∆̃ ≃ L⩽0

where the vertical morphisms are the natural ones and, by means of the horizontal iso-
morphisms, the inclusion L⩽0 ⊂ L is the adjunction morphism Rn−1f̃!(α∗N

∇)|∂∆̃ →(
ι∗ι

−1Rn−1f̃!(α∗N
∇)

)
|∂∆̃, and similarly for L1.

Since N∇ is equipped with the o-structure N∇
o , all terms and morphisms in the

lemma acquire a natural o-structure compatible with that already obtained for L1,L

via the adjunction morphism.
In order to obtain, for any φ ∈ Φ ⊂ C((t1/p))/C[[t1/p]], the o-structure on L1,⩽φ

and L⩽φ, we consider the diagram

Xp

��

fp

��

X ′
p

//

��
□

X

f
��

∆p ρp
// ∆

where ρp is the cyclic ramification of order p and Xp is a resolution of singularities of
the pair (X ′

p, P ). We replace the rational function g on X with g + f∗pφ on Xp, the
divisor D with its pullback by Xp → X, and N with its pullback Np on Xp. Then
L1,⩽φ,L⩽φ are obtained by the same procedure as that of Lemma 4.12 with these new
data, so that the o-structure is obtained in the same way. In this case, the morphisms
λφ(x) of Definition 4.5(2) are the adjunction morphisms, and the compatibility of the
morphisms aφ,σ(x) with products σ′σ follows from the identification

σ′−1X̃p,⩽0(g + σ∗φ) = X̃p,⩽0(σ
′∗(g + σ∗φ)) = X̃p,⩽0(g + (σσ′)∗φ).

This concludes the proof of Property C.

4.c. Final remarks on the integral structure. There are other possible ap-
proaches to o-structures. They all mainly rely on the general Riemann-Hilbert cor-
respondence as developed by D’Agnolo and Kashiwara [DK16] and their subsequent
work. As indicated in [DK16, §2], the theory of loc. cit. can be applied to objects de-
fined on o. The point is then to check that the R-constructible enhanced ind-sheaves
associated to N ⊗ Eφ and N(!D1)⊗ Eφ and the morphism between them are defined
over o. The pushforward of these objects by the projective morphism f provides an
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o-structure on the enhanced ind-sheaves associated to both terms of (3.1 ∗) and the
morphism between them. This can be made a little more precise by considering the
categories of C-constructible enhanced ind-sheaves of [Ito20], or the characterization
of R-constructible enhanced ind-sheaves which come from holonomic D-modules given
in [Moc22].

One could also work within the setting of irregular constructible complexes of
[Kuw21]. Such objects can be defined over the ring o.

In all these theories, the main point is the compatibility of the irregular Riemann-
Hilbert correspondence with projective pushforward. This is probably one of the
most delicate points in [DK16], that replaces [Moc14, Cor. 4.7.5 & Lem. 5.1.6] used
in Lemma 4.12.

Appendix: detailed proof of Proposition 3.1

Notation. Let H be a hypersurface in a smooth variety X. We denote by Γ[∗H] the
localization functor acting on the category of holonomic DX -modules: for such a
DX -module M , we have Γ[∗H]M = OX(∗H) ⊗OX

M as an OX -module. Denoting
by D the duality functor on holonomic DX -modules, we define the dual localization
functor Γ[!H] as DΓ[∗H]D. Both functors vanish when applied to holonomic DX -
modules supported on H (this is clear for the localization functor, and the property
for the dual one follows from the fact that duality preserves the support).

Let g be a meromorphic (or rational) function on X. If M is considered as an OX -
module with an integrable connection ∇, it will be convenient to denote the same OX -
module with the twisted connection ∇+dg as Eg ⊗M . Note that this twist contains
the localization functor along the pole divisor P of g, so that Eg⊗M = Γ[∗P ](E

g⊗M).
We will make use of the relations between various functors described in [Sab18,

§1.77].

Let M be rigid irreducible on P1 and let us assume that there exist X,D,D1,
f : X → P1, g and (N,∇) as in 3.1(a)–(d) so that M is the image of (3.1 ∗). Denoting
by P the pole divisor of g, we can assume that D1 has no component contained in P :
indeed, denoting by D0 the union of those components not contained in P , we have

Eg ⊗ Γ[!D1]N = Eg ⊗ Γ[!D0]N and Eg ⊗ Γ[∗D1]N = Eg ⊗ Γ[∗D0]N.

We will prove the following properties.

(i) If L is a rank-one meromorphic connection on P1 with poles along Σ ⊂ P1, then
there exist data 3.1(a)–(d) such that the image M′ of

Γ[!Σ](M⊗ L) −→ Γ[∗Σ](M⊗ L)

is the image of (3.1 ∗) with these data.
Moreover, if N∇ is unitary (resp. of torsion) and L is locally formally unitary

(resp. formally quasi-unipotent), then so is M′ and (N′,∇) can be chosen unitary
(resp. of torsion).
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(ii) Let A1t be the chart with coordinate t corresponding to the choice 0, 1,∞ ∈ P1.
By (i), we can assume that M = Γ[∗∞]M. Let M′ be the Laplace transform of M with
respect to this choice. Then there exist data 3.1(a)–(d) such that M′ is the image of
(3.1 ∗) with these data.

Moreover, if N∇ is unitary (resp. of torsion) and L is locally formally unitary
(resp. formally quasi-unipotent), then so is M′ and (N′,∇) can be chosen unitary
(resp. of torsion).

These two properties allow us to conclude the proof of the proposition, since any
rigid holonomic DP1-module can be obtained by applying a sequence of (i) and (ii)
to (OP1 ,d), according to the Arinkin-Deligne algorithm, and moreover, if M is locally
formally unitary (resp. quasi-unipotent), then the rank-one connections Lreg chosen
at each step are locally unitary (resp. quasi-unipotent).

Let us show (i). There exists a meromorphic function ψ on P1 and a rank-one
meromorphic connection Lreg with regular singularities, such that L = Eψ ⊗ Lreg.
We can write L = (OP1(∗Σ),d + dψ + ω), where Σ is the pole divisor of L and ω is
a one-form with at most simple poles at Σ. Moreover, L is locally formally unitary
(resp. quasi-unipotent) if and only if Lreg is unitary (resp. quasi-unipotent), i.e., the
residues of ω at Σ are real (resp. rational).

Since L is OP1-flat, M⊗ L is the image of

f0† (E
g ⊗ Γ[!D1]N)⊗ L −→ f0† (E

g ⊗ Γ[∗D1]N)⊗ L,

and, since the functors Γ[⋆Σ] (⋆ =!, ∗) are exact on the category of holonomic DP1-mod-
ules, M′ is the image of

Γ[!Σ]f
0
† (E

g ⊗ Γ[!D1]N)⊗ L −→ Γ[∗Σ]f
0
† (E

g ⊗ Γ[∗D1]N)⊗ L.

We set H = f−1(Σ) and we decompose D as D2 ∪ D3 ∪ D4, where D3 are those
components of D which are components of H, D2 are the components of D1 which are
not components of H, and D4 are the remaining components. We set g1 = g+ f ◦ ψ.

Firstly, one checks that, for ⋆ = ∗, !,

f0† (E
g ⊗ Γ[⋆D1]N)⊗ L ≃ f0†

(
(Eg ⊗ Γ[⋆D1]N)⊗ f+L

)
≃ f0†

(
Eg1 ⊗ Γ[⋆D1]N ⊗ f+Lreg

)
.

Due to the commutation Γ[⋆Σ]f
0
† ≃ f0† Γ[⋆H] for ⋆ = ∗, !, and since f+Lreg =

Γ[∗H]f
+Lreg (so that we can replace D1 with D2 in the right-hand side), we deduce

that M′ is the image of

(A.1) f0†
(
Γ[!H](E

g1 ⊗ Γ[!D2]N ⊗ f+Lreg)
)
−→ f0†

(
Eg1 ⊗N ⊗ f+Lreg

)
.

Let e : X ′ → X be a projective modification such that e−1(D ∪ H) is a divisor
with normal crossings and such that the pole and zero divisors of g′1 := e∗g1 do not
intersect. For the first condition the blowing ups can be chosen to take place above
the union of D∩H and of the singular set of H, while for the second condition, since
the pole and zero divisors of g1 intersect at most in D ∩H, the blowing ups can be
chosen to take place above D ∩ H. As a consequence, we can assume that, setting
H ′ = e−1(H), the morphism e : X ′ ∖H ′ → X ∖H is an isomorphism.
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Since Eg1 ⊗ Γ[!D2]N ⊗ f+Lreg = Γ[∗H](E
g1 ⊗ Γ[!D2]N ⊗ f+Lreg), we have, after

[Sab18, 1.77(vi)],

ek† (E
g′1 ⊗ e∗(Γ[!D2]N ⊗ f+Lreg)) ≃

{
Eg1 ⊗ Γ[!D2]N ⊗ f+Lreg if k = 0,

0 otherwise.

With [Sab18, 1.77(iii) & Cor. 1.80] we deduce

ek† (E
g′1 ⊗ Γ[!H′]e

+(Γ[!D2]N ⊗ f+Lreg)) ≃

{
Γ[!H](E

g1 ⊗ Γ[!D2]N ⊗ f+Lreg) if k = 0,

0 otherwise.

Setting f ′ = f ◦ e, we conclude that the left-hand side of (A.1) is isomorphic to

f ′0† (Eg
′
1 ⊗ Γ[!H′]e

+(Γ[!D2]N ⊗ f+Lreg)).

On the other hand, the right-hand side of (A.1) is easily computed as

f ′0† (Eg
′
1 ⊗ e+(N ⊗ f+Lreg)),

and the morphism in (A.1) is the natural one with the expressions above.
Let D′

2 be the strict transform of D2 by e. We claim that

(A.2) Γ[!H′]e
+(Γ[!D2]N ⊗ f+Lreg) ≃ Γ[!H′]Γ[!D′

2]
e+(N ⊗ f+Lreg),

so that, setting D′
1 = H ′ ∪D′

2, we find that M′ is the image of the natural morphism

f ′0† (Eg
′
1 ⊗ Γ[!D′

1]
e+(N ⊗ f+Lreg)) −→ f ′0† (Eg

′
1 ⊗ e+(N ⊗ f+Lreg)),

and this concludes the proof of (i).
Let us prove that (A.2) holds true. On the one hand, the kernel and cokernel of

the morphism
e+(Γ[!D2]N ⊗ f+Lreg) −→ e+(N ⊗ f+Lreg)

are supported on D′
2, hence they vanish after applying Γ[!D′

2]
, so that

Γ[!D′
2]
e+(Γ[!D2]N ⊗ f+Lreg) −→ Γ[!D′

2]
e+(N ⊗ f+Lreg)

is an isomorphism. On the other hand, the natural morphism

Γ[!D′
2]
e+(Γ[!D2]N ⊗ f+Lreg) −→ e+(Γ[!D2]N ⊗ f+Lreg)

is an isomorphism away from H ′: since f+Lreg is locally isomorphic to (OX′ ,d) on
X ′ ∖H ′, Γ[!D2]N ⊗ f+Lreg is locally isomorphic to Γ[!D2](N ⊗ f+Lreg) on this open
set, so that the assertion reduces to the equality Γ[!D2](•) = Γ[!D2]Γ[!D2](•). As a
consequence, the kernel and cokernel of the above morphism have support in H ′.
Therefore, they vanish after the application of the exact functor Γ[!H′].

Let us now show (ii). Recall that the Laplace transformation is an exact functor
Modhol(P1, ∗∞) 7→ Modhol(P1, ∗∞), so M′ is the image of the Laplace transform of
f0† (E

g ⊗ Γ[!D1]N) to that of f0† (E
g ⊗ Γ[∗D1]N). We denote by t the variable on P1t and

we introduce a new P1 with variable τ , and we denote by p, q : P1t × P1τ → P1t ,P1τ the
first and second projections. For any holonomic DP1

t
-module M , its Laplace transform

is given by the formula q0† (E
−tτ ⊗ Γ[∗(P1

t×∞)]p
+Γ[∗∞]M) (and qk† (· · · ) = 0 for k ̸= 0).

We apply this formula to M = f0† (E
g ⊗ Γ[⋆D1]N) (⋆ = ∗, !).
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Since we have assumed M = Γ[∗∞]M, we can assume that D contains f−1(∞)

but D1 does not contain any component of it, and we can omit Γ[∗∞] in the previous
formula. We denote by p̂, q̂ the projections X̂ := X × P1τ → X,P1τ , so that we have
q ◦ (f × IdP1

τ
) = q̂. For ⋆ = ∗, !, we have

q0†

(
E−tτ ⊗ Γ[∗(P1

t×∞)]p
+f0† (E

g ⊗ Γ[⋆D1]N)
)

≃ q0†

(
E−tτ ⊗ Γ[∗(P1

t×∞)](f × Id)0† p̂
+(Eg ⊗ Γ[⋆D1]N)

)
(after [Sab18, 1.77(v)])

≃ q0†

(
E−tτ ⊗ (f × Id)0†Γ[∗(X×∞)]p̂

+(Eg ⊗ Γ[⋆D1]N)
)

(after [Sab18, 1.77(iii)])

≃ q0†

(
(f × Id)0†Γ[∗(X×∞)](E

p∗g−τf ⊗ p̂+Γ[⋆D1]N)
)

(after [Sab18, 1.77(iii)])

≃ q̂0†

(
Ep

∗g−τf ⊗ Γ[∗(X×∞)]p̂
+Γ[⋆D1]N

)
(since qk† (· · · ) = 0 for k ̸= 0).

Set D̂ = (D × P1τ ) ∪ (X × ∞), D̂1 = D1 × P1τ and N̂ = Γ[∗(X×∞)]p̂
+N. We have

N̂ = Γ[∗D̂]N̂. Then the latter expression can also be written as

q̂0†
(
Ep

∗g−τf ⊗ Γ[⋆D̂1]
N̂
)
,

and therefore M′ is the image of the natural morphism

q̂0†
(
Ep

∗g−τf ⊗ Γ[!D̂1]
N̂
)
−→ q̂0†

(
Ep

∗g−τf ⊗ Γ[∗D̂1]
N̂
)
.

Let e′ : X̂ ′ → X̂ be a projective modification which induces an isomorphism above
the complement of D̂, whose pullback is denoted by D̂′, such that the pole and zero
divisors of g′ := (p ◦ e′)∗g − e′∗(τf) do not intersect, and set D̂′

1 = e′−1(D̂1) and
N̂′ = Γ[∗D̂′]e

′+N̂. Then, arguing as in Case (i), we find

q̂0†
(
Ep

∗g−τf ⊗ Γ[⋆D̂1]
N̂
)
≃ q̂0†e

′0
†
(
Eg

′
⊗ Γ[⋆D̂′

1]
N′)

≃ (q̂ ◦ e′)0†
(
Eg

′
⊗ Γ[⋆D̂′

1]
N′) (since e′k† (· · · ) = 0 for k ̸= 0).

Set now f ′ = q̂ ◦ e′. Then, M′ is the image of (3.1 ∗) with respect to the data X̂ ′, D̂′,
D̂′

1, f ′ and g′, N̂′. Furthermore, N̂′ is unitary (resp. of torsion) if N is so.

Acknowledgements. The author thanks the referees for their careful reading of the
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