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Differential systems of pure Gaussian type

C. Sabbah

Abstract. We give the transformation rule for the Stokes data of the
Laplace transform of a differential system of pure Gaussian type.
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Introduction

Computing the behaviour of the Stokes structure of a differential equation in
one complex variable under the Laplace transformation leads in general to difficult
combinatorial problems. In this article we make explicit the topological Laplace
transformation in a simple case, that of differential systems of pure Gaussian type.
It is well known that the function t 7→ exp(ct2/2) has simple behaviour under
the Fourier transformation for the real variable t. Differential systems of pure
Gaussian type are those systems of the complex variable t whose solutions behave
asymptotically like sums of terms of the form tα(log t)k exp(ct2/2) as t → ∞ and
have no other singularities. Their Laplace transforms possess the same property,
and the question we address is the computation of the Stoles data at infinity for
the Laplace transform of such a system, in terms of the Stokes data at infinity
for the original system.

To begin with, we describe various ways to encode the Stokes phenomenon for
such a system. The sheaf-theoretic approach (filtered local systems in the sense of
Deligne [1]) is suitable for computations involving higher-dimensional underlying
spaces (that is, for the computation of the Laplace transform using an integral
formula). However, it is more common to express the Stokes phenomenon in terms
of objects of linear algebra, like Stokes matrices. Here we find it convenient to
express it in terms of a family of pairwise-opposite filtrations of a vector space.

The computation is not too difficult (and the result is easy to formulate) in the
case when all non-zero complex numbers c occurring in the asymptotic expansions of
solutions have the same argument. This is explained in § 4, which could be regarded
as a supplementary exercise in [2] illustrating the computation of the topological
Laplace transformation. However, in general, the way in which the set C of these
numbers c is embedded in C∗ introduces complicated combinatorial problems. In
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this case we reduce the question to the determination of the behaviour of the Stokes
data when the subset C varies in C∗. However, we do not give a precise answer to
the last question.

Our aim is to develop a topological approach to computing the Stokes data of
the Laplace transform of a system of linear differential equations in one variable,
following the general method of [3]. Other techniques have been developed, mainly
analytic ones (see, for example, [2], in particular Ch.XII and the references therein),
but our method gives rationality results in a straightforward way (if the Stokes data
of the original system can be defined over Q, then the same holds for the Stokes
data of the Laplace-transformed system). A more complicated example is analyzed
in [4]. Our approach is based on a fundamental theorem of Mochizuki (see [5], The-
orem 3.1), who also developed a slightly different method for such computations [6].
Lastly, let us mention a completely different topological method, which follows from
the general Riemann–Hilbert correspondence of d’Agnolo and Kashiwara [7].

I thank Marco Hien and Takuro Mochizuki for stimulating discussions on this
subject.

§ 1. Differential systems of pure Gaussian type

1.1. Notation. We consider a covering of the Riemannian sphere P1 by two affine
charts, A1

t with coordinate t and A1
t′ with coordinate t′ such that t′ = 1/t on the

intersection of these charts. Let C[t]〈∂t〉 be the ring of differential operators with
coefficients in C[t]. All C[t]〈∂t〉-modules will be left modules, and we identify them
with C[t]-modules with connection. Holonomic C[t]〈∂t〉-modules (that is, torsion
modules over C[t]〈∂t〉) can be extended to holonomic modules over the sheaf DP1

of algebraic differential operators on P1 is such a way that multiplication by t′ is
invertible in the chart t′.

A basic example of a C[t]〈∂t〉-module is Eϕ(t) := (C[t],d + dϕ) for any given
ϕ ∈ C[t]. We shall use the same notation in the case of two variables t, τ , with ϕ ∈
C[t, τ ]. The extension of Eϕ(t) to P1, when restricted to the chart t′, is denoted by
Eϕ(1/t′) and is nothing but (C[t′, t′−1],d+dϕ(1/t′)). By extending the scalars from
C[t′, t′−1] to C((t′)) := C[[t′]][t′−1], we get

E ϕ(1/t′) = C((t′))⊗C[t′,t′−1] Eϕ(1/t′) =
(

C((t′)),d + dϕ

(
1
t′

))
.

Given any morphism f between complex manifolds (or smooth algebraic vari-
eties), we denote by f+ the pullback functor of left D-modules. This is nothing
but f∗ for the underlying O-modules, together with the pullback connection.

Definition 1.1. Let C be a finite subset of C∗. A differential system of pure
Gaussian type C is a free C[t]-module M of finite rank r equipped with a connection
∇ = d + A(t)dt with the following properties.
• A(t) is an r × r matrix with entries in C[t].
• In the notation M ′ = C[t, t−1] ⊗C[t] M , there is an isomorphism between

(C((t′))⊗C[t′,t′−1] M
′,∇) and the direct sum

⊕
c∈C(E−c/2t′2 ⊗Rc), where E−c/2t′2=

(C((t′)),d + c/t′3) and Rc is a finite-dimensional C((t′))-vector space with a regular
singular connection.
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We say that a differential system M is of pure Gaussian type if there is a finite
set C such that M is a system of pure Gaussian type C.

Note that by our assumption, a differential system of pure Gaussian type C is
purely irregular at infinity, of slope 2 and irregularity 2r. We can regard M as
a C[t]〈∂t〉-module using a C[t]-basis m: the action of ∂t is given by ∂tm = m ·A(t).

Proposition 1.2. Every C[t]〈∂t〉-submodule or C[t]〈∂t〉-quotient module of a dif-
ferential system of pure Gaussian type C also has pure Gaussian type C . The full
subcategory of the category of holonomic C[t]〈∂t〉-modules consisting of objects of
pure Gaussian type C , is Abelian.

Proof. Let M be of pure Gaussian type C, and let N ⊂M be a C[t]〈∂t〉-submodule.
The characteristic variety of N and M/N is equal to the zero section on A1

t, whence
both modules are C[t]-locally free of finite rank and, therefore, free of finite rank. It
remains to check their behaviour at infinity, and the statement reduces to proving
that every C((t′))-subspace or quotient space (with connection) of the direct sum⊕

c∈C(E−c/2t′2 ⊗Rc) takes the same form. This follows easily by noticing that for
c 6= c′ there are no non-zero morphisms (E−c/2t′2 ⊗ Rc) → (E−c′/2t′2 ⊗ Rc′). The
last statement of the proposition is then clear. �

Remark 1.3 (non-rigidity). A C[t]〈∂t〉-module M of pure Gaussian type is rigid
(that is, its index of rigidity rig(M) is equal to 2) if and only if r = 1. Indeed, the
index of rigidity is computed using the formula (see [8])

rig(M) = 2r2 − irr∞(EndM)− r2 + η,

where η = dim Ker ∂t′ , where we regard ∂t′ as acting only on the regular part
of C((t′)) ⊗ (EndM). We have η > #C. On the other hand, irr∞(EndM) =
2

∑
c6=c′ rcrc′ , where rc = rk Rc. Therefore,

rig(M) = η +
∑
c∈C

r2
c > #C +

∑
c∈C

r2
c > 2(#C).

1.2. Behaviour under the Laplace transformation. We consider the beha-
viour of differential systems of pure Gaussian type under the Laplace transformation
with kernel exp(−tτ), that is, we put τ = ∂t, ∂τ =− t and write M̂ for the C-vector
space M regarded as a C[t]〈∂t〉-module via this correspondence. The transformed
differential system remains of pure Gaussian type, and the formal behaviour at
infinity is made precise in the proof of the following lemma.

Lemma 1.4. Let M be a C[t]〈∂t〉-module of pure Gaussian type C . Then its
Laplace transform M̂ has pure Gaussian type Ĉ := −1/C = {−1/c | c ∈ C} with
rkC[τ ] M̂ = rkC[t] M = r.

Proof. Firstly, the formal stationary phase formula implies that M̂ has singulari-
ties at most at τ = ∞ and τ = 0, the latter being regular. The decomposition
of C((τ ′)) ⊗C[τ,τ−1] M̂ is obtained from the formula (5.10) in [9], which expresses
the well-known fact that the local Laplace transform of (E−c/2t′2 ⊗ Rc) is isomor-
phic to E 1/2cτ ′2 ⊗ Rc for c 6= 0. It follows that the formal decomposition of the
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irregular part of M̂ at τ = ∞ is
⊕

c∈C(E 1/2cτ ′2 ⊗ Rc), where Rc is now regarded
as a C((τ ′))-vector space with a regular singular connection by simply renaming the
variable t′ as τ ′. The rank of the regular part of M̂ at τ =∞ is equal to the dimen-
sion of the vanishing cycles of the analytic de Rham complex DRanM at t = 0.
Our assumption implies that this rank is zero. We conclude that C[τ, τ−1]⊗C[τ ] M̂
is a free C[τ, τ−1]-module of rank r.

It remains to show that M̂ is non-singular at τ = 0. Since the moderate nearby
cycles of M at t = ∞ are zero, the moderate vanishing cycles of M̂ at τ = 0
also vanish according to the standard correspondence established in [10], Proposi-
tion 4.1, (iv). Furthermore, since the singularity of M̂ at τ = 0 is regular, it follows
that M̂ has no singularity at τ = 0. �

Remark 1.5. The inverse Laplace transformation is given by the correspondence
τ = −∂t, ∂τ = t. When M is of pure Gaussian type, both the Laplace and inverse-
Laplace transformed objects have isomorphic formal models at infinity but the
Stokes structures may be non-isomorphic (see Remark 4.4).

§ 2. Stokes data of Gaussian type
and the Riemann–Hilbert correspondence

In this section we recall the notion of Stokes filtration introduced in [1] (see
also [2], [11], [12]) in the particular case of Stokes filtrations of Gaussian type.
We make explicit the correspondence between this notion and the more classical
approach via Stokes data.

2.1. Stokes filtrations. Let k be a field (for example, Q or C) and let L be
a local system of finite-dimensional k-vector spaces on the circle S1 with coordi-
nate eiθ (note that with respect to our initial problem one should take θ = arg t′ =
− arg t). We usually set r = rkL . A Stokes filtration of Gaussian type on L is
a family of subsheaves L6c ⊂ L , where c ∈ C, with the following properties.

(1) For every θ ∈ R/2πZ let 6θ be the partial order on C which is compatible
with addition and satisfies

c 6θ 0 ⇐⇒ c = 0 or arg c− 2θ ∈
(

π

2
,
3π

2

)
mod2π.

(This means that the function exp(ct2/2) = exp(c/2t′2) has moderate growth in
a neighbourhood of the point (|t′| = 0, arg t′ = θ) in the real blow-up P̃1

t of P1
t

at t = ∞. Here S1 is regarded as the circle S1
∞ := P̃1

t |∞.) We shall also write
c <θ 0 if and only if c 6= 0 and c 6θ 0. It is required that for every θ the germs
L6c,θ form an exhaustive increasing filtration of Lθ with respect to 6θ.

(2) Since the ordering 6θ is open with respect to θ, one can glue the germs
L<c,θ :=

∑
c′<θc L6c′,θ to obtain a subsheaf L<c of L . The graded sheaves

grc L := L6c/L<c are required to be locally constant on S1.
(3) For every point eiθ ∈ S1 one requires the existence of local isomorphisms

(L ,L•) ' (grL , (grL )•), where the Stokes filtration on gr L :=
⊕

c∈C grc L is
natural, that is, (grL )6c,θ =

⊕
c′6θc grc′ Lθ. In particular, grc L = 0 for all c
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outside a finite set C ⊂ C, which is called the set of exponential factors of the
Stokes filtration (L ,L•).

We say that a Stokes filtration of Gaussian type is of pure Gaussian type if it
satisfies the following additional condition.

(4) The local system L is constant and C ⊂ C \ {0}.

Remark 2.1. (1) The general definition of a Stokes filtration is more complicated:
it admits ramification, which does not occur in the present setting. In particular,
Stokes filtrations of Gaussian type are unramified and their sets Φ of exponential
factors are of the form C/2t′2 near the origin of the chart A1

t′ . Such a Stokes
filtration can have a ‘regular component’, while Stokes filtrations of pure Gaussian
type cannot.

(2) Using the local grading property (3), we easily see that the family (L6c)c∈C
can be uniquely recovered from the family (L<c)c∈C using the formula

L6c,θ =
⋂

c<θc′

L<c′,θ, θ ∈ S1.

Therefore we could also define a Stokes filtration of Gaussian type as a family
of subsheaves (L<c)c∈C of L such that if we define L6c by the formula above,
then the resulting family (L6c)c∈C possesses the properties (1)–(3). Lemma 5.1
makes this point of view more convenient when computing the Laplace transform
of a Stokes-filtered local system.

(3) For every pair c 6= c′ ∈ C there are exactly four values of θ mod 2π (say, θ
(ν)
c,c′ ,

ν ∈ Z/4Z) such that c and c′ are not comparable at θ. We have θ
(ν+1)
c,c′ = θ

(ν)
c,c′ +π/2.

These values are called the Stokes directions of the pair (c, c′). For all θ lying in
one connected component of R/2πZ \ {θ(ν)

c,c′ | ν ∈ Z/4Z}, we have c <θ c′, and the
reverse inequality holds for all θ in the next component. We denote the images
of these intervals of S1 under the map θ 7→ eiθ by S1

c6c′ and S1
c′6c respectively.

If c = c′, then we put S1
c6c := S1.

(4) For every pair c, co ∈ C the inclusion jc6co : S1
c6co

↪→ S1 is open. We
denote by βc6co

the functor jc6co!j
−1
c6co

that restricts the sheaf to this open set
and then extends this restriction by zero to get a new sheaf on S1. The filtration
condition (1) implies that for every pair c, co there is a natural monomorphism
βc6co

L6c ↪→ L6co
.

(5) Let F ∗ be the constant sheaf of rank r on A1
t. We put F = j̃∗F ∗ (where j̃ is

the open inclusion A1
t ↪→ P̃1

t complementary to the inclusion S1
∞ ↪→ P̃1

t ) and
L = F|S1

∞
. A Stokes filtration L• of L determines a family of subsheaves F•

of F by gluing F ∗ to L•. It is convenient to set F ∗
60 = F ∗ and F ∗

<0 = 0, so
that F60 restricts to F ∗ on A1

t while F<0 is supported on S1
∞. We call (F ,F•)

a Stokes-filtered sheaf.

A morphism λ : (L ,L•) → (L ′,L ′
•) of Stokes-filtered local systems is a mor-

phism of local systems satisfying λ(L6c) ⊂ L ′
6c for all c ∈ C.

By a C-good closed interval I ⊂ R/2πZ we mean a closed interval containing
exactly one Stokes direction for ever pair c 6= c′ of points in C and such that every
such Stokes direction belongs to the interior of I. We shall use only those C-good
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closed intervals that are images in R/2πZ of intervals of the form [θo, θo + π/2],
where θo is not a Stokes direction for any pair c 6= c′ of points in C.

Proposition 2.2 (see [13], Proposition 2.2). (1) On every C-good closed interval
I ⊂ R/2πZ there is a unique splitting L|I '

⊕
c grc L|I compatible with the Stokes

filtrations. We have L6co|I =
⊕

c∈C βc6co
grc L|I with respect to this splitting.

(2) Let λ : (L ,L•) → (L ′,L ′
•) be a morphism of Stokes-filtered local systems

of pure Gaussian type C . Then for every C-good closed interval I ⊂ R/2πZ the
morphism λ|I is graded with respect to the splitting described in (1).

(See also [3], Ch. 3, for the proof.)

Remark 2.3. When c 6= co, we have Γ(I, βc6co
grc L|I) = 0 on every C-good closed

interval I ⊂ R/2πZ. When c = co, we have βc6co
grc L|I = grc L|I . We conclude

from Proposition 2.2, (1) that Γ(I,L6co) = Γ(I, grco
L|I).

Proposition 2.4. The category of Stokes-filtered local systems (L ,L•) of Gaus-
sian type and the full subcategory of Stokes-filtered local systems of pure Gaussian
type are Abelian.

2.2. Stokes data. These are linear data which provide a description of a Stokes-
filtered local system of Gaussian type. Let C be a non-empty finite subset of C.
We say that a direction θo ∈ R/2πZ is generic with respect to C if it is not
a Stokes direction (see Remark 2.1, (3)) for any pair c 6= c′ ∈ C. For every choice
of a direction θo generic with respect to C, there is a unique numbering of the
elements of C such that c1 <θo

c2 <θo
· · · <θo

cn. We put

θ(ν)
o = θo + νπ/2, ν ∈ Z/4Z. (2.1)

When θ varies in the good closed interval [θ(ν)
o , θ

(ν+1)
o ], the order of c and c′ changes

exactly once for each pair c 6= c′. Hence the order of C at θ
(ν+1)
o is exactly the

reverse of the order at θ
(ν)
o . In what follows we will refer to the order of C as that

at θo = θ
(0)
o .

Definition 2.5 (first definition). Let C be a non-empty finite subset of C, and let
θo ∈ R/2πZ be generic with respect to C.
• An object of the category of Stokes data of Gaussian type C totally ordered

by θo (we also say of Gaussian type (C, θo)) consists of four families of finite-
dimensional k-vector spaces (G(ν)

c )c∈C (ν ∈ Z/4Z) and a diagram of morphisms⊕
c∈C

G(1)
c

S(2,1)

��

⊕
c∈C

G(0)
c

S(1,0)
oo

⊕
c∈C

G(2)
c

S(3,2)
//
⊕
c∈C

G(3)
c

S(0,3)

OO

(2.2)

such that for the numbering C = {c1, . . . , cn} defined by θo, the matrix S(ν,ν−1) =
(S(ν,ν−1)

ij )i,j=1,...,n is block upper-triangular when ν = 0, 2 (resp. block lower-
triangular when ν = 1, 3). Thus the maps S

(ν,ν−1)
ij : G

(ν−1)
cj → G

(ν)
ci are equal
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to zero when i > j (resp. i < j), and the maps S
(ν,ν−1)
ii are invertible (hence

dim G
(ν−1)
ci = dim G

(ν)
ci and S(ν,ν−1) itself is invertible).

• We say that such an object is of pure Gaussian type if C ⊂ C \ {0} and the
monodromy T := S(0,3)S(3,2)S(2,1)S(1,0) is equal to the identity.
• The formal monodromy on the c-component is the isomorphism

Tc = S(0,3)
c,c S(3,2)

c,c S(2,1)
c,c S(1,0)

c,c : G(0)
c

∼−→ G(0)
c .

• A morphism of Stokes data of type (C, θo) consists of a family of morphisms
of k-vector spaces λ

(ν)
c : G

(ν)
c → G

′(ν)
c , c ∈ C, ν ∈ Z/4Z, which are compatible with

the corresponding diagrams (2.2).

One can check that for such a morphism, in particular,

S(ν,ν−1)
c,c λ(ν−1)

c = λ(ν)
c S(ν,ν−1)

c,c .

The category of Stokes data of (pure) Gaussian type (C, θo) is clearly Abelian.
A choice of bases in the spaces G

(ν)
c , c ∈ C, ν ∈ Z/4Z, enables one to represent the

Stokes data by matrices (Σ(ν,ν−1))ν∈Z/4Z, where Σ(ν,ν−1) = (Σ(ν,ν−1)
ij )i,j=1,...,n is

block upper-triangular when ν = 0, 2 (resp. block lower-triangular when ν = 1, 3)
and each Σ(ν,ν−1)

ii is invertible. A set (Σ′(ν,ν−1))ν∈Z/4Z is equivalent to a set
(Σ(ν,ν−1))ν∈Z/4Z if there exist invertible block diagonal matrices (Λ(ν))ν∈Z/4Z such
that for all pairs (i, j) we have

Σ′(ν,ν−1)
ij = Λ(ν)

i Σ(ν,ν−1)
ij (Λ(ν−1)

j )−1 ∀ ν ∈ Z/4Z.

In particular, up to equivalence, we can assume that Σ′(ν,ν−1)
ii = Id for all i =

1, . . . , n and ν = 1, 2, 3. Then Σ′(0,3)
ii = Ti (the matrix of the ‘formal’ monodromy

of G
(0)
ci ). This leads to the following variant of the first definition.

Definition 2.6 (variant of the first definition). Let C be a non-empty finite subset
of C, and let θo ∈R/2πZ be generic with respect to C. An object of the category of
Stokes data of Gaussian type C totally ordered by θo consists of a family of finite-
dimensional k-vector spaces (Gc)c∈C , an automorphism Tc of Gc for every c ∈ C,
and a diagram of morphisms ⊕

c∈C

Gc

S(2,1)

��

⊕
c∈C

GcS(1,0)
oo

⊕
c∈C

Gc

S(3,2)
//
⊕
c∈C

Gc

S(0,3)

OO

(2.3)

such that the following two conditions hold for the numbering C = {c1, . . . , cn}
defined by θo:
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(1) S
(ν,ν−1)
ii = Id for all i ∈ {1, . . . , n} and ν ∈ Z/4Z;

(2) the matrix S(ν,ν−1) = (S(ν,ν−1)
ij )i,j=1,...,n is block upper-triangular when

ν = 0, 2 (resp. block lower-triangular when ν = 1, 3), that is, the maps S
(ν,ν−1)
ij :

G
(ν−1)
cj → G

(ν)
ci are equal to zero when i > j (resp. i < j).

(3) In the case of pure Gaussian type we also require that 0 /∈ C and that the
monodromy T := diag(T1, . . . , Tn) · S(0,3)S(3,2)S(2,1)S(1,0) is equal to the identity.

We have already seen at the matrix level that any Stokes datum in the sense
of Definition 2.5 is isomorphic to one with all G

(ν)
c identified with some Gc and

S
(ν,ν−1)
ii = Id for ν = 1, 2, 3. To obtain Stokes data in the sense of Definition 2.6,

we put Ti = S
(0,3)
ii and let the new morphism S(0,3) be diag(T1, . . . , Tn)−1 · S(0,3).

A morphism of Stokes data in the sense of Definition 2.6 consists of a family
(λ(ν)

c ) which is compatible with the diagrams (2.3) and satisfies Tcλ
(3)
c = λ

(0)
c Tc for

all c ∈ C.
In the case when the monodromy is assumed to be the identity (but possibly

0 ∈ C), the definition may be stated in another way.

Definition 2.7 (second definition). An object of the category of the Stokes data
of Gaussian type (C, θo, T = Id) consists of a finite-dimensional k-vector space L
and, for each ν, an exhaustive filtration L6ν• indexed by the set {1, . . . , n} with
the ordering 6ν (which is defined by θo if ν is even and is the reverse of the order
defined by θo if ν is odd) such that the following condition holds: for every ν ∈ Z/4Z
the filtrations L6ν• and L6ν+1• are opposite, that is,

∀ ν ∈ Z/4Z L =
⊕

i=1,...,n

L6ν i ∩ L6ν+1i. (2.4)

A morphism between Stokes data of type (C, θo, T = Id) is a morphism between
the corresponding vector spaces which is compatible with all filtrations.

In this definition, ‘exhaustive’ means that L6νmaxν
= L, where maxν = n for

even ν and 1 for odd ν. Putting L<ν i =
∑

j6ν i, j 6=i L6νj , we define L<νminν = 0
according to the convention that a sum over the empty set is equal to zero.

Comparison of Definitions 2.5 and 2.7. The correspondence with Definition 2.5 is
established as follows. For each ν, the opposite filtrations define a grading

⊕
i G

(ν)
i

with G
(ν)
i = L6ν i ∩ L6ν+1i together with a canonical isomorphism

⊕
i G

(ν)
i

∼−→ L.
The morphism S(ν,ν−1) is induced by IdL through the two successive isomorphisms
at the levels ν − 1 and ν. By definition, the morphism S(ν,ν−1) is compatible with
the filtrations induced by L6ν• on both sides. If ν is even (resp. odd), then this
filtration is increasing (resp. decreasing), which means that S(ν,ν−1) is block upper-
triangular (resp. block lower-triangular). The product of the morphisms S(ν,ν−1)

is conjugate to IdL and, therefore, equal to the identity map. It remains to verify
that S(ν,ν−1) is a strict isomorphism (with respect to the filtration L6ν•). But this
follows since IdL is obviously strict and, by definition, the isomorphism L '

⊕
i G

(ν)
i

is strict with respect to both the filtrations L6ν• and L6ν+1• for every ν.
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Conversely, given Stokes data of type (C, θo) in the sense of Definition 2.5
under the additional assumption that T = Id, we put θ

(0)
o = θo and define L

as
⊕

i=1,...,n G
(0)
i . The natural increasing (resp. decreasing) filtration on L induced

by this grading is denoted by L6ν• for ν = 0 (resp. ν = 1). The increasing
(resp. decreasing) filtration L6ν• for ν = 2 (resp. ν = 3) is induced by the increas-
ing (resp. decreasing) filtration attached to the grading

⊕
i=1,...,n G

(2)
i by means of

any of the isomorphisms (S(2,1)S(1,0))−1, S(0,3)S(3,2) between
⊕

i=1,...,n G
(2)
i and L.

Example 2.8 (trivial Stokes data). Let co ∈ C and let L be a finite-dimensional
k-vector space. Then the trivial Stokes data of Gaussian type ({co}, θo, T = Id)
with exponent co are the Stokes data defined by

L6νc =

{
L if co 6ν c,

0 if c <ν co.

Example 2.9 (adding the trivial Stokes data). Let (L, (L6ν•)ν∈Z/4Z) be Stokes
data of Gaussian type (C, θo, T = Id). Let c0 ∈ C \ C be such that c0 6ν c for
all c ∈ C and even ν, while c 6ν c0 for all c ∈ C and odd ν. Then we put
C ′ := C ∪ {c0} = {c0, c1, . . . , cn} with respect to the ordering at θo. For example,
if C ⊂ R and cos 2θo > 0, then one can choose c0 ∈ R such that c0 < c for all c ∈ C.
Let Lo be a finite-dimensional k-vector space. We define the following Stokes data
of Gaussian type (C ′, θo, T = Id).
• The vector space is L⊕ Lo.
• If ν is even, then

(L⊕Lo)6νc0 =0⊕Lo, (L⊕Lo)6νc1 =L6νc1⊕Lo, . . . , (L⊕Lo)6νcn
=L6νcn

⊕Lo.

• If ν is odd, then

(L⊕Lo)6νc0 =L⊕Lo, (L⊕Lo)6νc1 =L6νc1 ⊕ 0, . . . , (L⊕Lo)6νcn
=L6νcn

⊕ 0.

We have an exact sequence

0→ (L,L6ν•)→ (L⊕ Lo, (L⊕ Lo)6ν•)→ (Lo, Lo,6ν•)→ 0, (2.5)

where (Lo, Lo,6ν•) are the trivial Stokes data of Gaussian type ({c0}, θo, T = Id).

2.3. Stokes data attached to a Stokes-filtered local system. We will now
define a functor (depending on θo) from the category of Stokes-filtered constant local
systems of pure Gaussian type C to the category of Stokes data of pure Gaussian
type (C, θo) and then show that it is an equivalence.

We fix intervals I(ν) = [θ(ν)
o , θ

(ν+1)
o ] of length π/2 on R/2πZ. Then the intersec-

tion I(ν) ∩ I(ν+1) consists of the point θ
(ν+1)
o , which is not a Stokes direction for

any pair c 6= c′ ∈ C (recall that θ
(ν)
o is defined in (2.1)).

To a constant local system L on S1 we attach the following ‘monodromy data’:
(1) a vector space L = Γ(S1,L );
(2) vector spaces L(ν) = Γ(I(ν),L ) (ν ∈ Z/4Z);
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(3) vector spaces L
θ
(ν)
o

= Γ(I(ν−1) ∩ I(ν),L ) ' L
θ
(ν)
o

;

(4) a diagram of natural restriction isomorphisms a
(ν)
ν , a

(ν+1)
ν , b(ν):

L(1)

a
(2)
1

vvllllllll

a
(1)
1

((RRRRRRRR
S(2,1)

		

L
θ
(2)
o

L
θ
(1)
o

L(2)

a
(2)
2

??�������

a
(3)
2

��?
??

??
??

S(3,2)
//

L

b(1)

::tttttttttt
b(2)

ddJJJJJJJJJJ

b(3)

zztttttttttt
b(0)

$$JJJJJJJJJJ L(0)

a
(1)
0

__???????

a
(0)
0

����
��

��
�

S(1,0)

oo

L
θ
(3)
o

L
θ
(0)
o

L(3)

a
(0)
3

66llllllll
a
(3)
3

hhRRRRRRRR
S(0,3)

II (2.6)

We will use the following description: (L(ν), S(ν,ν−1))ν∈Z/4Z with isomorphisms
S(ν,ν−1) : L(ν−1) ∼−→ L(ν) and monodromy T (0) = Id: L(0) ∼−→ L(0), where

S(ν,ν−1) = (a(ν)
ν )−1a

(ν)
ν−1, T (0) = S(0,3)S(3,2)S(2,1)S(1,0).

Now assume that (L ,L•) is a Stokes-filtered local system with associated graded
local system grL =

⊕n
i=1 grci

L .

Definition 2.10 (Stokes data attached to (L ,L•)). The filtration L
6c,θ

(ν)
o

of
the germ L

θ
(ν)
o

induces a filtration on L
θ
(ν)
o

, which is θ
(ν)
o -increasing. By means

of the isomorphism b(ν), the space L comes equipped with a filtration L6ν•.

Let us check that the filtrations L6ν• and L6ν+1• are opposite. It is enough to
check this on the space L(ν) := Γ(I(ν),L ) ' L, which is similarly equipped with
filtrations L

(ν)
6ν• and L

(ν)
6ν+1•. We identify L

(ν)
6νco

∩ L
(ν)
6ν+1co

with Γ(I(ν),L6co), and
Remark 2.3 enables us to identify this space with Γ(I(ν), grco

L ). Hence we obtain
Stokes data of type (C, θo) in the sense of Definition 2.7.

Thus we have defined the desired functor (to check its compatibility with mor-
phisms, see Proposition 2.2, (2)).

As a consequence of the previous discussion we can state the following classical
result (the bijection at the level of Hom follows from Proposition 2.2, (2)).

Proposition 2.11. The previous functor is an equivalence between the category
of constant Stokes-filtered local systems of pure Gaussian type C and the category of
Stokes data of pure Gaussian type (C, θo).

2.4. A quasi-inverse functor: the sheaves LLLLLLL 6co in terms of Stokes data.
Let us fix co ∈ C. We shall give an explicit description of the subsheaves L<co

and L6co
of the sheaf L in terms of the Stokes data.

We start with Stokes data of type (C, θo) in the sense of Definition 2.5. The
(constant) sheaf L is obtained by the following gluing procedure with respect to
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the covering (I(ν))ν∈Z/4Z. Put

LI(ν) =
⊕
c∈C

(CI(ν) ⊗C G(ν)
c )

and define the gluing isomorphisms

g(ν,ν−1) : LI(ν−1)

∣∣
I(ν−1)∩I(ν)

∼−→ LI(ν)

∣∣
I(ν−1)∩I(ν)

as IdC
I(ν−1)∩I(ν) ⊗ S(ν,ν−1).

In this representation the subsheaf L6co is defined by the data of the subsheaves

LI(ν),6co
=

⊕
c∈C

(
(βc6coCI(ν))⊗C G(ν)

c

)
and the gluing isomorphisms induced by g(ν,ν−1) (and similarly for L<co

, replacing
6 by <). The only point to check is that the gluing isomorphisms preserve these
subsheaves. We will check this for each (c, c′)-component of g(ν,ν−1).

If c 6ν c′, then we have the implication c′ 6ν co =⇒ c 6ν co and the identity
morphism IdC

I(ν−1)∩I(ν) sends βc′6co
CI(ν)∩I(ν−1) to βc6co

CI(ν)∩I(ν−1) since either
both sheaves are equal to CI(ν)∩I(ν−1) (if c′ 6ν co), or the first one is zero (other-
wise).

Otherwise we have S
(ν,ν−1)
c,c′ = 0 and, therefore, the (c, c′)-component of g(ν,ν−1)

is equal to zero.

Proposition 2.12. (1) For every co ∈ C we have Hk(S1,L<co) = 0 for k 6= 1
and dim H1(S1,L<co

) = 2r.
(2) When co /∈ C we also have Hk(S1,L6co

) = Hk(S1,L<co
) for all k.

(3) When co ∈ C we have Hk(S1,L6co
) = 0 for k > 2 and

−χ(S1,L6co
) = 2r + dim Coker(Tco

− Id)− dim Ker(Tco
− Id),

and the dimension of the space of global sections H0(S1,L6co) is equal to the
dimension of the subspace of G

(0)
co defined as⋂

c6=co

KerS(1,0)
c,co
∩

⋂
c6=co

KerS(2,1)
c,co

S(1,0)
co,co

∩
⋂

c6=co

KerS(3,2)
c,co

S(2,1)
co,co

S(1,0)
co,co

∩
⋂

c6=co

KerS(0,3)
c,co

S(3,2)
co,co

S(2,1)
co,co

S(1,0)
co,co

,

that is, as the intersection of the kernels of all S
(ν,ν−1)
c,co , c 6= co, ν ∈ Z/4Z, naturally

regarded as subspaces of the same space G
(0)
co .

Up to equivalence, we can assume that S
(ν,ν−1)
co,co = Id for all co ∈ C and ν =

1, 2, 3, so that all spaces G
(ν)
c , ν ∈ Z/4Z, with a fixed c are canonically identified

with a space that we denote by Gc. Then we can regard S
(ν,ν−1)
c,co as a morphism

Gco
→ Gc. With such a representative, we have

dim H0(S1,L6co) = dim
⋂

ν∈Z/4Z

⋂
c6=co

KerS(ν,ν−1)
c,co

.
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Proof. We assume for simplicity that θo is generic with respect to C ∪{co}, that is,
θo is not a Stokes direction for any pair c 6= c′ in C ∪ {co}. We then have

L6co|I(ν)∩I(ν−1) =
⊕
c∈C

c6νco

(CI(ν)∩I(ν−1) ⊗C G(ν)
c ).

The closed covering (I(ν))ν∈Z/4Z is a Leray covering for L6co and L<co for the
following reasons.
• On I(ν) we have Hk(I(ν), βc6co

C) = 0 for all k if c 6= co, and for all k > 1
if c = co. Similarly, Hk(I(ν), βc<co

C) = 0 for all k. This is because the interval I(ν)

contains exactly one Stokes direction for (c, co) if c 6= co (when c = co, the same
conclusion follows from the relations βc<co

C = 0 and βc6co
C = CI(ν)).

• On I(ν−1) ∩ I(ν) the corresponding groups Hk are equal to zero for k > 1
because L6co

and L<co
are sheaves.

Thus we can compute the cohomology using the Čech complex relative to this
covering (see [14], Corollary of Theorem 5.2.4). Except for L6co with co ∈ C,
this complex reduces to the space

⊕
ν Γ(I(ν−1) ∩ I(ν),L•) placed in degree one,

where L• = L<co
(any co) or L6co

(co /∈ C). Since C ∪ {co} is totally ordered on
each I(ν−1) ∩ I(ν) and since the order is reversed when we change ν to ν + 1, the
sum of the dimensions of two successive terms in this direct sum is equal to r.

We now assume that co ∈ C. Then the Čech complex for L6co
has two terms:⊕

ν

G(ν)
co
→

⊕
c,ν

G(ν)
c , (2.7)

where the component G
(ν−1)
co →

⊕
c,ν′ G

(ν′)
c of the differential takes values in

G
(ν−1)
co ⊕

⊕
c6νco

G
(ν)
c and is equal to Id⊕

⊕
c6νco

S
(ν,ν−1)
c,co .

It follows that H2(S1,L6co
) = 0 and, using the exact sequence

0→ H0(S1,L6co
)→ H0(S1, grco

L )→ H1(S1,L<co
)

→ H1(S1,L6co
)→ H1(S1, grco

L )→ 0,

we find the desired formula for χ(S1,L6co
). Let us now compute the kernel of (2.7).

Suppose that (xν) ∈
⊕

ν G
(ν)
co belongs to this kernel. Then, by considering the

component of the image on
⊕

ν G
(ν)
co , we find that xν = −S

(ν,ν−1)
co,co (xν−1) and, since

T = Id, the kernel is isomorphic to the subspace of G
(0)
co defined in the last assertion

of the proposition. �

2.5. The Riemann–Hilbert correspondence for differential systems of
pure Gaussian type. Let M be of pure Gaussian type. The analytic de Rham
complex DRanM on A1

t can be extended to a complex on P̃1
t . To do this, we con-

sider the rapidly decaying de Rham complex DRrd∞M obtained by replacing (in
the definition of DR) holomorphic forms on A1

t by holomorphic forms of rapid decay
at infinity.

The Riemann–Hilbert–Deligne correspondence associates with M the (constant)
sheaf F ∗=H 0DRanM on A1

t and the subsheaves L<c:=H 0DRrd∞(M⊗Ect2/2)|S1
∞
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of L := F|S1
∞

(see Remarks 2.1, (2) and 2.1, (5)). By [1] (see also [2], [11], [12])
we obtain the following proposition.

Proposition 2.13. There is an equivalence between the category of differential sys-
tems on A1

t of pure Gaussian type at t = ∞ and the category of C-Stokes filtered
sheaves of pure Gaussian type on P̃1

t .

We also have the following theorem (recall the notation in § 1.1).

Theorem 2.14. Let (X, xo) be a pointed simply connected complex manifold,
C = (c1, . . . , cn) : X → (C∗)n \ diagonals a holomorphic map, and Mo a differ-
ential system of pure Gaussian type with formal decomposition at infinity given
by

⊕n
i=1(E

−ci(xo)/2t′2 ⊗Rci(xo)). Then there is a unique locally free OX [t]-module
(M ,∇) with a flat connection such that, denoting the inclusion {x} ↪→ X by ix,
we have:

(1) i+x (M ,∇) is a C[t]〈∂t〉-module of Gaussian type with formal decomposition
at infinity given by

⊕n
i=1(E

−ci(x)/2t′2 ⊗Rci(xo)) (in particular, the Rci(xo) remain
constant);

(2) i+xo
(M ,∇) = Mo.

Proof. The formal OX((t′))-module
⊕n

i=1(E
−ci(x)/2t′2 ⊗ Rci(xo)) together with its

connection ∇ determines a formal meromorphic flat bundle which is good since
ci(x) 6= cj(x) for all i 6= j and all x ∈ X. From Corollary II.6.4 in [15] we deduce
the existence and uniqueness of a meromorphic flat bundle (M∞,∇) in an analytic
neighbourhood of X ×∞ ⊂ X × P1. Similarly, the local system induced by it on
X ×S1

∞ is constant, and this enables us to glue (M∞,∇) to (Ork Mo

X×A1,an
t

,d). Lastly,
by choosing a lattice, one can use a GAGA argument to make the construction
algebraic with respect to t. �

Remark 2.15. One proves in a similar way that every morphism ϕo: Mo → No

between differential systems of pure Gaussian type C(xo) extends in a unique way
to a morphism ϕ : (M ,∇)→ (N ,∇).

Corollary 2.16. Let X be a simply connected open subset of (C∗)n \ diagonals,
and let C , C ′ be two points of X . Then X determines an equivalence of categories
between the category of differential systems of pure Gaussian type C and that of
pure Gaussian type C ′.

Proof. We apply the above theorem and remark to the inclusion map X ↪→
(C∗)n \ diagonals. This yields that both categories mentioned in the statement of
the corollary are equivalent (by means of the restriction functor) to the category
of flat holomorphic families (parametrized by X) of differential systems of pure
Gaussian type x, x ∈ X. �

§ 3. Topological Laplace transformation

3.1. Mochizuki’s theorem. Our objective is to compute the Stokes data of M̂
at τ = ∞ in terms of the Stokes data of M at t = ∞. More precisely, we look for
a purely topological computation.
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In other words, we want to express the complex F̂ ∗ = DRanM̂ and, for every
γ ∈ C∗ (and particularly for γ ∈ −1/C), the rapidly decaying de Rham complex
L̂<γ := DRrd c∞(M̂ ⊗ Eγτ2/2)S1c∞ uniquely in terms of the Stokes-filtered sheaf
(F ,F•) attached to M . Consider the natural embedding of diagrams of projections

A1
t × A1

τ

p

{{xx
xx

xx
xx

x bp
##GG

GG
GG

GG
G

A1
t A1

τ

↪→ P̃1
t × P̃1

τep
||yy

yy
yy

yy
y ebp

""EE
EE

EE
EE

E

P̃1
t P̃1

τ

where P̃1
t (resp. P̃1

τ ) is the circle completion of A1
t (resp. A1

τ ), that is, the real
oriented blow-up of P1

t at ∞ (resp. of P1
τ at ∞̂). We set

D∞ := {∞} × P1
τ , Dc∞ := P1

t × {∞̂}.

Then the sheaves of holomorphic functions of moderate growth and rapid decay
are well defined on the space P̃1

t × P̃1
τ and determine the corresponding moder-

ate and rapidly decaying de Rham complexes. We will use the following notation.
Let X be a complex manifold and let D be a divisor with normal crossings on X.
We write X̃(D) (or simply X̃) for the real oriented blow-up of X along the irre-
ducible components of D. This space is endowed with the sheaves of holomorphic
forms on X \ D having rapid decay (resp. moderate growth) along the pre-image
of D on X̃. For every DX -module we have the de Rham complexes with rapid
decay (resp. moderate growth) along D, to be denoted by DRrd D (resp. DRmod D).
These are complexes of sheaves on X̃ (see [3], Ch. 8). The following theorem is the
main tool for our purposes.

Theorem 3.1 (Mochizuki [5], Corollary 4.51). Let e : X → P1
t × P1

τ be a sequence
of point blow-ups over (∞, ∞̂). Put DX = e−1(D∞ ∪ Dc∞). Let X̃ be the real
blow-up of X along the irreducible components of DX and let ẽ : X̃ → P̃1

t × P̃1
τ be

the corresponding map. Then for all γ ∈ C∗ we have

L̂<γ = R(˜̂p ◦ ẽ)∗DRrd DX e+(p+M ⊗ E−tτ+γτ2/2)|S1c∞ [1].

Remark 3.2. We could avoid the use of this analytic theorem in this paper, where
it is used to prove Theorem 3.7 below. However, in more complicated cases, this
theorem enables one to give a general definition of the topological Laplace trans-
formation and simplify the presentation (see [4]). This theorem also yields that for
every γ ∈ C the complex

R(˜̂p ◦ ẽ)∗DRrd DX e+(p+M ⊗ E−tτ+γτ2/2)

has cohomology in degree one at most. Consider the open inclusion j̃ : X\DX ↪→ X̃.
Then the natural morphism from this complex to its image under Rj̃∗j̃

−1 (which
also has cohomology in degree one at most) is injective at the level of cohomology.
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This theorem, with X = P1
t×P1

τ , D = D∞∪Dc∞ and e = Id, reduces the original
problem to that of expressing the complexes DRrd D(p+M ⊗ E−tτ+γτ2/2) in terms
of (F ,F•). It is easy to obtain such an expression for H 0 of these complexes: this
is done in Proposition 3.3 below. However one cannot apply Majima’s asymptotic
analysis to obtain the vanishing of the sheaves H k, k > 1, since p+M⊗E−tτ+γτ2/2

is not ‘good’ along D at (∞, ∞̂) in the sense of [16]. Therefore we apply Theorem 3.1
to a suitable modification of X.

We continue to use the notation in Theorem 3.1 and set q = p ◦ e. We also use
the notation in Remark 2.1, (5).

Proposition 3.3. Let e : X → P1
t × P1

τ be as in Theorem 3.1. For γ ∈ C we set

G<γ := H 0DRrd DX e+(p+M ⊗ E−tτ+γτ2/2),

regarded as a subsheaf of

G := j̃∗H
0DRane+(p+M ⊗ E−tτ )

with the natural inclusion (j̃ : X \DX ↪→ X̃). Then

j̃−1G<γ = j̃−1G = j̃−1q̃−1F60, G = j̃∗j̃
−1q̃−1F60. (3.1)

Moreover, for each x̃ ∈ X̃|e−1(Dc∞), setting θ̃ := ˜̂q(x̃), we have

G<γ,ex =



{
Ft for γ/2τ ′2 − t/τ ′ <bθ 0,

0 otherwise
if t := q̃(x̃) ∈ A1

t,∑
c∈C

γ/2τ ′2−1/t′τ ′−c/2t′2<(θ,bθ)0

L6c,θ if θ := q̃(x̃) ∈ S1
∞,

(3.2)

where the sum is taken in Lθ .

Proof. This is a straightforward computation from the definition of horizontal
sections of a flat meromorphic connection. Let us only indicate why j̃−1G =
j̃−1q̃−1F60. We thus forget about γ. The twist by E−tτ consists in changing the
set of exponential factors {ct2/2 | c ∈ C} to {(c + 2τt′)t2/2 | c ∈ C}. We then have
j̃−1G =

∑
c∈C, ct2/2+tτ60 L6c over S1

∞ and j̃−1G = F ∗ over A1
t. Near any point

of S1
∞ = {|t| = ∞} and for τ near τo ∈ A1

τ we have tτ + ct2/2 = ct2(1 + 2t′τ/c)/2
and (1 + 2t′τ/c) ∼ 1. Therefore, at any point θ ∈ S1

∞ we have tτ + ct2/2 6θ 0
if and only if ct2/2 6θ 0, and we conclude that j̃−1G = p̃−1F60. �

3.2. Choice of the blow-up. We write ε : Z → P1
t×P1

τ for the blow-up map with
centre (∞, ∞̂), E for the exceptional divisor, and D for the divisor E ∪D∞ ∪Dc∞,
where D∞ := ({∞} × P1

τ ) and Dc∞ := (P1
t × {∞̂}). We also put

E∗ = E \
(
(D∞ ∩ E) ∪ (Dc∞ ∩ E)

)
,

D∗c∞ = Dc∞ \ (Dc∞ ∩ E), D∗
∞ = D∞ \ (D∞ ∩ E).
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Note that A1
t×P1

τ and P1
t ×A1

τ are naturally embedded in Z as open subsets. Their
complements in Z are equal to D∞ ∪ E and Dc∞ ∪ E respectively (see Fig. 1).

Figure 1. The space Z

By definition, the pre-image of the affine chart A1
t′ × A1

τ ′ of P1
t × P1

τ centred
at (∞, ∞̂) consists of two affine charts, with coordinates denoted by (u, u′) and
(v, v′), such that the projection is given by
• t′ = u, τ ′ = uu′ in the first chart, and
• t′ = vv′, τ ′ = v′ in the second.

Lemma 3.4. The meromorphic bundle ε+(p+M ⊗ E−tτ+γτ2/2) with flat connec-
tion is pseudo-good, that is, good on DZ minus a finite subset of E∗, where the
exponential factors which are not good behave like v/u2 or v2/u2.

Proof. The possible exponential factors of ε+(p+M⊗E−tτ+γτ2/2) are the following
rational functions (c ∈ C):

ε∗
(

γτ2

2
− tτ − ct2

2

)
=

γv2 − 2v − c

2u2
,

whose numerators have only simple zeros if γ 6∈ Ĉ = −1/C or if γ = ĉo := −1/co

and c 6= co, and have a double zero at v = −co if γ = ĉo. �

Corollary 3.5. For every γ ∈ C the complex

DRrd DZ ε+(p+M ⊗ E−tτ+γτ2/2)

has cohomology in degree zero at most.

Proof. Outside the zeros of γv2 − 2v − c (c ∈ C) regarded as points on E, the
meromorphic flat bundle ε+(p+M ⊗ E−tτ+γτ2/2) is good, and even very good
in the sense of [17], § 7. Hence one can apply Majima’s theorem [18] (see also
[17], § 7). On the other hand, at the remaining points one can apply Lemma 5.1 in
view of Lemma 3.4. �

Definition 3.6 (topological Laplace transformation). Let (F ,F•) be a Stokes-
filtered sheaf on P̃1

t of Gaussian type C. We define G and G<γ by (3.1) and (3.2)
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for the blow-up map ε : Z → P1
t × P1

τ . Put q = p ◦ ε and q̂ = p̂ ◦ ε. The topological
Laplace transform (F̂ , F̂•) of (F ,F•) is the Stokes-filtered sheaf defined by the
data

F̂ ∗ := R1˜̂q∗j̃−1G , L̂<γ = H 1R˜̂q∗G<γ , γ ∈ C,

and the gluing morphism L̂<γ → L̂ (where L̂ is the constant sheaf of rank r

regarded as the restriction to S1c∞ of the pushforward of the constant sheaf F̂ ∗) is
induced by the pushforward of the natural morphism G<γ → G .

The following result is a direct consequence of Theorem 3.1 and Proposition 3.3.

Theorem 3.7. This definition produces a Stokes-filtered sheaf of Gaussian type Ĉ

which is isomorphic to the Stokes-filtered sheaf attached to M̂ .

Remark 3.8. It is not obvious a priori that the objects considered in Definition 3.6
form a Stokes-filtered sheaf. In the present setting we could prove this in a purely
topological way, without referring to the analytic Theorem 3.1.

3.3. The topological Laplace transformation on AAAAAAA1
τ . In this subsection we

make a little more explicit the topological expression of the restriction F̂ ∗ to A1
τ

of the Laplace transform of F̂ . In particular, the blow-up Z is not used here.
Consider the pullback p̃−1(F ,F•) on the open subset P̃1

t × A1
τ of P̃1

t × P̃1
τ .

We then have F̂ ∗ =R1˜̂p∗(j̃−1G ) =R1˜̂p∗(j̃−1p̃−1F60). Therefore F̂ ∗ is the con-
stant sheaf with fibre H1(P̃1

t ,F60), which has dimension r (equal to the rank of F ∗)
by the following lemma. We check directly the vanishing of all other Rk˜̂p∗(j̃−1G ).

Lemma 3.9. For every filtered local system (F ,F•) of pure Gaussian type we
have Hj(P̃1

t ,F60) = 0 for j 6= 1 and dim H1(P̃1
t ,F60) = r.

Proof. Consider the closed covering (P̃1
t,µ)µ∈Z/4Z of P̃1

t by the sets of all points t such
that arg t ∈ I(µ). In Ct,µ, F60 is the constant sheaf. We claim that (P̃1

t,µ)µ∈Z/4Z is
a Leray covering for F60 and that H0(P̃1

t,µ,F60) = 0 for all µ.
Indeed, on each P̃1

t,µ we have an isomorphism between (F ,F•) and (gr F , gr• F ).
Hence we can assume that the sheaf (F ,F•) is graded, and our task is easily
reduced to the case when (F ,F•) has exactly one exponential factor c ∈ C. Note
that on I(µ) ⊂ S1

∞ the function ect2/2 changes its asymptotic behaviour (from expo-
nential growth to rapid decay) exactly once, and this occurs in the interior of I(µ).
Therefore, when restricted to I(µ), F60 is equal to zero on some non-empty closed
interval and to the maximal extension of F|Ct,µ

on the complementary non-empty
open interval. It follows that F60 is acyclic on P̃1

t,µ.
The intersections of two (or more) sets of the covering are either segments or the

origin, and it is easy to check that either F60 is acyclic on such a segment, or it is
the constant sheaf on such a segment and, therefore, has no Hk with k > 1. This
completes the proof of our claim.

Next, we prove that H2(P̃1
t ,F60) = 0. This follows by Poincaré–Verdier duality

since the Verdier dual of F60 is a sheaf up to a shift and has properties similar to
those of F60 (see the proof of Lemma 4.16 in [3]).
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Lastly, the rank of H1(P̃1
t ,F60) is obtained by a simple computation with the

Euler characteristic. �

3.4. The topological space for computing the Laplace transform on P̃PPPPPP
1

τ .
We now make more explicit the computation of G and G<γ (γ ∈ C). We denote
by Z̃ the real blow-up of the components of D in Z. Then the map ε lifts to ε̃ : Z̃ →
P̃1

t × P̃1
τ . We notice that A1

t× P̃1
τ and P̃1

t ×A1
τ are naturally embedded in Z̃ as open

subsets whose complements are equal to ∂Z̃|D∞∪E and ∂Z̃|Dc∞∪E respectively. We
will mainly consider the complementary inclusions

∂Z̃|Dc∞∪E

ei
↪→ Z̃

ej
←↩ P̃1

t × A1
τ . (3.3)

The restriction ∂Z̃|E is described as follows:

∂Z̃|E ' S1
u × S1

u′ × [0,∞]u′ ' S1
t′ × S1

τ ′ × [0,∞]u′ ' S1
u × S1

v × [0,∞]v,

where the isomorphisms on the arguments are given by

(arg u, arg u′) 7→ (arg t′ = arg u, arg τ ′ = arg u + arg u′),

(arg u, arg u′) 7→ (arg u, arg v = − arg u′),

and on the absolute values by |v| = 1/|u′|. The restriction ∂Z̃|E∗ is obtained
by replacing [0,∞] by (0,∞) in the formulae above. On the other hand, ∂Z̃|Dc∞
(resp. ∂Z̃|D∞) is identified with the space P̃1

t × S1
τ ′ (resp. S1

t′ × P̃1
τ ), and the glu-

ing with ∂Z̃|E is obtained by identifying ∂P̃1
t × S1

τ ′ with S1
t′ × S1

τ ′ × {|u′| = 0}
(resp. S1

t′ × ∂P̃1
τ with S1

t′ × S1
τ ′ × {|u′| = ∞}). Notice that we will also use the

symbols S1
∞ for ∂P1

t and S1c∞ for ∂P̃1
τ , and it will be clear from the context whether

we are using arg t or arg t′ (resp. arg τ or arg τ ′) as a coordinate.
We will use the following diagrams:

Z

ε

��
P1

t × P1
τ

p

{{xx
xx

xx
xx

x bp
##FF

FF
FF

FF
F

P1
t P1

τ

Z̃

eε
��

P̃1
t × P̃1

τep
||yy

yy
yy

yy
y ebp

""EE
EE

EE
EE

E

P̃1
t P̃1

τ

(3.4)

Lemma 3.10. The space Z̃ is homeomorphic to the product of two closed discs.

Proof. The map ε̃ induces a diffeomorphism

ε̃−1(P̃1
t × A1

τ ) ' P̃1
t × A1

τ

onto the product of a closed disc and an open disc. Let us identify ∂Z̃|Dc∞∪E with
the product of a closed disc and S1

τ ′ .
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We regard ∂Z̃|E as the product S1
u × [0,∞]u′ × S1

τ ′ . Recall that ∂Z̃|D∗c∞ can be
naturally identified with A1

t×S1
τ ′ . We now identify A1

t∪(S1
u× [0,∞]u′) with a closed

disc with coordinate w (|w| 6∞) in the following way:

• when |w| < 1 we have w =
|t|

1 + |t|
ei arg t;

• when |w| > 1 we have w = (1 + |u′|)e−i arg u.

Then we set ∂Z̃|Dc∞∪E ' ∆̄w × S1
τ ′ , where ∆w ' Cw. �

3.5. Behaviour of the function exp
(
(c/2)t2 + tτ − (γ/2)τ2

)
on ∂Z̃. For

simplicity we denote the restriction of Z̃ to {t = 0} ∪ Dc∞ ∪ E by ∂Z̃ (hence the
restriction to D∗

∞ is not taken into account).
We fix a non-zero complex number c ∈ C∗ and consider the pullback of the

function exp
(
(c/2)t2 + tτ − (γ/2)τ2

)
to Z and Z̃, where γ ∈ C∗ is regarded as

a parameter to be varied.

Definition 3.11 (of the set ∆̄rd
w (θ̂, c, γ)). For a fixed θ̂ ∈ S1

τ ′ we define

∆̄rd
w (θ̂, c, γ) ⊂ ∆̄w × {θ̂} ⊂ ∆̄w × S1

τ ′ = ∂Z̃

as the set of points in a neighbourhood of which the function

exp
(
(c/2)t2 + tτ − (γ/2)τ2

)
is rapidly decaying.

Determination of ∆̄rd
w (θ̂, c, γ) in ∂Z̃|Dc∞ . Since γ 6= 0, the behaviour of the function

exp
(
(c/2)t2 + tτ − (γ/2)τ2

)
with a finite t as τ → ∞ is governed by the sign

of Re(−(γ/2)τ2). We find that

∆̄rd
w (θ̂, c, γ) ∩ ∂Z̃|Dc∞ =

{
∆61

w if 0 <bθ γ,

∅ if γ 6bθ 0.
(3.5)

Determination of ∆̄rd
w (θ̂, c, γ) in ∂Z̃|E . Let us first work with the coordinate w′ =

w−1 = |u′|e−i arg u, where |u′| ∈ (0,+∞] (since the behaviour at |u′| = 0 is already
known from the previous computation). Using the expression

(c/2)t2 + tτ − (γ/2)τ2 =
cu′2 + 2u′ − γ

2u2u′2
(3.6)

in the chart (u, u′), which becomes (cu′2 + 2u′ − γ)e−2ibθ/2 when we restrict to
arg τ ′ = arg u + arg u′ = θ̂ and, since u′ = e−ibθw′, we have

∆̄rd
w (θ̂, c, γ) ∩ ∂Z̃|E =

{
w′ | Re(cw′2 + 2e−ibθw′ − γ e−2ibθ) < 0

}
,

that is,

∆̄rd
w (θ̂, c, γ) ∩ ∂Z̃|E =

{
w′ | Re(c(w′ − e−ibθ ĉ)2 − (γ − ĉ)e−2ibθ) < 0

}
.

The argument (in the coordinate w′) of the centre ĉ(θ̂) := e−ibθ ĉ of the real hyperbola
with equation Re

(
c(w′ − e−ibθ ĉ)2 − (γbθ − ĉ)e−2ibθ) = 0 is equal to arg ĉ(θ̂) = π− θ̂−

arg c.
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Pictures of ∆̄rd
w (θ̂, c, γ) in ∂Z̃. In these pictures we assume that c is real and

positive. In Figs. 2, 3, the black dot is the centre ĉ(θ̂), the interior circle is the
circle |w| = 1, and the exterior circle is the circle |w| =∞. The regions ∆̄rd

w (θ̂, c, γ)
are the coloured regions and the boundaries are excluded if they are red (dotted).
The disc ∆61

w is also shown in the pictures.

Figure 2. ∆̄rd
w (bθ, c, γ) if bc <bθ 0

Figure 3. ∆̄rd
w (bθ, c, γ) if 0 <bθ bc

The following remarks will be useful.

Lemma 3.12. (1) For any fixed c and θ̂ we have

γ′ <bθ γ =⇒ ∆̄rd
w (θ̂, c, γ′) ⊂ ∆̄rd

w (θ̂, c, γ).

(2) The inclusion ĉ(θ̂) ∈ ∆̄rd
w (θ̂, c, γ) holds if and only if ĉ <bθ γ.

(3) We fix two positive numbers : c < c′.
• Assume that cos 2θ̂ > 0. Then ĉ′(θ̂) ∈ ∆̄d

w(θ̂, c′, γ) =⇒ ĉ′(θ̂) ∈ ∆̄d
w(θ̂, c, γ).

• Assume that cos 2θ̂ < 0. Then ĉ(θ̂) ∈ ∆̄d
w(θ̂, c, γ) =⇒ ĉ(θ̂) ∈ ∆̄d

w(θ̂, c′, γ).

3.6. The sheaves GGGGGGG and GGGGGGG <γ , γ ∈ CCCCCCC. We now make more explicit the expres-
sion of the sheaves G and G<γ . Recall that we identify ∂Z̃|Dc∞∪E with the product
∆̄w × S1

τ ′ (see Lemma 3.10 and its proof).
Let ρ : [0,∞] → [0, 1] be a decreasing homeomorphism such that ρ(0) = 0 and

ρ(∞) = 1. It induces a homeomorphism, still denoted by ρ : w 7→ ρ(|w|)ei arg w, from
∆̄w onto ∆61

w , which sends ∆w homeomorphically onto ∆<1
w = A1

t and {|w| = ∞}
onto ∂P̃1

t .
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(1) The sheaf wF60 on ∆̄w is the pullback of the sheaf F60 under the projection
ρ : ∆̄w → P̃1

t . It is a subsheaf of the constant sheaf wF (the pullback of F ).
(2) The sheaf G on ∂Z̃|Dc∞∪E ' ∆̄w × S1

τ ′ is the pullback of wF60 under the
projection ∆̄w × S1

τ ′ → ∆̄w. It is a subsheaf of the constant sheaf G ′ (the pullback
of wF ).

Note that the quotient sheaf G ′/G is supported on {|w| = ∞} × S1
τ ′ , and G is

constant in the interior of ∆̄w × S1
τ .

Lemma 3.13. The pushforward of G under the projection ∆̄w × S1
τ ′ → S1

τ ′ is the
constant local system of rank r on S1

τ ′ .

Proof. This is identical to that of Lemma 3.9 since there is no topological difference
between F60 on P̃1

t and wF60 on ∆̄w. �

The sheaves G<γ on ∂Z̃|Dc∞ ' {|w| 6 1}×S1
τ ′ . Let j0<γ denote the open inclusion

(∂Z̃|Dc∞)0<γ := P̃1
t ×

{
arg γ − 2 arg τ ′ ∈

(
−π

2
,
π

2

)
mod 2π

}
↪→ P̃1

t × S1
τ ′ .

(Over A1
t, this is the domain of rapid decay or, equivalently, of moderate growth

for the function exp
(
(c/2)t2 + tτ − (γ/2)τ2

)
when t remains at finite distance.) As

in Remark 2.1(4), we denote the functor j0<γ!j
−1
0<γ by β0<γ .

On ∂Z̃|Dc∞ , the first equality in (3.2) amounts to

G<γ := β0<γ G

(recall that G = G ′ is the constant sheaf of rank r on ∂Z̃|Dc∞). We have a natural
inclusion G<γ ↪→ G .

The sheaves G<γ on ∂Z̃|E . In order to understand the computation below, we will
regard for a moment ∂Z̃|E as the product E∗×S1

u with the identifications S1
u = S1

t′

and E∗ := S1
v × [0,∞]v (while E∗ = C∗

v = S1
v × (0,∞)v). In these coordinates the

limit of the expression (c/2)t2 + tτ − (γ/2)τ2 is equal to (c + 2v − bv2)e−2i arg u/2
(this expression holds on E∗×S1

u, and one should replace v by (|v|, ei arg v) to extend
it to E∗ × S1

u). Over E∗, we regard G<γ as a family (parametrized by v ∈ E∗) of
sheaves L<cγ(v), where

cγ(v) = bv2 − 2v. (3.7)

For a fixed v = vo, these sheaves were analyzed in § 2.4. Their definition used the
functor βc<cγ(vo). For varying v we similarly consider the open subset (∂Z̃|E)c<cγ(v)

of ∂Z̃|E . The corresponding open inclusion will be denoted by jc<cγ(v), with the
associated functor βc<cγ(v) := jc<cγ(v)! j

−1
c<cγ(v). The definition of the sheaves

L<cγ(vo) from the Stokes data also uses the given covering S1
u =

⋃
µ∈Z/4Z I(µ)(θo)

for some choice of θo generic with respect to C (see § 2.2). Therefore we consider
the corresponding covering

∂Z̃|E =
⋃

µ∈Z/4Z

E∗ × I(µ)(θo) =:
⋃

µ∈Z/4Z

(∂Z̃|E)(µ).
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However we now represent G<γ on ∂Z̃|E by regarding ∂Z̃|E as the product
{1 6 |w| 6 ∞} × S1

τ ′ , which will be better suited to the computation of the
pushforward under the projection map to S1

τ ′ . We will work with the coordi-
nates (|u′|, e−i arg u, ei arg τ ′) and put w′ = |u′|e−i arg u if |u′| 6= 0,∞. Then the set
(∂Z̃|E)c<cγ(v) is defined as

(∂Z̃|E)c<cγ(v) :=
{
(w′, ei arg τ ′) | Re(cw′2 + 2w′e−i arg τ ′ − γ e−2i arg τ ′) < 0

}
. (3.8)

Strictly speaking, this definition holds only for |w′| ∈ (0,∞) and we implicitly
understand that (∂Z̃|E)c<cγ(v) is the closure of the subset defined by this relation,
namely,

(3.8a) the restriction of (∂Z̃|E)c<cγ(v) to |w′| =∞ is given by the inequality

Re(c e−2i arg u) < 0

and, therefore, is identified with the product (S1
u)c<0 × S1

τ ′ ;
(3.8b) the restriction of (∂Z̃|E)c<cγ(v) to |w′| = 0 is given by the inequality

Re(−γ e−2i arg τ ′) < 0

and, therefore, coincides there with the restriction of the subset (∂Z̃Dc∞)0<γ con-
sidered above.

We will also use the closed covering ∂Z̃|E =
⋃

µ∈Z/4Z(∂Z̃|E)(µ), where (∂Z̃|E)(µ)

is given by the conditions e−i arg w′
:= ei arg u ∈ I(µ)(θo).

Lemma 3.14. On ∂Z̃|E , the constant sheaf G ′ can be obtained by gluing the
sheaves

G ′(µ) =
⊕
c∈C

C(∂ eZ|E)(µ) ⊗C G(µ)
c

with gluing morphisms g(µ,µ−1) = IdC
(∂ eZ|E)(µ)∩(∂ eZ|E)(µ−1) ⊗ S(µ,µ−1).

Proof. This follows from the corresponding property of L on S1
∞, which is equiv-

alent to the property that the product of the Stokes matrices is equal to the iden-
tity. �

Lemma 3.15. On ∂Z̃|E , the subsheaves G<γ ⊂ G ′ are obtained by gluing the sub-
sheaves

G
(µ)
<γ =

⊕
c∈C

(βc<cγ(v)C(∂ eZ|E)(µ))⊗C G(µ)
c =:

⊕
c∈C

G
(µ)
<γ,c

with the isomorphisms induced by g(µ,µ−1).

Proof. This is a straightforward consequence of the pointwise definition of G<γ

given by the second equality in (3.2). One can check the preservation of these
subsheaves under the gluing isomorphisms using the same arguments as in § 2.4. �

Lemma 3.16. For every γ ∈ C∗, G<γ is a subsheaf of G and coincides with the
previously defined sheaf G<γ on {|w| = 1} × S1

τ ′ .

Proof. This follows immediately from the properties (3.8a), (3.8b). �
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Remark 3.17 (restriction of G<γ to a fibre of q̂). We will denote (with some abuse)
by G<γ,bθ the restriction of G<γ to the fibre q̂−1(θ̂), where q̂ is the projection
∂Z̃|Dc∞∪E → S1

τ ′ , and so on. Then it follows from Lemma 3.12, (1) that for γ′ <bθ γ
there are natural morphisms G<γ′,bθ → G<γ,bθ → Gbθ.

If we fix θ̂ in S1
τ ′ , then the restriction G<γ,bθ to the fibre [1,∞]w × S1

w × {θ̂} =

[0,∞]w′ × S1
w′ × {θ̂} is described as follows.

(1) We first consider the subsets (3.8)bθ of all elements with arg τ ′ = θ̂ for c
ranging over C (completed with the corresponding subsets (3.8a)bθ and (3.8b)bθ).
They look like those in Figs. 2, 3.

(2) We may use the simplified version of the Stokes data of (L ,L•), where
S

(µ,µ−1)
c,c = Id for all c and µ = 1, 2, 3, so that G

(µ)
c = Gc for all c. On the subset

(3.8)bθ indexed by c we consider the constant sheaf with fibre Gc, extended by zero.
(3) We use the covering ((∂Z̃|E)(µ))µ∈Z/4Z and the gluing morphisms g(µ,µ−1) to

replace the direct sum of the previous sheaves by a new sheaf G<γ,bθ.
§ 4. Computation of the topological Laplace transform

Our aim in this section is to express the Stokes data attached to the topological
Laplace transform (F̂ , F̂•) in terms of those attached to (F ,F•). By Theorem 3.7,
this is equivalent to the computation of the Stokes data attached to M̂ in terms of
those attached to M .

We start with a Stokes-filtered sheaf (F ,F•) of type C ⊂ C∗. We will make
the computation with the following simplifying assumption: arg c is independent
of c ∈ C. We will denote the corresponding common value by arg C. Note that the
set Ĉ = −1/C then has the same property, with arg Ĉ = π − arg C.

Remark 4.1. Corollary 2.16 can always be used to reduce the computation to the
case when this assumption holds. But this reduction is implicit and, therefore,
useless for an explicit computation of the Stokes data.

Indeed, if C does not satisfy the previous assumption, then we can find a set
C ′ ⊂ C∗ (or, equivalently, a point in (C∗)n \ diagonals) with constant arg c′ for all
c′ ∈ C ′ and a simply connected open subset X of (C∗)n \ diagonals containing C
and C ′: choose disjoint paths from all points c ∈ C to distinct points of R∗

+ (this
determines a path from C to C ′ in (C∗)n \ diagonals) and take for X a simply
connected open neighbourhood of this path in (C∗)n \ diagonals.

Then the equivalence described in Corollary 2.16 Laplace-transforms into an
equivalence with respect to X̂ = −1/X, and if we know the transformation rule of
Stokes data for the pair (C ′, Ĉ ′), then we can use this equivalence to obtain the
transformation rule for (C, Ĉ). Unfortunately, the equivalence in Corollary 2.16
given by X is not explicit in terms of Stokes data.

We will express the Stokes data (in the sense of Definition 2.7) of type (Ĉ, θ̂o)
attached to (F̂ , F̂•) in terms of those of type (C, θo) attached to (F ,F•). A suit-
able choice of θo and θ̂o will simplify the computation.

Let us fix a choice of 1
2 arg C. Then the Stokes directions attached to C are

1
2 arg C + kπ/4 mod 2π, where k = 1, 3, 5, 7. We can therefore choose θo = 1

2 arg C.
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The ordering of C at θo is of the form c <θo c′ ⇐⇒ |c| < |c′|. The numbering
c1, . . . , cn corresponds to increasing absolute values. Recall that we set θ

(ν)
o =

θo + νπ/2, so that the ordering of C at θ
(ν)
o is the usual order between absolute

values if ν is even, and the reverse order if ν is odd.
We also choose

θ̂o =
π

2
+

1
2

arg Ĉ = π − 1
2

arg C = π − θo

and put θ̂
(ν)
o = θ̂o +νπ/2. The ordering of Ĉ at θ̂

(ν)
o is by the absolute values of the

elements of Ĉ if ν is odd, and the reverse order if ν is even. Note that the resulting
numbering ĉ1, . . . , ĉn of Ĉ at θ̂o is induced by the numbering of C at θo.

In the coordinate w′, the centres ĉ(θ̂) of the hyperbolas corresponding to a fibre
at θ̂ are given by the formula w′ = ĉ e−ibθ. Therefore they satisfy

argw′ ĉ(θ̂) = π − arg c− θ̂ = π − 2θo − θ̂.

It follows that for all ν ∈ Z/4Z we have

argw′ ĉ(θ̂(ν)
o ) = −θ(ν)

o

(recall that argw′ = − argt′ and we are using argt′ to parametrize S1
t′ = ∂∆̄w). Our

aim is to compute the filtrations L̂6ν• at the points θ̂
(ν)
o for all ν ∈ Z/4Z.

Theorem 4.2. Under the previous assumptions let (L,L6ν•) be the Stokes data
of pure Gaussian type (C, θo) attached to (F ,F•). Then the Stokes data (L̂, L̂6ν•) of
pure Gaussian type (Ĉ, θ̂o) attached to (F̂ , F̂•) are equal to (L,L6ν•).

We now fix ν ∈ Z/4Z and γ ∈ C and choose a number k ∈ {1, . . . , n} in such
a way that {

ĉk <ν γ 6ν ĉk+1 (ν even),
ĉk+1 <ν γ 6ν ĉk (ν odd).

We first describe a Leray covering of ∆̄w × {θ̂(ν)
o } suited to such a computation.

Each domain ∆̄rd
w (θ̂ = θ̂

(ν)
o , cj , γ) takes the form of one of the domains in Fig. 2

if ν is even (resp. in Fig. 3 if ν is odd), depending on whether j 6 k or j > k. In
Figs. 4, 5 we focus on the real half-line containing the centres of ĉj(ν) := ĉj(θ̂

(ν)
o ).

If ν is odd, then the domain ∆̄rd
w (θ̂(ν)

o , cj , γ) takes the form shown in Fig. 4 according
to Lemma 3.12. If ν is even, we get the picture shown in Fig. 5.

We notice that (∆̄w,µ)µ∈Z/4Z is a Leray covering for the sheaves G<γ when ν
is odd, but not when ν is even. In Figs. 4, 5 this covering is induced by the four
quadrants centred at the origin, and one of the corresponding edges is the half-line
drawn in these pictures. As soon as some domain ∆̄w,µ∩∆̄rd

w (θ̂(ν)
o , ck, γ) has two red

(dotted) boundary components, this produces a non-zero group H1 for G<γ . This
occurs in situations like ∆̄rd

w (θ̂(ν)
o , cj , γ) (j = 1, . . . , k) in Fig. 5. However, when γ

(and hence k) is fixed as above, we consider the slightly different closed covering
F (ν)

k shown in Fig. 6. Since G is constant in the interior of ∆̄w, we can also recover
Gbθ(ν)

o
and G

<γ,bθ(ν)
o

using formulae like in Lemmas 3.14 and 3.15.
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Figure 4. ν is odd, for example, ν = 3, θo ∈ (0, π/8), cos 2bθ(1)
o < 0:

a) ∆̄rd
w (bθ(ν)

o , cn, γ); b) ∆̄rd
w (bθ(ν)

o , ck+1, γ); c) ∆̄rd
w (bθ(ν)

o , ck, γ); d) ∆̄rd
w (bθ(ν)

o , c1, γ)

Proof of Theorem 4.2. We first study the sheaf Gbθ(ν)
o

, following Remark 3.17.
The disc ∆̄w × {θ̂(ν)

o } is shown in Fig. 6 together with its closed Leray covering
(F (µ))µ∈Z/4Z (here k and ν are fixed and we omit them from the notation). On
each F (µ) the sheaf Gbθ(ν)

o
splits into a direct sum

⊕
c∈C G

c,µ,bθ(ν)
o

, where G
c,µ,bθ(ν)

o
is

constant on ∆w ∩ F (µ) and on the non-dashed boundary, and is equal to zero on
the dashed boundary. The gluing maps are as in Lemma 3.14. It is then clear that
(F (µ)) is a Leray covering for Gbθ(ν)

o
and we have Γ(F (µ),Gbθ(ν)

o
) = 0 for every µ, so

that the corresponding Čech complex starts at degree 1. We denote by [−θ
(ν)
o ] the

half-line containing the centres of the hyperbolas and regard it as the intersection
of two closed subsets of the covering (F (µ)).

Lemma 4.3. The following morphism of complexes is a quasi-isomorphism :

0 // C 1(F (•),Gbθ(ν)
o

) δ1 //

��

C 2(F (•),Gbθ(ν)
o

) //

��

· · ·

0 // Γ([−θ
(ν)
o ],Gbθ(ν)

o
) // 0 // · · ·

Proof. We already know that the upper complex has cohomology only in degree 1.
This follows from Theorem 3.1, but can also be proved by direct arguments similar
to those given below. Thus it remains to prove that the projection Ker δ1 →
Γ([−θ

(ν)
o ],Gbθ(ν)

o
) is an isomorphism.

Assume that ν is odd, for example, ν =3 as in Fig. 6 (the case of even ν is similar).
In the Čech complex we identify the space C 1(F (•),Gbθ(ν)

o
) with L

θ
(1)
o
⊕L

θ
(3)
o
⊕L⊕L

(preserving the notation in the diagram (2.6)), and C 2(F (•),Gbθ(ν)
o

) with L⊕L⊕L⊕L.
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Figure 5. ν is even, for example, ν = 0, θo ∈ (0, π/8), cos 2bθ(0)
o > 0:

a) ∆̄rd
w (bθ(ν)

o , c1, γ); b) ∆̄rd
w (bθ(ν)

o , ck, γ), we could also have bc1(ν) inside this

domain, but not bck+1(ν); c) ∆̄rd
w (bθ(ν)

o , ck+1, γ); d) ∆̄rd
w (bθ(ν)

o , cn, γ)

Figure 6. The covering F (ν)
k by closed subsets F

(ν,µ)
k , µ ∈ Z/4Z: a) ν is

even (for example, ν = 0); b) ν is odd (for example, ν = 3)
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Write elements α of the first space in the form α(01)⊕ α(23)⊕ α(13)⊕ α(02) and
elements β of the second in the form β(012)⊕ β(123)⊕ β(230)⊕ β(301). We then
have

δ1(α)(012) = −α(02) + b(1)−1(α(01)),

δ1(α)(123) = b(3)−1(α(23))− α(13),

δ1(α)(230) = −α(20) + b(3)−1(α(23)),

δ1(α)(301) = b(1)−1(α(01))− α(13).

Therefore the map α 7→ α(23) induces an isomorphism from Ker δ1 onto L
θ
(3)
o

, as
required. �

It follows that L̂bθ(ν)
o

= H1(∆̄w,Gbθ(ν)
o

) is identified with Γ([−θ
(ν)
o ],Gbθ(ν)

o
), which

is nothing but L
θ
(ν)
o
' L.

Figure 7. ∆̄rd
w (bθ, cj , γ) if ν is odd, for example, ν = 3

Figure 8. ∆̄rd
w (bθ, cj , γ) if ν is even, for example, ν = 0

For every γ ∈ C we have L̂
<γ,bθ(ν)

o
= H1(∆̄w,G

<γ,bθ(ν)
o

). Let us compute the last
space using the corresponding Čech complex. By the description in Lemma 3.15
(which is more convenient to use with a single Gc for each c, as in Defini-
tion 2.6) combined with Figs. 4, 5, we have C 0(F (•),G

<γ,bθ(ν)
o

) = 0. Note also
that the cj-component of each C k(F (•),G

<γ,bθ(ν)
o

) (where j = 1, . . . , k for odd ν

and j = k + 1, . . . , n for even ν) is equal to zero (see Figs. 7, 8) and we have
a description of the complex similar to that in the proof of Lemma 4.3. The map
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H1(∆̄w,G
<γ,bθ(ν)

o
) → H1(∆̄w,Gbθ(ν)

o
) is isomorphic to the map given by the pro-

jection Γ([−θ
(ν)
o ],G

<γ,bθ(ν)
o

) → Γ([−θ
(ν)
o ],Gbθ(ν)

o
), which is nothing but the inclusion

L<νγ ↪→ L. �

Remark 4.4. The formulation of Theorem 4.2 makes clear the property ̂̂
M ' ι+M

(where ι stands for the involution t 7→ −t) since ̂̂
C = C. Similarly, considering

the Laplace transformation with kernel exp(tτ) (see Remark 1.5) is equivalent to
replacing −tτ by +tτ in the formulae. The centres of the hyperbolas are now given
by w′ = −ĉ(θ̂), and we have argw′(−ĉ(θ̂(ν)

o )) = −θ
(ν+1)
o . Clearly, the composite

of both Laplace transformations is equal to Id since rotation through −π/2 in the
first transformation is annihilated by rotation through +π/2 in the second.

§ 5. Appendix. Topological computation
of moderate and rapidly decaying de Rham complexes

Let R be a free C[u, u−1, v]-module of finite rank with a flat connection having
regular singularities along u = 0 (and, therefore, having poles along the divisor
D := {u = 0}). Recall that

Ev/u2
=

(
C[u, u−1, v]d + d(v/u2)

)
, Ev2/u2

=
(
C[u, u−1, v]d + d(v2/u2)

)
.

Being mainly interested in the behaviour at u = v = 0, we will use the same letters
for the corresponding meromorphic germs at the origin over the ring Ou,v[1/u]. We
thus consider a germ at u = v = 0 of the form Ev/u2 ⊗R or Ev2/u2 ⊗R.

Geometry. Let X be a neighbourhood of the origin in C2
(u,v), and let $ = $X : X̃ =

X̃(D) → X be the real blow-up of X along D. The boundary ∂X̃(D) of X̃(D) is
identified with D × S1

u, with the coordinates v on D and θ := arg u on S1
u. Let L

be the local system determined by R on D × S1
u.

Let j0 : D \ {0} ↪→ D be the inclusion. We consider the corresponding inclu-
sion j̃0 : (D \ {0}) × S1

u ↪→ D × S1
u and denote the complementary inclusions by

i0 : {0} ↪→ D and ĩ0 : {0} × S1
u ↪→ D × S1

u.
Let D̃ be the real blow-up of D at the origin v = 0, so that we can identify D̃

with [0, ε)×S1
v . We can fill the hole by gluing a disc along the boundary ∂D̃. This

yields a space D̃ along with a map $D : D̃ → D which contracts the closure of
the filling disc to the origin in D. Its restriction $D to D̃ is the real blow-up map
which contracts the boundary ∂D̃ to the origin.

On D̃ × S1
u, we denote by L̃1,+ (resp. L̃2,+; see Figs. 9, 10) the open subset

defined by the inequality Re(v/u2) > 0 (resp. Re(v2/u2) > 0), that is, arg v − 2θ ∈
(−π/2, π/2) mod 2π (resp. arg v−θ ∈ (−π/4, π/4) mod π). We also denote by Li,+

their restrictions to (D \ {0}) × S1
u and by j̃i : L̃i,+ ↪→ D̃ × S1

u (i = 1, 2) the open
inclusions. Define a subspace L̃i,+ in D̃ × S1

u as the union of the sets L̃i,+ and
(D̃\D̃)×S1

u and consider the corresponding open inclusion j̃
i
. We will then denote

the functor j̃
i!
j̃
−1

i
by β̃

i
, and so on.

The sets L̃i,+, L̃i,+ are topological fibrations over S1
u. Below we indicate their

typical fibres (contained in D̃ and D̃), and the fibrations themselves are obtained
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by rotating this picture about the centre of the (empty or full) disc. The map $D

(resp. $D) contracts the boundary circle (resp. the disc) to the origin.

Figure 9. Restriction of L1,+ and eL1,+ to arg u = θo

Figure 10. Restriction of L2,+ and eL2,+ to arg u = θo

Analysis. The space X̃(D) is equipped with the following sheaves:
• the sheaf A mod DeX(D)

of holomorphic functions on X∗ := X \D having moderate

growth along ∂X̃(D);
• the sheaf A rd DeX(D)

of holomorphic functions on X∗ := X \D having rapid decay
along ∂X̃(D).

We are mainly interested in their restrictions to ∂X̃(D) = D × S1
u.

Moderate and rapidly decaying de Rham complexes. Given a free OX(∗D)-module
M with flat connection, we consider the corresponding de Rham complexes
DRmod D(M ) and DRrd D(M ) on X̃(D). Their restrictions to X∗ are equal to
the holomorphic de Rham complex DR(M ).

Lemma 5.1. We have

DRrd D(Ev/u2
⊗R) = DRmod D(Ev/u2

⊗R) = j̃0!β1L , (5.1)

DRrd D(Ev2/u2
⊗R) = R$D,∗β̃2L = j̃0!β2L ,

DRmod D(Ev2/u2
⊗R) = R$D,∗β̃2

L .
(5.2)

As a consequence, the germs at {0} × S1
u of the complexes in (5.1) and in the

first line of (5.2) are identically equal to zero. On the other hand,

H 0DRmod D(Ev2/u2
⊗R) = 0, H 1DRmod D(Ev2/u2

⊗R) ' L|{0}×S1
u
. (5.3)
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Remark 5.2. In both examples we observe that DRrd D commutes with the restric-
tion to v = 0, while DRmod D does not. Indeed, the restriction to v = 0 of Ev/u2⊗R
or Ev2/u2 ⊗ R is equal to the restriction of R to v = 0 and, therefore, is regular.
Thus its moderate de Rham complex is a locally constant sheaf, while its rapidly
decaying de Rham complex is equal to zero.

Proof of (5.1). We first prove the result with Ev/u instead of Ev/u2
. It is enough

to check it at the origin of D since it is clear away from the origin. Let e : X ′ → X
be the blow-up of the origin, so that X ′ comes equipped with two charts with
coordinates (u′, v′) and (u′′, v′′) such that u = u′v′, v = v′ and u = u′′, v = u′′v′′.
The pre-image e−1(D) consists of the strict transform D′ = {v = 0} of D and the
exceptional divisor E = {v′ = 0}∪{u′′ = 0}. We have a map ẽ : X̃ ′(D′∪E)→ X̃(D)
between the real blow-up spaces.

The reason for using such a complex blow-up and the associated real blow-up
is that the moderate or rapidly decaying de Rham complexes we are interested
in can be computed as the pushforward under ẽ of the corresponding complexes
on X̃ ′. These complexes on X̃ ′ have cohomology in degree zero at most, and their
H 0-groups can easily be computed (see, for example, [3], Ch. 8).

The chart (u′′, v′′). Over this chart, we identify ∂X̃ ′ with A1
v′′ × S1

u by identifying
θ′′ = arg u′′ with θ = arg u. Since the pullback e+(Ev/u ⊗ R) has regular sin-
gularities along E = {u′′ = 0}, we have DRrd E(e+(Ev/u ⊗ R)) = 0 on ∂X̃ ′ in
this chart, and DRmod E(e+(Ev/u ⊗ R)) is the pullback sheaf ẽ−1ĩ−1

0 L under the
map ẽ : (θ′′, v′′) 7→ (θ′′, v′′eiθ′′) = (θ, v).

The chart (u′, v′). In this chart, we identify X̃ ′ with (R+)2×(S1)2 with coordinates
(|v′|, |u′|, arg v′, arg u′), and the map ẽ is given by

(|v′|, |u′|, arg v′, arg u′) 7→ (|v′|ei arg v′ , arg v′ + arg u′).

Since the de Rham complexes are already computed away from the strict transform
of D, we consider only the part which lies over the strict transform v′ = 0 (and,
therefore, over the origin u′ = v′ = 0) and is equal to S1

v′×S1
u′ . In a neighbourhood

of u′ = v′ = 0, the pullback of Ev/u ⊗R is equal to E1/u′ ⊗ e+R.
We identify S1

v′ × S1
u′ with S1

v × S1
u by the isomorphism (arg v′, arg u′) 7→

(arg v′, arg v′ + arg u′). Then the restriction of DRrd(E∪D′)(e+(Ev/u ⊗ R)) to this
set is equal to zero since the function e−1/u′ is not rapidly decaying at points lying
over E \ (D′∩E). The restriction of DRrd(E∪D′)(e+(Ev/u⊗R)) is clearly identified
with the restriction of β̃1L to S1

v × S1
u.

At this point, we can conclude that

DRrd D(Ev/u ⊗R) = j̃0!j̃
−1
0 DRrd D(Ev/u ⊗R) = j̃0!β1L .

Gluing the two charts. We identify topologically A1
v′′ with an open disc Bv′′ (of

radius 1) with coordinate v′′. There is a homeomorphism Bv′′ × S1
u

∼−→ Bw × S1
u

sending (v′′, arg u) to (w = v′′ei arg u, arg u). We regard Bw as the filling disc
in D̃. Indeed, on ∂Bw we have arg w = arg v. We also identify (R+)v′ × S1

v′ ×
S1

u′ with (R+)v × S1
v × S1

u by means of the map ẽ sending (|v′|, arg v′, arg u′)
to (|v′|, arg v′, arg u′ + arg v′) as above.
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Then the complex DRmod(E∪D′)(e+(Ev/u ⊗R)) is identified with β̃
1
L , and the

complex DRmod D(Ev/u ⊗R) is identified with R$D,∗β̃1
L .

It remains to check that the latter complex is zero when restricted to any point
(0, θ) of D×S1

u. At such a point, the germ of DRmod D(Ev/u⊗R) has cohomology
equal to the cohomology with compact support of the union of an open disc and
an open interval in its boundary, which is easily seen to be equal to zero.

By choosing a square root of the monodromy of L , one expresses Ev/u2 ⊗ R
as the pullback of a meromorphic connection Ev/u ⊗ R′ under the ramification
map u 7→ u2. Similarly, DRrd D(Ev/u2 ⊗ R) and DRmod D(Ev/u2 ⊗ R) are the
corresponding pullback complexes. Then (5.1) follows.

To prove (5.2), we do not need to use a covering with respect to u and we can
argue with v2/u2 as we did with v/u. The proof is similar except for the conclusion
on the vanishing of the germ of DRmod D(Ev/u ⊗ R) at (0, θ) ∈ D × S1 since the
cohomology is now equal to the cohomology with compact support of the union
of an open disc and two disjoint open intervals in its boundary. This cohomology
vanishes in degrees 6= 1 and has rank one in degree 1. �

Now let M be a locally free OX(∗D)-module with a flat connection which satisfies
the following equality locally on X̃(D):

A mod DeX ⊗$−1OX
M '

⊕
λ∈Λ

A mod DeX ⊗$−1OX
(Eλv/u2

⊗Rλ),

where Λ is a finite subset of C∗.

Corollary 5.3. Under these assumptions, the natural morphism

DRrd D(M )→ DRmod D(M )

is a quasi-isomorphism.

Proof. We can argue locally on ∂X̃(D). Using the assumptions about M , we can
replace M by

⊕
λ∈Λ(Eλv/u2 ⊗Rλ) and then apply (5.1). �
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