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Abstract. After making correct, and then improving, our definition of the category
of irregular mixed Hodge modules thanks to Mochizuki’s recent results, we show
how these results allow us to obtain Kodaira-Saito-type vanishing theorems for the
irregular Hodge filtration of irregular mixed Hodge modules.
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1. Introduction

1.a. Corrigenda to [Sab18]. In the memoir [Sab18], we have defined the category
IrrMHM(X) of irregular mixed Hodge modules on a complex manifold X, and we have
proved various properties of this category. However, the definition of the category
IrrMHM in loc. cit. has a flaw, as was noticed by T. Mochizuki, because the operation
of rescaling that is used does not preserve coherence. In order to preserve coherence,
one has to restrict the family of objects in order to ensure an algebraicity property in
the twistor parameter z. We make the definition of [Sab18] correct in Section 2.c.
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2 C. SABBAH

1.b. Application of the results of [Moc21] to IrrMHM. On the other hand, the
results of T. Mochizuki in [Moc21] allow us to improve the definition of IrrMHM

and to avoid the above restriction of objects. We explain this improvement and the
consequences of the results of [Moc21] to IrrMHM in Section 3.b.

1.c. An irregular Kodaira-Saito vanishing theorem. Let X be a smooth pro-
jective variety of dimension n. Let T be an object of IrrMHM(X) (e.g. with respect
to the improved definition of Section 3.d) and let M be the underlying holonomic
(left) DX -module. Then M can be equipped in a canonical way with a coherent fil-
tration indexed by A + Z for some finite set A ⊂ [0, 1), called the irregular Hodge
filtration and denoted by F irr

• M. Given α ∈ A, we denote by F irr
α+ZM the correspond-

ing Z-indexed filtration. The shifted holomorphic de Rham complex p
DRM is thus

filtered by setting

F irr
α+p

p
DRM = {0 → F irr

α+pM → Ω1
X ⊗ F irr

α+p+1M → · · · → Ωn
X ⊗ F irr

α+p+nM
•

→ 0},

where • indicates the term in degree zero. We will show how the results of T. Mochizuki
[Moc21], combined with the original proof of M. Saito [Sai90],(1) lead to the following
vanishing result and its corollaries:

Theorem 1.1 (Kodaira-Saito vanishing). Let L be an ample line bundle on X and let
T , M and A be as above. Then, for each α ∈ A, we have

Hi(X, grF
irr
α

p
DR(M)⊗ L) = 0 for i > 0,

Hi(X, grF
irr
α

p
DR(M)⊗ L−1) = 0 for i < 0.

Corollary 1.2. For T , M and A as above, let ao ∈ A + Z be such that F irr
<ao

M = 0,
and let us set ωX = Ωn

X . Then we have the vanishing

Hk(X,ωX ⊗ F irr
a (M)⊗ L) = 0 ∀ k > 0, and ∀ a ∈ [ao, ao + 1).

Note that we can replace F irr
a (M) by grF

irr

a (M) in this corollary. We also have the
analogue of Kollár’s vanishing theorem:

Corollary 1.3 (Kollár vanishing for the irregular Hodge filtration)
Let T , M, A and ao be as in Corollary 1.2. Let f : X → Y be a projective

morphism to a smooth projective variety Y and let L be an ample line bundle on Y .
Then we have the vanishing

Hk(Y,Rjf∗(ωX ⊗ F irr
a M)⊗ L) = 0 ∀ j, ∀ k > 0, and ∀ a ∈ [ao, ao + 1).

(1)One can also refer to [Pop16, PS13, PS14, Sch16, Sch19] for proofs and applications. We will
follow the proof given in [MHMP, §11.9].
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Remarks 1.4.
(1) The theorem will be proved for all objects of the category Cresc(X) introduced

by T. Mochizuki in [Moc21] (see Section 3.e), as the various compatibilities with
functors needed for the proof are proved for this category and not for IrrMHM(X).
One could also apply the result to objects of the category of exponential mixed Hodge
modules introduced in loc. cit.

(2) For each a ∈ A + Z, let us denote by <a the predecessor of a and let us set
grF

irr

a M = F irr
a M/F irr

<aM. We will show in Appendix B that the statement of Theo-
rem 1.1 also holds for the A+Z-graded complexes grF

irr p
DR(M) :=

⊕
a∈A+Z gr

F irr

a M.
(3) One can also prove the vanishing of Hk

(
X,Rjf∗(ωX ⊗ grF

irr

a (M))⊗L
)

for k, j
and a as in Corollary 1.3 (see Appendix B).

1.d. Geometric consequences. Let us emphasize an example where Theorem 1.1
applies. Let L be an ample line bundle on X and let D ⊂ X be a divisor with normal
crossings. Recall that the Kodaira-Norimatsu vanishing theorem ([Nor78]): for each
integer p ⩾ 0,

(1.5)
Hq(X,Ωp

X(logD)⊗ L) = 0 for p+ q > n,

Hq(X,Ωp
X(logD)⊗ L−1) = 0 for p+ q < n.

Theorem 1.1 enables us to extend this vanishing result when D contains the sup-
port of the pole divisor P of a morphism φ : X → P1. The sheaf Ωp(logD,φ) is
defined as the subsheaf of Ωp

X(logD) consisting of logarithmic forms ω such that
dφ ∧ ω remains logarithmic. More generally, for each α ∈ [0, 1) ∩ Q and each
p ⩾ 0, we define Ωp(logD,φ, α) as the subsheaf of OX(⌊αP ⌋) ⊗OX

Ωp
X(logD) con-

sisting of germs of meromorphic p-forms ω such that dφ ∧ ω is a local section of
OX(⌊αP ⌋)⊗OX

Ωp+1
X (logD).

Let us decompose the reduced divisor Pred as
⋃

i∈I Pi and let mi be the multiplicity
of Pi in P . For each α ∈ [0, 1) ∩ Q, let us set Iα = {i ∈ I | αmi ∈ N} and
Pα =

⋃
i∈Iα

Pi. In what follows, it is enough to consider that α belongs to the finite
subset A ⊂ [0, 1)∩Q consisting of those a such that ami ∈ N for some i ∈ I. If α > 0,
we denote by <α the predecessor of α in A. For α ∈ A∩ (0, 1) and p ⩾ 0, the quotient
sheaf Ωp(logD,φ, α)/Ωp(logD,φ,<α) is supported on the divisor Pα.

Corollary 1.6 (of Theorem 1.1). With the above assumptions and notations, for each
p ⩾ 0, the sheaves Ωp(logD,φ, α) (α ∈ A) satisfy the Kodaira-Saito vanishing prop-
erty analogous to (1.5).

In particular, we obtain the vanishing Hk(X,ωX(D + ⌊αP ⌋)⊗ L) for k > n.

Remark 1.7. By using Remark 1.4(2), one also obtains that the property of Corollary
1.6 holds for the sheaves Ωp(logD,φ, α)/Ωp(logD,φ,<α) (α ∈ A ∩ (0, 1)).

Corollary 1.8 (of Corollary 1.3). Let φ : X → P1 be a projective morphism and set
P = φ∗(∞). Assume that the support of P is contained in a (reduced) divisor with
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normal crossings D in X. Let f : X → Y be a projective morphism to a smooth
projective variety Y and let L be an ample line bundle on Y . Then for each α ∈ A

we have the vanishing property

Hk(Y,Rjf∗ωX(D + ⌊αP ⌋)⊗ L) = 0 for all k > 0 and all j.

1.e. Notations and conventions. All over the paper, we will use the following
notations and conventions.

(0) Unless otherwise stated, the sheaves of modules are left modules over their
corresponding sheaf of ring.

(1) Let X be a complex manifold and let DX be the sheaf of holomorphic differ-
ential operators on X, with its filtration F•DX by the order. We denote by RX the
Rees ring RFDX :=

⊕
k FkDXz

k, and by R̃X the sheaf RX⟨z2∂z⟩.(2) We have the
inclusions of sheaves of rings on X:

RX ⊂ R̃X ⊂ DX ⊗C C[z]⟨∂z⟩.

Inverting the action of z leads to the ring RX(∗z) := OX [z, z−1] ⊗OX [z] RX which
is isomorphic to DX ⊗C C[z, z−1]. Similarly, R̃X(∗z) is isomorphic to the ring of
differential operators DX ⊗C C[z, z−1]⟨z2∂z⟩. The inclusions above become

RX(∗z) ⊂ R̃X(∗z) = DX ⊗C C[z, z−1]⟨∂z⟩.

(2) If we consider the complex manifold X := X × Cz with sheaf of holomorphic
functions OX and projection π : X → X, we have the analytic versions of the
previous rings by applying the transformation OX ⊗π−1OX [z] •. We denote by 0z the
divisor X × {0} ⊂ X . We obtain the sheaves

RX ⊂ R̃X ⊂ DX and RX (∗0z) ⊂ R̃X (∗0z) = DX (∗0z).

We denote by X ◦ the open subset X ∖ 0z.
(3) We consider the partial projective completion X = X × P1 of X , so that X

is a Zariski open subset of X. We simply denote by 0z, resp. ∞z, the hypersurfaces
X×{0}, resp. X×{∞} of X. We have X = X∖∞z and X ◦ = X×C∗ = X∖(0z∪∞z).
Similarly, X◦ denotes the open subset X∖ 0z. Then X is covered by the open sets X

and X◦ with intersection X ◦. Since the sheaf R̃X ◦ is identified with DX ◦ , we can
extend it as DX◦(∗∞z) on X◦. Then R̃X can be extended as R̃X ⊂ DX(∗∞z), so that

R̃X|X = R̃X ⊂ DX , R̃X|X◦ = DX◦(∗∞z), R̃X(∗0z) = DX(∗(0z ∪∞z)).

We also denote by π the projection X → X.
(4) Assume that X = Y ×∆t for some disc ∆t ⊂ C. Each sheaf of rings considered

above is equipped with an increasing filtration V• such that t has order −1, ðt has
order 1 and operators defined on Y have order zero. In such a way, the operators of
V -order zero form a subsheaf of rings V0.

(5) The following proposition will be used various times.

(2)In [Sab18], we use the notation Rint
X and Rint

X ; here, we adopt the notation R̃X of [Moc21].
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Proposition 1.9. Let Z be any of the spaces X ,X and let AZ ⊂ BZ by any pair of
nested subsheaves of rings considered in (2)–(4). Let N be a coherent BZ -module
which the union of a sequence of coherent OZ -submodules Ni. Let N ′ ⊂ N be
a coherent AZ -submodule of N . Then each OZ -module N ′ ∩ Ni is coherent and
N ′ =

⋃
i(N

′ ∩ Ni) is also the union of a sequence of coherent OZ -submodules.

Proof. It is enough to check that each N ′∩Ni is coherent, and this is a local question
on Z , so we can assume that N ′ is the union of a sequence of coherent OZ -mod-
ules N ′

j . We first claim that Ni ∩ N ′
j is OZ -coherent. It is enough to prove that

Ni+N ′
j ⊂ N is OZ -coherent since Ni∩N ′

j is isomorphic to the kernel of Ni⊕N ′
j →

Ni +N ′
j . Since BZ is OZ -pseudo-coherent (see [Kas03, Def. A.5(1) & Lem. A.26]),

it is enough to check that Ni + N ′
j is locally OZ -finitely generated, which is clear.

From the claim we deduce that the increasing sequence (Ni ∩ N ′
j )j is locally

stationary since Ni is OZ -coherent. Therefore, Ni ∩ N ′ =
⋃

j(Ni ∩ N ′
j ) is OZ -co-

herent.

(6) For the rescaling operation, we denote by τ the rescaling variable. First, we con-
sider the algebraic description of the rescaling operation. We consider the sheaf of
rings OX [τ, τ−1, ζ] with the morphism of rings

OX [z] −→ OX [τ, τ−1, ζ]

z 7−→ ζτ−1.

By identifying OX [τ, τ−1, ζ] with OX [z][τ, τ−1] via the above correspondence, one sees
that OX [τ, τ−1, ζ] is OX [z]-flat. For the sake of clarity, we make a distinction between
the variables z and ζ, although both play the role of the twistor variable, before,
respectively after, rescaling. We set
(1.10) τR′

X = RFDX [τ ], τRX = RFDX [τ ]⟨ðτ ⟩, τ̃RX = τRX⟨ζ2∂ζ⟩,

which are sheaves on X and where ζ is the twistor variable. In local coordinates, τR′
X

and τRX read
τR′

X = OX [τ, ζ]⟨ðx⟩, τRX = OX [τ, ζ]⟨ðx,ðτ ⟩,
where, on the right-hand sides, ðx = ζ∂x and ðτ := ζ∂τ . We identify ι∗τ=ζ

τR′
X :=

τR′
X/(τ − ζ)τR′

X with RFDX that we can also write as
∑

k τ
k ⊗ FkDX . We also set

(1.11)

τR′
X(∗τ) = OX [τ, τ−1, ζ]⟨ðx⟩,

τRX(∗τ) = OX [τ, τ−1, ζ]⟨ðx, τðτ ⟩,
τ̃RX(∗τ) = τRX(∗τ)⟨ζ2∂ζ⟩ = OX [τ, τ−1, ζ]⟨ðx, τðτ , ζ2∂ζ⟩.

(7) For the analytic version of the rescaling operation, we decorate the spaces with
the letter τ on the left up side. So, we set

τX = X × Cτ ,

τX = X × P1
τ ,

τX
◦
= X ◦ × Cτ ,

τX
◦
= X ◦ × P1

τ ,

τX = X × Cτ ,

τX = X × P1
τ ,

τ
X = X× Cτ ,

τX = X× P1
τ .

We also consider the divisors 0τ ,∞τ , 0ζ ,∞ζ in X × P1
τ × P1

ζ = τX with an obvi-
ous meaning, and we denote similarly their restrictions to the above open subsets
τX , τX

◦
, τX of τX.
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Any of the projections τX → X, τX → X or τX → X (omitting τ) is denoted
by p, while any of the projections X → X, τX → τX or τX → τX (omitting z or ζ)
is denoted by π. Any of the projections τX → X and τX → X is denoted by q.

We consider the following sheaves of rings on τX, whose sheaf-theoretic pushforward
by q∗ gives back the sheaves of rings (1.10) and (1.11) onX. By definition, any sheaf R

or R̃ below satisfies R = R(∗(∞τ ∪∞ζ)). We thus consider

R τX/P1
τ

with q∗R τX/P1
τ

= τR′
X ,

R τX
with q∗R τX

= τRX ,

R̃ τX
with q∗R̃ τX

= τ̃RX ,

and

R τX/P1
τ

(∗0τ ) with q∗R τX/P1
τ

= τR′
X(∗τ),

R τX
(∗0τ ) with q∗R τX

= τRX(∗τ),

R̃ τX
(∗0τ ) with q∗R̃ τX

= τ̃RX(∗τ),

and we denote similarly their restrictions to the open subsets τX , τX
◦
, τX of τX. All

these sheaves are subsheaves of rings of D τX
(∗(0τ ∪ 0ζ ∪∞τ ∪∞ζ)).

(8) In both the algebraic and the analytic settings, the above sheaves are equipped
with their V -filtration with respect to the function τ , that we denote by τV•. We have

τVk(
τRX) =

{
τ−k τR′

X⟨τðτ ⟩ (k ⩽ 0),∑k
j=0 ðkτ τV0

τRX (k ⩾ 1),

τVk(τ̃RX) = τVk(
τRX⟨ζ2∂ζ⟩) ∀ k ∈ Z.

For the τ -localized modules, the filtration is simply the τ -adic filtration made increas-
ing. The definition is similar for the analytic sheaves R and we have the relations of
the form q∗

τVkR = τVk
τR.

(9) Let AX be any sheaf on X considered in (6) and (8), and let AX be the corre-
sponding analytic sheaf on X . Then AX is π−1AX -flat. Furthermore, an AX -mod-
ule N has no C[z]-torsion (or C[ζ]-torsion) if and only if its analytification N :=

AX ⊗π−1AX
π−1N has no such torsion.

(10) Any holomorphic map f : X → Y between complex manifolds induces a
holomorphic map between the corresponding associated spaces in (2) and (3), that
we still denote by f . For all sheaves considered in (6)–(8), there is associated a transfer
module, and the pullback and pushforward functors are defined correspondingly. For
all these variants, we denote their k-th cohomological version by Df

∗(k) and Df
(k)
∗

(k ∈ Z). The context should make clear which category they apply to. When f is
flat, we simply denote Df

∗ instead of Df
∗(0).

Remark 1.12. Proposition 1.9 applies similarly in the setting of (7)–(8).

Acknowledgements. I would like to thank Takuro Mochizuki for pointing out a problem
in the memoir [Sab18] and for developing an effective theory to improve the original
(corrected) definition. I also thank him for the numerous discussions on the theory
of mixed Hodge modules and for the interest he shows in the subject of irregular
Hodge structures. I would also like to thank Christian Schnell and Jeng-Daw Yu for
numerous enlightening discussions.
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2. A general framework for producing an irregular Hodge filtration

2.a. A reminder on strict R-specializability. Let us assume that X = Y ×∆t

(see Notation 1.e(4)). Let M be a coherent RX -module. We say that M is strictly
R-specializable along t if there exists an increasing(3) filtration V•M of M indexed by
A+ Z for some discrete set A ⊂ [0, 1) satisfying the following properties:

• for each a ∈ A+ Z, VaM is V0RX -coherent and M =
⋃

a VaM ,
• Vα+kM = t−kVαM for each α ∈ A and k ∈ Z⩽0,
• VaM = V<aM + ðtVa−1M if a > 1,
• tðt + az is nilpotent on grVa M for any a ∈ A+ Z,
• for any compact set K ⊂ X, there exists a finite subset AK ⊂ A such that

grVa M |K = 0 for a /∈ AK + Z,
• multiplication by z is injective on grVa M for any a ∈ A + Z (we also say that

grVa M has no z-torsion).

Let us recall some properties of strictly R-specializable modules.

• If a V -filtration along t exists for M , it is unique, so that checking strict R-spe-
cializability is a local question.

• Any morphism between strictly R-specializable modules is (possibly not strictly)
compatible with the V -filtration.

A similar definition exists for a coherent RX -module M .

Lemma 2.1. Let M be a coherent RX-module and set M = RX ⊗π−1RX
π−1M . If M

is strictly R-specializable along t, then M is so, and the V -filtrations along t satisfy
VaM = V0(RX )⊗π−1V0(RX) π

−1VaM for each a ∈ A+ Z.

Proof. Let us assume M is strictly R-specializable along t and let us set UaM =

V0(RX )⊗π−1V0(RX)π
−1VaM for each a ∈ A+Z. Then U•M satisfies the characteristic

properties of the V -filtration of M , since V0(RX ) is π−1V0(RX)-flat, hence is equal
to it by uniqueness.

2.b. Rescaling

Definition 2.2 (Rescaling in the z-algebraic setting). Given a left R̃X -module M , the
module τM := OX [τ, τ−1, ζ]⊗OX [z] M is naturally equipped with the structure of an
τ̃RX(∗τ)-module as follows:

(a) We identify τM with OX [τ, τ−1]⊗OX
M as an OX [τ, τ−1]-module.

(b) The action of ζ is defined by ζ ·
⊕

k∈Z(τ
k ⊗mk) =

⊕
k∈Z τ

k+1 ⊗ (zmk).

(3)One often uses a decreasing V -filtration V •M ; the correspondence is V aM = V−aM .
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(c) The action of derivations is defined by (with the same notation ðxi
for the

distinct elements z∂xi of R̃X and ζ∂xi of τ̃RX(∗τ)):

ðxi
(1⊗m) = τ(1⊗ ðxi

m) = τ ⊗ ðxi
m,

ðτ (1⊗m) = −1⊗ z2∂zm,

ζ2∂ζ(1⊗m) = τ(1⊗ z2∂zm) = τ ⊗ z2∂zm,

and extended in a natural way to τM by means of the decomposition (a).

The identification 2.2(a) provides τM with a natural grading by the degree in τ :
τM =

⊕
k∈Z τ

k ⊗M . With respect to it, the sections of OX [z] act in an homogeneous
way with degree zero, and ζ, τ with degree one. The derivations ðxi

, τðτ and ζ2∂ζ
are also homogeneous of degree one and one can identify the homogeneous component
τk⊗M with ker(ζ2∂ζ + τðτ − kζ). We say that τM is strict if τM has no C[ζ]-torsion,
and in particular τM ⊂ τM(∗ζ).

Any R̃X -linear morphism λ:M1→M2 yields a τ̃RX -linear morphism τλ: τM1→ τM2,
and τ̃RX -linearity implies that τλ is graded, since it commutes with ζ2∂ζ + τðτ .

If the R̃X -module M is coherent as an RX -module, it is R̃X -coherent and its
localized module M(∗z) := R̃X(∗z) ⊗R̃X

M is a coherent DX [z, z−1]⟨∂z⟩-module
(see Notation 1.e(1)). We say that M is strict if it has no C[z]-torsion, and in partic-
ular M ⊂M(∗z). We denote by M the DX -module M/(z − 1)M .

Proposition 2.3 (Coherence). Assume that the R̃X-module M is RX-coherent. Then
the τ̃RX(∗τ)-module τM is τR′

X(∗τ)-coherent, hence also τ̃RX(∗τ)-coherent.

Proof. If M is any RX -module, the rescaled object τM is well-defined as a τR′
X -mod-

ule, and if M is any R̃X -module, this structure is enhanced to a τ̃RX -structure by
Definition 2.2. In particular, τ(RX) ≃ τR′

X(∗τ) by sending 1 ⊗ ðxi to τ−1ðxi . The
assertion is then clear.

Lemma 2.4. If the R̃X-module M is strict, then τM is strict and (ζ − τ) acts in an
injective way on τM . Furthermore, the restricted module i∗τ=ζ

τM := τM/(ζ − τ)τM is
naturally identified, as a graded module, to C[τ, τ−1]⊗CM with its natural grading in-
duced by that of C[τ, τ−1]. If M is RX-coherent, then i∗τ=ζ

τM is DX [τ, τ−1]-coherent.

Proof. We use the decomposition 2.2(a) above. For strictness, let p(ζ) =
∑d

i=δ aiζ
i ∈

C[ζ] with d ⩾ 1 and aδ, ad ̸= 0. Letm ∈ τM be nonzero written asm =
⊕k1

k=k0
τk⊗mk

with mk0
̸= 0, such that p(ζ)m = 0. This implies that, for each k ∈ Z, we have∑d

i=δ aiz
imk−i = 0. Taking k = k0 + δ yields aδzδmk0

= 0, in contradiction with the
strictness assumption for M .

For the injectivity of (ζ − τ), we have

(2.5) (ζ − τ) ·
⊕
k∈Z

(τk ⊗mk) =
⊕
k∈Z

τk+1 ⊗ (z − 1)mk,

and the assertion follows from the strictness of M .
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The quotient τM/(ζ − τ) · τM is identified with
⊕

k τ
k ⊗C M as a graded module.

The action induced by that of ðxi
is by τ ⊗ ∂xi

. The last assertion is then clear.

Proposition 2.6. Let M be an R̃X-module which is RX-coherent and strict. Then, for
any coherent τ -graded τR′

X-submodule τM0 of τM which satisfies

(2.6 ∗) (τ − ζ) · τM0 = τM0 ∩ (τ − ζ) · τM

and

(2.6 ∗∗) OX [τ, τ−1, ζ]⊗OX [τ,ζ]
τM0 = τM,

there exists a unique coherent filtration F•M of the DX-module M = M/(z − 1)M

such that

RFM :=
⊕
k

τk ⊗ FkM = i∗τ=ζ
τM0 ⊂ i∗τ=ζ

τM = C[τ, τ−1]⊗C M.

Proof. We identify i∗τ=ζ
τR′

X with RFDX =
⊕

k τ
k ⊗ FkDX . Since τM0 is τ -graded,

that is, τM0 =
⊕

k τ
k ⊗ τM

(k)
0 with τM

(k)
0 ⊂ M , and since τ − ζ is homogeneous of

degree one, the pullback i∗τ=ζ
τM0 is also τ -graded. Moreover, (2.6 ∗) implies that it

is contained in i∗τ=ζ
τM = C[τ, τ−1]⊗C M, hence has no C[τ ]-torsion, and since τM0 is

τR′
X -coherent, i∗τ=ζ

τM0 is a graded coherent RFDX -module. Lastly, (2.6 ∗∗) implies
that C[τ, τ−1]⊗C[τ ] (i

∗
τ=ζ

τM0) = C[τ, τ−1]⊗C M.
The proposition follows from these properties.

We now give a sufficient condition for the existence of τM0 as in the proposition.
For that purpose, let us recall the notion of V -filtration and strict R-specializability
along τ . We consider the V -filtration of τRX(∗τ) along τ with

τV0(
τRX(∗τ)) = OX [τ, ζ]⟨ðx, τðτ ⟩ = τR′

X⟨τ∂τ ⟩,

and τVk(
τRX(∗τ)) = τ−k · τV0(τRX(∗τ)) for k ∈ Z (see Notation 1.e(8)). We adapt

below the definition of Section 2.a to the localized case.

Definition 2.7. We say that the τRX(∗τ)-module τM is strictly R-specializable along τ
if there exists an increasing filtration τV•(

τM) of τM indexed by A+Z for some discrete
set A ⊂ [0, 1) satisfying the following properties:

• for each a ∈ A+ Z, τVa(
τM) is τV0(

τRX(∗τ))-coherent and τM =
⋃

a
τVa(

τM),
•

τVa+k(
τM) = τ−kτVa(

τM) for each a ∈ A+ Z and k ∈ Z,
• τðτ + aζ is nilpotent on gr

τV
a (τM) for any a ∈ A+ Z,

• for any compact set K ⊂ X, there exists a finite subset AK ⊂ A such that
gr

τV
a (τM)|K = 0 for a /∈ AK + Z,
• multiplication by ζ is injective on gr

τV
a (τM) for any a ∈ A+ Z (we also say that

gr
τV
a (τM) has no ζ-torsion).

As in the case of Section 2.a, the following holds.

• If a τV -filtration exists for τM , it is unique.
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• Any morphism between strictly R-specializable τRX(∗τ)-modules is compatible
with the τV -filtration.

• We say that a morphism φ : τM1 → τM2 is strictly R-specializable along τ if,
for each a ∈ A + Z (index set for both τV•(

τM)1 and τV•(
τM)2), coker gr

τV
a φ has no

C[ζ]-torsion. If φ is strictly R-specializable along τ , then the τRX(∗τ)-modules kerφ,
imφ and cokerφ are strictly R-specializable along τ and their τV -filtration is the one
naturally induced by that of τM1 or τM2.

Proposition 2.8.
(1) Assume that the R̃X-module M is RX-coherent and strict and that τM , as a

τRX(∗τ)-module, is strictly R-specializable along τ . Let τV•(
τM) denote the corre-

sponding V -filtration. Then each τVa(
τM) is a coherent τ -graded τR′

X⟨τ∂τ ⟩-module
which satisfies (2.6 ∗) and (2.6 ∗∗).

(2) For M as in (1), if furthermore for some a∈R, τVa(
τM) is coherent over τR′

X ,
then it is so for any a ∈ R and each τVa(

τM) gives rise to a Z-indexed coherent
filtration denoted by F irr

a,•M. The notation is coherent in the sense that, for any k ∈ Z,
τVa+k(

τM) gives rise to the k-shifted filtration, that is,

(2.8 ∗) F irr
a+k,•M = F irr

a,•+kM,

so that we denote it as F irr
a+•M. Moreover, for any a, b ∈ R, we have the filtration

property

(2.8 ∗∗) a ⩽ b =⇒ F irr
a M ⊂ F irr

b M,

so that the family of Z-indexed filtrations (F irr
α+•M)α∈A forms an R-indexed filtration

F irr
• M.
(3) For M1,M2 as in (2), and any R̃X-linear morphism λ : M1 → M2, let

τλ : τM1 → τM2 be the associated τ̃RX-linear morphism. If λ is strict and τλ is strictly
R-specializable along τ , then the DX-linear morphism λ|z=1 : M1 → M2 is strictly
filtered with respect to the R-indexed filtration F irr

• M.

Proof.
(1) Recall that τkτVa(τM) = τVa−k(

τM) for each a ∈ R and k ∈ Z. Since the
V -filtration is exhaustive, (2.6 ∗∗) holds.

For (2.6 ∗), let m be a local section of τVa(
τM) such that m = (τ − ζ)m′, where m′

is a local section of τVb(
τM) for some b > a. Then the class of (τ − ζ)m′ in gr

τV
b (τM)

is zero. This is nothing but the class of −ζm′. The strict R-specializability property
implies that ζ acts in an injective way on each gr

τV
b (τM). Therefore, m′ is a local

section of τV<b(
τM). Arguing inductively, one eventually finds that m′ is a local

section of τVa(
τM).

We are left with proving that each τVa(
τM) is τ -graded. This property is equiv-

alent to the fact that each τVa(
τM) is preserved by the C∗-action on τM attached

to the grading 2.2(a): for any c ∈ C∗, we have by definition c ·
(⊕

k τ
k ⊗ mk

)
=⊕

k τ
k⊗(ckmk). Since the action of OX is homogeneous of degree zero and τ, ζ, τðτ ,ðx
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are homogeneous of degree one, we deduce that, for each c ∈ C∗, the filtration
c·τV•(

τM) satisfies all properties of the V -filtration. Since the V -filtration is unique, we
conclude that τV•(

τM) is τ -graded. (We owe this argument to T. Mochizuki [Moc21,
Lem. 6.10].)

(2) With the supplementary coherency assumption, we can apply Proposition 2.6
to each τVa(

τM) and obtain the coherent filtration F irr
a,•M. Then (2.8 ∗) follows from

the equality τkτVa(
τM) = τVa−k(

τM). Similarly, (2.8 ∗∗) follows from the inclusion
τVa(

τM) ⊂ τVb(
τM) if a ⩽ b.

(3) It follows from the assumption of (2) on M1,M2 that, for C = ker, im, coker,
C(τλ) also satisfies it. Moreover, we also find that C(i∗τ=ζ

τλ) = i∗τ=ζC(
τλ). We con-

clude that for each a ∈ R, i∗τ=ζ
τλ : RF irr

α
M1 → RF irr

α
M2 is a strict morphism, i.e.,

for each a ∈ R and k ∈ Z, λ|z=1(F
irr
a+kM1) = F irr

a+kM2 ∩ imλ|z=1. This is the desired
strictness property.

Remark 2.9. Assume that M satisfies the properties of Proposition 2.8(1). Let G :
τM → τM denote the grading operator, that is, G

(⊕
k τ

k ⊗ mk

)
=

⊕
k τ

k ⊗ kmk.
Then each τVa(

τM) is preserved by G, according to Proposition 2.8(1), and also by τG.
On the other hand, ζ2∂ζ acts on τM as τG − τðτ . It follows that each τVa(

τM) is
acted on by ζ2∂ζ , hence is a V0τ̃RX -module.

2.c. Provisional corrected definition of IrrMHM. We refer to the notations of
[Sab18]. As in loc. cit., we replace the category MTMint(X) of [Moc15] with the
category ιMTMint(X), where we have modified the notion of sesquilinear pairing to en-
able rescaling. Let X be a complex manifold. We now define the category IrrMHM(X)

as a full subcategory of the category of W -filtered triples ((M ′,M ′′, ιC),W•), where
M ′,M ′′ are R̃X -modules which are RX -coherent, ιC is a ι-sesquilinear pairing be-
tween the analytifications M ◦ = R̃X ◦ ⊗π−1R̃X

π−1M (M =M ′,M ′′) in the sense of
[Sab18, §1.3.e], and W• is a filtration in such a category. (Morphisms are the usual
ones.)

Such a filtered triple can be rescaled: for the components M ′,M ′′, this is Def-
inition 2.2, and for the sesquilinear pairing ιC, this is defined in [Sab18, §2.2.c].
We denote the rescaled object by τ ((M ′,M ′′, ιC),W•). The objects of IrrMHM(X)

are those W -filtered triples ((M ′,M ′′, ιC),W•) such that

(1) the analytifications (( τM ′, τM ′′, τιC),W•) of τ ((M ′,M ′′, ιC),W•) is an object
of the category ιMTMint(τX, (∗0τ )),

(2) the R τX (∗0τ )-modules τM ′, τM ′′, which are strictly R-specializable along τ

because of (1), are also regular along τ and graded (see [Sab18, Def. 2.19 & Def. 2.26]).

With this definition of IrrMHM(X), i.e., assuming that the W -filtered triples we
start with are algebraic in the z-direction, the results of [Sab18] hold true, except
that it is mentioned in [Sab18, Th. 0.2] that IrrMHM(X) is a full abelian subcategory
of ιMTMint(X). Fullness is no longer true since morphisms should have compo-
nents which are morphisms of R̃X -modules, while in ιMTMint(X) the components are
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morphisms of R̃X -modules. We will recover fullness with the improved definition of
Section 3.d.

The examples considered in loc. cit. all come with a natural partial z-algebraic
structure. This directly follows from one of the results of [Moc21] (see Corollary 3.5
below). For the sake of completeness, we give a direct proof of the following lemma
in order to ensure that the results of [Sab18] do not depend on those of [Moc21],
although the latter results enable us to give a better definition of IrrMHM(X) in
Section 3.d.

Lemma 2.10. Let φ be a meromorphic function on X and let T be the mixed twistor
D-module associated to a mixed Hodge module. Then the R̃X -module underlying the
integrable twistor D-module T φ/z ⊗ T (see [Sab18, §1.6.a]) has a natural partial
z-algebraic structure.

Sketch of proof. The assertion is clear for T alone: by definition, for a filtered
DX -module (M, F•M) as the one underlying a mixed Hodge module, the associated
RX -module is the Rees module RFM. It is thus enough to check the assertion
for T φ/z. Let P be the pole divisor of φ and let e : X ′ → X be a projective
modification which is an isomorphism over U := X ∖ P and such that

• X ′ is smooth and e−1(P ) is a divisor with normal crossings,
• φ := φ ◦ e extends as a projective morphism φ′ : X ′ → P1,
• e−1(P ) decomposes as e−1(P ) = P ′∪H ′, where P ′ denotes the pole divisor of φ′.

In the setting of RX ′ -modules, we set E φ′/z = (OX ′(∗P ′), zd + dφ′) and we denote
by E φ′/z[∗H ′] the twistor localization of E φ′/z along H ′, which underlies the mixed
twistor D-module T φ′/z[∗H ′] (see [Moc15, Prop. 11.2.2], see also the proof of [SY15,
Prop. 3.3]). A local computation, using the fact that the variables involved in φ′ and
in H ′ can be made distinct, shows that E φ′/z[∗H ′] ≃ E φ′/z ⊗OX (OX ,d)[∗H ′].

On the one hand, E φ′/z has the natural z-algebraic structure (OX′ [z](∗P ′), zd+dφ′)

and, on the other hand, (OX ,d)[∗H ′] has a natural z-algebraic structure since it is
the analytification of the Rees module of a filtered DX′ -module underlying a mixed
Hodge module. Therefore, the tensor product E φ′/z[∗H ′] of both also comes equipped
with a natural algebraic structure. Last, the algebraic structure of E φ/z is obtained
by pushforward by e of the latter.

3. Improved definition of IrrMHM

Although the setting of Section 2.b leads in a direct way to the construction of the
irregular Hodge filtration, the objects of IrrMHM(X) are analytic objects, and in order
to improve the definition of IrrMHM(X) we have to take care that some properties
needed in Proposition 2.8 only hold in the algebraic setting. In this section, we explain
the various comparison results needed to adapt Proposition 2.8 in the analytic setting
before giving the improved definition of IrrMHM(X).
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3.a. Goodness and extension to infinity of strict holonomic R̃X -modules

Let M be a coherent RX -module. We say that it is strict if it has no OCz -torsion.
We say that it is holonomic if its characteristic variety is contained in Λ × T ∗Cz

for some Lagrangian closed analytic set Λ ⊂ T ∗X. For a coherent R̃X -module M ,
we say that it is strict, resp. holonomic, if the underlying RX -module is so.

Proposition 3.1 (Goodness). Let M be a strict holonomic R̃X -module. Then M is
good. More precisely, M is the union of an increasing sequence of coherent OX -sub-
modules (with no reference to a compact set).

Lemma 3.2. Let M be a strict holonomic R̃X -module. Then the localized module
M (∗0z), regarded as a DX -module, is holonomic.

Proof. Since we have the identification R̃X (∗0z) = DX (∗0z), we regard the localized
module M (∗0z) := OX (∗0z)⊗OX M as a DX (∗0z)-module, hence as a DX -module.

It has been observed in [Sab18, Prop. 1.26], as a consequence of the main theorems
of [Kas78], that, as such, M (∗0z) is DX -holonomic.

Proof of Proposition 3.1. Lemma 3.2, together with [Mal04, Th. II.3.1], implies that
M (∗0z) admits a coherent filtration, and in particular it is the union of an increasing
sequence of coherent OX -submodules Fk. By strictness, we have M ⊂ M (∗0z).
We conclude with Proposition 1.9.

Proposition 3.3. Let M be a strict holonomic R̃X -module. There is a one-to-one
correspondence between the following objects:

(1) An R̃X-coherent extension M of M to X × P1 (see Notation 1.e(3)),
(2) a coherent R̃X-module M such that M = R̃X ⊗π−1R̃X

π−1M .

Proof. Assume (2). Clearly, given M defining M , we can extend M by setting

M := R̃X ⊗π−1R̃X
π−1M.

On the other hand, given M as in (1), M(∗0z) is a coherent DX(∗(0z ∪ ∞z))-
module whose restriction to X ◦ is holonomic. According to [Kas78, Th. 1.2 & 1.3],
it is therefore DX-holonomic and [Mal04, Th. II.3.1] ensures that it has a global
coherent filtration by OX-submodules. Since M is strict, we have M ⊂ M(∗0z) and
the argument already used in Proposition 3.1 implies that M also has a coherent
filtration. Then the argument of [DS03, Th. A.1] extends to the present setting in
order to construct M .

3.b. Results of T.Mochizuki in [Moc21]. The first improvement obtained in
[Moc21] enables us to avoid assuming a priori that the objects we start with are
algebraic in the z-direction. When X is reduced to a point, this was already done
in [Sab18, Chap. 3] by using the notion of Deligne meromorphic extension. When
dimX ⩾ 1, as we work with possibly irregular holonomic D-modules, the existence
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of such an extension is much less obvious, and is called the Malgrange extension in
[Moc21].

We recall that an integrable mixed twistor D-module is a W -filtered triple
((M ′,M ′′, ιC),W•), where M ′,M ′′ are strict holonomic R̃X -modules and ιC is an
integrable sesquilinear pairing (that can replace C of [Moc15] in the integrable case,
see [Sab18, Chap. 1]).

Theorem 3.4 ([Moc21, Th. 1.3]). Assume that M = M ′,M ′′ underlies an integrable
mixed twistor D-module. Then there exists a unique Malgrange extension of M ,
that is, a holonomic R̃X-module M which is regular along ∞z. This correspondence
is functorial with respect to morphisms in ιMTMint(X).

Corollary 3.5. Any integrable mixed twistor D-module ((M ′,M ′′, ιC),W•) comes
canonically, by analytification, from a W -filtered triple ((M ′,M ′′, ιC),W•).

Proof. This is a consequence of Theorem 3.4 and Proposition 3.3.

Next, in [Sab18, §2.3.d], a well-rescalability property property is assumed for the
objects of IrrMHM(X). The following result of [Moc21] asserts that, by using the
canonical z-algebraic representative for rescaling an object of ιMTMint(X), this prop-
erty is automatically satisfied.

Theorem 3.6 ([Moc21, Th. 1.5]). Assume that M underlies an integrable mixed twistor
D-module on X. Let M be the z-algebraic representative of its Malgrange extension,
let τM be the rescaled object (see Definition2.2) and let τM denotes its analytification,
which is an R̃ τX (∗0τ )-module. Assume furthermore that τM is the naive localization
along τ of an R̃ τX -module which underlies a mixed twistor D-module on τX. Then τM

is regular along τ , i.e., M is well-rescalable in the sense of [Sab18, §2.3.d].

3.c. Specializability along τ . In loc. cit., a grading property ([Sab18, Def. 2.26])
is also imposed in the definition of IrrMHM. It was noticed in [Moc21] that this
property is automatically satisfied (invariance under a C∗-action). We explain this
property in the setting considered above.

We take up the setting of Section 2. Let M be a strict R̃X -module (i.e., with
no C[z]-torsion). We say that M is a holonomic R̃X-module if its analytification
M := R̃X ⊗π−1R̃X

π−1M is so, that is, the characteristic variety of M is contained
in Λ × T ∗Cz for some closed Lagrangian analytic subset Λ of T ∗X. Let τM be the
rescaled object (see Definition 2.2) and let τM denotes its analytification on τX , which
is an R̃ τX (∗0τ )-module. The notion of strict R-specializability along τ in this analytic
setting is similar to that of Definition 2.7, and the properties of the τV -filtration are
similar. In this section we prove the next proposition.

Proposition 3.7. Assume that M is holonomic, strict, and that τM is strictly R-spe-
cializable along τ . Then τM is strictly R-specializable along τ and we have, for each
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a ∈ A+ Z,
τVa(

τM ) = V0(R τX )⊗q−1V0(τRX) q
−1τVa(

τM),

where q is the projection τX → X.

Corollary 3.8. Under the assumptions of Proposition 3.7, the RX -module M =

RX ⊗π−1RX
π−1M is graded in the sense of [Sab18, Def. 2.26].

Note that here we do not take care of the condition of well -rescalability.

Proof of Corollary 3.8. Each τVa(
τM) is τ -graded, according to Proposition 2.8(1),

so grading τVa(
τM ) with respect to the τ -adic filtration yields τVa(

τM) and the identi-
fication of Proposition 3.7, after restricting it by the functor i∗τ=ζ , implies the grading
property.

Proof of Proposition 3.7. If M is holonomic and strict, then so is M , and its lo-
calized module M (∗0z) is a holonomic DX -module (Lemma 3.2). Furthermore,
the analytification M(∗0z) on X = X × P1

z, which is a coherent DX(∗(0z ∪ ∞z))-
module, is also DX-holonomic, according to [Kas78], and good according to [Mal04,
Th. II.3.1]. By applying the functor π∗ (see [DS03, Th. A.1]), we deduce thatM(∗z) is
DX [z]⟨∂z⟩-holonomic (holonomicity means that ExtkDX [z]⟨∂z⟩(M(∗z),DX [z]⟨∂z⟩) = 0

for k ̸= dimX + 1), and also as a DX [z, z−1]⟨z∂z⟩-module. We will use similar argu-
ments to obtain the τV -filtration of τM from that of τM .

The rescaled module τM is a DX [τ, τ−1, ζ]⟨ðτ , ζ2∂ζ⟩-module. We will analytify
it as a sheaf τM on X × P1

τ × P1
ζ over the coherent sheaf of rings R̃ τX

(∗0τ )
(see Notation 1.e(7)).

The rescaled module τ(M(∗z)) is a DX [τ, τ−1, ζ, ζ−1]⟨τ∂τ , ζ∂ζ⟩-module equal
to τM(∗ζ) and is identified to the pullback D-module of M(∗z) by the map
(ζ, τ) 7→ z = ζτ−1. In particular it is also holonomic, and has a decomposition

(3.9) τM(∗ζ) =
⊕
k

(τk ⊗M(∗z)).

Furthermore, since τk⊗M(∗z) is identified with ker(ζ2∂ζ +τðτ −kζ), we deduce that
τM(∗ζ) is τRX(∗ζ)-coherent (i.e., the action of ∂ζ can be expressed in terms of that
of ζ−1τ∂τ ). Its analytification is denoted by τM(∗0ζ).

From [Kas78] we deduce:

Corollary 3.10.
(1) The analytification τM(∗0ζ) on X × P1

τ × P1
ζ of τM(∗ζ) is a holonomic

DX×P1
τ×P1

ζ
-module which is equal to its localization at 0τ ∪∞τ ∪ 0ζ ∪∞ζ .

(2) The restriction τM (∗0ζ) of τM(∗0ζ) to τX is a holonomic D τX -module equal
to its localization along 0τ ∪ 0ζ . It is also equal to the analytification of τM(∗ζ)
on τX .

Note also that the restriction of τM (∗0ζ) or τM(∗0ζ) to the open subset τX
◦ is

equal to the restriction of τM or τM to τX
◦. Under the assumptions of Proposi-

tion 3.7, we have the following properties.
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• As τM(∗0ζ) is DX×P1
τ×P1

ζ
-holonomic, it admits a Kashiwara-Malgrange filtration

τV•(
τM(∗0ζ)) along τ . This filtration is indexed by a set A′ + Z, where A′ is a priori

only a discrete subset of C that we can choose in {a ∈ C | Re(a) ∈ [0, 1)} with the
total order induced by the lexicographic order on C = R + iR. For any compact set
K ⊂ X, when restricting to K × P1

τ × P1
ζ , only a finite subset A′

K ⊂ A′ occurs as the
index set. Furthermore, away from 0τ , each τVa(

τM(∗0ζ)) coincides with τM(∗0ζ)
and, by restricting to τX

◦ (i.e., away from ∞τ ∪ 0ζ ∪∞ζ), we find the Kashiwara-
Malgrange filtration as holonomic D τX ◦ -module

τVa(
τ
M(∗0ζ))| τX ◦ = τVa(

τ
M(∗0ζ)| τX ◦) = τVa(

τM (∗0ζ)| τX ◦).

• On the other hand, by assumption of strict R-specializability of τM along τ , τM

is equipped with a coherent τV -filtration with respect to τV•(R τX ).

As a consequence, τM | τX ◦ = τM(∗0ζ)| τX ◦ comes the equipped with two a priori
distinct τV -filtrations (i.e., with respect to distinct rings of operators). Indeed, we re-
gard R τX ◦ as a subsheaf of rings of R̃ τX ◦ = R τX ◦⟨∂ζ⟩ = D τX ◦ . Although τM | τX ◦

is R τX ◦ -coherent, we cannot assert a priori that its τV•(D τX ◦)-filtration (which ex-
ists by the holonomicity assumption) and its τV•(R τX ◦)-filtration (which exists by
assumption) coincide. This would be the case if we would know that each term
of its τV•(D τX ◦)-filtration is τV0(R τX ◦)-coherent, by uniqueness of the τV•(R τX ◦)-
filtration.

Lemma 3.11. Each term of the τV•(D τX ◦)-filtration of τM (∗0ζ)| τX ◦ is τV0(R τX ◦)-
coherent.

Sketch of proof. The τV•(D τX ◦)-filtration of τM (∗0ζ)| τX ◦ is the restriction of the
τV•(D τX ◦)-filtration of τM(∗0ζ). Since each step of this filtration is good, we can
apply the equivalence by q∗ (see [DS03, Th. A.1]) to show that the τV•(D τX ◦)-
filtration of τM (∗0ζ)| τX ◦ comes by analytification from a τV -filtration of τM(∗ζ) as a
DX [τ, τ−1, ζ, ζ−1]⟨τ∂τ , ζ∂ζ⟩-module. It is the unique increasing filtration τV•(

τM(∗ζ))
of τM(∗ζ) indexed by A′ + Z for some discrete set A′ ⊂ {a ∈ C | Re(a) ∈ [0, 1)} sat-
isfying the following properties:

• for each a ∈ A′ + Z, τVa(
τM(∗ζ)) is DX [τ, ζ, ζ−1]⟨τ∂τ , ζ∂ζ⟩-coherent and

τM(∗ζ) =
⋃

a
τVa(

τM(∗ζ)),
•

τVa+k(
τM(∗ζ)) = τ−kτVa(

τM(∗ζ)) for each a ∈ A′ + Z and k ∈ Z,
• τ∂τ + a is nilpotent on gr

τV
a (τM(∗ζ)) for any a ∈ A′ + Z,

• for any compact set K ⊂ X, there exists a finite subset A′
K ⊂ A′ such that

gr
τV
a (τM(∗ζ))|K = 0 for a /∈ A′

K + Z.

We can now argue as in Proposition 2.8(1). By uniqueness of the τV -filtration,
τVa(

τM(∗ζ)) is stable by the C∗-action, and is thus graded with respect to the grading
(3.9). It follows that the action of ∂ζ can be expressed in terms of that of ζ−1τ∂τ , and
thus each τVa(

τM(∗ζ)) is DX [τ, ζ, ζ−1]⟨τ∂τ ⟩-coherent. By analytification, we obtain
the desired τV0(R τX ◦)-coherency.
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Now that we know that the filtrations τV•(
τM (∗0ζ)| τX ◦) and τV•(

τM )| τX ◦ coincide,
we can glue τV•(

τM ) with τV•(
τM(∗0ζ)) and for each a we obtain a coherent sheaf over

the ring τV0R τX
, which is good (being contained in a good D τX

(∗(∞τ ∪∞ζ))-module,
see Proposition 1.9). By taking pushforward by q∗ we obtain the filtration τV•(

τM)

which satisfies the properties of Proposition 3.7.

3.d. New definition of IrrMHM. We can now define IrrMHM(X) as a full subcate-
gory of ιMTMint(X). Let ((M ′,M ′′, ιC),W•) be an object of ιMTMint(X): in partic-
ular, it is a W -filtered triple consisting of R̃X -modules M ′,M ′′ which are holonomic
and strict as RX -modules, and of an integrable sesquilinear pairing ιC between them.
We say that ((M ′,M ′′, ιC),W•) is an object of IrrMHM(X) if the following holds:

• Let ((M ′,M ′′, ιC),W•) be the partial algebraization of the Malgrange extensions
of ((M ′,M ′′, ιC),W•) (Corollary 3.5), so that the rescalings τM ′, τM ′′ are well-defined
R̃ τX (∗0τ )-modules by Theorem 3.6 and τ

ιC is defined as a sesquilinear pairing between
their restriction to X × C∗

τ × C∗
ζ . Then τ

ιC extends as a sesquilinear pairing between
τM ′ and τM ′′ with values in moderate distributions (see [Sab18, Def. 2.43]), and the
object (( τM ′, τM ′′, τιC),W•) belongs to MTM(τX, (∗0τ )).

It follows from Theorem 3.6 and Proposition 3.7 that the rescaling of an object of
IrrMHM(X) is well-rescalable and graded in the sense of [Sab18, §2.3.d & Def. 2.26].
Any morphism in ιMTMint(X) between objects of IrrMHM(X) (that is, a morphism
in IrrMHM(X)) can be rescaled by using the same procedure as for M ′,M ′′. The
rescaled morphism is then a morphism in MTM( τX , (∗0τ )), hence it is strictly R-spe-
cializable along τ , and graded (see [Sab18, Lem. 2.27]). It follows from loc. cit. that
its kernel and cokernel also belong to IrrMHM(X). In other words, IrrMHM(X) is
a full abelian subcategory of ιMTMint(X), and any morphism is strict with respect
to the weight filtration. In particular, each graded object grWℓ is a pure object of
IrrMHM(X).

Furthermore, any morphism in ιMTMint(X) between objects of IrrMHM(X) in-
duces a bi-strict morphism between the underlying DX -modules equipped with their
irregular Hodge and weight filtration (see [Sab18, Prop. 2.31 & 2.32]). As a conse-
quence, for M ∈ Mod(DX) underlying T ∈ IrrMHM(X), the irregular Hodge filtration
of grWℓ M is the filtration induced by F irr

• M.
Since the construction of the Malgrange extension of [Moc21, Th. 1.3] is compat-

ible with the standard functors, it follows that the properties proved for IrrMHM(X)

in [Sab18, §2.4], namely compatibility with projective pushforward and smooth pull-
back, hold with this improved definition of IrrMHM(X).

3.e. The category Cresc(X) and its properties. We recall some results of [Moc21]
on the category Cresc(X) and explain its relation with the category IrrMHM(X).
We refer to the monograph [Moc15] for the definition and the properties of (in-
tegrable) mixed twistor D-modules. We only consider the analytic setting in what
follows.
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Recall that, given an integrable mixed twistor D-module ((M ′,M ′′, C),W•), the
R̃X -module M ′′ is said to underlie this twistor D-module. In [Moc21], T.Mochizuki
introduces the category Cresc(X) as a subcategory of that of R̃X -modules underly-
ing an integrable mixed twistor D-module. The objects of Cresc(X) are precisely
those which satisfy the assumptions of Theorem 3.6. The category Cresc(X) has
the drawback of being non abelian. However, it is preserved by various functors on
R̃X -modules (see [Moc21, Th. 1.7]. For example, if H ⊂ X is a smooth hypersur-
face which is non-characteristic with respect to an object M of Cresc(X), then the
twistor-localization morphism M → M [∗H] and the dual twistor-localization mor-
phism M → M [!H] are morphisms in Cresc(X) whose kernel an cokernel belong to
Cresc(X).

For an object M of Cresc(X), the underlying DX -module M is equipped with a
coherent filtration F irr

• M indexed by A+ Z for some finite subset A ⊂ [0, 1), that we
can regard as a nested family, indexed by α ∈ A, of Z-indexed coherent filtrations
F irr
α+•M. We consider the various Rees modules RF irr

α
M (these are holonomic graded

RFDX -modules). The good behavior of the objects of Cresc(X) with respect to some
functors transfers to these Rees modules.

Duality and strict holonomicity. In general, let (M, F•M) be a holonomic DX -module
equipped with a coherent F -filtration and let RFM denote its Rees module, which
is a graded module over the Rees graded ring RFDX . We say that RFM is strictly
holonomic if

(a) Ext iRFDX
(RFM, RFDX) = 0 for i ̸= n = dimX,

(b) and ExtnRFDX
(RFM, RFDX) is strict.

The dual module D(RFM), which is the graded RFDX -module obtained by side-
changing from ExtnRFDX

(RFM, RFDX), takes then the form RF (DM) for some fil-
tration F•D(M) on the dual holonomic DX -module D(M). Furthermore, biduality
DD(RFM) ≃ RFM holds and D(RFM) is strictly holonomic.

Proposition 3.12 ([Moc21, Cor. 6.55]). Let M be an object of the category Cresc(X) and
let (M, (F irr

α+ZM)α∈A) be the associated nested-filtered DX-module. Then

• the complex DM is concentrated in degree zero and its cohomology belongs to
Cresc(X);

• the associated irregular Hodge filtration is indexed by −A+ Z;
• each RFDX-module RF irr

α
M is strictly holonomic, and the coherent dual filtration

on the dual DX-module DM is the irregular filtration F irr
β+Z(DM) induced by the object

DM of Cresc(X), where β = (<−α− 1) is the predecessor of −α− 1 in −A+ Z.

Non-characteristic inverse images. If an RX -module M underlies a mixed twistor
D-module on X, its characteristic variety CharM ⊂ (T ∗X) × Cz is contained in
the product Λ×Cz, where Λ is a Lagrangian closed analytic subset of T ∗X, that one
can take minimal for this property. For a morphism f : X ′ → X, we say that f is
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non-characteristic with respect to M if it is so with respect to Λ. Writing f as the com-
position of its graph inclusion ιf : X ′ ↪→ X ′ ×X and the projection p : X ′ ×X → X,
the non-charactericity condition is equivalent to that of ιf with respect to Λ× T ∗

XX.
We say that f is strictly non-characteristic with respect to M if moreover the co-

homology of its RX -module pullback complex Df
∗M is strict (see Notation 1.e(10)).

This implies that Df
∗M ≃ Df

∗(0)M is concentrated in degree zero.
As by definition M is strict, i.e., has no OCz

-torsion, the same property holds
for its RX -module pullback Dp

∗M . On the other hand, a non-characteristic closed
inclusion is strictly non-characteristic with respect to M : as this is a local property,
one iteratively reduce to the case of a codimension-one non-characteristic inclusion,
in which case the strictness property follows from the strict specializability of M .
In conclusion, for M underlying an object of MTM(X), the non-charactericity of f is
equivalent to its strict non-charactericity.

In the appendix, for the sake of completeness, we review the notion of non-
characteristic pullback of a (possibly integrable) mixed twistor D-module as it is
not explicitly defined in all cases in [Moc15].

Proposition 3.13 ([Moc21, Prop. 6.48 & 6.67]). Let M be an object of Cresc(X) with
underlying nested-filtered DX-module (M, (F irr

α+ZM)α∈A), and let f : X ′ → X be
a holomorphic map which is non-characteristic with respect to M (hence to M).
Then Df

∗M is an object of Cresc(X ′) with underlying nested-filtered DX′-module
(Df

∗M, (F irr
α+Z(Df

∗M))α∈A), and we have for α ∈ A:

RF irr
α
(Df

∗M) ≃ Df
∗(RF irr

α
M).

On the right-hand side, Df
∗ is taken in the sense of RFDX -modules. The isomor-

phism implies that the right-hand side is concentrated in degree zero and that it is
strict, because the left-hand side is so. In other words, if f is non-characteristic with
respect to M ∈ Cresc(X), then it is strictly non-characteristic with respect to each
RF irr

α
M (α ∈ A).

Proof. The result of [Moc21, Prop. 6.67] asserts that

F irr
α+Z(Df

∗M) = f∗(F irr
α+ZM)

for each α ∈ A. It remains to be proved that Df
∗(RF irr

α
M) is concentrated in degree

zero and is strict. We write f as the composition of a non-characteristic closed inclu-
sion and a projection. The case of a projection is easy (see e.g. [MHMP, Rem. 8.6.7]),
and since the question is local, the case of a non-characteristic closed inclusion reduces
by induction on the codimension to the case of codimension one. Then the result is
furnished by [Moc21, Prop. 6.48], which asserts that each RF irr

α
M is strictly special-

izable along a non-characteristic smooth hypersurface.

Projective pushforward
Proposition 3.14 ([Moc21, Prop. 6.24 & 6.46] and [Sab18, Th. 2.62])

Let f : X → X ′ be a projective morphism of complex manifolds and let M be an
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object of Cresc(X). Then the pushforward modules Df
(k)
∗ M are objects of Cresc(X ′)

and we have for each a ∈ Z:

Df
(k)
∗ (RF irr

α
M) ≃ RF irr

α
(Df

(k)
∗ (M)),

in particular, the spectral sequence attached to the pushforward of the filtered DX-mod-
ule (M, F irr

α+ZM) degenerates at E1.

Application to IrrMHM(X). It is straightforward to check that the R̃X -module un-
derlying an object of IrrMHM(X) as defined in Section 3.d is an object of Cresc(X).
In particular, the notion of irregular Hodge filtration of [Sab18] coincides with that
of [Moc21, Cor. 1.6 & §6.5]. It follows from the results of [Moc21, Th. 1.7] that the
irregular Hodge filtration induced by an object of IrrMHM(X) satisfies the compati-
bility properties of loc. cit.

4. Vanishing theorems

4.a. A criterion for the Kodaira-Saito vanishing property. We recall the re-
sult proved in [MHMP, §11.9], following the proof of [Sai90]. For the ample line
bundle L on X we choose an integer m ⩾ 2 such that L⊗m defines an embedding
X ↪→ PN and we let ιH : H ↪→ X denote a hyperplane section. We say that (M, F•M)

satisfies the Kodaira-Saito vanishing property (with respect to L) if

Hi(X, grF
p
DR(M)⊗ L) = 0 for i > 0,

Hi(X, grF
p
DR(M)⊗ L−1) = 0 for i < 0.

Recall that we denote by Df
(k)
∗ , resp. Df

∗(k), the k-th D- or RFD-module pushfor-
ward, resp. pullback, by the map f , and by aX the constant map X → pt.

Classical constructions of coverings (see [Laz04, §4.b] and [EV86, §2]) produce a
finite morphism f : X ′ → X satisfying the following properties:

(a) the source X ′ is smooth, as well as H ′ := f−1(H),
(b) the restriction f : H ′ → H is an isomorphism,
(c) setting U = X ∖H and U ′ = f−1(U) = X ′ ∖H ′, the restriction f : U ′ → U is

a degree m covering, and f is cyclically ramified along H,
(d) the bundle f∗L is very ample, H ′ := f−1(H) ≃ H is a corresponding hyper-

plane section of X ′, and U ′ is affine,
(e) there exists a canonical isomorphism f∗OX′ ≃

⊕m−1
i=0 L−i (with L0 := OX).

The next criterion is proved in [MHMP, §11.9] by following the proof of M. Saito
in [Sai90] for mixed Hodge modules.

Theorem 4.1. Let (M, F•M) be a coherently filtered DX-module which is strictly holo-
nomic. Assume that there exists a hyperplane section H (relative to L⊗m) which is
strictly non-characteristic for RFN = RFM or RFD(M) such that

(1) with respect to the associated cyclic covering f : X ′ → X, the pushforward
C[z]-modules Da

(k)
X′∗(Df

∗(0)(RFN)) are torsion-free;
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(2) the restriction DιH∗(RFNH) := DιH∗(Dι
∗
HRFN) satisfies the Kodaira-Saito van-

ishing property.

Then RFM and RFD(M) satisfy the Kodaira-Saito vanishing property.

4.b. Proof of Theorem 1.1 and Corollaries 1.2 and 1.3

Proof of Theorem 1.1. We consider the Z-indexed filtration F irr
α+ZM for α ∈ A and

we prove the theorem by induction on the dimension of the support of M (equivalently,
that of M ), the case when it has dimension zero being clear. As remarked above,
M is an object of Cresc(X), so we can apply the results of Section 3.e to the filtered
DX -module (M, F irr

α+ZM) (α ∈ A). We first argue with M .
We first note that the cyclic covering f : X ′ → X is (strictly) non-characteristic

with respect to M . By Proposition 3.13, Df
∗(RF irr

α
M) is the Rees module of the

irregular Hodge filtration indexed by α+Z attached to the object Df
∗M of Cresc(X ′).

Property 4.1(1) then follows from Proposition 3.14 applied to the constant map aX′

and to Df
∗M . Property (2) is proved by induction on the dimension of the sup-

port of M . It is then a direct consequence of [Moc21, Prop. 6.48], as reviewed in
Proposition 3.13.

For DM , according to Proposition 3.12, the above argument for M and RF irr
α
M

also applies to DM and RF irr
β
DM for β = (<−α − 1). Therefore, the conclusion of

Theorem 4.1 holds for each filtered DX -module (M, F irr
α+ZM) (α ∈ A) and the dual

filtered DX -module (DM, F irr
β+ZDM) (β ∈ B = (−A+Z)∩ [0, 1)). This concludes the

proof of Theorem 1.1.

Proof of Corollary 1.2. We recall that, for a ∈ A+ Z,

F irr
a−n

p
DR(M) =

{
F irr
a−n(M) → Ω1

X ⊗ F irr
a−n+1(M) → · · · → Ωn

X ⊗ F irr
a (M)

}
,

where Ωn
X ⊗ F irr

a (M) = ωX ⊗ F irr
a (M) is in degree zero. For a ∈ [ao, ao + 1), this

complex reduces to ωX ⊗F irr
a (M) in degree zero, and the desired vanishing is nothing

but the first line in Theorem 1.1.

Proof of Corollary 1.3. We start with a general lemma.

Lemma 4.2. Let f : X → Y be a proper morphism between two smooth complex
manifolds of respective dimensions n and m, and let (M, F•M) be a coherently filtered
(left) DX-module with associated Rees module RFM. Assume that

(1) p is an index such that Fp−1M = 0;
(2) each Df

(j)
∗ (RFM) is strict, i.e., there exists a (unique) coherent filtration

F•(Df
(j)
∗ M) such that Df

(j)
∗ (RFM) = RF (Df

(j)
∗ M).

Then, for each j ∈ Z, we have

ωY ⊗ Fp+m−n(Df
(j)
∗ M) ≃ Rjf∗(ωX ⊗ FpM) and Fp+m−n−1(Df

(j)
∗ M) = 0.
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Proof. We use the following formula for the pushforward of a coherent DX -module
(see e.g. [MHMP, Ex. 8.51]):

ωY ⊗ Df
(j)
∗ M ≃ Hj

(
Rf∗

p
DR(M⊗f−1OY

f−1DY )
)

and its analogue for the associated Rees modules. According to (2), for each p ∈ Z,
the term of z-degree p − n in ωY ⊗ Df

(j)
∗ (RFM) is ωY ⊗ Fp+m−n(Df

(j)
∗ M). On the

other hand, the term in degree p − n in Hj
(
Rf∗

p
DRRF (M ⊗f−1OY

f−1DY )
)

is
Hj

(
Rf∗Fp−n

p
DR(M⊗f−1OY

f−1DY )
)
. We then find for each p ∈ Z:

(4.3) ωY ⊗ Fp+m−n(Df
(j)
∗ M) ≃ Hj

(
Rf∗Fp−n

p
DR(M⊗f−1OY

f−1DY )
)
.

Let us choose p as in (1). Then

Fp−n
p
DR(M⊗f−1OY

f−1DY ) = ωX ⊗ FpM,

and the right-hand side of (4.3) reads Rjf∗(ωX ⊗ FpM). Furthermore,

Fp−n−1
p
DR(M⊗f−1OY

f−1DY ) = 0,

and this concludes the proof.

End of the proof of Corollary 1.3. Property 4.2(2) holds because of Proposition 3.14.
We can thus apply the lemma to F irr

α+•M for each α ∈ A. Then, Corollary 1.2 applied
to Df

(j)
∗ T and Df

(j)
∗ M with its irregular Hodge filtration F irr

• (Df
(j)
∗ M) yields the

result.

4.c. Proof of Corollaries 1.6 and 1.8

Proof of Corollary 1.6. We keep the assumptions and notation of Corollary 1.6 that we
now prove. To the morphism φ : X → P1 one can associate (see [Sab18, Th. 0.2]) an
object T φ/z[∗D] of IrrMHM(X), whose underlying DX -module is (OX(∗D),d + dφ):
it is defined as the tensor product of the object T φ/z and the mixed Hodge module
OH

X [∗H], if H consists of the components of D not in P . The irregular Hodge filtration
of OX(∗D) that is associated to it by [Sab18, Th. 0.3] induces on its de Rham complex
the irregular Hodge filtration considered in [ESY17], according to [SY15, Th. 1.3(5)].

For any fixed α ∈ A, the filtered complex (Ω•(logD,φ, α),d + dφ, σ) (where σ
denotes the filtration by stupid truncation) is filtered quasi-isomorphic to the complex
F irr,•
α DR(OX(∗D),d + dφ)), according to [ESY17, Cor. 1.4.5]. We thus have

F irr,p
α

F irr,p+1
α

[
DR(OX(∗D),d + dφ))

]
≃ Ωp(logD,φ, α)[−p]

for any α ∈ A. The assertion follows then from Theorem 1.1.

Proof of Corollary 1.8. We apply Corollary 1.3 to (OX(∗D),d + dφ). It follows from
[ESY17, (1.6.2)] that the minimal values of F irr

• (OX(∗D),d + dφ) are equal to
OX(D + ⌊αP ⌋) for α ∈ A.
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Appendix A. Non-characteristic pullback in
mixed twistor D-module theory

We recall that a mixed twistor D-module on X, that is, an object of MTM(X), is a
W -filtered triple ((M ′,M ′′, C),W•) satisfying various properties. Here, M ′,M ′′ are
holonomic RX -modules and, denoting by S ⊂ Cz the unit circle, C is a sesquilinear
pairing M ′⊗σ∗M ′′ → DbX×S/S with σ being the involution z 7→ −1/z and DbX×S/S

the sheaf of distributions on X × S which depend continuously of z ∈ S. We aim
at making precise the definition the strictly non-characteristic pullback of such an
object, being understood that the case of the restriction to a strictly non-characteristic
smooth principal divisor has been defined in [Sab05] by means of the nearby cycle
functor.

We deal with holonomic RX -modules, that is, coherent RX -modules whose char-
acteristic variety is contained in a product Λ×T ∗Cz, with Λ being a Lagrangian conic
closed analytic subset of T ∗X. The pullback of a holonomic RX -module M by a mor-
phism f : X ′ → X is well-defined, and coherence is preserved if f is non-characteristic
with respect to M (see e.g. [Kas03, Def. 4.6]). Assume that M is strict, i.e., has no
OCz

-torsion. We say that f is strictly non-characteristic with respect to M if it is non-
characteristic and if the RX -module pullback Df

∗M has strict cohomology. Since the
non-characteristic pullback Df

∗M of a holonomic DX -module is concentrated in de-
gree zero, a strictly non-characteristic pullback of a strict holonomic RX -module is
also concentrated in degree zero.

In order to define the strictly non-characteristic pullback of a triple (M ′,M ′′, C),
we just need to define the pullback of the sesquilinear pairing C and to show that, in
the case of a smooth principal divisor, it coincides with the pullback obtained by means
of nearby cycles. By writing a morphism as the composition of its graph inclusion
followed by the projection, we only need to consider these two cases separately.

Let W be an open subset of X × S. A relative distribution T ∈ DbX×S/S(W )

is by definition a C∞(S)-linear map E
(n,n)
X×S/S,c(W ) → C0(S) which satisfies a usual

continuity property with respect to the sup norm on C0(S).
If f : X ′ → X is a smooth map and T ∈ DbX×S/S(W ), then, setting W ′ =

(f × Id)−1(W ), the pullback f∗T ∈ DbX×S/S(W
′) is defined in such a way that,

for η ∈ E
(n′,n′)
X×S/S,c(W

′), f∗T (η) = T (
∫
f
η), on noting that, because f is smooth,∫

f
η ∈ E

(n,n)
X×S/S,c(W ).

We are left with the case where f : X ′ ↪→ X is a closed immersion. We recall that
a relative distribution T ∈ DbX×S/S(W ) is the limit of a sequence Tn ∈ C∞,0

c (W )

(C∞ with respect to the X-variable and continuous with respect to the S-variable),
that is, for each η ∈ E

(n,n)
X×S/S,c(W ), we have

lim
n

∫
X

Tn · η = T (η) ∈ C0(S).
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Set W ′ = W ∩ X ′. We say that T can be restricted to W ′ if there exists a rel-
ative distribution T ′ ∈ DbX′×S/S(W

′) such that, for any sequence Tn ∈ C∞,0
c (W )

converging to T in DbX×S/S(W ), the sequence Tn|W ′ ∈ C∞,0
c (W ′) converges to T ′ in

DbX′×S/S(W
′). If it exists, such a T ′ is unique.

Proposition A.1. For any sections m′ ∈ M ′(W ) and m′′ ∈ M ′′(W ), the distribution
T = C(m′,m′′) ∈ DbX×S/S(W ) can be restricted to W ′.

Lemma A.2. Assume that X = X ′ × Ct and let (M ′,M ′′, C) be a holonomic triple
which is strictly non-characteristic along X ′ = {t = 0}. For local sections m′,m′′ of
M ′,M ′′ on an open subset W ⊂ X × S, the relative distribution T = C(m′,m′′) ∈
DbX×S/S(W ) can be restricted to W ′ and its restriction is equal to T ′ = ψt,−1T as
defined by the residue formula [Sab05, (3.6.10)].

Sketch of proof. Let Tn ∈ C∞,0
c (W ) be a sequence converging to T in DbX×S/S(W ).

One shows that the residue formula [Sab05, (3.6.10)] applied to Tn yields Tn|W ′ and
that the residue formula passes to the limit n→ ∞.

Proof of Proposition A.1. The question is local as the restriction is unique if it exists.
We can thus assume that W = X ′ ×∆r with coordinates t1, . . . , tr on ∆r. We argue
by induction on r. By the lemma, the proposition holds if r = 1. Assume thus that
r ⩾ 2. Set ι : X ′

1 = {t1 = 0} ↪→ X and f1 : X ′ ↪→ X ′
1. Then X ′

1 is strictly non-
characteristic for M ′,M ′′, and X ′ is strictly non-characteristic for Dι

∗
X′

1
M ′, Dι

∗
X′

1
M ′′.

By the case r = 1, T can be restricted to X ′
1 in some neighborhood of X ′, and by

induction ι∗X′
1
T can be restricted to X ′. It follows that T can be restricted to X ′ and

f∗T = f∗1
(
ι∗T

)
.

Appendix B. Non-integral gradings

In this section, we indicate the arguments for obtaining the assertion in Remark
1.4(2).

We extend the Rees construction to filtrations indexed by A + Z, where A is a
finite subset of [0, 1) with #A = r. We assume that A contains 0, so that we have a
(unique) increasing bijection A ≃ {0, 1/r, . . . , (r− 1)/r}. In the following, we identify
these two sets.

We consider the ring C[u] with the subring C[z] ↪→ C[u] so that z is mapped to ur.
The variable u is given the degree 1/r. Recall that RX denotes the graded ring
RFDX . We set R(r)

X = C[u] ⊗C[z] RX . This is a 1
rZ-graded ring containing RX as a

Z-graded subring, with term of degree p/r given by

(R
(r)
X )p/r = (RX)⌊p/r⌋.

In other words, R(r)
X is the Rees ring of DX with respect to the filtration

F (r)
p DX = F⌊p/r⌋DX .
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Proposition B.1. Giving a 1
rZ-graded R(r)

X -module M (r) is equivalent to giving a finite
family Mi/r (i = 0, . . . , r − 1) in Modgr(RX) together with morphisms M(i−1)/r →
Mi/r (i = 1, . . . , r − 1) and M(r−1)/r → M1(1) such that, for each i = 0, . . . , r, their
composition Mi/r → M1+i/r is equal to the multiplication by z. As an RX-module,
M (r) decomposes as

⊕r−1
i=0 Mi/r ⊗ ui.

Furthermore, M (r) is strict (i.e., C[u]-flat) if and only if each Mi/r is strict (i.e.,
C[z]-flat). Lastly, M (r) is R(r)

X -coherent if and only if each Mi/r is RX-coherent.

Proof. For i = 0, . . . , r − 1, we consider the Z-graded objects M (r)
i+rZ. These are

Z-graded RX -modules, that we denote by Mi/r. The morphism u : M
(r)
j → M

(r)
j+1

induces the desired family of morphisms.
Conversely, from the family Mi/r and the morphisms, we set, for p = qr+i with i ∈

{0, . . . , r−1}, M (r)
p/r := (Mi/r)q and the morphisms M(i−1)/r →Mi/r (i = 1, . . . , r−1)

and M(r−1)/r →M1(1) are interpreted as the multiplication by u.
The flatness statement is then clear since the set of elements of C[u]-torsion is

equal to that of C[z]-torsion in M (r), and the last statement follows e.g. from [Kas03,
Prop. A.10].

If M (r) is C[u]-flat, it is equal to the Rees module of some DX -module M with
respect to a 1

rZ-indexed F (r)-filtration F (r)
• M, that we can consider as a family of

nested Z-indexed F -filtrations Fi/r+•M with Rees module Mi/r, i.e., satisfying

i/r + p ⩽ j/r + q =⇒ Fi/r+pM ⊂ Fj/r+qM ∀ p, q ∈ Z, ∀ i, j ∈ {0, . . . , r − 1}.

We then have

grF
(r)

M =
⊕

a∈ 1
rZ
F (r)
a M/F

(r)
<aM =

⊕
a∈ 1

rZ
grF

(r)

a (M).

We say that F (r)
• (M) is a coherent F (r)-filtration if M (r) is R(r)

X -coherent, and this
property is equivalent to each Fi/r+•(M) being a coherent F -filtration of M.

Conversely, given a family of nested Z-indexed F -filtrations Fi/r+•(M), we claim
that the Rees module RF (r)(M) =

⊕
k∈Z F

(r)
k/r(M) · uk is an R

(r)
X -module. Indeed,

we need to prove that F⌊k/r⌋(DX) · F (r)
ℓ/r(M) ⊂ F

(r)
(k+ℓ)/r(M): this follows from the

inequality k + ℓ ⩾ r⌊k/r⌋+ ℓ.

Lemma B.2. For any (M, F irr
α+ZM) as in Theorem 1.1, there exists an isomorphism in

Db
coh(OX):

D(grF
irr p

DR(M)) ≃ grF
irr p

DR(DM).

Proof. We can adapt the proof for RFDX -modules as given e.g. in [MHMP,
Prop. 8.8.31], by replacing the ring RFDX (denoted there by D̃X) with R(r)

X . We only
need to check that M (r) is strictly holonomic as an R

(r)
X -module, knowing that each

Mi/r is strictly holonomic as an RX -module (because of Proposition 3.12).
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We can regard M (r) as an RX -module, and it decomposes as such as the direct
sum of the RX -modules Mi/r (i = 0, . . . , r − 1), and so RHomRX

(M (r), RX) has
cohomology in degree n at most. The same property holds then for

RHomRX
(M (r), RX)⊗L

C[z] C[u] ≃ RHomRX
(M (r), R

(r)
X )

≃ RHom
R

(r)
X

(C[u]⊗C[z] M
(r), R

(r)
X ).

It is thus enough to check that M (r) is a direct summand of C[u]⊗C[z]M
(r), i.e., to find

a section M (r) → C[u]⊗C[z]M
(r) of the natural surjective morphism C[u]⊗C[z]M

(r) →
M (r).

We write
C[u]⊗C[z] M

(r) =
⊕
k∈Z

(⊕
α
F irr
α+⌊k/r−α⌋(M)

)
· uk,

where α runs in {0, 1/r, . . . , (r− 1)/r}, and the surjective morphism to M (r) is indu-
ced by ⊕

α
F irr
α+⌊k/r−α⌋(M) −→

∑
α

F irr
α+⌊k/r−α⌋(M) ⊂ M.

We have α+ ⌊k/r−α⌋ ⩽ k/r with equality if and only if α = {k/r} (fractional part),
so that the right-hand side above is equal to F irr

k/r(M). Since F irr
k/r(M) is a summand

in the left-hand side, we obtain the desired section.

That the statement of Theorem 4.1 holds when we replace coherent F•DX -
filtrations with coherent F (r)

• DX -filtrations is obtained by applying the same method
as in [MHMP, §11.9.d], since Lemma B.2 reduces the proof to the vanishing of
Hi(X, grF

(r) p
DR(N)⊗ L) for i > 0 and N = M or DM.

Proof of Remark 1.4(3). We first note that Assumption (2) of Lemma 4.2 also implies
that (4.3) also holds with grF instead of F . The irregular Hodge filtration indexed by
A+Z satisfies Assumption (2) of Lemma 4.2 when the latter is extended to such kinds
of filtrations by means of the equivalence of Proposition B.1. The previous remark
applies then to the graded objects grF

irr

a for a ∈ A+ Z.
Then for a ∈ [ao, ao + 1), we find

ωY ⊗ grF
irr

a+m−n(Df
(j)
∗ M) ≃ Rjf∗(ωX ⊗ grF

irr

a M).

We conclude by applying Corollary 1.2, as we already noticed that one can replace F irr
a

with grF
irr

a in this corollary.
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