A SHORT PROOF OF A THEOREM OF
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by

Claude Sabbah

Abstract. We give a short proof of a theorem of G.Cotti, B.Dubrovin and
D. Guzzetti ([CDG19] and [Guz21|) asserting the vanishing of some entries of the
Stokes matrices at coalescing points of an isomonodromic deformation.
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Introduction

A recent work [Guz21] of D. Guzzetti gives another approach to a result of G. Cotti,
B. Dubrovin and D. Guzzetti in [CDG19] that asserts the vanishing of some entries of
the Stokes matrices at coalescing points of an isomonodromic deformation. We recall
the precise context in Section 3. The idea of D. Guzzetti is to exploit the property that
the isomonodromic deformation in question can be obtained by Fourier-Laplace trans-
formation from an isomonodromic deformation of a differential system with regular
singularities.

Starting from this idea, we show how to recover the vanishing result by using the
structure of such Stokes matrices as explained by Malgrange in [Mal91, Chap. XI]|
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2 C. SABBAH

and proved in a topological way in [DHMS20]. We emphasize the property of in-
termediate (also called minimal, or middle) extension of the differential system with
regular singularity involved. Let us summarize our approach.

— Given a differential system on the complex line with poles at a finite set, and hav-
ing regular singularities including at infinity, we associate its minimal extension that
we regard as a regular holonomic module on the Weyl algebra C[A](9,). Its Laplace
transform is a holonomic module on the complex line, having an irregular singularity
at infinity. The result of Malgrange mentioned above enables one to compute repre-
sentatives of Stokes matrices of the latter in terms of monodromies at finite distance
of the former, and to show that the vanishing of some blocks of the Stokes matri-
ces occurs when some relation between monodromies occurs. This general result is
explained in Section 1.

— This relation between monodromies has a dynamical interpretation when a uni-
versal isomonodromic deformation exists for the differential system with regular sin-
gularities. The parameter space is an open subset of the space of tuples of pairwise
distinct singularities. Due to the simple geometry of the deformation space, one can
interpret the relation between monodromies considered in the first point as the con-
stancy of certain vanishing cycle sheaves on the singular set of the deformed family.

— A stationary phase result with parameter, as shown in [DS03] (see Appendix B),
relates the formal decomposition at infinity of the Laplace transform of the regular
holonomic module considered above with the vanishing cycle sheaves of the latter.

— These results lead to the following criterion, that we will only develop in the
setting of Section 3. Let U be a simply connected open set in C™ with coordinates
U1, ..., Un, and let U° be the complement of the diagonals u; = u; (i # j € {1,...,n}).
Let X = U x V be a neighborhood of U x {z = 0} in U x C and set X° = U° x V. Let
R;, for i = 1,...,n, be a locally free &x-module with a flat logarithmic connection
V; having poles along U x {z = 0}.

Criterion. Let 9 be a locally free Ox (xU)-module with a flat connection. Assume that
(1) the formalization (G,V) = G5 = Oy ((2) ®ex 4 decomposes as

n

D (Ri[z7"], Vi + d(us/2)),

i=1

(2) There exists u® €U such that 9,01y is the the restriction to {u®} x V
of the partial Laplace transform of a reqular holonomic module on Cy which is
a minimal extension at each of its singularities at finite distance.

If there exists a “coalescing” point u® in U whose coordinates ui and u§ coincide for
some i # j € {1,...,n}, then for each u® € U°, the (i,7)- and (j,1i)-entries of the
Stokes matrices of Gjy—yo vanish.

The constancy of the vanishing cycle sheaves mentioned in the previous point is
a consequence, via [DSO03], of the constancy, for each i, of the local system on U
attached to the flat residual connection of (R;, V;), as follows from the simple con-
nectedness of U.
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— In the setting of Section 3, according to [CDG19, Prop. 19.3] (see Appendix A),
the first condition is satisfied. That the second one is also satisfied is proved by using
the specific form of the connection matrix (see Lemma 3.3).

1. A criterion for the vanishing of some entries of the Stokes matrices

Let Cy denote the complex line with coordinate A and let u®=(ug,...,ul)eC"
having pairwise distinct coordinates. We denote by {u®} = {ug,...,u2} the corre-
sponding subset of Cy. Let L° be a locally constant sheaf of finite rank r on Cy \ {u°}.
We will be mainly concerned with the perverse sheaf j,L°,() where we denote by
J 1 Cx~{u®} — C, the open inclusion. This sheaf is called the intermediate exten-
sion of L° with respect to j.

Let (V°,V?°) be the meromorphic flat bundle on the affine line C, with poles at u?
(i =1,...,n) and regular singularities there and at A = co, whose sheaf of horizontal
sections on Cy \ u? is the local system L°. We can regard it as a meromorphic bundle
on P! with poles at ug,...,u and oo, equipped with a connection V° having regular
singularities there. We can also regard it as a regular holonomic (left) module over
the Weyl algebra C[A](0)).

To j,L° is associated, by the Riemann-Hilbert correspondence, a regular holonomic
C[A](Ox)-module (M°,V°), that is called the middle extension of (V°,V°).

Assume we are given a Fuchsian system with poles at {u°}, and matrix

n Be
1.1 B° = — dA.
) P

We regard it as the free C[A]-module E° = C[\]" equipped with a logarithmic con-
nection V¢ whose matrix is given by the formula above. The associated meromorphic
bundle with connection (V°, V?) is obtained by tensoring E° with the ring of rational
functions C[A, (A — u?)™1);=1,_»] having poles at most at {u°}, that is,

(12) Ve = C[Aa ((A - u?)_l)iZI,.“,n] ®C[)\] an
with connection naturally induced by V° on E°. We regard (V°,V°) as a left
module over the Weyl algebra C[A](dy), and (E°,V?°) is called a logarithmic lattice

of it. Although (E°, V°) is not a C[A](0x)-module, it generates a C[A](0))-submodule
(M°,V°) of (V°,V°) by setting

M= (V§)"E° C V.

k
The following lemma is standard.
Lemma 1.3. Assume that, for each i = 1,...,n, the integral eigenvalues of B} are
nonnegative. Then (M°,V°) is the middle extension of (V°,V°) at each of its poles.

O

(1)One usually shifts this sheaf by one, but we do not for the sake of simplicity.
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We consider the Laplace (also called Fourier) transformation with kernel e*¢. The
Laplace transform (*"M?°, V°) of (M?°,V?) is the C[(](0)-module obtained as follows.
The C-vector space “M° is equal to M°. The action of  is defined as that of 0y,
and the action of O, is defined as that of —A. Classical results show that “M¢ is
a holonomic C[¢](0;)-module with a regular singularity at ( = 0 and an irregular
singularity at ( = oo.

Tensoring this Laplace transform “M° with C[¢, ('] over C[¢] and setting z = (71,
we obtain a meromorphic bundle with connection (G°, V°) on the affine line C, with
pole at z = 0 and an irregular singularity there (and a regular singularity at z = 00).
In other words, (G°,V?) is the localized Laplace transform of (M®,V°) with respect
to the Laplace kernel e*/?.

The formal stationary phase formula describes the formalized connection

(G°,V°) = C((=)) ®cpz) (G°, V°).

There exists a C((z))-basis of G° in which the matrix of V° is block-diagonal, with
blocks of the form

(1.4) uld,, d(1/2) + Cidz/z, i=1,...,n,

where Cj is a constant matrix. Correspondingly, there is a pair (57,S5°) of Stokes
matrices that enables one to recover, up to isomorphism, (G°,V?) from (60,60).
A topological computation of (S7,5°) from a presentation of j,L° is given in
[DHMS20, Th.5.4], adapting the more analytic approach in [Mal91, Chap.XII].
We recall it here in the special case of the intermediate extension j,L°.

We fix an u®-admissible argument 6° in Cy, in the sense that the closed real half-
lines ¢; with this direction starting from uf does not contain uj for j % i. We set
£° =1, ¢;. We denote by D, the maximal open strip in that direction containing u
and no other u3. See Figure 1.

¢;
X
X X
o X o X o
" U; u]. U; u]
Di AN El (C)\ N
Ficure 1.

To j.L° and the choice of a general argument 6° as above (that we omit in the
notation) is attached a quiver consisting of finite-dimensional vector spaces and linear
maps between them. The quiver takes the form (V°, ®¢_; c;,v;) and, due to the
special case we consider here, it is obtained as follows (see [DHMS20, Lem. 4.8]):

— W = H2(Cy \ 1, L°),

~ W9 = HY(e, L°), with £f := ¢; ~ {u¢}, and monodromy Tj;,
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— h; : ¥? =5 W° is an isomorphism obtained through (4.6). in loc. cit., and
T; =h; 0T 0 h;l : W% — U? is the ¢-th monodromy on ¥°,

- @2 = im(Id -Ty;) C ¢, ¢;; = (Id=Ty) : U9 — ®? and vy; : P9 — VY is the
natural inclusion,

— Last, ¢; = ¢4 0 hi_l, v; = h; o vy;.
We note that v; : ®¢ — ¥° is injective and its image is identified with im(Id —T,).
The quiver is thus isomorphic to the quiver

¢¢ =im(Id —T;),

s Ciy Vi), c; = (Id=T;) : ¥° — ¥°,

v; = inclusion : ¢§ — W,

(\1107 ¢?:1

.....

With this notation, [DHMS20, Th.5.4] asserts (following [Mal91, Chap. XII])
that there exists a pair (S, 5) of Stokes matrices for G° which are decomposed into
blocks (i,7) with 4,5 = 1,...,n, such that the non-diagonal blocks (i, 7) and (j,1)
read

— ¢;ov;and 0 for S9,

— 0 and —c; ov; for S°.

Corollary 1.5. With these assumptions, fori # j € {1,...,n}, the above representative
(S9,82) of Stokes matrices for G° has vanishing blocks (i,7) and (j,1) if and only if

(Id _Tj)|im(Id —-T;) = 0 and (Id _Ti)\im(ld -T;) = 0. [

2. Interpretation in terms of constancy of the vanishing cycle sheaf

If we vary u® € C™ along a path u(t) (¢t € [0,1]) with the condition that w;(t)
remain pairwise distinct, the local system L° deforms in a unique way as a family of
local systems L' on Cy \ {u(t)}: this is obtained by an argument on the fundamental
group (since the path is simply connected). Assume now that the limit point u(1) has
components which coincide, a property that the authors of [CDG19] call coalescence.
The behaviour near such a point is better seen within a geometric setup.

Let us consider the space C" x C,, with coordinates ui, ..., u,, A and the projection
p:(ury...,up, A) = (u1,...,u,). Let us also consider the following hypersurfaces:

— the hyperplanes H; = {A\ — u; = 0} of C"™ x C on the one hand,
— the hyperplanes A; ; = {u; = u;} (i # j) of C" on the other hand, that are lifted
to C" x Cas A;; x C.

The union of these are respectively denoted by H and A (and A x C). We note that H
is a divisor with normal crossings in C"xC whose singular set projects bijectively to A.

Let u¢ be a fixed coalescing point, that is, a point on A. It defines a partition
{1,...,n} = U, I¢ such that uf = u$ if and only if i and j belong to the same
subset IS and we denote by u¢ this common value. We decompose correspondingly C”

c
as [[I, Cla.
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Let us fix an u®-admissible argument 6¢ and open subsets DS C Cy (e =1,...,m)
as in Figure 1. The open subset D¢ of Cla consisting of points whose coor-
dinates belong to D¢ is the product of the open strips D¢ in each coordinate
plane, hence is homeomorphic to C’a. We then set D¢ = H;"’Zl D¢, and we have
DENA=[]", (DENA,). The disjoint union

[T (D x D7)
a=1
is an open neighbourhood of (u¢, {u¢}) in D¢ x C, and

H N (D x D) = Hy x [ D5,
b#a

where H, C D§ x D, is defined by [, ;. (A—u;) = 0. We now call H; the intersection
of {\ = u;} with D¢ x Cy. For i = 1,..,n, let vi(u,\) = (A —1u;) : D€ x Cy — C be
the defining function of H;. Then H = |J, H; is a normal crossing divisor in D¢ x Cj.
We also set X = D\ A and denote by 7 : (X x Cy) ~ H — X x C, the open
inclusion. Note that the intersection of H with X x C, is smooth with components
H; N (X x C,), because the singular set of H projects to A. Also, the complement
in H; of H; N (X x C,) is a normal crossing divisor in H;.

Let L' be a locally constant sheaf on (D¢ x Cy) \ H and let L denote its restric-
tion to (X x Cy) ~ H. The nearby cycle complex 1,,(L’) is a complex of sheaves
on H; equipped with an automorphism T;(¢) : v, (L") — ,,(L'). By restricting
over X, we obtain a locally constant sheaf v,,(L) on H; N (X x C,) equipped with
the automorphism T;(¢). For any u® € X, we denote by L° the restriction of L
to u® x (Cy ~ {u°}).

The sheaf j.L on X x C) is a perverse sheaf (up to a shift) and the vanishing cycle
sheaf ¢y, (j«L) is a locally constant sheaf on H; N (X x Cy): this is the sheaf

(2.1) im(Id —T5(+))) : v, (L) — by, (L)
equipped with the automorphism T;(¢) induced by T;(1)).

Proposition 2.2. With these notations, assume that for each i =1,... n, the vanishing
cycle local system ¢, (4. L) on H; N (X x Cy) is constant. Then, for any u® € X, for
any a = 1,...,m and for any pair i # j € IS, the Stokes matrices of G° considered
in Section 1 with respect to any argument 0° close enough to 6¢ have their (i,j)- and
(j,i)-blocks equal to zero.

Proof. We first notice that, u® being fixed in X, if 8¢ is not u®-admissible, then any
0° # 0¢ close enough to 6° is u®-admissible. The result does not depend on the choice
of 6°.

The question is local at each ut. Recall that v; =A—w;. The open set (DS x DS)\ H,
is homeomorphic to (Cla x Cy) ~ {Il;ce vi=0} with coordinates (vse, A). We are thus
considering a locally constant sheaf L' ‘on the complement of coordinate hyperplanes
v; =0 in Cle x Cy. Giving L' is thus equivalent to giving a vector space L equipped
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with automorphisms T; (i € I). We can choose (U°, Ticsc) defined in Section 1 as
such data.

With such a representation, the locally constant sheaf ¢, (j.L) on H; N (X x Cy)
is represented by the vector space with automorphisms (im(Id —T;), Tjx;). Further-
more, the automorphism T;(¢) of ¢, (j.«L) corresponds to the automorphism induced
by T;. That ¢,,(j«L) is constant is equivalent to the property that each T, is the
identity on im(Id —T;). We conclude with Corollary 1.5. O

3. A short proof of a theorem of Cotti, Dubrovin and Guzzetti

We keep the setting and notation of Section 2: we fix a coalescing point u¢ € A
and a point u° in D¢ L A.

We consider the trivial C[z]-module F° of rank n equipped with the connection V°
having matrix

(3.1) A% = (A + Ago) d—z7 where A° := diag(ug, ..., u;).

z z "
We assume that the only possible integral eigenvalues of A% are > 1 and no diagonal
entry of A2 is an integer (this can be achieved by adding cId, dz/z to A2, for a
suitable ¢ € C, and Theorem 3.7 is insensitive to this modification). The inverse
Laplace (or Fourier) lattice (E°, V°) (see see [Sab02, Prop. V.2.10]) is F° regarded

o
(o oh)

as a C[\]-module, where \ acts as 220,. By the first assumption on A9, it is free of

rank n, with the same canonical basis as F'°, and the matrix of V¢ in this basis is
(3.2) B° = (A%, —1d,)(\1d,, —A°)~td),
which takes the Fuchsian form (1.1).

Lemma 3.3. The C[\](0x)-submodule of (V°,V°) generated by E° is the middle ex-
tension (M°,V°) of (V°,V°), whose localized Laplace transform (G°,V°) is equal to
G :=Clz,27 '] @c[s) F° with connection having matriz A°.

Proof. Let us decompose B° as in (1.1). Then each matrix B? has rank one and a
unique nonzero eigenvalue, which is the i-th diagonal entry of A% — Id and is non
integral by the second assumption on AZ . Therefore, the matrix B¢ satisfies the
assumption of Lemma 1.3. This proves the first point.

Let G° be localized Laplace transform of M°. Then

E°C M° — F°C G°, hence G° C G°.

In order to obtain equality, it is enough to show rk G° = n. By the stationary phase
formula, this rank is equal to Y., ¢r—ug M. Therefore, it is enough to show that,
for each local monodromy T; of L° = (V°)V” around u?, we have rk(Id,, —T;) = 1.
Since no two distinct eigenvalues of Bf differ by an integer, the local monodromy T;
is conjugate to exp(—2miBY?), hence T; — Id has rank one, as desired. O
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Since the diagonal terms of A° are pairwise distinct, we can write
AL = DS + A% R,
where D is the diagonal of A%, and we can assume that the diagonal terms of R°
are zero.

A theorem of B. Malgrange [Mal83, Mal86| asserts that there exists a universal
integrable deformation of this system in the neighbourhood of u® (see also [Sab02,
§VI.3]). In particular (see [Sab02, §VI.3.1]), there exists a holomorphic matrix R(u)
on a simply connected neighbourhood nb(u°) with zeros on the diagonal, such that
the system

Au dz
(3.4 (P 4 4e) L, A = [AGw), RG] + DL,
is integrable and R(u°®) = R°. The diagonal part of R(u) does not show up, so we can
assume that the diagonal terms of R(u) are zero. The integrable connection (on the
trivial bundle) has the matrix (see [Sab02, VI (3.12)])

dz

(3.5) — d(A(w)/2) + ([AMw), R(w)] + DE) — — [dA(w), R(u)]

and is a universal integrable deformation of its restriction at each point of the neigh-
bourhood where it exists. Furthermore, on nb(u?°), there exists a z-formal base change
which transforms (3.5) to the system

(3.6) — d(A(u)/2) + D, %.

Theorem 3.7 ((CDG19], [Guz21]). Assume that A (u), defined on nb(u®), extends
holomorphically to D¢, and that, for any a =1,...,m and any i # j belonging to the
same IS, the (,7) and (j,i) entries of Aso(u) tend to zero when u; —u; — 0. Then
the corresponding (i, j) and (j,i) entries of the Stokes matrices (59,5 ) are zero.

Remark 3.8. We may restate the condition on A (u) as the condition that R(u)
extends holomorphically to D°.

Proof. We first note that the integrability property of (3.5) all over D¢ immediately
results from that on nb(u?). Indeed, integrability is equivalent to the property that R

satisfies the following isomonodromy differential system on a neighbourhood of u°:
59) d[A R) = = [([A R) + DZ). [aA. R]].
' d[dA, R] = [dA, R] A [dA, R].

These are equalities on nb(u?) between holomorphic matrices defined on D¢. Since D¢
is connected, these equalities, hence the integrability property, hold all over D°.
Let us set

Aw2) = (M 4 ), B+ 02 ) L,
(3.10) G
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As explained in Lemma 3.3, the meromorphic bundle with connection (G°, V°)
associated with the differential system of matrix A° given by (3.1) is the localized
Laplace transform of the middle extension (M?°, V°) of the meromorphic bundle with
connection (V°,V°) defined by the matrix B given by (3.2). The existence of A (u)
on D¢ together with integrability of (3.10) implies the existence of a meromorphic
bundle with integrable connection (G, V) on D¢ x C restricting to (G°, V°) at u°.

Let us consider the formalized connection along z = 0:

(G, V) i= Ope((2) @pels) (G, V).

Then [CDG19, Prop.19.3] (see a reminder in Appendix A) extends the formal de-
composition (3.6) for (G, V) all over D°:

(3.11) (G.9) ~ @ (Ope (=), d + d(us/2) + d2 ,dz/2),

i=1
where df_ ; is the i-th diagonal entry of the diagonal matrix Dg,. The rank-one
Ope((2))-module with connection (Ope((2)), d+d3, ;dz/z) has regular singularity along
{z = 0}. Tt is uniquely determined as such by the data of the pair (L;,T;), where
L; = Cpe is the constant local system of rank one on D¢, and 7; is the automorphism
of L; induced by multiplication by exp(— 2midg, ;).

Our aim is to apply Proposition 2.2 to a suitable local system L. Before doing so,
we construct the local system L' on (D¢ x Cy) ~ H by means of the standard result
provided by Lemma 3.12. We then define L as the restriction of L' to (X x C)) \ H,
and we prove that the local system ¢,, (L) as considered in Section 2 is constant by
identifying ¢, (L) with the restriction of L; to X = D¢\ A.

Lemma 3.12. Let U be a simply connected complex manifold and let D be a disc of some
positive radius, centered at the origin in C. Let u® € U. The restriction functor at u°
induces an equivalence between the category of regular holonomic Py« p-modules with
characteristic variety contained in Tf;, (U x D) U T(jx{o}(U x D) and the category
of regular holonomic PDyyoyx p-modules with singularity at the origin only. A quasi-
inverse functor is given by the pullback by the projection U x D — {u°} x D. O

Furthermore, we implicitly refer to [DS03, App. A] for passing from analytic to
partially algebraic Z-modules.

This being understood, we conclude, by taking U = D¢, that “M° extends in
a unique way as a holonomic Zp[(](0¢)-module N with regular singularities along
¢ = 0 and which satisfies (by setting z = (1)

ﬁDC [C?C_l] ®ﬁnc[d N = (G7 V),
Niyoxe = "M°.

The inverse partial Laplace transform M of N is a holonomic Zpe[A](0x)-module, and
we write N = “M (see Appendix B).

Lemma 3.13. The Pp<[\](0x)-module M is smooth away from H and defines there a
locally constant sheaf L'.
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Proof. We can regard (G, V) as a holonomic Zpe[(](0;)-module on which ¢ acts in
an invertible way. Let M denote its inverse Laplace transform. The cokernel of the
inclusion N < G is a holonomic Zpe [(](0,)-module supported on ¢ = 0. Furthermore,
since the characteristic variety of N and G is as described in Lemma 3.12, that of
G/N is contained in T, (ID° x C¢). As a consequence, the cokernel of M — M
is a holonomic Zpe[A](0x)-module isomorphic to some power of (Ope[A],d). It is
thus enough to prove the lemma for M. Recall also (see Appendix B) that M is
nothing but G as a Zp--module, hence as an Op.. In particular, it is Ope-flat and the
restriction functor to any u € D¢ only produces one cohomology C[A](9y)-module M*,
which is the inverse Laplace transform of the restriction G* to v x C*. The formal
stationary phase formula (1.4) for u fixed, together with the restriction of (3.11) at
this value of u, implies that the singular set of M is equal to the finite set {u}. Since
u was arbitrary, this concludes the proof. O

From now on, we restrict to X = D¢~ A. We have M|,-1(y0y = M? and M is
regular holonomic, with poles on the smooth hypersurface H C X x C,. By the
uniqueness property of Lemma 3.12 applied to any simply connected open subset
of X containing u°, we conclude that M is the middle extension of the meromorphic
flat bundle (V,V) := Ox[\, (A — u;)71)i=1,. ] along H. Denoting by L the local
system of horizontal sections of (V, V), M is the regular holonomic Zx[A]{9x)-module
associated to the (perverse) sheaf j.L via the Riemann-Hilbert correspondence.

The formalized connection ((/}'\,6) along z = 0 is directly obtained from (M, V)
by an operation called formal partial microlocalization [DS03, Prop.1.18] (the non-
characteristic assumption (NC) in loc. cit. is obviously satisfied here). We write
(G,V) = p.(M,V)*, with the identification z = ;% and A\ = 228,. By the stan-
dard identification recalled in Appendix B (see Remark B.2), the vanishing cycle sheaf
¢u, (J«L) is a rank-one local system on H; N (X x Cy), identified with L;x.

Since L; is constant on D¢, hence on X, we conclude the proof of Theorem 3.7 by
applying the criterion of Proposition 2.2. O

Appendix A. A reminder of [CDG19, Prop. 19.3]

Let us recall the statement and proof of [CDG19, Prop.19.3] for the sake of
completeness. We use the following notation. Given a square matrix A, we denote

by A’ the matrix formed of its diagonal terms, all off-diagonal terms being zero, and
set AV =A—A.

Proposition A.1 ((CDG19, Prop. 19.3]). In the setting of (3.10), there exists a unique
z-formal base change

P(u,z) =Y (=1)/P;(u)2?, Py(u)=1d, P{'(u) = R(u),

720
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with P;(u) holomorphic on D°, such that

(A.1%)

The existence on nb(u°) of P satisfying (A.1x) and with given P/ is standard. Let
us first prove that Pis unique on nb(u°) and given by recursive formulas starting
from P{’. For that purpose, we will only need to know that P satisfies the first line
of (A.1%) on nb(u°).

Setting A, = [A, P/'], the P;’s are solutions of the following recursive equations
(Py = 1d):

(A2) [A, Pj1] = jPj + AL Pj 4 [DS, Pjl.
We have

A, Pj-‘rﬂ =[A, Py

_]-‘rl] = [A’ P]/'ii-l]”>

and similarly [DS, P;] = [Dg,, P/']". We also have (A5, P;) = (AL P}')'. Since A is
regular on nb(u?), P’y (j > 1) is uniquely determined by P; and A7, hence P/, by
the relation

(A Plal = B + (A By)" + [DS, P
On the other hand, the diagonal part of (A.2) for j+1 (j > 0) reads
(A.3) Pip=—(ALPL) G+ 1),

hence P/ ; is uniquely determined by P’ ; and P;’ (through A7), thus by P; and Py".
For P| we obtain

(A4) Pl = —(A"R).

Let us now show that the P;’s extend to D°. We will use that P also satisfies
the second line of (A.1x%) on nb(u°). The system of this second line on D¢ can be
written as

[P,dA] = —z(dP + [dA, R]P).
Denoting by E; the matrix having (E;)e = 1 if @ = b = i and 0 otherwise, so that
dA =", E; du,, these equations are written
[Pj+1,Ei] == faP]/ﬁul - [E“R]P]

By (A.4), P{ (hence P;) extends holomorphically to D°. For j > 1, let us assume that
P, ..., P; extend holomorphically to D°. Then so does [P;11, E;] for each 7, therefore
Pj'; also, hence P} ; also, according to (A.3). O
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Appendix B. A reminder on partial Laplace transformation,
partial microlocalization and vanishing cycles

We recall here, following the method of [DS03, §1], how the formal stationary
phase formula with parameters can be expressed in terms of vanishing cycles, by
means of formal partial microlocalization. We take up the setting and notation of
Section 2 with X = D¢~ A.

Let (M,V) be any regular holonomic Zpc[\](0)-module. Recall that the par-
tial Laplace transform "M of M is the Ppe[¢](0;)-module which is equal to M as a
Ppe-module and on which ¢ acts as 9y and J¢ as —A. It is holonomic with singularities
along D¢ x {¢ = 0}. From “M we recover M by inverse partial Laplace transforma-
tion. Let us set G = Ope[(, (7] ®e,. (o) "M and z = ¢~!. Then G is a locally free
Ope |z, z~1]-module of finite rank with connection V having singularity along z = 0.

Let (G, @) denote the formalization Ope((2)) ®g,.(2,.-1) (G, V). We now implicitly
restrict M to X x Cy and G to X x C,. We will recall the proof of the following
“formal stationary phase formula with parameters”.

Proposition B.1. Assume that the characteristic variety of M is contained in the union
of the zero section of T*(X xCy) and the conormal bundles of the smooth hypersurfaces
H; ={v; =0} (v;:=X—w;). Then (G,V) decomposes as

(B.1x) (Rilz7"], Vi + d(ui/2)),

@-

i=1

where (R;,V;) is a locally free Ox[z]-module of finite rank with logarithmic connec-
tion V;, and the locally free Ox-module R;/zR;, equipped with the residual connec-
tion Vi®, is isomorphic to (¢, M, V*).

Let V*M denote the Kashiwara-Malgrange filtration of M along H, that we con-
sider here as indexed by integers. Due to our assumption on the singularity of M, each
VEM is a coherent Ox[A]-module. The connection V acts on each V¥M with loga-
rithmic poles along H and its residue has eigenvalues with real parts in [k, k+1). The
vanishing cycle module ¢z M is by definition the quotient gr(,lM =V IM/VOM.
It is a locally free &y-module equipped with the residual integrable connection that
we denote by V™. Since gr‘_,lM is supported on H = [[, H;, p*gr;lM decomposes
as @,(¢v, M, V™). Since the projection p : X x Cy — X induces an isomorphism
H; ~ X, we can regard each (¢,, M, V™) as a locally free &x-module with integrable
connection. This explains why there can be an identification between (¢, M, V')
and (R;/zR;, Vi*).

Remark B.2. 1f M is the regular holonomic Zx[A](0x)-module associated to j.L by
the Riemann-Hilbert correspondence, then, due to the compatibility between tak-
ing vanishing cycles and the Riemann-Hilbert functor (see e.g. [Sab87, MMO04]),
(¢, M, V%) corresponds to ¢, (j.L), and Proposition B.1 provides the claim in the
last part of the proof of Theorem 3.7.
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Proof of Proposition B.1. Let M[0y '] be the regular holonomic Zx [A](d))-module
whose partial Laplace transform is exactly G (i.e., M [8;1] is the inverse Laplace trans-
form of G) and let V*(M[9; ') its Kashiwara-Malgrange filtration along /. We claim
that, for any k € Z, VE(M[9y']) = 9V —1(M[0y']) and that the natural mor-
phism M — M[0y '] induces an isomorphism (¢, M, V') =5 (¢, (M[05']), V')
for each i = 1,...,n. Due to the uniqueness of the Kashiwara-Malgrange filtration,
we can work on an analytic neighbourhood U; of H; in X x C,, that the flat functor
Oy, @g [ (o) preserves the Kashiwara-Malgrange filtration. Then the claim follows
from the standard properties of this filtration (see e.g. [Sab87, MMO04]). As a con-
sequence, we can assume that M = M[95 '], and @, (¢, M, V') ~ (gry,' M, V) has
rank equal to the rank of M which is also equal to the rank of G.

By [DS03, Prop. 1.18], (CAJ, @) is identified with the partial microlocalized module
pM*, as defined in loc. cit., and the microlocalized lattice p*(Vl\;l)“ is a coherent
Ox [#]-module which is the direct sum of the components p.(V~'My,)* for i =
1,...,n, since (V='My,)" is supported on H;. By definition of the V-filtration,
VI My, is acted on by dx - (A — u;), O + 9y, and 9, for j # i. This is seen by
changing the variables (u;, ujzi, A) = (vi = X — w;, wjzi, A).

As for the corresponding actions on the partial Laplace transform, the action of z
on p,M* is that induced by 8;1 and the action of 9, by A20,. Then p*(VflM‘Uj)“
is acted on by 20, — u;/z, 2~ + 9, and Oy, for j # i, operators which also read

e wilz . 20, - eui/z7 e~ wilz . Ou, .eui/z7 e~ wilz . auj CewilZ for j .

In other words, if we twist the connection by e~%i/%, p*(V_1M|Ui)“ becomes a cohe-
rent Ox[z]-module with logarithmic connection (R;, V;) having poles along z = 0
only. As a consequence, R; is Ox[z]-locally free of finite rank. By the computation
of the rank aforementioned, we find >, rk R; = rk G, and [DS03, Prop. 1.20] applies,
giving the decomposition (B.1 ).

Last, the quotient R;/zR; with its residual connection Vi® is identified with
P (VI My, /0 V=M, ). Because V= My, /05 'V~ My, = ¢, M is supported
on H;, microlocalization does not change it, and we thus identify (R;/zR;, Vi) with
(60, M, V7). O

References

[CDG19] G. Corrtl, B. DuBrOVIN & D. GUzzETTI — “Isomonodromy deformations at
an irregular singularity with coalescing eigenvalues”, Duke Math. J. 168 (2019),
no. 6, p. 967-1108.

[DHMS20] A. D’Aanoro, M. HieEN, G. MorANDO & C. SABBAH — “Topological computa-
tion of some Stokes phenomena on the affine line”, Ann. Inst. Fourier (Grenoble)
70 (2020), no. 2, p. 739-808.

[DS03] A. Douar & C. SABBAH — “Gauss-Manin systems, Brieskorn lattices and Frobe-
nius structures (1)”, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 4, p. 1055-1116.
[Guz21] D. GuzzeTTI — “Isomonodromic Laplace transform with coalescing eigenvalues

and confluence of Fuchsian singularities”, Lett. Math. Phys. 111 (2021), no. 3,
Paper No. 80, 70 p.



14

[MMO4]

[Mal83]

[Malg6]
[Mal91]

[Sab87]

[Sab02]

C. SABBAH

PH. MAISONOBE & Z. MEBKHOUT — “Le théoréme de comparaison pour les cycles
évanescents”, in Eléments de la théorie des systémes différentiels géométriques,
Séminaires & Congrés, vol. 8, Société Mathématique de France, Paris, 2004,
p. 311-389.
B. MALGRANGE — “Déformations de systémes différentiels et microdifférentiels”,
in Séminaire E.N.S. Mathématique et Physique (L. Boutet de Monvel, A. Douady
& J.-L. Verdier, eds.), Progress in Math., vol. 37, Birkhauser, Basel, Boston,
1983, p. 351-379.
, “Deformations of differential systems, I1I”, J. Ramanujan Math. Soc. 1
(1986), p. 3-15.
, Equations différentielles & coefficients polynomiauz, Progress in Math.,
vol. 96, Birkh&user, Basel, Boston, 1991.
C. SABBAH — “D-modules et cycles évanescents (d’aprés B. Malgrange et
M. Kashiwara)”, in Géométrie algébrique et applications (La Rdbida, 1984), vol.
III, Hermann, Paris, 1987, p. 53-98.

,  Déformations isomonodromiques et wvariétés de Frobenius, Savoirs
Actuels, CNRS Editions & EDP Sciences, Paris, 2002, English Transl.: Uni-
versitext, Springer & EDP Sciences, 2007.

C. SaBBaH, CMLS, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau
cedex, France e E-mail : Claude.Sabbah@polytechnique.edu
Url : https://perso.pages.math.cnrs.fr/users/claude.sabbah/



	Introduction
	1. A criterion for the vanishing of some entries of the Stokes matrices
	2. Interpretation in terms of constancy of the vanishing cycle sheaf
	3. A short proof of a theorem of Cotti, Dubrovin and Guzzetti
	Appendix A. A reminder of CDG
	Appendix B. A reminder on partial Laplace transformation, partial microlocalization and vanishing cycles
	References

