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Abstract. We give a short proof of a theorem of G.Cotti, B.Dubrovin and
D.Guzzetti ([CDG19] and [Guz21]) asserting the vanishing of some entries of the
Stokes matrices at coalescing points of an isomonodromic deformation.
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Introduction

A recent work [Guz21] of D.Guzzetti gives another approach to a result of G.Cotti,
B.Dubrovin and D.Guzzetti in [CDG19] that asserts the vanishing of some entries of
the Stokes matrices at coalescing points of an isomonodromic deformation. We recall
the precise context in Section 3. The idea of D.Guzzetti is to exploit the property that
the isomonodromic deformation in question can be obtained by Fourier-Laplace trans-
formation from an isomonodromic deformation of a differential system with regular
singularities.

Starting from this idea, we show how to recover the vanishing result by using the
structure of such Stokes matrices as explained by Malgrange in [Mal91, Chap.XII]
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and proved in a topological way in [DHMS20]. We emphasize the property of in-
termediate (also called minimal, or middle) extension of the differential system with
regular singularity involved. Let us summarize our approach.

– Given a differential system on the complex line with poles at a finite set, and hav-
ing regular singularities including at infinity, we associate its minimal extension that
we regard as a regular holonomic module on the Weyl algebra C[λ]〈∂λ〉. Its Laplace
transform is a holonomic module on the complex line, having an irregular singularity
at infinity. The result of Malgrange mentioned above enables one to compute repre-
sentatives of Stokes matrices of the latter in terms of monodromies at finite distance
of the former, and to show that the vanishing of some blocks of the Stokes matri-
ces occurs when some relation between monodromies occurs. This general result is
explained in Section 1.

– This relation between monodromies has a dynamical interpretation when a uni-
versal isomonodromic deformation exists for the differential system with regular sin-
gularities. The parameter space is an open subset of the space of tuples of pairwise
distinct singularities. Due to the simple geometry of the deformation space, one can
interpret the relation between monodromies considered in the first point as the con-
stancy of certain vanishing cycle sheaves on the singular set of the deformed family.

– A stationary phase result with parameter, as shown in [DS03] (see Appendix B),
relates the formal decomposition at infinity of the Laplace transform of the regular
holonomic module considered above with the vanishing cycle sheaves of the latter.

– These results lead to the following criterion, that we will only develop in the
setting of Section 3. Let U be a simply connected open set in Cn with coordinates
u1, . . . , un, and let Uo be the complement of the diagonals ui = uj (i 6= j ∈ {1, . . . , n}).
Let X = U×V be a neighborhood of U×{z = 0} in U×C and set Xo = Uo×V . Let
Ri, for i = 1, . . . , n, be a locally free OX -module with a flat logarithmic connection
∇i having poles along U × {z = 0}.

Criterion. Let G be a locally free OX(∗U)-module with a flat connection. Assume that
(1) the formalization (Ĝ, ∇̂) = GÛ := OU ((z))⊗OX G decomposes as

n⊕
i=1

(Ri[z
−1],∇i + d(ui/z)),

(2) There exists uo∈Uo such that G|{uo}×V is the the restriction to {uo} × V
of the partial Laplace transform of a regular holonomic module on Cλ which is
a minimal extension at each of its singularities at finite distance.

If there exists a “coalescing” point uc in U whose coordinates uci and ucj coincide for
some i 6= j ∈ {1, . . . , n}, then for each uo ∈ Uo, the (i, j)- and (j, i)-entries of the
Stokes matrices of G|u=uo vanish.

The constancy of the vanishing cycle sheaves mentioned in the previous point is
a consequence, via [DS03], of the constancy, for each i, of the local system on U

attached to the flat residual connection of (Ri,∇i), as follows from the simple con-
nectedness of U .
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– In the setting of Section 3, according to [CDG19, Prop. 19.3] (see Appendix A),
the first condition is satisfied. That the second one is also satisfied is proved by using
the specific form of the connection matrix (see Lemma 3.3).

1. A criterion for the vanishing of some entries of the Stokes matrices

Let Cλ denote the complex line with coordinate λ and let uo=(uo1, . . . , u
o
n)∈Cn

having pairwise distinct coordinates. We denote by {uo} = {uo1, . . . , uon} the corre-
sponding subset of Cλ. Let Lo be a locally constant sheaf of finite rank r on Cλr{uo}.
We will be mainly concerned with the perverse sheaf j∗Lo,(1) where we denote by
j : Cλ r {uo} ↪→ Cλ the open inclusion. This sheaf is called the intermediate exten-
sion of Lo with respect to j.

Let (V o,∇o) be the meromorphic flat bundle on the affine line Cλ with poles at uoi
(i = 1, . . . , n) and regular singularities there and at λ =∞, whose sheaf of horizontal
sections on Cλruo is the local system Lo. We can regard it as a meromorphic bundle
on P1 with poles at uo1, . . . , uon and ∞, equipped with a connection ∇o having regular
singularities there. We can also regard it as a regular holonomic (left) module over
the Weyl algebra C[λ]〈∂λ〉.

To j∗Lo is associated, by the Riemann-Hilbert correspondence, a regular holonomic
C[λ]〈∂λ〉-module (Mo,∇o), that is called the middle extension of (V o,∇o).

Assume we are given a Fuchsian system with poles at {uo}, and matrix

(1.1) Bo =

n∑
i=1

Boi
λ− uoi

dλ.

We regard it as the free C[λ]-module Eo = C[λ]r equipped with a logarithmic con-
nection ∇o whose matrix is given by the formula above. The associated meromorphic
bundle with connection (V o,∇o) is obtained by tensoring Eo with the ring of rational
functions C[λ, ((λ− uoi )−1)i=1,...,n] having poles at most at {uo}, that is,

(1.2) V o = C[λ, ((λ− uoi )−1)i=1,...,n]⊗C[λ] E
o,

with connection naturally induced by ∇o on Eo. We regard (V o,∇o) as a left
module over the Weyl algebra C[λ]〈∂λ〉, and (Eo,∇o) is called a logarithmic lattice
of it. Although (Eo,∇o) is not a C[λ]〈∂λ〉-module, it generates a C[λ]〈∂λ〉-submodule
(Mo,∇o) of (V o,∇o) by setting

Mo =
∑
k

(∇o∂λ)kEo ⊂ V o.

The following lemma is standard.

Lemma 1.3. Assume that, for each i = 1, . . . , n, the integral eigenvalues of Boi are
nonnegative. Then (Mo,∇o) is the middle extension of (V o,∇o) at each of its poles.

(1)One usually shifts this sheaf by one, but we do not for the sake of simplicity.
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We consider the Laplace (also called Fourier) transformation with kernel eλζ . The
Laplace transform (LMo,∇o) of (Mo,∇o) is the C[ζ]〈∂ζ〉-module obtained as follows.
The C-vector space LMo is equal to Mo. The action of ζ is defined as that of ∂λ,
and the action of ∂ζ is defined as that of −λ. Classical results show that LMo is
a holonomic C[ζ]〈∂ζ〉-module with a regular singularity at ζ = 0 and an irregular
singularity at ζ =∞.

Tensoring this Laplace transform LMo with C[ζ, ζ−1] over C[ζ] and setting z = ζ−1,
we obtain a meromorphic bundle with connection (Go,∇o) on the affine line Cz with
pole at z = 0 and an irregular singularity there (and a regular singularity at z =∞).
In other words, (Go,∇o) is the localized Laplace transform of (Mo,∇o) with respect
to the Laplace kernel eλ/z.

The formal stationary phase formula describes the formalized connection

(Ĝo, ∇̂o) := C((z))⊗C[z] (Go,∇o).

There exists a C((z))-basis of Ĝo in which the matrix of ∇̂o is block-diagonal, with
blocks of the form

(1.4) uoi Idri d(1/z) + Ci dz/z, i = 1, . . . , n,

where Ci is a constant matrix. Correspondingly, there is a pair (So+, S
o
−) of Stokes

matrices that enables one to recover, up to isomorphism, (Go,∇o) from (Ĝo, ∇̂o).
A topological computation of (So+, S

o
−) from a presentation of j∗Lo is given in

[DHMS20, Th. 5.4], adapting the more analytic approach in [Mal91, Chap.XII].
We recall it here in the special case of the intermediate extension j∗Lo.

We fix an uo-admissible argument θo in Cλ, in the sense that the closed real half-
lines `i with this direction starting from uoi does not contain uoj for j 6= i. We set
`o =

⋃
i `i. We denote by Di the maximal open strip in that direction containing uoi

and no other uoj . See Figure 1.

uoi uoj

`i

uoi uoj

Di r `i Cλ r `o

Figure 1.

To j∗Lo and the choice of a general argument θo as above (that we omit in the
notation) is attached a quiver consisting of finite-dimensional vector spaces and linear
maps between them. The quiver takes the form (Ψo,Φoi=1,...,n, ci, vi) and, due to the
special case we consider here, it is obtained as follows (see [DHMS20, Lem. 4.8]):

– Ψo = H2
c (Cλ r `o, Lo),

– Ψo
i = H1

c (`∗i , L
o), with `∗i := `i r {uoi }, and monodromy Tii,
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– hi : Ψo
i
∼−→ Ψo is an isomorphism obtained through (4.6)c in loc. cit., and

Ti = hi ◦ Tii ◦ h−1i : Ψo → Ψo is the i-th monodromy on Ψo,
– Φoi = im(Id−Tii) ⊂ Ψo

i , cii = (Id−Tii) : Ψo
i → Φoi and vii : Φoi ↪→ Ψo

i is the
natural inclusion,

– Last, ci = cii ◦ h−1i , vi = hi ◦ vii.

We note that vi : Φoi → Ψo is injective and its image is identified with im(Id−Ti).
The quiver is thus isomorphic to the quiver

(Ψo, φoi=1,...,n, ci, vi),


φoi = im(Id−Ti),

ci = (Id−Ti) : Ψo → Ψo,

vi = inclusion : φoi ↪→ Ψo.

With this notation, [DHMS20, Th. 5.4] asserts (following [Mal91, Chap.XII])
that there exists a pair (So+, S

o
−) of Stokes matrices for Go which are decomposed into

blocks (i, j) with i, j = 1, . . . , n, such that the non-diagonal blocks (i, j) and (j, i)

read

– cj ◦ vi and 0 for So+,
– 0 and −ci ◦ vj for So−.

Corollary 1.5. With these assumptions, for i 6= j ∈ {1, . . . , n}, the above representative
(So+, S

o
−) of Stokes matrices for Go has vanishing blocks (i, j) and (j, i) if and only if

(Id−Tj)|im(Id−Ti) = 0 and (Id−Ti)|im(Id−Tj) = 0.

2. Interpretation in terms of constancy of the vanishing cycle sheaf

If we vary uo ∈ Cn along a path u(t) (t ∈ [0, 1]) with the condition that ui(t)
remain pairwise distinct, the local system Lo deforms in a unique way as a family of
local systems Lt on Cλr{u(t)}: this is obtained by an argument on the fundamental
group (since the path is simply connected). Assume now that the limit point u(1) has
components which coincide, a property that the authors of [CDG19] call coalescence.
The behaviour near such a point is better seen within a geometric setup.

Let us consider the space Cn×Cλ with coordinates u1, . . . , un, λ and the projection
p : (u1, . . . , un, λ) 7→ (u1, . . . , un). Let us also consider the following hypersurfaces:

– the hyperplanes Hi = {λ− ui = 0} of Cn × C on the one hand,
– the hyperplanes ∆i,j = {ui = uj} (i 6= j) of Cn on the other hand, that are lifted

to Cn × C as ∆i,j × C.
The union of these are respectively denoted by H and ∆ (and ∆×C). We note that H
is a divisor with normal crossings in Cn×C whose singular set projects bijectively to ∆.

Let uc be a fixed coalescing point, that is, a point on ∆. It defines a partition
{1, . . . , n} =

⊔m
a=1 I

c
a such that uci = ucj if and only if i and j belong to the same

subset Ica and we denote by uca this common value. We decompose correspondingly Cn

as
∏m
a=1 CI

c
a .
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Let us fix an uc-admissible argument θc and open subsets Dc
a ⊂ Cλ (a = 1, . . . ,m)

as in Figure 1. The open subset Dca of CIca consisting of points whose coor-
dinates belong to Dc

a is the product of the open strips Dc
a in each coordinate

plane, hence is homeomorphic to CIca . We then set Dc =
∏m
a=1 Dca, and we have

Dcr∆=
∏m
a=1(Dcar∆a). The disjoint union

m∐
a=1

(Dc ×Dc
a)

is an open neighbourhood of (uc, {uc}) in Dc × Cλ and

H ∩ (Dc ×Dc
a) = Ha ×

∏
b6=a

Dcb,

where Ha ⊂ Dca×Dc
a is defined by

∏
i∈Ica

(λ−ui) = 0. We now call Hi the intersection
of {λ = ui} with Dc × Cλ. For i = 1, . . . , n, let vi(u, λ) = (λ− ui) : Dc × Cλ → C be
the defining function of Hi. Then H =

⋃
iHi is a normal crossing divisor in Dc×Cλ.

We also set X = Dc r ∆ and denote by j : (X × Cλ) r H ↪→ X × Cλ the open
inclusion. Note that the intersection of H with X × Cλ is smooth with components
Hi ∩ (X × Cλ), because the singular set of H projects to ∆. Also, the complement
in Hi of Hi ∩ (X × Cλ) is a normal crossing divisor in Hi.

Let L′ be a locally constant sheaf on (Dc × Cλ) rH and let L denote its restric-
tion to (X × Cλ) r H. The nearby cycle complex ψvi(L

′) is a complex of sheaves
on Hi equipped with an automorphism Ti(ψ) : ψvi(L

′) → ψvi(L
′). By restricting

over X, we obtain a locally constant sheaf ψvi(L) on Hi ∩ (X × Cλ) equipped with
the automorphism Ti(ψ). For any uo ∈ X, we denote by Lo the restriction of L
to uo × (Cλ r {uo}).

The sheaf j∗L on X×Cλ is a perverse sheaf (up to a shift) and the vanishing cycle
sheaf φvi(j∗L) is a locally constant sheaf on Hi ∩ (X × Cλ): this is the sheaf

(2.1) im(Id−Ti(ψ)) : ψvi(L) −→ ψvi(L)

equipped with the automorphism Ti(φ) induced by Ti(ψ).

Proposition 2.2. With these notations, assume that for each i = 1, . . . , n, the vanishing
cycle local system φvi(j∗L) on Hi ∩ (X ×Cλ) is constant. Then, for any uo ∈ X, for
any a = 1, . . . ,m and for any pair i 6= j ∈ Ica, the Stokes matrices of Go considered
in Section 1 with respect to any argument θo close enough to θc have their (i, j)- and
(j, i)-blocks equal to zero.

Proof. We first notice that, uo being fixed in X, if θc is not uo-admissible, then any
θo 6= θc close enough to θc is uo-admissible. The result does not depend on the choice
of θo.

The question is local at each uca. Recall that vi=λ−ui. The open set (Dca×Dc
a)rHa

is homeomorphic to (CIca×Cλ)r{
∏
i∈Ica

vi=0} with coordinates (vIca , λ). We are thus
considering a locally constant sheaf L′ on the complement of coordinate hyperplanes
vi = 0 in CIca × Cλ. Giving L′ is thus equivalent to giving a vector space L equipped
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with automorphisms Ti (i ∈ Ica). We can choose (Ψo,Ti∈Ica) defined in Section 1 as
such data.

With such a representation, the locally constant sheaf φvi(j∗L) on Hi ∩ (X × Cλ)

is represented by the vector space with automorphisms (im(Id−Ti),Tj 6=i). Further-
more, the automorphism Ti(φ) of φvi(j∗L) corresponds to the automorphism induced
by Ti. That φvi(j∗L) is constant is equivalent to the property that each Tj 6=i is the
identity on im(Id−Ti). We conclude with Corollary 1.5.

3. A short proof of a theorem of Cotti, Dubrovin and Guzzetti

We keep the setting and notation of Section 2: we fix a coalescing point uc ∈ ∆

and a point uo in Dc r ∆.
We consider the trivial C[z]-module F o of rank n equipped with the connection ∇o

having matrix

(3.1) Ao =
(Λo

z
+Ao∞

) dz

z
, where Λo := diag(uo1, . . . , u

o
n).

We assume that the only possible integral eigenvalues of Ao∞ are > 1 and no diagonal
entry of Ao∞ is an integer (this can be achieved by adding c Idn dz/z to Ao∞ for a
suitable c ∈ C, and Theorem 3.7 is insensitive to this modification). The inverse
Laplace (or Fourier) lattice (Eo,∇o) (see see [Sab02, Prop.V.2.10]) is F o regarded
as a C[λ]-module, where λ acts as z2∂z. By the first assumption on Ao∞, it is free of
rank n, with the same canonical basis as F o, and the matrix of ∇o in this basis is

(3.2) Bo = (Ao∞ − Idn)(λ Idn−Λo)−1dλ,

which takes the Fuchsian form (1.1).

Lemma 3.3. The C[λ]〈∂λ〉-submodule of (V o,∇o) generated by Eo is the middle ex-
tension (Mo,∇o) of (V o,∇o), whose localized Laplace transform (Go,∇o) is equal to
G̃o := C[z, z−1]⊗C[z] F

o with connection having matrix Ao.

Proof. Let us decompose Bo as in (1.1). Then each matrix Boi has rank one and a
unique nonzero eigenvalue, which is the i-th diagonal entry of Ao∞ − Id and is non
integral by the second assumption on Ao∞. Therefore, the matrix Bo satisfies the
assumption of Lemma 1.3. This proves the first point.

Let Go be localized Laplace transform of Mo. Then

Eo ⊂Mo =⇒ F o ⊂ Go, hence G̃o ⊂ Go.

In order to obtain equality, it is enough to show rkGo = n. By the stationary phase
formula, this rank is equal to

∑n
i=1 φλ−uoiM

o. Therefore, it is enough to show that,
for each local monodromy Ti of Lo = (V o)∇

o

around uoi , we have rk(Idn−Ti) = 1.
Since no two distinct eigenvalues of Boi differ by an integer, the local monodromy Ti

is conjugate to exp(−2πiBoi ), hence Ti − Id has rank one, as desired.
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Since the diagonal terms of Λo are pairwise distinct, we can write

Ao∞ = Do
∞ + [Λo, Ro],

where Do
∞ is the diagonal of Ao∞, and we can assume that the diagonal terms of Ro

are zero.
A theorem of B.Malgrange [Mal83, Mal86] asserts that there exists a universal

integrable deformation of this system in the neighbourhood of uo (see also [Sab02,
§VI.3]). In particular (see [Sab02, §VI.3.f]), there exists a holomorphic matrix R(u)

on a simply connected neighbourhood nb(uo) with zeros on the diagonal, such that
the system

(3.4)
(Λ(u)

z
+A∞(u)

)dz

z
, A∞(u) := [Λ(u), R(u)] +Do

∞

is integrable and R(uo) = Ro. The diagonal part of R(u) does not show up, so we can
assume that the diagonal terms of R(u) are zero. The integrable connection (on the
trivial bundle) has the matrix (see [Sab02, VI (3.12)])

(3.5) − d(Λ(u)/z) +
(
[Λ(u), R(u)] +Do

∞
) dz

z
− [dΛ(u), R(u)]

and is a universal integrable deformation of its restriction at each point of the neigh-
bourhood where it exists. Furthermore, on nb(uo), there exists a z-formal base change
which transforms (3.5) to the system

(3.6) − d(Λ(u)/z) +Do
∞

dz

z
.

Theorem 3.7 ([CDG19], [Guz21]). Assume that A∞(u), defined on nb(uo), extends
holomorphically to Dc, and that, for any a = 1, . . . ,m and any i 6= j belonging to the
same Ica, the (i, j) and (j, i) entries of A∞(u) tend to zero when ui − uj → 0. Then
the corresponding (i, j) and (j, i) entries of the Stokes matrices (So+, S

o
−) are zero.

Remark 3.8. We may restate the condition on A∞(u) as the condition that R(u)

extends holomorphically to Dc.

Proof. We first note that the integrability property of (3.5) all over Dc immediately
results from that on nb(uo). Indeed, integrability is equivalent to the property that R
satisfies the following isomonodromy differential system on a neighbourhood of uo:

(3.9)

 d[Λ, R] = −
[(

[Λ, R] +Do
∞
)
, [dΛ, R]

]
,

d[dΛ, R] = [dΛ, R] ∧ [dΛ, R].

These are equalities on nb(uo) between holomorphic matrices defined on Dc. Since Dc

is connected, these equalities, hence the integrability property, hold all over Dc.
Let us set

A(u, z) =
(Λ(u)

z
+ [Λ(u), R(u)] +Do

∞

)dz

z
,

Ω = −dΛ(u)

z
− [dΛ(u), R(u)].

(3.10)



A SHORT PROOF OF A THEOREM OF COTTI, DUBROVIN AND GUZZETTI 9

As explained in Lemma 3.3, the meromorphic bundle with connection (Go,∇o)
associated with the differential system of matrix Ao given by (3.1) is the localized
Laplace transform of the middle extension (Mo,∇o) of the meromorphic bundle with
connection (V o,∇o) defined by the matrix Bo given by (3.2). The existence of A∞(u)

on Dc together with integrability of (3.10) implies the existence of a meromorphic
bundle with integrable connection (G,∇) on Dc × C restricting to (Go,∇o) at uo.

Let us consider the formalized connection along z = 0:

(Ĝ, ∇̂) := ODc((z))⊗ODc [z] (G,∇).

Then [CDG19, Prop. 19.3] (see a reminder in Appendix A) extends the formal de-
composition (3.6) for (G,∇) all over Dc:

(3.11) (Ĝ, ∇̂) '
n⊕
i=1

(
ODc((z)),d + d(ui/z) + do∞,idz/z

)
,

where do∞,i is the i-th diagonal entry of the diagonal matrix Do
∞. The rank-one

ODc((z))-module with connection (ODc((z)),d+do∞,idz/z) has regular singularity along
{z = 0}. It is uniquely determined as such by the data of the pair (Li, Ti), where
Li = CDc is the constant local system of rank one on Dc, and Ti is the automorphism
of Li induced by multiplication by exp(− 2πi do∞,i).

Our aim is to apply Proposition 2.2 to a suitable local system L. Before doing so,
we construct the local system L′ on (Dc × Cλ) rH by means of the standard result
provided by Lemma 3.12. We then define L as the restriction of L′ to (X ×Cλ)rH,
and we prove that the local system φvi(L) as considered in Section 2 is constant by
identifying φvi(L) with the restriction of Li to X = Dc r ∆.

Lemma 3.12. Let U be a simply connected complex manifold and let D be a disc of some
positive radius, centered at the origin in C. Let uo ∈ U . The restriction functor at uo

induces an equivalence between the category of regular holonomic DU×D-modules with
characteristic variety contained in T ∗U×D(U ×D) ∪ T ∗U×{0}(U ×D) and the category
of regular holonomic D{uo}×D-modules with singularity at the origin only. A quasi-
inverse functor is given by the pullback by the projection U ×D → {uo} ×D.

Furthermore, we implicitly refer to [DS03, App.A] for passing from analytic to
partially algebraic D-modules.

This being understood, we conclude, by taking U = Dc, that LMo extends in
a unique way as a holonomic DDc [ζ]〈∂ζ〉-module N with regular singularities along
ζ = 0 and which satisfies (by setting z = ζ−1)

ODc [ζ, ζ
−1]⊗ODc [ζ] N = (G,∇),

N|uo×C = LMo.

The inverse partial Laplace transformM of N is a holonomic DDc [λ]〈∂λ〉-module, and
we write N = LM (see Appendix B).

Lemma 3.13. The DDc [λ]〈∂λ〉-module M is smooth away from H and defines there a
locally constant sheaf L′.
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Proof. We can regard (G,∇) as a holonomic DDc [ζ]〈∂ζ〉-module on which ζ acts in
an invertible way. Let M̃ denote its inverse Laplace transform. The cokernel of the
inclusionN ↪→ G is a holonomic DDc [ζ]〈∂ζ〉-module supported on ζ = 0. Furthermore,
since the characteristic variety of N and G is as described in Lemma 3.12, that of
G/N is contained in T ∗Dc×{0}(D

c × Cζ). As a consequence, the cokernel of M ↪→ M̃

is a holonomic DDc [λ]〈∂λ〉-module isomorphic to some power of (ODc [λ],d). It is
thus enough to prove the lemma for M̃ . Recall also (see Appendix B) that M̃ is
nothing but G as a DDc-module, hence as an ODc . In particular, it is ODc -flat and the
restriction functor to any u ∈ Dc only produces one cohomology C[λ]〈∂λ〉-module M̃u,
which is the inverse Laplace transform of the restriction Gu to u × Cλ. The formal
stationary phase formula (1.4) for u fixed, together with the restriction of (3.11) at
this value of u, implies that the singular set of M̃u is equal to the finite set {u}. Since
u was arbitrary, this concludes the proof.

From now on, we restrict to X = Dc r ∆. We have M|p−1(uo) = Mo and M is
regular holonomic, with poles on the smooth hypersurface H ⊂ X × Cλ. By the
uniqueness property of Lemma 3.12 applied to any simply connected open subset
of X containing uo, we conclude that M is the middle extension of the meromorphic
flat bundle (V,∇) := OX [λ, ((λ − ui)−1)i=1,...,n] along H. Denoting by L the local
system of horizontal sections of (V,∇),M is the regular holonomic DX [λ]〈∂λ〉-module
associated to the (perverse) sheaf j∗L via the Riemann-Hilbert correspondence.

The formalized connection (Ĝ, ∇̂) along z = 0 is directly obtained from (M,∇)

by an operation called formal partial microlocalization [DS03, Prop. 1.18] (the non-
characteristic assumption (NC) in loc. cit. is obviously satisfied here). We write
(Ĝ, ∇̂) = p∗(M,∇)µ, with the identification z = ∂−1λ and λ = z2∂z. By the stan-
dard identification recalled in Appendix B (see Remark B.2), the vanishing cycle sheaf
φvi(j∗L) is a rank-one local system on Hi ∩ (X × Cλ), identified with Li|X .

Since Li is constant on Dc, hence on X, we conclude the proof of Theorem 3.7 by
applying the criterion of Proposition 2.2.

Appendix A. A reminder of [CDG19, Prop. 19.3]

Let us recall the statement and proof of [CDG19, Prop. 19.3] for the sake of
completeness. We use the following notation. Given a square matrix A, we denote
by A′ the matrix formed of its diagonal terms, all off-diagonal terms being zero, and
set A′′ = A−A′.

Proposition A.1 ([CDG19, Prop. 19.3]). In the setting of (3.10), there exists a unique
z-formal base change

P̂ (u, z) =
∑
j>0

(−1)jPj(u)zj , P0(u) ≡ Id, P ′′1 (u) = R(u),
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with Pj(u) holomorphic on Dc, such that

P̂−1A(u, z)P̂ + P̂−1∂zP̂dz =
(Λ(u)

z
+Do

∞

)dz

z
,

P̂−1ΩP̂ + P̂−1dP̂ = −dΛ(u)

z
.

(A.1 ∗)

The existence on nb(uo) of P̂ satisfying (A.1 ∗) and with given P ′′1 is standard. Let
us first prove that P̂ is unique on nb(uo) and given by recursive formulas starting
from P ′′1 . For that purpose, we will only need to know that P̂ satisfies the first line
of (A.1 ∗) on nb(uo).

Setting A′′∞ = [Λ, P ′′1 ], the Pj ’s are solutions of the following recursive equations
(P0 = Id):

(A.2) [Λ, Pj+1] = jPj +A′′∞Pj + [Do
∞, Pj ].

We have

[Λ, Pj+1] = [Λ, P ′′j+1] = [Λ, P ′′j+1]′′,

and similarly [Do
∞, Pj ] = [Do

∞, P
′′
j ]′′. We also have (A′′∞Pj)

′ = (A′′∞P
′′
j )′. Since Λ is

regular on nb(uo), P ′′j+1 (j > 1) is uniquely determined by Pj and A′′∞, hence P ′′1 , by
the relation

[Λ, P ′′j+1] = jP ′′j + (A′′∞Pj)
′′ + [Do

∞, P
′′
j ].

On the other hand, the diagonal part of (A.2) for j + 1 (j > 0) reads

(A.3) P ′j+1 = −(A′′∞P
′′
j+1)′/(j + 1),

hence P ′j+1 is uniquely determined by P ′′j+1 and P ′′1 (through A′′∞), thus by Pj and P ′′1 .
For P ′1 we obtain

(A.4) P ′1 = −(A′′∞R)′.

Let us now show that the Pj ’s extend to Dc. We will use that P̂ also satisfies
the second line of (A.1 ∗) on nb(uo). The system of this second line on Dc can be
written as

[P̂ ,dΛ] = −z
(
dP̂ + [dΛ, R]P̂

)
.

Denoting by Ei the matrix having (Ei)ab = 1 if a = b = i and 0 otherwise, so that
dΛ =

∑
iEi dui, these equations are written

[Pj+1, Ei] = −∂Pj/∂ui − [Ei, R]Pj .

By (A.4), P ′1 (hence P1) extends holomorphically to Dc. For j > 1, let us assume that
P1, . . . , Pj extend holomorphically to Dc. Then so does [Pj+1, Ei] for each i, therefore
P ′′j+1 also, hence P ′j+1 also, according to (A.3).
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Appendix B. A reminder on partial Laplace transformation,
partial microlocalization and vanishing cycles

We recall here, following the method of [DS03, §1], how the formal stationary
phase formula with parameters can be expressed in terms of vanishing cycles, by
means of formal partial microlocalization. We take up the setting and notation of
Section 2 with X = Dc r ∆.

Let (M,∇) be any regular holonomic DDc [λ]〈∂λ〉-module. Recall that the par-
tial Laplace transform LM of M is the DDc [ζ]〈∂ζ〉-module which is equal to M as a
DDc-module and on which ζ acts as ∂λ and ∂ζ as −λ. It is holonomic with singularities
along Dc × {ζ = 0}. From LM we recover M by inverse partial Laplace transforma-
tion. Let us set G = ODc [ζ, ζ

−1]⊗ODc [ζ]〈∂ζ〉
LM and z = ζ−1. Then G is a locally free

ODc [z, z
−1]-module of finite rank with connection ∇ having singularity along z = 0.

Let (Ĝ, ∇̂) denote the formalization ODc((z))⊗ODc [z,z−1] (G,∇). We now implicitly
restrict M to X × Cλ and G to X × Cz. We will recall the proof of the following
“formal stationary phase formula with parameters”.

Proposition B.1. Assume that the characteristic variety of M is contained in the union
of the zero section of T ∗(X×Cλ) and the conormal bundles of the smooth hypersurfaces
Hi = {vi = 0} (vi := λ− ui). Then (Ĝ, ∇̂) decomposes as

(B.1 ∗)
n⊕
i=1

(Ri[z
−1],∇i + d(ui/z)),

where (Ri,∇i) is a locally free OX [[z]]-module of finite rank with logarithmic connec-
tion ∇i, and the locally free OX-module Ri/zRi, equipped with the residual connec-
tion ∇res

i , is isomorphic to (φviM,∇res).

Let V •M denote the Kashiwara-Malgrange filtration of M along H, that we con-
sider here as indexed by integers. Due to our assumption on the singularity ofM , each
V kM is a coherent OX [λ]-module. The connection ∇ acts on each V kM with loga-
rithmic poles along H and its residue has eigenvalues with real parts in [k, k+1). The
vanishing cycle module φHM is by definition the quotient gr−1V M = V −1M/V 0M .
It is a locally free OH -module equipped with the residual integrable connection that
we denote by ∇res. Since gr−1V M is supported on H =

∐
iHi, p∗gr−1V M decomposes

as
⊕

i(φviM,∇res). Since the projection p : X × Cλ → X induces an isomorphism
Hi ' X, we can regard each (φviM,∇res) as a locally free OX -module with integrable
connection. This explains why there can be an identification between (φviM,∇res)

and (Ri/zRi,∇res
i ).

Remark B.2. If M is the regular holonomic DX [λ]〈∂λ〉-module associated to j∗L by
the Riemann-Hilbert correspondence, then, due to the compatibility between tak-
ing vanishing cycles and the Riemann-Hilbert functor (see e.g. [Sab87, MM04]),
(φviM,∇res) corresponds to φvi(j∗L), and Proposition B.1 provides the claim in the
last part of the proof of Theorem 3.7.
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Proof of Proposition B.1. Let M [∂−1λ ] be the regular holonomic DX [λ]〈∂λ〉-module
whose partial Laplace transform is exactly G (i.e.,M [∂−1λ ] is the inverse Laplace trans-
form of G) and let V •(M [∂−1λ ]) its Kashiwara-Malgrange filtration along H. We claim
that, for any k ∈ Z, V k(M [∂−1λ ]) = ∂kλV

−1(M [∂−1λ ]) and that the natural mor-
phism M → M [∂−1λ ] induces an isomorphism (φviM,∇res)

∼−→ (φvi(M [∂−1λ ]),∇res)

for each i = 1, . . . , n. Due to the uniqueness of the Kashiwara-Malgrange filtration,
we can work on an analytic neighbourhood Ui of Hi in X ×Cλ, that the flat functor
OUi ⊗OX [λ] (•) preserves the Kashiwara-Malgrange filtration. Then the claim follows
from the standard properties of this filtration (see e.g. [Sab87, MM04]). As a con-
sequence, we can assume that M = M [∂−1λ ], and

⊕
i(φviM,∇res) ' (gr−1V M,∇) has

rank equal to the rank of M which is also equal to the rank of G.
By [DS03, Prop. 1.18], (Ĝ, ∇̂) is identified with the partial microlocalized module

p∗M
µ, as defined in loc. cit., and the microlocalized lattice p∗(V −1M )µ is a coherent

OX [[z]]-module which is the direct sum of the components p∗(V −1M|Ui)
µ for i =

1, . . . , n, since (V −1M|Ui)
µ is supported on Hi. By definition of the V -filtration,

V −1M|Ui is acted on by ∂λ · (λ − ui), ∂λ + ∂ui and ∂uj for j 6= i. This is seen by
changing the variables (ui, uj 6=i, λ) 7→ (vi = λ− ui, uj 6=i, λ).

As for the corresponding actions on the partial Laplace transform, the action of z
on p∗Mµ is that induced by ∂−1λ and the action of ∂z by λ2∂λ. Then p∗(V −1M|Ui)

µ

is acted on by z∂z − ui/z, z−1 + ∂ui and ∂uj for j 6= i, operators which also read

e−ui/z · z∂z · eui/z, e−ui/z · ∂ui · eui/z, e−ui/z · ∂uj · eui/z for j 6= i.

In other words, if we twist the connection by e−ui/z, p∗(V −1M|Ui)
µ becomes a cohe-

rent OX [[z]]-module with logarithmic connection (Ri,∇i) having poles along z = 0

only. As a consequence, Ri is OX [[z]]-locally free of finite rank. By the computation
of the rank aforementioned, we find

∑
i rkRi = rkG, and [DS03, Prop. 1.20] applies,

giving the decomposition (B.1 ∗).
Last, the quotient Ri/zRi with its residual connection ∇res

i is identified with
p∗(V

−1M|Ui/∂
−1
λ V −1M|Ui)

µ. Because V −1M|Ui/∂
−1
λ V −1M|Ui = φviM is supported

on Hi, microlocalization does not change it, and we thus identify (Ri/zRi,∇res
i ) with

(φviM,∇res).
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