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ON THE COMPARISON THEOREM

FOR ELEMENTARY IRREGULAR ©-MODULES

CLAUDE SABBAH

Introduction

Let U be a smooth quasi-projective variety over C and let / be a regular

function on U. Let %JV be the sheaf of algebraic differential operators on U and let

M be a regular holonomic ©^-module: here, regular means that there exists some

smooth compactification X of U and some extension of M as a ®z-module which is

regular holonomic on X (one also may avoid the use of a smooth compactification to

define regularity, see [17]).

Let Mf be the ©^-module obtained from M by twisting by e . By definition,

Mf is equal to M as an (9^-module; the operator Vf:Mf—> Ωv ®QυMf is equal to

e~fVef, where V is the operator Λί —• Ω\j®ΘuM given by the ©^-module struc-

ture; we have Vf=Q because V = 0 and this defines a ©^-module structure on

Mf.

Let DRCΛO be the algebraic de Rham complex of the holonomic ©^-module M:

(*) DRCΛO = {Q^ M ^ Ωι

v®ΘuN ^ Ω2

v®ΘuM ^ " -}

(it is now usual to consider that the term corresponding to Ω ι is in degree 0,

but it will not matter here and we shall not shift this complex). We shall give a

formula for the hypercohomology of ΌR(Mf), i.e. the cohomology of the complex

RΓ(U, ΌR(Mf)). If U is affine, this is the cohomology of the complex

ΌR(Mf(U)) of global sections over U.

This result was conjectured in [1] in a particular case, where U is the com-

plement of an arrangement of hyperplanes in general position in C and M is a

rank one locally free ^-module.

In fact, the global comparison theorem we give is essentially equivalent to the

one given in [8] (see also [15] and [22]).

We shall use this result to obtain vanishing theorems of the type given in [1]
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under weaker assumptions on the arrangement or on the regular function.

We also prove a local version of the comparison theorem (see § 0 for all the

following undefined notations): in the algebraic case for instance, if X is a compac-

tification of U on which / extends as a function F : X —» P , and if η denotes the

inclusion U C_> X, we shall give a topological formula to compute the analytic

(hence algebraic by GAGA) de Rham complex of the ®^-module η+Mf.

We deduce from this result that the irregularity complex of Mf (see [18]),

which is the cone of

ΌRan(η+Mf) -* Rη*ΌR*n(Mf)

has the same characteristic function as the nearby cycle complex ψ1/F(Rη*DR M).

Because the characteristic cycle of η+Mf can be computed only in terms of the

characteristic function of the complex ΌRan(η+M), this result corroborates the

computation in [4].

The results proved in this article are more or less known to specialists, but

do not seem to exist with enough generality in the literature.

We shall assume that the reader is familiar with the theories of algebraic

©-modules, derived categories and perverse sheaves. One is referred to [2], [16]

and [10] for more details on these. However we shall recall below some known

facts in these theories and give some more precise references.

0. A quick trip through the theory of holonomic ®-modules

0.1. We shall denote ® z the sheaf of algebraic differential operators on a

smooth algebraic variety over C (see [3, p. 207] or [16, p. 24]). By a ®x-module

we will mean a coherent left ®z-module.

0.2. Let φ: Y—» X be a proper morphism between smooth algebraic

varieties over C. We denote φ+ the direct image of ®r-modules (see [3, p. 240] or

[16, p. 61]). If M is a ®F-module, φ+M is a bounded complex, the cohomology of

which is made of ©^-modules (see [3, p. 275] or [16, p. 75]).

When φ is not proper, the previous result is not true in general, but remains

true when applied to holonomic ®F-modules. In this case holonomicity is preserved

by φ+ (see [3, p. 292] or [16, p. 77]).

0.3. The dual DXM of a holonomic ©^-module M is also a holonomic

®z-module: in this case, $)XM is the left ®z-module associated with the right
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The duality functor is in fact defined at the level of complexes. Moreover

there is a biduality theorem DX(DXM) - M (see [3, p. 277] or [16, p. 40]).

When φ: Y—> X is proper, the duality functor commutes with direct images

(up to a shift of complexes depending on the convention), namely φ+Dγ = Dxφ+

(see [3, p. 278] or [16, p. 74]).

However, when φ is not proper, it will not commute in general and we define

a new functor (we must restrict here to holonomic objects) φ^ = Dxφ+Dγ.

0.4. We will consider φ^ in the case where φ = rj: U c_» X is the inclusion

of a Zariski open set such that X — U is a divisor D. If M is a holonomic

©^-module, ϊ]+M is the only holonomic ©^--module such that

(1) η+Mw = M,

(2) if A is a local equation for D, multiplication by h is bijective on Tj+M {i.e.

multiplication by h~ is defined on η+M).

Using (0.3) we can also define η^M but its characteristic properties are more

difficult to state directly.

0.5. Given a holonomic ®z-module M, the constructibility theorem of Kashi-

wara (see [9] and also [19] or [20]) asserts that the analytic de Rham complex

DRa nJί (defined as the algebraic one ( * ) using holomorphic forms) is a bounded

complex with constructible cohomology on X (in other words a constructible com-

plex). We will denote *DR = DRfdimX], *DRan = DRan[dimX].

For φ : F—• X as above and M a holonomic ®F-module, there exists a natural

morphism

(* * ) PΌRan(φ+M) -> β φ / D R a n U )

where φ* denotes the direct image of sheaves and Rφ* denotes its right derived

functor.

When φ is proper, ( * * ) is a quasi-isomorphism. When φ is not proper and

even if M is holonomic, it need not be so.

0.6. If φ = η : U <^>X as above, ( * * ) is a quasi-isomorphism if η+M has

regular singularities along D (see [3, p. 326] or [17]). If M is only holonomic, the

cone of ( * # ) is defined to be the irregularity complex of 7] +M along D (see [18]).
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0.7. There is a duality functor for constructive complexes called Verdier

duality, which gives usual Poincare duality at the cohomology level. This functor

Dx is compatible with the duality of holonomic ©^-modules via ^DR311, namely

DX

PΌR™M = PΌRanDxM (see [3, p. 326] or [16, p. 56]).

Consequently for φ : Y~* X as above and under regularity assumptions on the

holonomic ®y-module M, the functor φ^ defined for holonomic modules corres-

ponds via DRan to the functor φ{ of direct image with proper supports defined at

the level of sheaves, namely φ,PΌRanM = PΌRanφfM.

0.8. Let 3* be a constructible complex on X. For each x ^ X, put χx(3F) =

Σi(~ 1)' dim %*(&)„ where X'(2F) is the ith cohomology sheaf of &, which is by

assumption a constructible sheaf on X. Then x h ^ χ x (S0 is a constructible func-

tion on X with values in Z : it is constant on the strata of some algebraic strati-

fication of X.

When 3' = DR M, M a holonomic ®z-module, this function allows one to re-

cover the characteristic cycle of M (a union of Lagrangian varieties in the cotan-

gent bundle T X with multiplicities) (see for instance [6]).

The global Euler characteristics χ(X, SF) = Σ , ( - 1Ϋ dimH^X, &), where

Hι denotes the ith hypercohomology group of the complex 3?, can also be reco-

vered from the characteristic function of 2F and the usual Euler characteristics of

the strata on which it is constant. For instance, if 2F is a local system on X, we

have χx(&) = d i m ^ = r for all x and χ(X, 2F) = r-χ(X).

0.9. Let h :X—* C be a regular function on X and let 2F be.a constructible

complex on X. The nearby cycle complex φ^ is a constructible" complex on

h (0) (see for instance [10, p. 350] for the definition). It depends only on the res-

triction of 3? to X— h~ (0). If for instance this restriction is a local system of

rank r, the characteristic function x ^ χx(ψh&) (x e A - 1(0)) is computed in the

following way: let Fx denote the Milnor fiber of h at x then χx{φh^) =
rX (Fx) where χ in the RHS is the usual Euler characteristics of Fx.

Coming back to the general situation one can also define (see for instance [10,

p. 350]) the vanishing cycle complex φh3" as the cone of the natural morphism

h~Ho)^~* ΦhβF where ih-i(0) h~ (0) c_> X denotes the inclusion.

1. A global comparison theorem

In order to formulate the result, denote C/an the complex analytic manifold

underlying U and DR {M) the corresponding de Rham complex of M. It is a
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bounded complex with constructive cohomology on U (for instance it can be a

local system on U). Let Φ be the family of closed sets of U™ on which e~ is

rapidly decreasing (a more precise definition will be given later).

THEOREM 1.1. One has Hk(U, DRU,) ) = Hk ( ί/ a n , D R a n U ) ) for all k.

This theorem is essentially proved in [8] (see also [15] and [22]). Indeed, as

we shall see below, the RHS can be better understood: let p > 0 and denote Hp the

half-space R e ( - t) > p in C let Up =f~1(Hp) c ί/an Then we shall show that

the RHS is equal to the relative hypercohomology Hk(U™, Up; DR a n (J0) for p

big enough. The restriction map

Hk(U*\ Up'yΌR*\M)) -^ Hk(U*\ f~\t) ;DRanU))

induces then an isomorphism for t G Hp and so the LHS is also isomorphic to the

relative hypercohomology group H (f/a n,/" (t) DRan(«i0) for a general fiber

/ " (t). With this formulation, the result is proved in [8], [15] and [22] when U =

C , but the proof extends easily to the general case. We shall give below another

proof (in the style of [15]) which can be adapted to prove also the local comparison

Theorem 5.1.

In particular we obtain an equality of Euler characteristics (see § 0.8):

COROLLARY 1.2. Assume M is smooth of rank r on U and that U is affine. Then

χ(ΌR(Mf(U))) = r[χ(ί/an) - χCΓ'ω)]

where t is a generic value for f. •

Proof of Theorem 1.1. We shall sheafify the formulation of the theorem. This

will be useful for the local comparison Theorem 5.1. In fact we shall reduce the

global comparison theorem to a local one in dimension 1.

Let 7Γ : P —» P be the oriented real blow-up of P at infinity. This is the

space of polar coordinates at infinity, which is diffeomorphic to the disc, and

π~ι{°°) = S1 is the circle of directions at °°. We shall write P 1 = C U S1. One

has P 1 - {0} - R + X S1 and π is given by 1 /t = peθ.

Let X be a compactification of U such t h a t / extends as a projective map F :

X-* P 1 . One can extend F to F: X-» P 1 , where X is the fiber product X x P i P 1 .

It is a real semi-algebraic space and F is a semi-algebraic map.

Let / be the open interval in S defined as the set of directions in the neigh-

bourhood of which e~ is decreasing, i.e. θ e ] — π/2, π/2[. Denote Xj the in-
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verse image of C U / in X. The family Φ of closed sets considered in the theorem

is defined as follows: a closed set A of U is in Φ if its closure in X is contained in

X,.

In order to sheafify the previous construction, consider the following inclu-

sions

and denote λ, the direct image of sheaves with proper support by the map λ. The

hypercohomology with supports in Φ considered in the theorem is the hypercoho-

mology on X of the complex of sheaves βiRa% DR (M).

Remark. In contrast, the comparison theorem for regular holonomic modules

applied to M implies that RΓ(U, ΌR(M)) is the hypercohomology on X of the

complex Rβ*Ra* ΌRm(M).

Now, the hypercohomology H {X, β{Ra* DR (M)) is also equal to the rela-

tive hypercohomology H (X, X — Xj Rβ^Ra* DR a n(i/)), and this one is iso-

morphic to H (U, Up DR (JO) for p large enough.

By direct image by / we shall now reduce to the case where U = C and / =

Id (but M is replaced with a bounded complex with regular holonomic cohomology

on C). First, let /+ be the direct image functor for ©^-modules (see § 0.2). Then

one has

Moreover, using the relative comparison theorem for regular holonomic modules

(because/ is not proper) we have (see § 0.5)

*DR"'(/+iί) =

PIf we continue to denote a and /5 the inclusions C c_» C U / and C U / c_> P we

are reduced to showing that

DR(^; d (C)) = ΛΓ(P\ β,/ία*DRa nCΛO)

for any bounded complex M* on C with regular holonomic cohomology (we shall

apply this to f+M).

We shall prove this equality at the sheaf level. In order to do this, we must

realize the LHS as the hypercohomology of a complex of sheaves on P . Let j : C

C_> P denote the inclusion and j + be the corresponding direct image of

®c-modules. We then have
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DR(^;d(C)) = RΓ(P\ DRO'+^id)) by definition

= RΓ(P\ ΌRm(j+AfM)) by GAGA.

Following Malgrange (see [14, Chap. IV § 4]) we shall construct on P a com-

plex denoted ΌRmod(j+tλί[ά) such that

We shall then compare the two complexes DR O'+^ίd) a n d β\R(X* '

D R a n O Π which both live on P 1

Let dm° c β^a^Θ™ be the subsheaf of sections with moderate growth along

S . It is equal to Θ™ outside S . One has

LEMMA 1.3. π*dmod = <9pi[* O ) ] and R^^d™* = 0 for i Φ 0.

Sketch of proof. The sheaf dm° admits a resolution by currents with moder-

ate growth along S (the dual of the sheaf of #°° functions which are flat along S )

and by direct image by TΓ one gets the Dolbeaut-Grothendieck complex (of currents

with moderate growth at the origin) on C which is a resolution of 0 p i [ * (°°)]. D

It is easy to verify that d is flat over π 0 P i so if we put

ΌRmod(j+Aί'ld) = dmod ® n D R a n ( / + Λ Q

we have, due to the projection formula

We want to show that there exists a quasi-isomorphism

.4) DR 0+^id) -+ β\Roί* DR (N ).

Remark first that we have a natural morphism

TYRmoά(i Af* ) —• /?/? Rn> T)RΆn( Af)

In order to see that it factorizes through β^Ra^ DR (M ), it is enough to prove

that if γ : S — I C_» P denotes the closed inclusion, the restriction γ~

DRm° O'+ ^id) i s z e r o This statement can be reduced by a simple extension argu-

ment to the case where j+M is a single meromorphic connection near °° €= P and

we can assume that it is of rank one as an 0 p i [ * (°°)]-module.

Once the existence of the morphism is proved, the fact that it is a quasi-
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isomorphism can also be reduced to the case of rank one meromorphic connections

near oo. Moreover both results can be proved locally on P .

We shall then assume that j+N is the meromorphic connection near oo gener-

ated by f for some a ^ C and near oo the complex DRm° (j+J/^ is the complex

so this complex is locallyLocally on

isomorphic

P1,
to

f and fa

0-+d

define

mod

local sections

rmod

of

->o.
sέmoi

and there remains to show that this complex is 0 when restricted to S — I and is

equal to the constant sheaf (in degree 0) on /. These properties are clearly satis-

fied by Ker e~ldte : dm° —• dm° so the proof is now reduced to the following

LEMMA 1.5. The map eΓ%dte : dm° —• dm° is onto.

The proof of this lemma can be done exactly as in [14, Appendice 1 p. 211]

and is analogous to Lemma 3.8, Chap. IV in loc. cit. D

2. The case of isolated singularities

Consider now the following general situation: let S be a complex analytic

space of pure dimension / equipped with a complex analytic Whitney stratification

ώ. Let g : S—*C be a holomorphic function. One says (see [12]) that g has only

isolated singularities on (5, sS) if the restriction of g to each stratum Sa has only

isolated critical points (in the usual sense, since Sa is smooth). Such points are the

critical points of g with respect to ώ.

PROPOSITION 2.1. Let g has isolated singularities on (5, ώ) and let 3> be any

perverse complex on S which is constructible with respect to sS. Let c ^ C and let

Φg-β' be the complex of vanishing cycles of 3? along the fiber g (c) (see § 0.9). Then

the perverse complex φg-c3" is supported on the critical points of g on the fiber

g (c) and the cohomology of this complex is nonzero only in degree — 1 at most.

Proof Let x ^ Sa and assume that x is not a critical point of £| 5 α . Then locally

around x the map g : (5 , ώ) —• C is homeomorphic to the projection of the pro-

duct (g~ (g(x)), j£lg-i(g(x))) X C to C. This proves that any complex 2F construed-
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ble with respect to fy has no vanishing cycles at x. For any such $F and any

c G C the complex of vanishing cycles φg-c2F is then supported on the isolated

critical points of g on g (c). Now, if moreover 2F is perverse on S, the complex

Φg-β* shifted by — 1 is perverse on g~ (c) (see [7] or [21]) and is supported on

isolated points. This implies that the cohomology of φg-β" is nonzero in degree

- 1 only. D

Let us now come back to the original situation. Let X be a compactification of

U (of dimension /) on which / extends as a mapping F : X—> P and let Y — X —

PROPOSITION 2.2. Assume that U is affine, Y is smooth, Y — U is a divisor and

that there exists a complex analytic Whitney stratification V of Y such that

1. £/an is a union of strata and DR (M) is constructible with respect to V \υ**\

2. F has isolated singularities on (Y, V).

Then ΌR(J/lf(U)) has nonzero cohomology in degree I at most.

Proof Remark first that if t is sufficiently general, we have

where it and i/-i(ί) are the inclusions U) C_» C and / (t) c_>. [/an. Consequently,

for t general enough, the relative cohomology H (U , / (t) DR (M)) is equal

to the relative cohomology H (C, t Rf* DR n(J/0) and is also equal, by Theorem

1.1 to Hk(ΌR(Mf(U))) since C7 is affine.

Consider the perverse complex 9 = 'DR^WO =DR a n (Λ0[/]. We want to

show that H ( [/ a n , / " (t) #0 = 0 for k Φ 0. Consider the perverse cohomology

sheaves PRmf*9 on C. Since / is affine we have PRmf*9 = 0 for m > 0 (see [10,

Theorem 10.3.17]). We shall prove that pRmf*9 are local systems for m < 0. Let

η : t/ C_> F be the inclusion. Then Rη^ is perverse on F and is constructible

with respect to V. Let c ^ C and consider the vanishing cycle functor φF_c on Y

and 0τ_c on C, where τ denotes the identity function on C. Put Pφ — φ[~ 1].

Then these functors commute with the proper direct image RF% and also with the

perverse cohomology ([7]). Hence we have

By the previous proposition PφF_cRr]^β> is a perverse sheaf supported on points

and its direct image has perverse cohomology in degree 0 only. Thus PRm f*9 has
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no vanishing cycle at any c ^ C for m < 0, so is a local system on C, i.e. a con-

stant sheaf, up to a shift by 1.

Because a constant sheaf has no nonzero relative hypercohomology, we see by

an easy induction that

Hk(U,f-\t)\9) =Hk(C, ti};&)

where Ŝ  is the perverse sheaf PR°f*£P. The result follows now from

LEMMA 2.3. Let OF be any perverse sheaf on C. Then for t general enough (i.e. not

in the singular set Σ of SF), we have H (C, it) SO = 0 for k Φ 0.

Proof. We know that Hk(C 50 = 0 for k > 0 and k < ~ 2 because C is

affine (see e.g. [10, Theorem 10.3.8]). Moreover we have Hk({t} 9) = 0 for k Φ

- 1 if t<έ Σ . Hence we have Hk(C, {t} SO = 0 for k Φ 0, - 1.

Assume that Σ is nonempty (otherwise the result is clear) and let K : C — Σ

c_> C be the inclusion. Then K 2F — !£\\\ where £ is a local system on C — Σ ,

and H^iC κxκ~ι$) = 0, i.e. H°(C, κy£) = 0, because Σ is nonempty.

Let us now prove that H'^C, it} 2F) = 0. Let σ e i / ' ^ C 9) be such that

its image in $(!~ (i^ SO is zero. Let Ϋ be a small neighbourhood of c ^ Σ . We

may assume that ί e f . Then the map H~ (Ψ SO —> ̂ ~ 07 ^ ) is equal to the

map ίt (ic 3F) —* ψτ-c&\ with φ — φ[— 1], But 9 being perverse, we have an

exact sequence of vector spaces

We deduce from this that the image of σ in H (V SO is zero, and applying this

to all c e Σ we obtain that σ is in the image of H~ι(C κxκ~ι<$) —> H^iC 2F),

which is zero by the previous argument. CU

3. The case of g eneric monodromy

Let Z be a smooth partial compactification of U and let j : U c_^ Z be the

open inclusion. A holonomic ©^-module admits many extensions as a holonomic
def

®z-module. One is denoted j+N, another is j^M = 2}χj+DutU (see § 0.4) where %)x

(resp. %}v) is the duality functor for holonomic %x or ©^-modules (see § 0.3). One

has a natural morphism:
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PROPOSITION 3.1. Assume that U is affine of dimension I and let M be a holono-

mic S)v-module. Assume that there exists a smooth compadification X of U satisfying

the following properties:

1. / extends to F .X-^P1

2. let Y—X— F~ (°°) and j : U C_> Y be the inclusion] then the natural

morphism j^M —* j+M is an isomorphism.

Then ΌR(Mf(lD) has cohomology in degree I at most.

Proof Let η : U c_> X be the inclusion. It is enough to prove that the

morphism η^Mf—* η+Mf is an isomorphism, or equivalently that the dual

Dx(η+M) is equal to η+(DσMf) (it is a priori equal to η^(DuMf)). Indeed, if this

is the case, and because U is affine, one has

RΠX™, PΌRan(η+Mf)) = RΓ(X, PΌR(η+Mf)) (by GAGA)

- PΌR(Mf(U))

so this complex has nonzero cohomology in degree < 0 at most. The same is true

(for the same reasons) for the complex

pOR{DvMf(U)) = RΠX, PΌR(η+DutMf))

= RΓ(X, PΌR(Dxη+Mf)) (by assumption)

= RΠX, PΌRan(Dxη+Mf)) (by GAGA)

= RΓ(X, DPΌR™(η+Mf)) by the local duality theorem

= DRΓ(Xy

 PΌR™(η+Mf)) by Poincare-Verdier duality

where D is the Verdier duality for constructible complexes. We conclude that

RΓ(X, PΌR*n(η+J/lf)) has nonzero cohomology in degree > 0 at most, and putting

all together, RΓ(X, ΌRan(η+Mf)) has nonzero cohomology in degree / at most.

Let us now prove that the dual Dxϊ)+Mf is equal to η+DjjMf. Remark first

that for a holonomic ©^-module, we have Du(Λf) = (DuM)_f: indeed, choose a

resolution of M by left ©^-modules isomorphic to ®^ we get a resolution of Mf

by twisting the left structure of each term by e and the resulting modules remain

free; hence gxt^iM^ Φj) = Sxt^iM, $}v) <£) ef as a right ©^-module, and going

from right to left by adjunction, we get the result. Let M! = j+M = j+M, which is

a regular holonomic ®r-module. We have

M'p=

(previous remark).
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Let rf: Y c_» X be the open inclusion. Because of hypothesis (2), it is enough to

prove that Dxη'+Mr

F = r)r+DγMF because T}'+MF = η+Mf and DYMF = Dγj^Mf =

j+DυMf. Moreover, we may assume that MF is a single holonomic ®F-module since

the functors 77+, Dx and Dγ preserve perversity. From the characteristic property

of η'+ (see § 0.4) we have a natural morphism

(3.2) Dxη'+M'F -> η+DγMF

the kernel and cokernel of which are supported on F (°°).

LEMMA 3.3. Every submodule of rj'+MF is of the form ϊ}f

+MF where M is a

$ ι

γ - submodule of M'.

Proof. This lemma is a direct consequence of [4, Prop. 1]. First, remark that

if M exists, it is unique, because it is equal to the restriction of the submodule to

Y twisted by e~ . Thus the assertion is local on X. Let h = 1 /F. It is proved in

loc. cit that for each local section m of η'+M' there exists a functional equation

me h — Pme h

where P is a local section of ®x[s] (in this local situation we use analytic differen-

tial operators). The submodule that we consider admits a local generator of the

form me because it is holonomic, i.e. it is equal to the submodule %x

%me of

7]f

+MF. Specializing the functional equation to s = ~ k, k ^ N, one shows that, for

every such k, (1/h) m is contained in this module, hence it is also equal to

(3)xm)\X/h\eυ\ D

From this lemma we also deduce that η'+M'F cannot have a nonzero quotient

supported by F (°°) (such a quotient is also of the form i]'+NF where Nr is some

quotient of Mϊ). By taking duals, we see that the kernel of (3.2) is 0. Because we

have DYMF = {DYM')_F, we conclude that (3.2) is onto by the same argument. G

Remark. The assumption in 3.1 that X is smooth was made only to simplify

the argument. In fact, if X is a projective compactification of U and i Z c ^ P is

some embedding, then one can define the functors (i°j)^ and (i°j)+. The condi-

tion that (i°f)γM~~* (i°f)+M is an isomorphism is independent of the choice of

the embedding and, because M is regular, is equivalent to the fact that

yfDR (J/0 —* Rj*DR (M) is a quasi-isomorphism.
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4. Applications to arrangements of hyperplanes

We shall use the notations of [1]: let Vbe a complex affine space of dimension

I, *§ = {Av . . ., Ap} be an arrangement of hyperplane. We make no assumption of

general position. Let N(^) be the union of hyperplanes in $ and U = Mi^S) — V

— N(§). Let/ be a polynomial on V. It induces a regular function/ on the affine

open set U. Let μ = {μv. . ., μp} be a set of nonzero complex numbers and let !£u

be the local system on U with monodromy μ{ around A{. Then M = ϋυ ® c £β is a

regular holonomic ίD^-module and its analytic de Rham complex reduces to the

local system £u. The algebraic de Rham complex ΌR(Mf(U)) is exactly the com-

plex denoted ( β ' ( * » ) , F / ) in [1].

The assumption of general position for & is only needed for proving the

equality between this complex and the corresponding logarithmic one. Because the

latter will not be considered here, we shall not make this assumption in what fol-

lows.

A conjecture of[l]. Now, Theorem 1.1 is exactly the conjecture in [1], for all

cohomology groups, without any assumption of general position for $ or of § -

transversality for /

The case where f is § -transverse. We shall now prove as a consequence of

Proposition 2.2 an analogue of [1, Theorem 10.3-(3)].

PROPOSITION 4.1. Assume that f is §-transverse. Then DR(Mf(U)) has coho-

mology in degree I at most.

Proof. Recall t h a t / is ^-transverse means that for each positive dimensional

facet of the arrangement $ (including V itself), the restriction of the homogeneous

part of maximal degree fd of/== Σk=ofk to the direction of this facet has no critic-

al point outside the origin. Consider now the subset G c P x C defined by the

equation

fd(x) + zfd_x(x) + + zdf0(x) -tzd = O

where (xlf. . ., xlf z) are the homogeneous coordinates on P and t is the coordin-

ate on C, and let F : G~+ C be the projection. The composition with the inclusion

V c: G (via z Φ 0) gives back / The following properties are now easy to prove

when/ is ^-transverse (see for instance [5, § 5]):
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1. G is smooth, as well as the closure in G of every facet of the arrangement

and G — U is a hypersurface;

2. the restriction of F to any such closure has only isolated singularities.

The stratification naturally associated with this arrangement in G is a Whitney

stratification, since the closure of every facet is a smooth submanifold of G. We

can apply Proposition 2.2 to conclude. CH

The case of generic monodromy. Let A^ the hyperplane at infinity in P and

put μ^ = 1/fJtι ' ' ' μp. Let / = {1, . . . , p, °°}. It is known that if the following

condition (H) on μ is satisfied, then ΌR(M(U)) or equivalently RΓ(Uan, £u) has

cohomology in degree / only (see [11] for instance):

(H) V / c / such that Π A{ Φ 0 one has Π μ{ Φ 1.

Moreover there exists a μ satisfying (H) if and only if the arrangement does not

come from an arangement in dimension less than /. We shall now prove an analo-

gous result for Mf. We introduce the following stronger condition on μ:

(H')

V / c {1, ...,/>} such that Π A{ Φ 0 one has Π f e / μ{ Φ 1

V / c / containing oo such that Π A{ Φ 0, V i ; G Z ;

one has ΠX G / $ Φ 1

As above, there exists such a μ if and only if the arrangement does not come from

a lower dimensional arrangement In practice it will be enough to satisfy the

second part of (H') for a finite set of v.

PROPOSITION 4.2. Assume that μ satisfies (IT) and let f be any polynomial on V.

Then DR(Jέf{U)) has cohomology in degree I at most.

Proof. Let P —•» P be the proper modification obtained by blowing up suc-

cessively the facets of increasing dimension. The inverse image of UιfΞlAι is then

a divisor with normal crossings D (see [11]). Let π : X—+ P be a proper modifica-

tion on which / extends as F : X~* P and for which the inverse image of U ieIA{

and F (°°) form a divisor with normal crossings. We can assume that π is an

isomorphism over the open set V of P which lies over V. We can view U as an

open subset of X. In order to apply Proposition 3.1 to this situation, we need to
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compute the monodromy of ί£β around the components of Y — U (using the nota-

tion of Proposition 3.1). Indeed, because Y — U is a divisor with normal cros-

sings, the morphism jt£u—> Rj%£u is an isomorphism if and only if the monod-

romy of £u around each component of Y — U is not equal to 1. Using §§ 0.6 and

0.7 we conclude that j^M —* j+M is an isomorphism under this condition, so the

hypothesis (2) of 3.1 is satisfied for M.

If the component intersects the inverse image of V, the computation is the

same as the one in [11] and the first part of (H') implies that the monodromy is not

equal to 1.

If the component lies over Aw the monodromy around it can be computed

along a curve transverse to it. One can then compute it along the image of this

curve in P and this is a local problem around a point on the divisor D. The

second part of (H') implies that the monodromy cannnot be 1. EH

5 . A local comparison theorem

In this section, X denotes a complex analytic manifold and F : X—• C is an

analytic function. We are interested in the behaviour near the divisor F (0), so

to compare with the statements in Section 1, one has to replace F with 1/F. Let

X = X — F~ (0). Now 6X and $)x will denote the sheaves of analytic functions

and analytic differential operators on X and DR will denote the analytic de Rham

functor. For a holonomic ®z-module M we shall denote M\F ] the localized mod-

ule along F~ (0) and MF = M[F~ ] ®e . These are known to be holonomic

when M is so. We denote it: C —• C the oriented real blowing-up of C at the ori-

gin (polar coordinates) and X the fiber product I X C C . We define / and Xι as in

the proof of Theorem 1.1 (e should be decreasing in the directions belonging to

I). We consider also the i

the projection TΓ \X—*X.

I). We consider also the inclusions r\ : X c_> X, a : X c_+ XJt β : Xj c_> X and

THEOREM 5.1. Let M be a regular holonomic S)x-module. Then one has a

quasi-isomorphism ΌR(MF)

We shall deduce from this

COROLLARY 5.2. The cone of the natural morphism

ΌR(MF)-+Rη*ΌR(M\x*) = D R U t F " 1 ] )

and the complex of nearby cycles φFΌR(M[F ]) have the same characteristic func-
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Hon.

Proof of Theorem 5.1. We may first assume that F : X-+ C is isomorphic to a

projection F x C - ^ C : in order to do this we replace X with X X C, X with

X x C and M by the direct image of it by the graph embedding X c_> X x C. For

any x^Y there exists p(x) > 0 such that, for p<p(x), the direct image

FXtP+MF has coherent cohomologies and its germ at 0 does not depend on p, where

Fxp is the restriction of F to B(x, p) x J93(p) and i?Cr, p) is the open ball in Y

centered at x and of radius p, Dδ(p) is the open disk of radius δ(p) <C p. This is a

consequence of the coherence of the local Gauss-Manin system for M ([23,

Theorem 9.4.1]).

We shall now consider the following diagram

X= Yx C^Ύx C = X

Fi IF
C — C

Let sέTA = F~ldmoi 0 ( ? o r o ) - i 0 c π~ιΰx. Because ^ m o d is (faithfully) flat over

w ^ c , one has

= Rπ*(F~ιdmoά _ ® χ π " 1 ^ ) (flatness)

= {Rπ*F~ιdmoά) ® Θx (projection formula)

L
= (F Rπ*d ) ® ^ (see [10, Prop. 2.6.7])

Define DR (MF) = dx ®π-\Θχτι DR«i/F. Then by the same argument one

has DRCiί^) = /ί7Γ*DRmo (MF). We want to show first that there exists a morph-

ism

j-ypΠiod / ii \ Q T>sv T\X> ( HA \

It is enough to show that y DR (MF) = 0, where y : X—> Xτ

 <^ X is the in-

clusion. This is a local problem on X, so one can prove it as in Section 1, using

the coherence of the local Gauss-Manin system. One has to verify that

F)=RFxo*ΌRmoάUίp)
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which follows from the fact that the same is true for DR. In the same way one

proves that this morphism is an isomorphism. ED

Proof of the corollary. A s a b o v e we f i rs t r e d u c e to t h e case w h e r e F is t h e

projection of a product Y x C. Denote dX the restriction of X over 5 = dC. Let

j:X c_>X and y : X — XI t~~+X be the natural inclusions. The cone in the

corollary is quasi-isomorphic to Rπ% of the cone of

which is quasi-isomorphic to Ry*y 2F, denoting SF — Rj%2F and *& —

The computation is a local problem, so one can prove it by taking local direct

images by Fx~, which is the restriction of F to B(x, p) X Dδip). One is then re-

duced to prove the result in dimension one, and by an easy induction to the case

where 2F is a local system, where the result is easy. CH
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