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SOME PROPERTIES AND APPLICATIONS OF BRIESKORN LATTICES

CLAUDE SABBAH

Abstract. After reviewing the main properties of the Brieskorn lattice in the framework of
tame regular functions on smooth affine complex varieties, we prove a conjecture of Katzarkov-
Kontsevich-Pantev in the toric case.

1. Introduction

The Brieskorn lattice, introduced by Brieskorn in [Bri70] in order to provide an algebraic
computation of the Milnor monodromy of a germ of complex hypersurface with an isolated
singularity, has also proved central in the Hodge theory for vanishing cycles of such a singularity,
as emphasized by Pham [Pha80, Pha83]. Hodge theory for vanishing cycles, as developed by
Steenbrink [Ste76, Ste77, SS85] and Varchenko [Var82], makes it an analogue of the Hodge
filtration in this context, and fundamental results have been obtained by M. Saito [Sai89] in order
to characterize it among other lattices in the Gauss-Manin system of an isolated singularity of
complex hypersurface. As such, it leads to the definition of a period mapping, as introduced and
studied with much detail by K. Saito for some singularities [Sai83]. It is also a basic constituent of
the period mapping restricted to the µ-constant stratum [Sai91], where a natural Torelli problem
occurs (see [Sai91], [Her99]).

For a holomorphic germ f : (Cn+1, 0)→ (C, 0) with an isolated singularity, denoting by t the
coordinate on the target space C, the space

(1.1) Ωn+1
Cn+1,0/df ∧ dΩn−1

Cn+1,0

is naturally endowed with a C{t}-module structure (where t acts as the multiplication by f),
and the Brieskorn lattice is the C{t}-module (see [Bri70, p. 125])

(1.2) ′′Hn
f,0 =

(
Ωn+1

Cn+1,0/df ∧ dΩn−1
Cn+1,0

)/
C{t}-torsion.

Brieskorn shows that (1.2) is free of finite rank equal to the Milnor number µ(f, 0), and Sebastiani
[Seb70] shows the torsion freeness of (1.1), which can thus also serve as an expression for ′′Hn

f,0.
It is also endowed with a meromorphic connection ∇ having a pole of order at most two at t = 0,
and the C({t})-vector space with connection generated by ′′Hn

f,0 is isomorphic to the Gauss-Manin
connection, which has a regular singularity there. ′′Hn

f,0 is thus a C{t}-lattice of this C({t})-vector
space. While the action of ∇∂t , simply written as ∂t, introduces a pole, there is a well-defined
action of its inverse ∂−1

t that makes ′′Hn
f,0 a module over the ring of C{{∂−1

t }} of 1-Gevrey series
(i.e., formal power series

∑
n>0 an∂

−n
t such that the series

∑
n anu

n/n! converges). It happens
to be also free of rank µ over this ring ([Mal74, Mal75]). The relation between the rings C{t} and
C{{∂−1

t }} is called microlocalization. In the global case below, we will use instead the Laplace
transformation. The mathematical richness of this object leads to various generalizations.
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For non-isolated hypersurface singularities, the objects with definition as in (1.2) (but in
various degrees) have been introduced by Hamm in his Habilitationsschrift (see [Ham75, §II.5]),
who proved that they are C{t}-free of finite rank, but do not coincide with (1.1) in general. A
natural C{{∂−1

t }}-structure still exists on (1.1), and Barlet and Saito [BS07] have shown that
the C{t}-torsion and the C{{∂−1

t }}-torsion coincide, so that ′′Hk
f,0 remains C{{∂−1

t }}-free of finite
rank.

The Brieskorn lattice has also a global variant. On the one hand, the Brieskorn lattice for
tame regular functions on smooth affine complex varieties (see Section 2) is a direct analogue
of the case of an isolated singularity, but the double pole of the action of t with respect to the
variable ∂−1

t cannot in general be reduced to a simple one by a meromorphic (even formal) gauge
transformation i.e., the Gauss-Manin system with respect to the variable ∂−1

t has in general an
irregular singularity. The properties of the Brieskorn module for regular functions on affine
manifolds which are not tame have been considered by Dimca and M. Saito [DS01].

On the other hand, given a projective morphism f : X → A1 on a smooth quasi-projective va-
riety X, the Brieskorn modules, defined as the hypercohomology C[∂−1

t ]-modules of the twisted
de Rham complex (Ω•X [∂−1

t ],d− ∂−1
t df), have been shown to be C[∂−1

t ]-free (Barannikov-
Kontsevich, see [Sab99b]), and a similar result holds when one replaces Ω•X with Ω•X(logD)
for some divisor with normal crossings. More generally, one can adapt the definition of the
Brieskorn modules for the twisted de Rham complex attached to a mixed Hodge module, and
the C[∂−1

t ]-freeness still holds, so that they can be called Brieskorn lattices (see loc. cit.). This
enables one to use the push-forward operation by the map f and reduce the study to that of
Brieskorn lattices attached to mixed Hodge modules on the affine line, as for example the mixed
Hodge modules that the Gauss-Manin systems of f underlie. In such a way, the Brieskorn
lattice has a purely Hodge-theoretic definition, which does not refer to the underlying geometry,
and can thus be attached, for example, to any polarizable variation of Hodge structure on a
punctured affine line (see [Sab08, §1.d]).

The Brieskorn lattice of tame functions is of particular interest and has been considered in
[Sab06] for example. The Brieskorn lattice for families of such functions, considered in [DS03],
has been investigated with much care for families of Laurent polynomials in relation with mirror
symmetry by Reichelt and Reichelt-Sevenheck [RS15, Rei14, Rei15, RS17].

Lastly, in the global setting as above, the pole of order two of the action of t with respect to
the variable ∂−1

t produces in general a truly irregular singularity, and the Brieskorn lattice is an
essential tool to produce the irregular Hodge filtration attached to such a singularity (see [SY15,
Sab17]).

The contents of this article is as follows. In Section 2, we review known results on the
Brieskorn lattice for a tame function. We show in Section 3 how these results enables one to
obtain a simple proof of a conjecture of Katzarkov-Kontsevich-Pantev in the toric case.

Acknowledgements. I thank the referee for his/her careful reading of the manuscript and inter-
esting suggestions and Claus Hertling for pointing out Lemma 2.4.

2. The Brieskorn lattice of a tame function

In this section, we review the main properties of the Brieskorn lattice attached to a tame
function on an affine manifold, following [Sab99a, Sab06, DS03].

Let U be a smooth complex affine variety of dimension n and let f ∈ O(U) be a regular
function on U . There are various notions of tameness for such a function, which are not known
to be equivalent, but for what follows they have the same consequences. One of the definitions,
given by Katz in [Kat90, Th. 14.13.3], is that the cone of f!CU → Rf∗CU should have constant
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cohomology on A1. We will use the notion of a weakly tame function, as defined in [NS99], that
is, either cohomologically tame or M-tame.

We assume that f is weakly tame. Let θ be a new variable. The Brieskorn lattice attached
to f is the C[θ]-module

G0 := Ωn(U)[θ]
/

(θd− df)Ωn−1(U)[θ].

An expression like (1.1) also exists if U is the affine space An+1, but the above one is valid for
any smooth affine variety U . The variable θ is for ∂−1

t . We already notice that

(2.1) G0/θG0 ' Ωn(U)/df ∧ Ωn−1(U)

has dimension equal to the sum µ = µ(f) of the Milnor numbers of f at all its critical points
in U . The following properties are known in this setting.

(1) The algebraic Gauss-Manin systems H kf+OU are isomorphic to powers of the C[t]〈∂t〉-
module (C[t], ∂t), except for k = 0, so their localized Laplace transforms vanish except
that for k = 0. If we regard the Laplace transform of H 0f+OU as a C[τ ]〈∂τ 〉-module,
we know that it has finite type as such, and its localized Laplace transform G, that is,
the C[τ, τ−1]-module obtained by localization, is free of rank µ. We have

G = Ωn(U)[τ, τ−1]
/

(d− τdf)Ωn−1(U)[τ, τ−1].

(2) Setting θ = τ−1, we write

G = Ωn(U)[θ, θ−1]
/

(θd− df)Ωn−1(U)[θ, θ−1],

and there is therefore a natural morphism G0 → G. This morphism is injective, so
that G0 is a free C[θ]-module of rank µ such that C[θ, θ−1] ⊗C[θ] G0 = G, i.e., G0 is a
C[θ]-lattice of G, on which the restriction of the Gauss-Manin connection has a pole of
order at most two. Moreover, the action of θ2∂θ on the class [ω] of ω ∈ Ωn(U) in G0 is
given by

θ2∂θ[ω] = [fω],

and the action of θ2∂θ on a polynomial
∑
k>0[ωkθ

k] is obtained by the usual formulas.
(3) Let V•G be the (increasing) V -filtration of G with respect to the function τ (recall

that G has a regular singularity at τ = 0, while that at infinity is usually irregular).
It is a filtration by free C[τ ]-modules of rank µ indexed by Q. The jumping indices of
the induced filtration V•(G0/θG0), together with their multiplicities (the dimension of
grVβ (G0/θG0)) form the spectrum of f at ∞. The jumping indices are contained in the
interval [0, n] ∩Q and the spectrum is symmetric with respect to n/2.

(4) On the other hand, for α ∈ [0, 1) ∩ Q, the vector space grVα G is endowed with the
nilpotent endomorphism N induced by the action of −(τ∂τ +α) and with the increasing
filtration G• grVα G naturally induced by the filtration Gp = θ−pG0, i.e.,

Gp grVα G = (Gp ∩ VαG)/(Gp ∩ V<αG),

where the intersections are taken in G. As a consequence, we have isomorphisms

p ∈ Z, α ∈ [0, 1), grGp grVα G
θp−−−→
∼

grVα+p(G0/θG0).

(5) The C-vector space H6=1 :=
⊕

α∈(0,1)∩Q grVα G, resp. H1 :=grV0 G, endowed with
• the filtration

F pH6=1 :=
⊕

α∈(0,1)∩Q
Gn−1−p grVα G resp. F pH1 = Gn−p grV0 G,

• and the weight filtration W• = M(N)[n − 1] (resp. M(N)[n]), i.e., the monodromy
filtration of N centered at n− 1 (resp. n),
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is part of a mixed Hodge structure. In particular, N strictly shifts by one the filtration
G• grVα G and acts on the graded space grG• grVα G as the degree-one morphism induced
by −τ∂τ . We therefore have a commutative diagram, for any α ∈ [0, 1) and p ∈ Z,
(see [Var81] and [SS85, §7] in the singularity case):

(2.2)

grGp grVα G
θp

∼ //

[N]
��

grVα+p(Ω
n(U)/df ∧ Ωn−1(U))

[f ]
��

grGp+1 grVα G
θp+1

∼ // grVα+p+1(Ωn(U)/df ∧ Ωn−1(U)),

by using the relation −τ∂τ = θ∂θ.
To see this, write the commutative diagram

grGp grVα G
θp

∼ //

θ∂θ − α
��

grVα+p grG0 G

θ∂θ − (α+ p)
�� ''

grGp+1 grVα G
θp

∼ // grVα+p grG1 G
θ // grVα+p+1 grG0 G

and use that in the vertical morphisms, the constant part α or α + p induces the
morphism 0.

(6) Recall that a mixed Hodge structure (HQ, F
•HC,W•HQ) is said to be of Hodge-Tate type

if
(a) the filtration W• has only even jumping indices
(b) and W2•HC is opposite to F •HC.
The description of the mixed Hodge structure given in (5) implies the following criterion.
We will set ν = n − 1 when considering H6=1 and ν = n when considering H1. We will
then denote by H either H 6=1 or H1.

Corollary 2.3. The mixed Hodge structure that the triple (H,F •H,W•H) underlies is
of Hodge-Tate type if and only if, for any integer k such that 0 6 k 6 [ν/2], the (ν−2k)th
power of N induces an isomorphism

[N]ν−2k : grGk H
∼−→ grGν−kH.

Proof. We define the filtration W ′•H indexed by 2Z by the formula W ′2kH = Gν−kH, so
that GkH = W ′2(ν−k)H. If we set ` = ν − 2k for 0 6 k 6 ν/2, we have 0 6 ` 6 ν and
the isomorphism in the corollary is written

[N]` : grW
′

ν+`H
∼−→ grW

′

ν−`H.

We can conclude that W ′•H = W•H if we know that Nν+1 = 0, that is, grGν+1H = 0.
This is a consequence of the positivity of the spectrum [Sab06, Cor. 13.2], which says
that, if α ∈ [0, 1), we have grGk grVα G = 0 for k /∈ [0, ν] ∩ N. �

The following lemma was pointed out to me by Claus Hertling.

Lemma 2.4. A mixed Hodge structure (HQ, F
•HC,W•HQ) is Hodge-Tate if and only if

we have, for all p ∈ 1
2Z,

dim grpF HC = dim grW2p HQ.



242 C. SABBAH

Proof. Indeed, one direction is clear. Conversely, if the equality of dimensions holds,
then (6a) holds since F •H has only integral jumps; moreover, up to a Tate twist, one
can assume that W<0H = 0, so grkF H = 0 for k < 0. It is enough to prove that
grpF grW2` H = 0 for all p 6= `. We prove this by induction on `. If ` = 0, the result
follows from the property that F pH = 0 for p < 0 and Hodge symmetry. Assume the
result up to `. For j 6 ` we thus have dim grjF grW2j H = dim grW2j H = dim grjF H (the
latter equality by the assumption), and therefore grW2i grjF H = 0 for i 6= j. In particular,
taking i = ` + 1, we have grpF grW2(`+1)H = 0 for all p 6 `. By Hodge symmetry, we
obtain grpF grW2(`+1)H = 0 for all p 6= `+ 1, as wanted. �

(7) We now consider the case where U = (C∗)n, endowed with coordinates x = (x1, . . . , xn).
Let f ∈ C[x, x−1] be a Laurent polynomial in n variables, with Newton polyhedron ∆(f).
We assume that f is nondegenerate with respect to its Newton polyhedron and convenient
(see [Kou76]). In particular, 0 belongs to the interior of its Newton polyhedron. It is
known that such a function is M-tame.

For any face σ of dimension n−1 of the boundary ∂∆(f), we denote by Lσ the linear
form with coefficients in Q such that Lσ ≡ 1 on σ. For g ∈ C[x, x−1], we set degσ(g) =
maxm Lσ(m), where the max is taken on the exponents of monomials xm appearing in g,
and deg

∆*(g) = maxσ degσ(g). We denote the volume form dx1/x1 ∧ · · · ∧ dxn/xn by ω,
giving rise to an identification C[x, x−1]

∼−→ Ωn(U) and C[x, x−1]/(∂f)
∼−→ G0/θG0

(see (2.1)).
The Newton increasing filtration N•Ω

n(U) indexed by Q is defined by

NβΩn(U) := {gω ∈ Ωn(U) | deg
∆*(g) 6 β}.

We have NβΩn(U) = 0 for β < 0 and N0Ωn(U) = C ·ω. We can extend this filtration to
Ωn(U)[θ] by setting

NβΩn(U)[θ] := NβΩn(U) + θNβ−1Ωn(U) + · · ·+ θkNβ−kΩn(U) + · · ·

and then naturally induce this filtration on G0, to obtain a filtration N•G0 and then on
G0/θG0. We have

(2.5) N•G0 = V•G ∩G0 and N•(G0/θG0) = V•(G0/θG0).

Corollary 2.3 now reads, according to (2.2) and by using the above identification through
multiplication by ω:

Corollary 2.6. The mixed Hodge structure that the triple (H,F •H,W•H) underlies is
of Hodge-Tate type if and only if, for any integer k such that 0 6 k 6 [ν/2] (ν = n− 1,
resp. n), we have isomorphisms

grNα+k

(
C[x, x−1]/(∂f)

) [f ]n−1−2k

−−−−−−−→∼ grNα+n−1−k
(
C[x, x−1]/(∂f)

)
∀α ∈ (0, 1),

grNk
(
C[x, x−1]/(∂f)

) [f ]n−2k

−−−−−−→∼ grNn−k
(
C[x, x−1]/(∂f)

)
.resp.

3. On a conjecture of Katzarkov-Kontsevich-Pantev

In this section we use the algebraic Brieskorn lattice of a convenient nondegenerate Laurent
polynomial to solve the toric case of the part “fp,q = hp,q” of Conjecture 3.6 in [KKP17] (the
other equality “hp,q = ip,q” is obviously not true by simply considering the case of the standard
Laurent polynomial mirror to the projective space Pn, see also another counter-example in
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[LP18]). We refer to [LP18, Har17, Sha17] for further discussion and positive results on this
conjecture.

3.a. The Brieskorn lattice and the conjecture of Katzarkov-Kontsevich-Pantev.
Given a smooth quasi-projective variety U and a morphism f : U→A1, every twisted de Rham
cohomology Hk

DR(U,d + df), i.e., the kth hypercohomology of the twisted de Rham com-
plex (Ω•U ,d + df), is endowed with a decreasing filtration F •YuH

k
DR(U,d + df) indexed by Q

(see [Yu14]). For α ∈ [0, 1), the filtration indexed by Z defined by F pYu,α = F p−αYu can also
be computed in terms of the Kontsevich complex Ω•f (α) together with its stupid filtration
(see [ESY17, Cor. 1.4.5]). The irregular Hodge numbers hp,qα (f) are defined as

(3.1) hp,qα (f) := dim grp−αFYu
Hp+q

DR (U,d + df).

It is well-known that dimHk
DR(U,d + df) = dimHk(U, f−1(t)) for |t| � 0. This space is

endowed with a monodromy operator (around t =∞), and we will consider the case where this
monodromy operator is unipotent. In such a case, the filtration F •YuH

p+q
DR (U,d + df) is known

to jump at integers only, and in (3.1) only α = 0 occurs. We then simply denote this number by
hp,q(f), so that, in such a case,

hp,q(f) := dim grpFYu
Hp+q

DR (U,d + df).

LetW• be the monodromy filtration on Hk(U, f−1(t)) centered at k. The conjecture of [KKP17]
that we consider is the possible equality (see [LP18, Har17, Sha17])

(3.2) hp,q(f) = dim grW2p H
p+q(U, f−1(t)).

If moreover U is affine and f is weakly tame, so that Hp+q
DR (U,d + df) = 0 unless p+ q = n,

[SY15, Cor. 8.19] gives, using the notation of Section 2:1

hp,q(f) =

{
dim grVn−p(G0(f)/θG0(f)) = dim grpF grV0 G if p+ q = n,

0 if p+ q 6= n,

and this is the number denoted by fp,q in [KKP17]. In such a case, we have H = H1 in the
notation of Section 2(5).

The following criterion has been obtained, with a different approach of the irregular Hodge
filtration, by Y. Shamoto.

Proposition 3.3 ([Sha17]). Assume U affine and f weakly tame with unipotent monodromy
operator at infinty. Then (3.2) holds true if and only if the mixed Hodge structure of Section
2(5) on H = H1 is of Hodge-Tate type.

Proof. According to Lemma 2.4, proving the result amounts to identifying the space grV0 G
endowed with its nilpotent operator N with the space Hn(U, f−1(t)) endowed with the nilpotent
part of the (unipotent) monodromy (up to a nonzero constant). Choosing an extension F :
X→ P1 of f as a projective morphism on a smooth variety X such that Xr U is a divisor, and
setting F = Rj∗CU (j : U ↪→ X), we identify the dimension of Hk(U, f−1(t)) with that of the
kth-hypercohomology on X of the Beilinson extension ΞFF. Then the desired identification is
given by [Sab97, Cor. 1.13]. �

1The definition of δγ in [SY15] should read dimgrVγ (G0(f)/uG0(f)).



244 C. SABBAH

3.b. The toric case of the conjecture of Katzarkov-Kontsevich-Pantev, first part. As
usual in toric geometry, we denote by M the lattice Zn in Cn and by N its dual lattice. We
fix a reflexive simplicial polyhedron ∆ ⊂ R⊗M with vertices in M and having 0 in its interior
(it is then the unique integral point in its interior), see [Bat94, §4.1]. We denote by ∆* the dual
polyhedron with vertices in N , which is also simplicial reflexive and has 0 in its only interior
point, and by Σ ⊂ N the fan dual to ∆, which is also the cone on ∆* with apex 0. We assume
that Σ is the fan of nonsingular toric variety X of dimension n, that is, each set of vertices of
the same (n− 1)-dimensional face of ∂∆* is a Z-basis of N . We know that

• X is Fano ([Bat94, Th. 4.1.9]),
• the Chow ring A∗(X) ' H2∗(X,Z) is generated by the divisor classes Dv corresponding
to vertices v ∈ V (∆*) of ∆*, i.e., primitive elements on the rays of Σ (see [Ful93, p. 101]),

• we have c1(TX) = c1(K∨X) =
∑
v∈V (∆*)

Dv in H2∗(X,Z) (see [Ful93, p. 109]), which
satisfies Hard Lefschetz on H2∗(X,Q), by ampleness of K∨X .

Let us fix coordinates x = (x1, . . . , xn) such that Q[N ] = Q[x, x−1]. We use the notation
of Section 2(7). Due to the reflexivity of ∆*, Lσ has coefficients in Z (it corresponds to a
vertex of ∆). For g ∈ C[x, x−1], the σ-degree degσ(g) = maxm Lσ(m) and the ∆*-degree
deg

∆*(g) = maxσ degσ(g) are thus nonnegative integers.

Proposition 3.4. The case “fp,q = hp,q” of [KKP17, Conj. 3.6] holds true if f is the Laurent
polynomial

f(x) =
∑

v∈V (∆*)

xv ∈ Q[x, x−1].

The idea of the proof is to notice that the property for the second morphism in Corollary 2.6
to be an isomorphism is exactly the property that c1(TX) satisfies the Hard Lefschetz property,
and thus to identify its source and target as the cohomology of X in suitable degree.

Lemma 3.5. For ∆ as above, any Laurent polynomial

fa(x) =
∑

v∈V (∆*)

avx
v ∈ C[x, x−1], a = (av∈V ) ∈ (C∗)V (∆∗).

is convenient and non-degenerate in the sense of Kouchnirenko.

Proof. The Newton polyhedron of fa is equal to ∆*, and 0 belongs to its interior. In order to
prove the non-degeneracy, we note that the vertices of any (n − 1)-dimensional face σ of ∂∆*

form a Z-basis. It follows that, in suitable toric coordinates y1, . . . , yn, the restriction fa|σ can
be written as y1 + · · ·+ yn, and the non-degeneracy is then obvious. �

Proof of Proposition 3.4. Note that deg
∆*(f) = 1, as well as deg

∆*(xi∂f/∂xi) = 1. The Jacobian
ring Q[x, x−1]/(∂f) is endowed with the Newton filtration N• induced by the ∆*-degree deg

∆* ,
and corresponds to N•(G0/θG0) by multiplication by ω. In the present setting, [BCS05, Th. 1.1]
identifies the graded ring A∗(X)Q with the graded ring

grN•
(
Q[x, x−1]/(∂f)

)
.

By applying Hard Lefschetz to c1(TX), we deduce that, for every k ∈ N such that 0 6 k 6 [n/2],
multiplication by the (n− 2k)th power of the N-class [f ] of f induces an isomorphism

[f ]n−2k : grNk
(
Q[x, x−1]/(∂f)

) ∼−→ grNn−k
(
Q[x, x−1]/(∂f)

)
.

By Corollary 2.6 for H = H1, we deduce the assertion of the proposition from Proposition
3.3. �
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3.c. The toric case of the conjecture of Katzarkov-Kontsevich-Pantev, second part.
We now prove the main result of this note.

Theorem 3.6. The case “fp,q = hp,q” of [KKP17, Conj. 3.6] holds true for any Laurent polyno-
mial

fa(x) =
∑

v∈V (∆*)

avx
v ∈ C[x, x−1], a = (av∈V ) ∈ (C∗)V (∆∗).

Remark 3.7. The case where n = 3 was already proved differently by Y. Shamoto [Sha17, §4.2].

Proof. Let us set H(fa) = H1(fa) = grV0 G(fa), where G(fa) is the localized Laplace trans-
form of the Gauss-Manin system for fa as in Section 2(2). By Lemma 3.5, we can apply the
results of Section 2 to fa for any a ∈ (C∗)V (∆∗). We will prove that, for fixed p, both terms
dim grGn−pH(fa) and dim grW2p H(fa) in Lemma 2.4 are independent of a. Since they are equal
if a = (1, . . . , 1), after Proposition 3.4, they are equal for any a ∈ (C∗)V (∆∗), as wanted.

(1) For the first term, we will use [NS99]. We have denoted there dim grGp H(fa) by νp(fa)

and, since grVα G = 0 for α /∈ Z, it is also equal to the number denoted there by Σp−1(fa).
By the theorem in [NS99] and Lemma 3.5, Σp−1(fa) depends semi-continuously on a. On
the other hand, according to [Kou76], dimH(fa) is independent of a and is computed
only in terms of ∆*. Since dimH(fa) =

∑
p Σp−1(fa), each term in this sum is also

constant with respect to a.
(2) We will prove the local constancy of dim grW2p H(fa) near any ao ∈ (C∗)V (∆∗). As noticed

in [DS03, §4], we can apply the results of Section 2 of loc. cit. to fao
. We fix a Stein open

set Bo adapted to fao as in [DS03, §2a], and fix a neighbourhood X of ao so that it is also
adapted to any fa for a in this neighbourhood. By construction, all the critical points
of fao

are contained in the interior of Bo if X is chosen small enough, and since µ(fa)
is constant, the same property holds for a ∈ X. By using successively Theorem 2.9,
Remark 2.11 and Proposition 1.20(1) in [DS03], we deduce that, when a varies in X, the
localized partial Laplace transformed Gauss-Manin systems G(fa) form an OX [τ, τ−1]-
free module with integrable connection and regular singularity along τ = 0, which is
compatible with base change with respect to X. As a consequence, the monodromy of
each G(fa) around τ = 0 is constant, and the assertion follows. �

Remark 3.8 (suggested by the referee). If we relax the condition in Section 3.b that the toric
Fano variety X is nonsingular, then we have to consider the orbifold Chow ring of X as in
[BCS05], or the Chen-Ruan orbifold cohomology of X. For the cohomology of the untwisted
sector (i.e., the usual cohomology), the Hard Lefschetz theorem is still valid (see [Ste77]) and
Proposition 3.4 still holds, i.e., (3.2) holds for f . Moreover, Part (2) of the proof of Theorem 3.6
also extends to this setting. However, the semicontinuity result of [NS99] used in Part (1) of the
proof is not enough to imply the constancy (with respect to a) of νp(fa).

On the other hand, one can also consider the various hp,qα (f) for α ∈ (0, 1) ∩ Q and, cor-
respondingly, the twisted sectors of the orbifold X. In such a case, Hard Lefschetz for f may
already give trouble (see [Fer06]).
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