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Abstract. This article is devoted to the complete proof of the main

theorem in the author’s paper of 2004 showing that the Fourier–Laplace

transform of an irreducible regular differential system on the Riemann

sphere underlies, at finite distance, a polarizable regular twistor D-

module.
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Let P ′ = {p1, . . . , pr} be a finite set of points in the complex affine line A1

and set P = P ′ ∪ {∞}, which is a subset of the Riemann sphere P1 = A1 ∪ {∞}.
Let (V, ∇) be a holomorphic bundle on P1 \ P with a holomorphic connection,
and let (H, DV ) be the associated C∞ bundle with flat connection. If we assume
that (V, ∇) is irreducible (or more generally semisimple), then, by using results of
Simpson [10], together with [8] (cf. also [4]), one can associate to (V, ∇) a polarized

regular twistor D-module of weight 0 on P1 that we denote (M, M, C, Id).
Let us quickly recall the notation used in [7], after [8]. We denote by Ω0 the

complex line with coordinate z (or an open neighbourhood of the closed disc |z| 6 1,
whose boundary |z| = 1 is denoted by S). If X is a complex manifold (here, X = P1

or X is a disc), then X = X × Ω0 (e.g., P1 = P1 × Ω0) and π : X → X denotes
the projection. We will denote by p : X → Ω0 the other projection. Denoting
by x a local holomorphic coordinate on X , we consider the ring RX = OX〈z∂x〉 of
holomorphic differential operators, and we denote ðx = z∂x. Recall that M is a
left module over RX and C is a pairing on M|X×S taking values in the sheaf of
distributions on X × S which are continuous with respect to z ∈ S.

The Laplace transform of a holonomic DA1 -module is a holonomic DbA1
an

-module.

A similar transform, called Fourier–Laplace, is defined for objects (M, M, C, Id).
The main result of [7] states:

Theorem 1 (Th. 1 in [7]). If (M, M, C, Id) is polarized regular twistor D-module

of weight 0 on X, its Fourier–Laplace transform on the complex line Â1
an is of the

same kind.
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In this article, we give a complete proof of this theorem, correcting the following
two errors in the proof given in [7]:

(i) In Section 3.1 of [7], point 5, we assert:

“By simple homogeneity considerations with respect to τ , it suffices
to prove the property in the neighbourhood of τ = 0.”

It happens that homogeneity does not lead to such a statement. One has to prove

the twistor property for the pairing Ĉ at any τo 6= 0. While the proof given in [7]
holds for |τo| small enough by an argument of degeneration, we will give in Section 2
a proof for any fixed τo and it is enough for such a proof to give the argument when
τo = 1.

(ii) In the proof of Lemma 4 of [7] (a main tool for [7, Prop. 1]), the computation
of H1 cannot follow the same lines as Lemma 6.2.13 in [8]. We will instead use the
argument indicated in [7, Rem. 1].

The argument for (ii) is given in Section 1 and that for (i) in Section 2. We
implicitly refer to [7] for the notation and the objects considered here.

Acknowledgements. I gratefully thank the referee of [9] for having pointed out these
errors and for having given a suggestion for their correction. In particular, Lemma 9
is due to him.

1. Proof of Proposition 1 in [7]

The corrected proof of [7, Prop. 1] follows the same lines as in [7, Section 3.4]
once we have proved the lemma below. Nevertheless, instead of using the isometry
[7, (2.5)] as in the original text, we will use (2.4) of loc. cit. In order to simplify

the notation, we will set in the following D̃z = Dz − dt (this is a small change with

respect to the notation of [7]) and hz = e2Re ztπ∗h, in particular, hzo
= e2Re zoth.

We set M̃ = OP1(∗∞) ⊗OX
M and FM = M̃ ⊗ E−t/z (i.e., we twist the z-

connection on M̃ by adding the term −dt = dt′/t′2, where t′ = 1/t is the local
coordinate at ∞). We will also set FMzo

= FM/(z − zo)
FM.

Lemma 1. For any zo ∈ Ω0, there is an isomorphism in the derived category

Db(CP1):

DR(F
Mzo

) ≃ L
1+•

(2) (H, hzo
, D̃zo

).

We also set L(t) =
∣∣ log |t|2

∣∣.

Proof of Lemma 1. We will distinguish whether zo = 0 or not. When zo = 0 we
continue using [7, Lemma 4] (Dolbeault Lemma) as it stands (with the supplemen-
tary assumption that zo = 0), corrected as in Section 1.1 below. It says that the

natural inclusion DR(FM0)(2) →֒ L
1+•

(2) (H, h, D̃0) is a quasi-isomorphism. We then

use [7, Lemma 3] to conclude.
When zo 6= 0, we will change the argument, and use that indicated in [7, Rem. 1].

This will be done in Section 1.2 below. �
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1.1. The Dolbeault lemma. We correct the statement given on page 1178, line 1

of [7] when zo = 0. Let ω = ψ
dt′

t′
+ ϕ

dt′

t′
be in ker D̃

(1)
0 . We wish to prove that,

modulo the image by D̃0 of L0
(2)(H, h, D̃0), we can reduce ϕ to be as written

in page 1178, line 3 of [7]. Expanding ω on the basis (e
′(0)
β,ℓ,k), the L2 condition

reads: |t′|β
′

L(t′)ℓ/2 |ψβ,ℓ,k| and |t′|β
′

L(t′)ℓ/2 |ϕβ,ℓ,k| belong to L2(dθ dr/r). Then

D̃
(1)
0 ω = 0 reads, setting β = β′ + iβ′′ and α(t′) = 1/(1 + iβ′′t′/2),

−t′∂t′ψβ,ℓ,k +
1

α(t′)t′
ϕβ,ℓ,k + ξβ,ℓ,k = 0,

with ξ =
∑
ξβ,ℓ,ke

′(0)
β,ℓ,k defined by ξ

dt′

t′
∧
dt′

t′
= Θ′

0,nilpϕ. It follows that

ϕβ,ℓ,k = t′∂t′

(
α(t′)t′ψβ,ℓ,k

)
− α(t′)t′ξβ,ℓ,k.

Firstly, |t′|β
′

L(t′)−1+ℓ/2 |t′ψβ,ℓ,k| clearly belongs to L2(dθ dr/r), hence on the one

hand, t′ψβ,ℓ,ke
′(0)
β,ℓ,k is a section of L0

(2)(H, h). On the other hand,

Θ′
0

(
α(t′)t′ψβ,ℓ,ke

′(0)
β,ℓ,k

)
= ψβ,ℓ,ke

′(0)
β,ℓ,k

dt′

t′
+ Θ′

0,nilp

(
α(t′)t′ψβ,ℓ,ke

′(0)
β,ℓ,k

)
.

As we know that Θ′
0,nilp is bounded with respect to the L2 norms, it follows that

the left-hand term is a section of L
(1,0)
(2) (H, h). We conclude that D̃0(α(t′)t′ψ) is L2

and that the (0, 1)-part of ω − D̃0(α(t′)t′ψ) is equal to −α(t′)t′ξ dt′/t′.

Secondly, by the property of Θ′
0,nilp, we find that |t′|β

′

L(t′)1+ℓ/2 |ξβ,ℓ,k| also

belongs to L2(dθ dr/r). Let us now argue as in [8, Lemma 6.2.11]. We expand ξβ,ℓ,k

as a Fourier series
∑

n ξβ,ℓ,k,n(r)einθ with r = |t′|, and set ξβ,ℓ,k, 6=0 = ξβ,ℓ,k−ξβ,ℓ,k,0.

We then find that it is possible to solve t′∂t′ ηβ,ℓ,k, 6=0 = ξβ,ℓ,k, 6=0 with ηβ,ℓ,k, 6=0 being

a local section of L0
(2)(H, h). As above, we then show that Θ′

0

(
α(t′)t′ηβ,ℓ,k, 6=0e

′(0)
β,ℓ,k

)

is a section of L
(1,0)
(2) (H, h).

We finally conclude that ω − D̃0[α(t′)t′(ψ − η6=0)] satisfies the desired property.

1.2. The Poincaré lemma. We will now give the proof of Lemma 1 when zo 6= 0,
a condition that we assume to hold for the remaining of this subsection.

Reduction of the proof of Lemma 1 to local statements when zo 6= 0. We will first
work with the metric h (and not hzo

). We denote by FMzo,loc the localization
of FMzo

at the singularities P (note that, at infinity, FMzo
is already equal to its

localized module) and by DR(FMzo,loc)(2),h the meromorphic L2 de Rham complex,

which is a subcomplex of DR FMzo,loc. In fact, it is a subcomplex of DR FMzo
: at

finite distance, this is [8, Prop. 6.2.4] and at infinity this is clear. The argument of
[7, Lemma 3] gives:

Lemma 2. The inclusion of complexes DR(FMzo,loc)(2),h →֒ DR FMzo
is a quasi-

isomorphism. �
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On the other hand, by definition, DR(FMzo,loc)(2),h is a sub-complex of the

L2 complex L
1+•

(2) (H, h, D̃zo
) and, according to [8, Th. 6.2.5], the inclusion is a

quasi-isomorphism at finite distance. Lemma 1 now follows from the following two
statements:

The natural inclusion DR(FMzo,loc)(2),h →֒ L1+•

(2) (H, h, D̃zo
) is a quasi-

isomorphism near ∞. (1.1)

Both inclusions of complexes

L
1+•

(2) (H, h, D̃zo
)←−֓ L

1+•

(2) (H, h+ hzo
, D̃zo

) −֒→ L
1+•

(2) (H, hzo
, D̃zo

).

are quasi-isomorphisms. (1.2)

Both questions are now local near ∞, and we will restrict to an open disc at ∞.
So, we set t′ = 1/t and we denote by X the open disc centered at 0 and of radius
r0 < 1 in C, with coordinate t′, and we set X∗ = X \{0}. We still keep the notation

hzo
for the metric e2Re zo/t′h. We will work with polar coordinates with respect

to t′.

The setting. We consider the real blow-up

ρ : X̃ := [0, r0)× S
1 −→ X, (r, θ) 7−→ t′ = reiθ .

We will use the sheaf Amod
eX

on X̃, consisting of holomorphic functions on X̃∗ =

X∗ which have moderate growth along r = 0. It is known that Amod
eX

is stable by

ðt′ . We also consider the differential 1-forms on X̃:

ωr =
(zo + 1)

2

dr

r
+ i

(zo − 1)

2
dθ

ωθ = −i
(zo − 1)

2

dr

r
+

(zo + 1)

2
dθ,

which form a basis of 1-forms and which satisfy

dr

r
− i dθ = ωr − iωθ,

dr

r
+ i dθ =

1

zo
(ωr + iωθ).

Let us denote by d the differential. The decomposition d = d′ + d′′ on X can be

lifted to X̃ and, for a C∞ function ϕ(r, θ) on X̃, we have

(d′′ + zod
′)ϕ = r∂r(ϕ)ωr + ∂θ(ϕ)ωθ.

Similarly, for a 1-form η = ϕωr + ψωθ, we have

(d′′ + zod
′)η =

(
r∂r(ψ)− ∂θ(ϕ)

)
ωr ∧ ωθ.

The L2 complexes. Recall that, in this local setting, we denote by D̃zo
the connec-

tion Dzo
+ dt′/t′2. We are interested in computing the cohomology of the complex

L1+•

(2) (H, h, D̃zo
), where h denotes one of the metrics h, hzo

or h + hzo
, which is

defined exactly like in [8, Section 6.2.b].

We can similarly define the corresponding L2 complex L̃
1+•

(2) by working on X̃ .

Let us notice that the use of polar coordinates is convenient to express the L2

condition.
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The local basis e
′(zo) := (e

′(zo)
β,ℓ,k) which was introduced in [8] for the bundle

(H, h, Dzo
) remains holomorphic with respect to D̃′′

zo
, and also L2-adapted for the

metric h (in loc. cit., we used the notation e
′(zo) for a frame defined when z varies;

in this paragraph, we reduce it modulo z − zo but keep the same notation).

Let us recall the L2 condition. We denote by ̃ the inclusion X∗ →֒ X̃. Then

L̃0
(2)(H, h) is the subsheaf of ̃∗L

1
loc(H) consisting of sections which are holomorphic

with respect to zo and L2 with respect to the metric h on each compact set of the
open set on which they are defined.

Given a local section u of ̃∗L
1
loc(H) on X̃, written as

∑
uβ,ℓ,k(r, θ)e

′(zo)
β,ℓ,k, it is a

local section of L̃0
(2)(H, h) if and only if

[
(r, θ) 7→ uβ,ℓ,k(r, θ) · r

ℓzo (qβ,ζo+β) L(r)ℓ/2−1eh

]
∈ L2(dθ dr/r), (1.3)

with eh = 1, eRe(zo/t′), 1 + eRe(zo/t′) if h = h, hzo
, h + hzo

(cf. [8, p. 135] for the
notation).

We define similarly L̃1
(2)(H, h) and L̃2

(2)(H, h) by asking moreover that ωr, ωθ

have norm L(r) and ωr ∧ ωθ has norm L(r)2 (up to some constant depending

on zo). Therefore, a local section v of L̃1
(2)(H, h) has coefficients v

(r)
β,ℓ,k and v

(θ)
β,ℓ,k

on e
′(zo)
β,ℓ,kωr and e

′(zo)
β,ℓ,kωθ respectively, which satisfy (1.3) with L(r)ℓ/2 instead of

L(r)ℓ/2−1. Similarly, a local section w of L̃2
(2)(H, h) has coefficients wβ,ℓ,k on

e
′(zo)
β,ℓ,kωr ∧ ωθ which satisfy (1.3) with L(r)ℓ/2+1 instead of L(r)ℓ/2−1.

Lemma 3 (L̃2 Poincaré Lemma). The complexes L̃
1+•

(2) (H, h, D̃zo
) (h = h, hzo

or h+ hzo
) have cohomology in degree −1 at most.

Keeping the notation of [8, (5.3.7)], the matrix Θ̃′
zo

of D̃zo
in the basis e

′(zo) can
be decomposed as

Θ̃′
zo

= Θ̃′
zo,diag + Θ′

zo,nilp + Θ′
zo,pert,

Θ̃′
zo,diag =

⊕

β

[
(qβ,ζo

+ β) ⋆ zo + 1/t′
]
Id

dt′

t′

with

Θ′
zo,nilp =

[
Y + P (0, zo)

]dt′
t′
, Θ′

zo,pert =
[
P (t′, zo)− P (0, zo)

]dt′
t′
,

and with Y = (
⊕

β Yβ) (cf. [8, Proof of Theorem 6.2.5]). We set Nzo
= Y+P (0, zo).

Using [8, Formula (6.2.7)], we see as in loc. cit. that the L2 condition on deriva-

tives under D̃zo
can be replaced with the L2 condition on derivatives under D̃zo,diag

(having matrix Θ̃′
zo,diag): indeed, Θ′

zo,nilp+Θ′
zo,pert sends L2 sections to L2 sections,

when using the metric h.
Let θo ∈ S

1, r1 ∈ (0, r0) and let U = (0, r1)× (θo − ε, θo + ε) be an open sector
in X∗ with ε > 0 small enough so that [θo − ε, θo + ε] contains at most one zero of
cos(θ + arg zo) · sin(θ + arg zo) and this zero belongs to the interior of the interval.
We denote by U its (compact) closure.
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If Ek denotes the sheaf of C∞ k-forms,

Γ(U, Lk
(2)(H, h, D̃zo

)) = L2(U, Ek
U
⊗H, h, D̃zo,diag)

and the right-hand term is a Hilbert space, the norm being given by ‖ · ‖2,h +

‖D̃zo,diag · ‖2,h.
The proof will decompose in 3 steps:

• We first prove the lemma for the L2 complex
(
L2(U, E

1+•

U
⊗H, h, D̃zo,diag), D̃zo,diag

)
,

• without changing the terms of the complex, we change the differential to

D̃zo,diag + Θ′
zo,nilp and prove the lemma by an extension argument,

• last, we change the differential to D̃zo,diag + Θ′
zo,nilp + Θ′

zo,pert, that we
regard as a small perturbation of the previous one.

Proof of Lemma 3, first step. It is permissible to rescale the basis e
′(zo), which

therefore remains L2-adapted (cf. [8, Section 6.2.b]), by multiplying each term e
′(zo)
β,ℓ,k

by the function e1/zot′t′−(qβ,ζo+β)⋆zo/zo to obtain a basis ẽ′(zo), which is D̃zo,diag-

flat. On the other hand, the h-norm of e
′(zo)
β,ℓ,k is equivalent, when t′ → 0, to

|t′|ℓzo (qβ,ζo+β) L(t′)ℓ/2 up to a multiplicative constant depending on zo (cf. [8, For-
mula (5.3.6)]).

Therefore, the hzo
-norm of ẽ′(zo)

β,ℓ,k is equivalent (up to a constant) to

e
1+|zo|

2

|zo|r
cos(θ+arg zo)

· r−
β′′

2 (|zo|+1/|zo|) sin arg zo · L(r)ℓ/2−1.

On the other hand, the h-norm is given by the same formula, where we replace

e
1+|zo|

2

|zo|r
cos(θ+arg zo)

with e
1

|zo|r
cos(θ+arg zo)

.
The proof of the vanishing of the higher cohomology sheaves in all three cases is

then completely similar to that of [5, Lemma 4.1]. �

Proof of Lemma 3, second step. Consider the monodromy filtration of Nzo
and ap-

ply the first step to each graded piece. Use then an easy extension argument. �

Proof of Lemma 3, third step. We then apply a standard perturbation argument
to the complex of Hilbert spaces considered in the second step, as the L2-norm of
Θ′

zo,pert can be made small if r1 is small (see, e.g., [4, Lemma 2.68, p. 53]). �

The complex D̃R(FMzo
). We extend the coefficients of FMzo

to A
mod
eX and we con-

sider the corresponding de Rham complex, that we denote by D̃R(F
Mzo

). This

is a complex on X̃. Let us note that, as Rρ∗A
mod
eX = OX [t′−1] and as FMzo

is

OX [t′−1]-flat (being locally free as such), we have Rρ∗ D̃R(FMzo
) = DR FMzo

.

Lemma 4 (A
mod
eX -Poincaré lemma). The complex D̃R(FMzo

) has cohomology in

degree −1 at most.

Proof. This is a particular case of a general result on irregular meromorphic con-
nections, see, e.g., [3, App. 1]. �
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Lemma 5 (Comparison). The sheaves H−1 D̃R(FMzo
) and H−1L̃1+•

(2) (H, h, D̃zo
)

(h = h, hzo
, or h+ hzo

) coincide as subsheaves of ̃∗j
−1H−1 DR(FMzo

).

Proof. A D̃zo
-flat local section u of H takes the form e1/zot′v, where v is a Dzo

-flat
local section of H . Using for instance (5.3.6) and Remark 5.3.8(4) in [8], one knows
that the h-norm of v grows exactly like |t′|b L(t′)ν for some b ∈ R and some ν ∈ 1

2Z

when t′ → 0. As the h-norm of u is equal to e
1

|zo|r
cos(θ+arg zo)

‖v‖h, this norm is L2

near (θo, zo) if and only if cos(θo + arg zo) < 0. The germ of H−1L̃
1+•

(2) (H, h, D̃zo
)

at θo is therefore 0 if cos(θ0 + arg zo) > 0, and consists of all flat local sections if
cos(θ0 + arg zo) < 0.

Considering the metric hzo
instead of h will only replace e

1
|zo|r

cos(θ+arg zo)
with

e
(1+|zo|

2)
|zo|r

cos(θ+arg zo)
, so the argument is the same. The argument for h + hzo

is
also the same.

A similar argument shows that a D̃zo
-flat section has coefficients with moderate

growth in the basis e
′(zo) if and only if cos(θo + arg zo) < 0 and, in such a case, any

flat local section is a section of H−1 D̃R(FMzo
). �

Proof of (1.2). The assertion follows from Lemmas 3 and 5 by taking Rρ∗. Let us

note indeed that the complexes L̃1+•

(2) are c-soft and that Rρ∗L̃
1+•

(2) = L1+•

(2) . �

Proof of (1.1). In order to prove (1.1), we have to compare the complexes

DR(FMzo
) and L1+•

(2) (H, h, D̃zo
). We will compare them with a third complex that

we introduce now. We denote by Db
mod
eX

(resp. Db
mod
X ) the sheaf on X̃ (resp. X) of

distributions on X∗ which can be lifted as distributions on X̃ (resp. X). We have

ρ∗ Db
mod
eX

= Db
mod
X . If DbX is the sheaf of distributions on X , it is known that

Db
mod
X = DbX [t′−1]. We can define the complex on X̃ of currents with moderate

growth with values in FMzo
, that we denote by Db

mod,1+•

eX
⊗ ρ−1(FMzo

) and we

have an inclusion D̃R(FMzo
) →֒ Db

mod,1+•

eX
⊗ ρ−1(FMzo

). By an adaptation of the

Dolbeault-Grothendieck theorem (cf. [6, Prop. II.1.1.7]), the complex of moderate
currents of type (0, •) with differential d′′ is a resolution of Amod

eX
, hence the

previous morphism is a quasi-isomorphism which becomes, after taking Rρ∗, the

quasi-isomorphism DR(FMzo
)→ Db

mod,1+•

X ⊗ FMzo
(cf. [5, Section 2.c]).

As the basis e
′(zo) is L2 adapted and as the h-norm of each element of this basis

has moderate growth, we have a natural morphism from the L2 complex to the
complex of currents, that is, we have morphisms

L̃
1+•

(2) (H, h, D̃zo
) −֒→ Db

mod,1+•

eX
⊗ ρ−1(F

Mzo
)
∼
←−−֓ D̃R(F

Mzo
).

From Lemma 5 we conclude that the left morphism is a quasi-isomorphism, and
finally, taking Rρ∗, we find quasi-isomorphisms

L
1+•

(2) (H, h, D̃zo
) ֒

∼
−−→ Db

mod,1+•

X ⊗ F
Mzo

∼
←−−֓ DR(F

Mzo
).
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Using now Lemma 2, we find that the natural morphism

DR(F
Mzo,loc)(2) −→ L

1+•

(2) (H, h, D̃zo
) (1.4)

is a quasi-isomorphism. �

2. Proof of the Twistor Property

In this section, it will be simpler to replace isometrically (H, Fh, FDzo
), as

defined in [7, Section 2.1], with (H, h, LDz), where LDz = et FDze
−t = Dz − dt−

z dt. We denote by Harm the space of harmonic sections in Γ(P1, L1
(2)(H, h,

LDzo
)).

From the proof of [7, Prop. 1] (as corrected above), we know that Harm does not
depend on zo when regarded as a subspace of Γ(P1, L1

(2)(H, h)).

Recall that we denote by P1 (resp. P̃1) the product P1 × Ω0 (resp. P̃1 × Ω0),

by ρ the projection P̃1 → P1 and by p : P1 → Ω0 (resp. p̃ = ρ ◦ p : P̃1 → Ω0) the

natural projection. We define the L2 sheaves on P1 (resp. P̃1) in the same way as we
did in [8, Section 6.2.b]. These sheaves are p-soft (resp. p̃-soft) (cf. [2, Def. 3.1.1]).
We thus have a natural morphism Harm⊗COΩ0

→ p∗L
1
(2)(H, h) constructed as

in [8, Section 2.2.b], and harmonic sections are in the kernel of LDz for any z, so
the morphism takes values in p∗L

1
(2)(H, h,

LDz). Using the isometry given by the

multiplication by e−zt , we find a natural morphism

Harm⊗COΩ0

· e−zt

−−−−→ p∗L
1
(2)(H, hz, D̃z). (2.1)

We want to show that Harm is a lattice in R
0p∗ DR FM, and we will first find a

morphism Harm⊗COΩ0
→ R

0p∗ DR FM.

The meromorphic L2 de Rham complex. Let us first state an analogue of [7,
Lemma 3]. We denote by FMloc the RP1 [∗P ]-module obtained by localizing
FM at its singularities P . Note that, FMloc coincides with FM near ∞. The
meromorphic L2 de Rham complex, with respect to the metric h, is denoted by
DR(FMloc)(2),h. It is the sub-complex of DR FMloc defined by L2 conditions with
respect to h for the sections and their derivatives. We have a natural morphism
DR(FMloc)(2),h → DR FM: this is shown in [8, Section 6.2.a] at finite distance,
and is clear near ∞.

Lemma 6. The natural morphism DR(FMloc)(2),h → DR FM is a quasi-isomor-

phism.

Proof. This is [8, Prop. 6.2.4] at finite distance and is proved as in [7, Lemma 3]
near ∞. �

The complex F
•

. As in the proof of Lemma 1, we wish to work with moderate
distributions near∞, while keeping L2 complexes at finite distance. We will denote
by X an open disc near ∞ in P1 which contains no other singularity of FM than
∞ and by Y the complement of ∞ in P1. Lastly, we set Z = X ∩ Y , which is a
punctured disc. We will denote by jX : X →֒ P1 the inclusion, and similarly for jY
and jZ . We denote by the same letters the inclusion X →֒ P1, with X = X × Ω0,
etc.
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We denote by DbX the sheaf of distributions on X and by Db
an
X the sub-sheaf

of distributions which are holomorphic with respect to z, i.e., the kernel of ∂z . We
denote by (Db

an,1+•

X
, zd′ + d′′) the sheaf of z-holomorphic currents on X (we use

the same rescaling on forms and currents as in [8, Section 0.3]). The Dolbeault–

Grothendieck theorem implies that the complex of currents (Db
an,(k,0)
X

, d′′) is a reso-

lution of Ωk
X
. As FM|X is OX[∗∞]-locally free (this follows from [8, Lemma 5.4.1 and

Lemma 3.4.1]) it is OX-flat and (Db
an,(k,0)
X

⊗OX

FM|X, d
′′) is a resolution of Ωk

X
⊗OX

FM|X. Finally, we find that the natural morphism DR FM|X → Db
an,1+•

X
⊗OX

FM|X
is a quasi-isomorphism.

On the other hand, we have a morphism of complexes

L1+•

(2) (H, h, D̃z)|X
ι
−→ Db

an,1+•

X
⊗OX

FM|X (2.2)

which, when restricted to Z, is a quasi-isomorphism. Indeed, on Z this is clear.
Near ∞, this can bee seen by using the local OX[∗∞]-basis e

′(zo) of Mloc near ∞:
this is a L2-adapted basis and the h-norm of its elements has moderate growth
near∞, locally uniformly with respect to z; this implies that a section of L(2)(H, h)

belongs to Db
an
X ⊗OX

FM|X. Let us check the compatibility of the differentials of the
complexes. On L(2), the derivative is not taken in the distributional sense on X, but
only on X∗ = (X \{∞})×Ω0. In other words, it is obtained by taking the derivative
in the distributional sense on X and then restricting to X∗. But the morphism ι is
clearly compatible with this way of taking derivatives, as |t′| acts in an invertible
way on the right-hand side of (2.2), hence any distribution supported on {∞}×Ω0

is annihilated by ι. (Let us notice that this point is exactly what prevents us from
using distributions near singularities at finite distance, as FM 6= FMloc near such
a singular point.)

The complex F
• is defined by the exact sequence of complexes

0 −→ jZ,!L
1+•

(2) (H, h, D̃z)|Z

(Id,−ι)
−−−−−→ jY,!L

1+•

(2) (H, h, D̃z)|Y ⊕ jX,!(Db
an,1+•

X
⊗OX

FM|X)

−→ F
•

−→ 0.

Let us note that each term in F
• is p-soft (cf. [2, Prop. 2.5.7(ii) and Cor. 2.5.9]).

Lemma 7. We have a natural morphism of complexes DR(FMloc)(2),h → F
• which

is a quasi-isomorphism.

Proof. We use the exact sequence

0 −→ jZ,!j
−1
Z DR(FMloc)(2),h

−→ jY,!j
−1
Y DR(FMloc)(2),h ⊕ jX,!j

−1
X DR(FMloc)(2),h

−→ DR(FMloc)(2),h −→ 0

to reduce the question to each of the open sets X, Y, Z. On Y , this is [8, Th. 6.2.5].
On Z, this is easy, and on X , this follows from Lemma 6. The compatibility with
the arrows in the previous exact sequences is easy. �

Lemma 8. We have a natural morphism Harm⊗COΩ0
→ R

0p∗F
• = H0(p∗F

•).
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Proof. Let us first note that the second equality comes from the p-softness of the

terms in F
•. Using (2.2), we have a natural morphism L1+•

(2) (H, h, D̃z) → F
•.

Therefore, it is enough to find a morphism

Harm⊗COΩ0
−→ R

0p∗L
1+•

(2) (H, h, D̃z) = H0
(
p∗L

1+•

(2) (H, h, D̃z)
)
. (2.3)

We have inclusions of L2 complexes

L1+•

(2) (H, h, D̃z)
ιh←−−−֓ L1+•

(2) (H, h+ hz, D̃z) ֒
ιhz−−→ L1+•

(2) (H, hz, D̃z).

We will prove:

On some open neighbourhood nb(0) of 0 in Ω0, the morphism (2.1) factorizes
through p∗ιhz

. (2.4)

On Ω0 \ {0}, the morphism ιhz
is a quasi-isomorphism. (2.5)

This will be enough to conclude that we have a natural morphism

Harm⊗COΩ0
−→ R

0p∗L
1+•

(2) (H, h+ hz , D̃z) = H0
(
p∗L

1+•

(2) (H, h+ hz, D̃z)
)
,

giving thus (2.3) by composing with R
0p∗ιh. �

Proof of (2.4). By construction, Harm is a subspace of Γ(P1, L1
(2)(H, h,

LDz)).

We will use the following lemma, whose proof is due to the the referee of [9] (note
that S. Szabo proves a similar result in [11, Lemma 2.32], with different methods
however). If f is a section of H (resp. ω is a section of H with values in 1-forms), we
will denote by |f |h (resp. |ω|h) the h-norm of f (resp. the norm of ω with respect
to h and the norm induced by the Poincaré metric on 1-forms, that we call the
P-norm).

Lemma 9 (Exponential decay of harmonic sections). For any ω ∈ Harm, there

exists C > 0 and a neighbourhood of ∞ in X on which the h-norm of ω is bounded

by e−C|t|.

Once this lemma is proved, we obtain that |e−ztω|hz
= |ω|h 6 e−C|t| for any

ω ∈ Harm on a suitable neighbourhood of ∞, hence |ω|hz
6 e−C|t|+Rezt . If |z| is

small enough, we thus get |ω|hz
6 e−C′|t|, and therefore ω is L2 with respect to hz,

as wanted. �

Proof of Lemma 9. Let ω ∈ Harm. Then LDzω = 0 for any z ∈ Ω0, hence, if we set
Lθ′E = θ′E−dt and Lθ′′E = θ′′E−dt, we have (D′′

E +Lθ′E)ω = 0 and (D′
E +Lθ′′E)ω = 0.

We will now restrict the question near ∞ and we will work with the coordinate t′.
By the Dolbeault lemma for zo = 0 ([7, Lemma 4] corrected as in Section 1.1),

the complex L
1+•

(2) (H, h, D̃0) = L
1+•

(2) (H, h, (D′′
E + Lθ′E)) is quasi-isomorphic to

DR FM0. Let us note that the germ of DR FM0 at ∞ is quasi-isomorphic to 0,
as Lθ′E = t′−2(Id + · · · ) is invertible on the germ F

M0 at ∞. Therefore, the germ

L
1+•

(2) (H, h, (D′′
E + Lθ′E))∞ is quasi-isomorphic to 0 and there exists a neighbour-

hood X of ∞ and a section f ∈ L2(X, H, h) such that (D′′
E + Lθ′E)f = ω. Assume

we prove |f |h 6 e−C′/|t′| for some constant C′ > 0. Then, according to the mod-

erate growth of Lθ′E , we will also have |Lθ′Ef |h 6 e−C′′/|t′| for some C′′ > 0 on
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some neighbourhood of ∞, and thus the desired inequality for the (1, 0) part of ω.
Arguing with a conjugate argument, we get the same kind of inequality for the
(0, 1) part, hence the lemma.

Let us note that (D′
E + Lθ′′E)(D′′

E + Lθ′E)f = (D′
E + Lθ′′E)ω = 0, hence D′

ED
′′
Ef =

−Lθ′′E
Lθ′Ef . Since D′

ED
′′
E +D′′

ED
′
E = −(Lθ′E

Lθ′′E +Lθ′′E
Lθ′E), we also get D′′

ED
′
Ef =

−Lθ′E
Lθ′′Ef (all these equalities are taken on X∗ in the distributional sense).

In particular, as D′
ED

′′
E + Lθ′′E

Lθ′E is elliptic on X∗, f is C∞ on X∗. If we set
Lθ′E = LΘ′

E dt
′ and Lθ′′E = LΘ′′

E dt
′, LΘ′′

E is the h-adjoint of LΘ′
E. We then have

on X∗

d′d′′|f |2h = h(D′
ED

′′
Ef, f)− h(D′′

Ef, D
′′
Ef) + h(D′

Ef, D
′
Ef) + h(f, D′′

ED
′
Ef),

so that, dividing by dt′ ∧ dt′ and using the previous relations, we find

∂t′∂t′ |f |
2
h > |LΘ′

Ef |
2
h + |LΘ′′

Ef |
2
h > C|t′|−4|f |2h. (2.6)

This relation holds on X∗.

Assertion. The inequality (2.6) holds on X in the weak sense, that is, for any

nonnegative test function χ on X, and denoting by d volE the Euclidean volume
i

2πdt
′ ∧ dt′,

∫

X

|f |2h(∂t′∂t′χ) d volE > C

∫

X

|t′|−4|f |2h χd volE .

Proof of the assertion. Let us first note that |t′|−2|f |h (hence also |f |h) is in
L2(d volE), as |LΘ′

Ef |h is in L2(d volP), where d volP = |t′|−2 L(t′)−2d volE is
the Poincaré volume, and |LΘ′

Ef |h ∼ |t
′|−2|f |h|dt

′|P, with |dt′|P ∼ |t
′|L(t′). In

particular, ‖f‖h,P < +∞. Similarly, if ψ dt′ is the (0, 1) component of ω, we

have
∣∣∫

X h(D′′
Ef, D

′′
Ef)

∣∣ = 2π
∫

X |ψ|
2
h d volE = 2π

∫
X |ψ|

2
h|dt

′|2P d volP < ∞, hence

|ψ|h ∈ L
2(d volE).

We now claim that
∣∣∫

X h(D′
Ef, D

′
Ef)

∣∣ <∞, that is, ‖D′
Ef‖h,P < +∞. This fol-

lows from the acceptability (in the sense of [10]) of the Hermitian bundle (H, D′′
E , h)

(as the Higgs field θE is tame). Indeed, the P-norm of the curvature R(h) of h is
bounded near ∞. For any test function η on X∗, we have (cf. [4, (2.23)])

∣∣∣∣
∫

X

h(D′
Eη, D

′
Eη)

∣∣∣∣ 6

∣∣∣∣
∫

X

h(D′′
Eη, D

′′
Eη)

∣∣∣∣ +

∣∣∣∣
∫

X

(ηR(h), η d volP)h,P d volP

∣∣∣∣

6

∣∣∣∣
∫

X

h(D′′
Eη, D

′′
Eη)

∣∣∣∣ +

∣∣∣∣
∫

X

|η|2h|R(h)|P |d volP|P d volP

∣∣∣∣

6

∣∣∣∣
∫

X

h(D′′
Eη, D

′′
Eη)

∣∣∣∣ + C

∣∣∣∣
∫

X

|η|2h d volP

∣∣∣∣,

hence, ‖D′
Eη‖h,P 6 ‖D′′

Eη‖h,P + C‖η‖h,P. Since the Poincaré metric is complete
near ∞, we can find a sequence of nonnegative test functions ηn on X∗ which
tend pointwise to 1 in some punctured neighbourhood of ∞, such that ηn 6 1 and
|dηn|P 6 2−n (see, e.g., [1, Lemme 12.1]). Applying the previous result to ηnf , we
find ‖ηnD

′
Ef‖h,P 6 ‖ηnD

′′
Ef‖h,P + (C + 2−n+1)‖f‖h,P, hence the claim.
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In order to end the proof of the assertion, it is enough to showing that the
difference

∫
|t′|>ε

[
|f |2h(∂t′∂t′χ) − (∂t′∂t′ |f |

2
h)χ

]
d volE tends to 0 with ε. It is then

enough to find a sequence εn → 0 such that
∫
|t′|=εn

|f |2h dθ,
∫
|t′|=εn

∂t′ |f |
2
h dθ and∫

|t′|=εn
∂t′ |f |

2
h dθ tend to 0, and it is enough to checking that the integrals of

|f |2h, |∂t′ |f |
2
h|, |∂t′ |f |

2
h| with respect to dθ dr/r are finite. For the first one, this

follows from |t′|−2|f |h ∈ L2(d volE). For the second one (and similarly the third
one), we use that |ϕ|h, |ψ|h and |t′|−2|f |h belong to L2(d volE). �

Once the assertion is proved, we can use the same trick (a variant of
Ahlfors lemma) as in [10]. Recall that we want to prove |f |h 6 exp(−C′|t′|−1)
for some C′ > 0. Let us remark first that, because ∂t′ |f |

2
h and ∂t′ |f |

2
h are

L1
loc(d volE) at t′ = 0, |f |2h is continuous (and C∞ on X∗). Let us consider

the auxiliary function exp(−C1/2|t′|−1). A simple computation shows that
∂t′∂t′ exp(−C1/2|t′|−1) 6 C|t′|−4 exp(−C1/2|t′|−1). Let us then choose λ > 0 such

that |f |2h 6 λ exp(−C1/2|t′|−1) in some neighbourhood of ∂X and let U ⊂ X be

the open set where |f |2h > λ exp(−C1/2|t′|−1). The previous inequalities show

that |f |2h − λ exp(−C1/2|t′|−1) is continuous and subharmonic in U . If U is not

empty then, at a boundary point of U in X we have |f |2h = λ exp(−C1/2|t′|−1)

and, by the maximum principle, we have |f |2h − λ exp(−C1/2|t′|−1) 6 0 on U , a
contradiction. �

Proof of (2.5). The proof is similar to that of Lemma 3. Let us work near zo ∈
Ω∗

0. Using the L2-adapted basis e
(zo) we trivialize the bundle H near zo. Given

θo ∈ S1, we choose an open neighbourhood nb(zo) such that the choice of r1
and ε in the proof of Lemma 3 can be done uniformly with respect to z ∈ nb(zo).

Let H(nb(zo)) denote the Banach space of continuous functions on nb(zo) which
are holomorphic in nb(zo). We then consider the complex whose terms are the⊕

β,ℓ,k L
2
(
U, H(nb(zo)), hβ,ℓ,k, D̃z,diag

)
twisted by differential forms, where hβ,ℓ,k

is ‖e
(zo)
β,ℓ,k‖

2
h,2h, and differential as in the three steps of the proof of Lemma 3. We

show as in Lemma 3 that this complex has vanishing higher cohomology, and we
obtain (2.5). �

Proof that Harm is a lattice. From Lemmas 6, 7 and 8 we get a morphism

Harm⊗COΩ0
−→ R

0p∗ DR FM. (2.7)

As both terms are locally free OΩ0
-modules of the same rank, it will be an isomor-

phism as soon as its restriction to each fibre z = zo is an isomorphism of C-vector
spaces. We will shorten the notation and denote by |z=zo

the quotient by the image
of (z − zo).

For any complex G
• entering in the definition of the morphism (2.7), we have

natural morphisms (with obvious notation)

(R0p∗G
•

)|z=zo
−→ R

0p∗(G
•

|z=zo
) −→ R

0p∗G
•

zo
.

According to the exact sequence

0 −→ DR FM
z−zo−−−−→ DR FM −→ DR F

Mzo
−→ 0,
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and since each of these complexes have hypercohomology in degree 0 at most, the
natural morphism (R0p∗ DR FM)|z=zo

→H
0(P1, DR FMzo

) is an isomorphism.
As a consequence, it is enough to prove that, for any zo ∈ Ω0, the morphism

Harm → H
0(P1, DR FMzo

) constructed as (2.7) by fixing z = zo, is an isomor-
phism. Let us recall how it is constructed, by considering the following commutative
diagram:

Harm
∼

// H0(P1, L
1+•

(2) (H, hzo
, D̃zo

)

H0(P1, L1+•

(2) (H, h+ hzo
, D̃zo

)

≀

OO

≀

��

H0(P1, L
1+•

(2) (H, h, D̃zo
)

c

��

H
0(P1, DR(FMzo,loc)(2))

a
oo

≀

��

H0(P1, F
•

zo
) H

0(P1, DR F
Mzo

).∼
b

oo

Then (2.7)zo
is obtained by factorizing through H0(P1, F

•

zo
) and b−1. On the other

hand, we know that a is an isomorphism (this is (1.4) if zo 6= 0 and [7, Lemma 4]
as corrected in Section 1.1 if zo = 0). Therefore, c is also an isomorphism. �

End of the proof of the twistor property. The proof is done as in [8, p. 53], where
we use the L2 complex instead of the C∞ de Rham complex. �
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Preprint version: arXiv:math/0511471 [math.DG].
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