Fourier-Laplace transform of irreducible regular differential systems on the Riemann sphere

C. Sabbah

Abstract

It is shown that the Fourier-Laplace transform of an irreducible regular differential system on the Riemann sphere underlies a polarizable regular twistor \mathcal{D}-module if one considers only the part at finite distance. The associated holomorphic bundle defined away from the origin of the complex plane is therefore equipped with a natural harmonic metric having a tame behaviour near the origin.

Contents

Introduction 1166
$\S 1$. Statement of the results 1167
1.1. Fourier-Laplace transform of flat bundles 1167
1.2. Fourier-Laplace transform of an irreducible bundle with con- nection 1168
1.3. Fourier-Laplace transform of a bundle with connection and Hermitian metrics 1169
\S 2. Exponential twist of harmonic bundles and twistor \mathcal{D}-modules 1171
2.1. Exponential twist of smooth twistor structures 1171
2.2. Exponential twist in \mathcal{R} - $\operatorname{Triples}\left(X^{*}\right)$ 1172
2.3. Exponential twist in \mathcal{R} - $\operatorname{Triples}(X)$ 1172
2.4. Restriction to the submanifold $z=z_{o}$ 1173
§3. Proof of Theorem 1 1173
3.1. Proof of Theorem 1 1173
3.2. The meromorphic L^{2} de Rham and Dolbeault complexes 1175
3.3. L^{2} de Rham-Dolbeault lemma 1176
3.4. End of the proof of Proposition 1 1178
Bibliography 1179

[^0]
Introduction

A positive answer to the Riemann-Hilbert problem for semisimple ${ }^{1}$ linear representations of the fundamental group of the complement of a finite point set on the Riemann sphere is an important result of A. A. Bolibrukh ([2], [3]). Similarly, he proved [4] that the Birkhoff problem has a positive answer when the corresponding system of meromorphic linear differential equations is semisimple, thus generalizing previous results of W. Balser.

The two results can be stated in a similar way, using the language of meromorphic bundles on the Riemann sphere. Namely, let $P=\left\{p_{1}, \ldots, p_{r}, p_{r+1}=\infty\right\}$ be a nonempty finite set of points on \mathbb{P}^{1} and let M be a finite-rank free $\mathcal{O}(* P)$-module ${ }^{2}$ equipped with a connection ∇. We assume that there is a basis of M for which the connection ∇ has Poincaré rank $m_{i} \geq 0$ at p_{i} for $i=1, \ldots, r$ (that is, the order of the pole of the matrix of ∇ at p_{i} is equal to $m_{i}+1$); moreover, we assume that ∇ has a regular singularity at the point ∞ (that is, the coefficients in the given basis of horizontal sections are multivalued holomorphic functions with at most powerlaw growth at infinity ${ }^{3}$). In this case, if (M, ∇) is irreducible (or semisimple), then there is a basis of M in which the Poincaré rank of ∇ at p_{i} is $m_{i}(i=1, \ldots, r)$ and ∇ has at most a logarithmic pole at ∞ (that is, ∇ has zero Poincaré rank at infinity).

After an easy preliminary reduction we can see that the case when $m_{i}=0$ for all i corresponds to the Riemann-Hilbert problem and the case when $r=1$ corresponds to the Birkhoff problem.

Starting from a system of linear meromorphic differential equations having only regular singularities (or, more precisely, from a regular holonomic \mathcal{D}-module) on the Riemann sphere, one obtains a new system by using the Fourier-Laplace transform, and the Riemann-Hilbert problem for the original system is transformed into the Birkhoff problem for the new system. These problems (for a given system and its Fourier-Laplace transform) are not directly related to each other; ${ }^{4}$ however, one of these systems is semisimple if and only if the other is, and there is a common condition under which both problems have a positive answer simultaneously.

The semisimple linear representations discussed above share another remarkable property: there is a tame harmonic metric on the associated flat bundle (see [11]). This property can be expressed by using the language of polarized twistor \mathcal{D}-modules introduced by the author in [10] by extending a notion due to Simpson [13]. Namely, to any representation of this kind one can assign a regular holonomic \mathcal{D}-module on the Riemann sphere, and this module is unique up to isomorphism and has neither submodules nor quotient modules supported at a point. The last property can be expressed as follows: this \mathcal{D}-module underlies a polarizable regular twistor \mathcal{D}-module in the sense defined in the cited papers (see also below).

In the present paper we study the behaviour of polarized regular twistor \mathcal{D} modules on the Riemann sphere under the Fourier-Laplace transform. However,

[^1]we give no information on the behaviour at infinity in the Fourier plane, where an irregular singularity can occur.

We note that, using another apparatus, Szabo [14] has established a perfect Fourier correspondence in a more general situation in which an irregular singularity at infinity is admitted but some other more restrictive assumptions are imposed.

We refer to [10] for diverse results (used below) related to polarizable twistor D-modules.

\S 1. Statement of the results

We regard the projective line $X=\mathbb{P}^{1}$ as the union of two affine charts Spec $\mathbb{C}[t]$ and Spec $\mathbb{C}\left[t^{\prime}\right]$ with $t^{\prime}=1 / t$ on the intersection, and we define ∞ as the point where $t^{\prime}=0$. As above, let $P=\left\{p_{1}, \ldots, p_{r}, p_{\infty}\right\}$ be a finite set of $r+1$ distinct points in \mathbb{P}^{1}. We set $X^{*}=\mathbb{P}^{1} \backslash P$.

Let the pair $\left(H, D_{V}\right)$ be formed by a C^{∞} vector bundle H with a flat connection D_{V} on $X^{* a n}$. The bundle is holomorphic with respect to the $(0,1)$-part $D_{V}^{\prime \prime}$, and we set $(V, \nabla)=\left(\operatorname{ker} D^{\prime \prime}, D_{V}^{\prime}\right)$. The associated local system is $\mathcal{L} \stackrel{\text { def }}{=} \operatorname{ker}[\nabla: V \rightarrow$ $\left.V \otimes_{\mathcal{O}_{X^{* a n}}} \Omega_{X^{* a n}}^{1}\right]$. We denote by T_{j} the local monodromy of this local system at each point p_{j} of P.
1.1. Fourier-Laplace transform of flat bundles. The notion of FourierLaplace transform is a priori defined for algebraic \mathcal{D}-modules on the affine line $\mathbb{A}^{1}=\mathbb{P}^{1} \backslash\{\infty\}$ and not for holomorphic bundles with connection on X^{*} nor for holomorphic vector bundles on \mathbb{P}^{1} equipped with a meromorphic connection.

We denote by $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$ the Weyl algebra in dimension one, that is, the quotient by the relation $\left[\partial_{t}, t\right]=1$ of the free algebra generated by $\mathbb{C}[t]$ and $\mathbb{C}\left[\partial_{t}\right]$ (see, for instance, [5] and [7]). Let M be a holonomic $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-module. The module M is said to be a minimal extension if it has neither submodules nor quotient modules supported by some point of \mathbb{A}^{1}. The following assertion is well known.

Lemma 1 (Riemann-Hilbert correspondence). The functor assigning to any holonomic $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-module with all its singularities in P the restriction of this module to $X^{* a n}$ induces an equivalence between the category of holonomic $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-modules that have regular singularities (including the point at infinity) and are minimal extensions (the morphisms are the morphisms of $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-modules), and the category of all flat holomorphic bundles on $X^{* a n}$.

For a given holomorphic bundle with connection (V, ∇) on $X^{* a n}$ we denote by M the regular holonomic $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-module associated with (V, ∇) by Lemma 1 . The Fourier-Laplace transform \widehat{M} of M is the \mathbb{C}-vector space M equipped with an action of the Weyl algebra $\mathbb{C}[\tau]\left\langle\partial_{\tau}\right\rangle$ (with respect to the variable τ) defined by the formula

$$
\begin{equation*}
\tau \cdot m=\partial_{t} m, \quad \partial_{\tau}=-t m \tag{1.1}
\end{equation*}
$$

We denote by $\widehat{X}=\widehat{\mathbb{A}}^{1}$ the affine line with the coordinate τ and by $\widehat{\mathbb{P}}^{1}$ the corresponding projective line. As is known, the module \widehat{M} has a single singularity at a finite distance, namely, at $\tau=0$, and this singularity is regular. However, the module has an irregular singularity at $\tau=\infty$ in general (for general results concerning Fourier transforms of holonomic $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-modules, see, for instance, [7]).

We therefore obtain a holomorphic bundle with connection $(\widehat{V}, \widehat{P})$ on the punctured projective line $\widehat{X}=\widehat{\mathbb{P}}^{1} \backslash \widehat{P}$, where $\widehat{\mathbb{P}}^{1}$ is the projective line with the coordinate τ and $\widehat{P}=\{0, \infty\}$. The associated flat bundle of class C^{∞} is denoted by $\left(\widehat{H}, D_{\widehat{V}}\right)$. However, the module \widehat{M} cannot be recovered from a given pair $(\widehat{V}, \widehat{\nabla})$ in general.

Let d denote the rank of H. We indicate how to compute the rank \widehat{d} of \widehat{H}. As is known, for any $\tau_{o} \neq 0$ the \mathbb{C}-linear morphism

$$
M \xrightarrow{\partial_{t}-\tau_{o}} M
$$

is injective and its cokernel is a finite-dimensional vector space, namely, the fibre of the bundle \widehat{V} at the point τ_{o}. The dimension of the cokernel, which coincides with the total number μ of 'vanishing cycles' of M at the points of the set $P \backslash \infty$ (that is, the sum of multiplicities of the characteristic variety of M along its components $T_{p_{i}}^{*} X$; see, for instance, $\S 4$ (p. 66) in [6]), can be readily computed here by the following formulae (see Proposition 1.5 (p. 79) of [7]):

$$
\begin{equation*}
\widehat{d}=\mu=r d-d_{1}, \quad r=\operatorname{card} P-1, \quad d_{1} \stackrel{\text { def }}{=} \sum_{j=1}^{r} \operatorname{dim} \operatorname{Ker}\left(T_{j}-\mathrm{Id}\right) \tag{1.2}
\end{equation*}
$$

More precisely, the tensor product $\mathbb{C}\left[\tau, \tau^{-1}\right] \otimes_{\mathbb{C}[\tau]} \widehat{M}$ is a free $\mathbb{C}\left[\tau, \tau^{-1}\right]$-module of rank μ.
1.2. Fourier-Laplace transform of an irreducible bundle with connection. We assume now that $\left(H, D_{V}\right)$ is irreducible, or, equivalently, that no nontrivial subspace of L is invariant under all $T_{j}(j=1, \ldots, r+1)$. One can readily prove another equivalent condition claiming that the associated regular holonomic \mathcal{D}-module M is irreducible as a $\mathbb{C}[\tau]\left\langle\partial_{\tau}\right\rangle$-module. In turn, this is (very easily) equivalent to the irreducibility of the Fourier-Laplace transform \widehat{M}. However, since the module \widehat{M} can be irregular at infinity, this does not imply the irreducibility of $\left(\widehat{H}, D_{\widehat{V}}\right)$ (see below). The rank \widehat{d} of \widehat{H} is positive unless $(V, \nabla)=\left(\mathcal{O}_{X}, d\right)$, because irreducibility is assumed. In the following we implicitly assume that $\widehat{d}>0$.

The bundle $\left(\widehat{H}, D_{\widehat{V}}\right)$ is determined by its monodromy \widehat{T}_{0} around the point $\tau=0$. The Jordan structure of the monodromy operator \widehat{T}_{0} is determined by that of the monodromy T_{∞} of $\left(H, D_{V}\right)$ around ∞ (below we denote by A_{λ} the restriction of an endomorphism A to the generalized eigenspace (root subspace) corresponding to the eigenvalue λ). This is the content of the following lemma, which can be derived from Proposition 8.4.20 of [10].

Lemma 2. Suppose that a pair $\left(H, D_{V}\right)$ is irreducible. Then:

1) for any $\lambda \neq 1$ the Jordan structures of the restrictions of the monodromy operators $\widehat{T}_{0, \lambda}$ and $T_{\infty, \lambda}$ coincide;
2) any Jordan block of size $k \geq 1$ of $T_{\infty, 1}$ induces a Jordan block of size $k+1$ of $\widehat{T}_{0,1}$;
3) the remaining Jordan blocks of $\widehat{T}_{0,1}$ are of size one.

The semisimplicity of the pair (the decomposability as the direct sum of irreducible bundles with connection) is equivalent to that of the monodromy operator \widehat{T}_{0}. This holds (provided that $\left(H, D_{V}\right)$ is irreducible) if and only if the operator T_{∞} is semisimple and 1 is not an eigenvalue of T_{∞}.

1.3. Fourier-Laplace transform of a bundle with connection and Her-

 mitian metrics. We assume first that the monodromy representation associated with the local system $\mathcal{L}=\operatorname{ker} \nabla$ is unitary. In other words, we assume that there is a D_{V}-flat Hermitian metric h on H. In particular,1) the local system \mathcal{L} is an orthogonal direct sum of irreducible local systems, so in what follows we assume that the local system is irreducible (the case of a constant rank-one local system is trivial, and we therefore also assume that \mathcal{L} is not a constant local system);
2) the local monodromy T_{j} of the local system at each point p_{j} of P is (unitary and) semisimple and the eigenvalues of T_{j} are roots of unity.
We can ask whether the space \widehat{H} can be naturally equipped with a Hermitian metric and whether this metric is $D_{\widehat{V}}$-flat. We note that flatness would imply semisimplicity and unitarity of the monodromy \widehat{T}_{0}. By the above assumptions and Lemma 2, this holds if and only if 1 is not an eigenvalue of the monodromy operator T_{∞}.

If we only assume that $\left(H, D_{V}\right)$ is irreducible but not necessarily unitary, then there is still a unique tame harmonic Hermitian metric h on (H, D_{V}) (by [11]), which is therefore a natural metric to be considered. Such a metric also exists if $\left(H, D_{V}\right)$ is a semisimple pair, but it can fail to be unique.
Tame harmonic metrics. Let us recall the definition of these metrics. We can fix a choice of a metric connection on H, which we denote by D_{E}, by the following condition: if we introduce a 1-form $\theta_{E}=D_{V}-D_{E}$ and decompose it into the $(1,0)$ and $(0,1)$ parts, $\theta_{E}=\theta_{E}^{\prime}+\theta_{E}^{\prime \prime}$, then the h-adjoint of θ_{E}^{\prime} is defined as the form $\theta_{E}^{\prime \prime}$. Since X is of dimension one, it follows that the bundle $E=\operatorname{ker} D_{E}^{\prime \prime}$ is holomorphic on $X^{* a n}$, and the form θ_{E}^{\prime} satisfies the Higgs condition $\theta_{E}^{\prime} \wedge \theta_{E}^{\prime}=0$.

A triple $\left(H, D_{V}, h\right)$ (where D_{V} is a flat connection) is said to be harmonic if the Higgs field is holomorphic on E, that is, if the 1-form $\theta_{E}^{\prime}: E \rightarrow E \otimes_{\mathcal{O}_{X * a n}} \Omega_{\mathcal{O}_{X * a n}}^{1}$ is holomorphic.

Following [11], we say that a triple $\left(H, D_{V}, h\right)$ of this kind is tame if the eigenvalues of the Higgs field (which are multivalued holomorphic one-forms) have at most a simple pole at each point of P.

One can ask whether the pair $\left(\widehat{H}, D_{\widehat{V}}\right)$ also carries a harmonic metric of this kind with tame behaviour at $\tau=0$. We give a positive answer in Corollary 1.
Twistor \mathcal{D}-modules. We speak in the language of twistor \mathcal{D}-modules used in the preprint [10], to which the reader is referred. Let us briefly recall some basic definitions.

We still denote by X the Riemann sphere and write $X=X \times \mathbb{C}$, using the coordinate z on the factor \mathbb{C}. We also denote by \mathbf{S} the circle $\{|z|=1\}$ and by \mathcal{D}_{X} the sheaf of holomorphic differential operators on X, and we consider the sheaf \mathcal{R}_{x} of z-differential operators on \mathcal{X}, namely, in any local coordinate x on X the module \mathcal{R}_{x} is equal to $\mathcal{O}_{x}\left\langle\partial_{x}\right\rangle$, where $\partial_{x}=z \partial_{x}$. In particular, $\mathcal{D}_{X}=\mathcal{R}_{x} /(z-1) \mathcal{R}_{x}$.

Let us consider the category \mathcal{R}-Triples (X) whose objects are triples of the form $\left(\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}, C\right)$, where $\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}$ are coherent $\mathcal{R} X$-modules and C is a sesquilinear pairing between these modules, that is, for any point z_{o} on the circle \mathbf{S} this is a pairing between the stalk of the sheaf $\mathcal{M}_{z_{o}}^{\prime}$ and the conjugate stalk of $\mathcal{N}_{-z_{o}}^{\prime \prime}$, and this pairing takes values in the sheaf $\mathfrak{D b}_{X_{\mathbb{R}}}$ of distributions on X and is linear with respect to the action of holomorphic differential operators on $\mathcal{N}_{z_{o}}^{\prime}$ and of antiholomorphic differential operators on the conjugate module of $\mathcal{M}_{-z_{o}}^{\prime \prime}$ under the natural action of the differential operators of both types on the distributions on X. Finally, this pairing must be continuous with respect to the point $z \in \mathbf{S}$. We treat C as a sesquilinear pairing of sheaves $\mathcal{M}_{\mid S}^{\prime} \otimes_{\mathcal{O}_{x \mid \mathbf{S}}} \overline{\mathcal{M}_{\mid S}^{\prime \prime}} \rightarrow \mathfrak{D b}_{X_{\mathbb{R} \times \mathbf{S}} / \mathbf{S}}$, where $\mathfrak{D b}_{X_{\mathbb{R} \times \mathbf{S}} / \mathbf{S}}$ stands for the sheaf of distributions on $X \times \mathbf{S}$ that are continuous with respect to $z \in \mathbf{S}$ and the conjugation is opposite to the usual conjugation on \mathbf{S} (see §1.5.a in [10]).

The notion of polarized regular twistor \mathcal{D}-module of weight $w \in \mathbb{Z}$ on X was defined in [10]. Namely, these are objects of the form $(\mathcal{T}, \mathcal{S})$, where $\mathcal{T}=\left(\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}, C\right)$ are the triples discussed above and \mathcal{S} (the so-called polarization) consists of two isomorphisms $\mathcal{N}^{\prime \prime} \xrightarrow{\sim} \mathcal{N}^{\prime}$. Some axioms are introduced (which we do not recall here; see Chapter 4 of [10]). Most arguments can be reduced to the case in which the weight w is equal to $0, \mathcal{M}^{\prime}=\mathcal{M}^{\prime \prime}$, and both isomorphisms in \mathcal{S} are equal to Id. Objects of this kind are denoted simply by $(\mathcal{M}, \mathcal{M}, C, I d)$ or just by $(\mathcal{M}, \mathcal{M}, C)$.

Introducing such an object of weight 0 , we obtain a \mathcal{D}_{X}-module by considering the quotient $\mathcal{M} /(z-1) \mathcal{M}$. Moreover, by restricting to $X^{* a n}$, we obtain a holomorphic bundle V with connection ∇. Finally, it follows from the axioms that the sesquilinear pairing C enables one to define a metric h associated with V on the C^{∞} bundle H and that this metric is harmonic. Moreover, this metric is tame by the regularity assumption. More precisely, using results of [11] and [1], the author proved in Chapter 5 of [10] that the category of polarized regular twistor $\mathcal{D}_{X^{-}}$ modules is equivalent to the category of tame harmonic bundles ${ }^{5}\left(H, D_{V}, h\right)$ on $X^{* a n}$ with a certain parabolic structure (this structure is referred to as being 'of Deligne type' in [10]). According to Simpson [11], the latter category is equivalent to the category of semisimple bundles $\left(H, D_{V}\right)$ with flat connection on $X^{* a n}$.

The Fourier-Laplace transform of a given object of the form $\left(\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}, C, S\right)$ is introduced in Chapter 8 of [10] (see also below). The transform is defined as a quadruple $\left(\widehat{\mathcal{M}}^{\prime}, \widehat{\mathcal{M}}^{\prime \prime}, \widehat{C}, \widehat{\mathcal{S}}\right)$ over $\widehat{\mathbb{A}}^{1 a n} \times \mathbb{C}$. The main result of the paper is as follows.

Theorem 1. If $(\mathcal{M}, \mathcal{M}, C, I d)$ is a polarized regular twistor \mathcal{D}_{X}-module of weight 0 , then $(\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C}, \mathrm{Id})$ is a polarized regular twistor \mathcal{D}-module of weight 0 over $\widehat{\mathbb{A}}^{1 \text { an }} \times \mathbb{C}$.

This statement can be directly extended to polarized regular twistor \mathcal{D}-modules of weight w. We note that a part of the theorem was already proved in Theorem 8.4.1 of [10], namely, the condition on cycles near $\tau=0$. We are therefore mainly interested in the behaviour at points $\tau_{o} \neq 0$. The 'fibre' of ($\left.\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C}\right)$ at $\tau=\tau_{o}=0$ is obtained from that at $\tau=1$ by a rescaling, that is, by a preliminary change of variable $t \rightarrow t / \tau_{o}$, because the kernel of the Fourier-Laplace transform is $e^{-t \tau / z}$.

We obtain the following assertion as a corollary.

[^2]Corollary 1. If a flat bundle $\left(H, D_{V}\right)$ is semisimple, then the Fourier-Laplace transform $\left(\widehat{H}, D_{\widehat{V}}\right)$ on \widehat{X}^{*} carries a harmonic metric with tame behaviour at $\tau=0$.

\S 2. Exponential twist of harmonic bundles and twistor \mathcal{D}-modules

Let us recall the basic correspondences indicated in §8.1.b of [10]. We keep the notation of $\S 1$, but now we fix the point $\tau_{o}=1$.
2.1. Exponential twist of smooth twistor structures. We begin with a triple $\left(H, h, D_{V}\right)$ on X^{*}, rescale the metric h, and twist the connection D_{V} by defining

$$
\begin{aligned}
{ }^{F} D_{V} & =e^{t} \circ D_{V} \circ e^{-t}, \quad \text { that is, } \quad{ }^{F} D_{V}^{\prime}=D_{V}^{\prime}-d t, \quad{ }^{F} D_{V}^{\prime \prime}=d^{\prime \prime}, \\
{ }^{F} h & =e^{2 \operatorname{Ret}} h .
\end{aligned}
$$

We recall that, in terms of the definitions in [11] and [12], if the triple (H, D_{V}, h) is harmonic on X^{*}, then so is the triple $\left(H,{ }^{F} D_{V},{ }^{F} h\right)$. The Higgs field is defined by the formulae

$$
{ }^{F} \theta_{E}^{\prime}=\theta_{E}^{\prime}-d t, \quad{ }^{F} \theta_{E}^{\prime \prime}=\theta_{E}^{\prime \prime}-d \bar{t}
$$

and the metric connection ${ }^{F} h$ given by ${ }^{F} D_{E}={ }^{F} D_{E}^{\prime}+{ }^{F} D_{E}^{\prime \prime}$ by the formulae

$$
{ }^{F} D_{E}=e^{-\bar{t}} \circ D_{E} \circ e^{\bar{t}}, \quad \text { that is, } \quad{ }^{F} D_{E}^{\prime}=D_{E}^{\prime}, \quad{ }^{F} D_{E}^{\prime \prime}=D_{E}^{\prime \prime}+d \bar{t}
$$

The exponential twist exists at the level of smooth twistor structures. As in [10], we denote by $\mathcal{C}_{X^{*}}^{\infty, a n}$ the sheaf on X^{*} of C^{∞} functions holomorphic with respect to z. Let us consider the $\mathcal{C}_{X^{*}}^{\infty, a n}$-module $\mathcal{H}^{6} \mathcal{H}^{a n}=\mathcal{C}_{X^{*}}^{\infty, a n} \otimes_{\pi^{-1}} \mathcal{C}_{X^{*}}^{\infty} \pi^{-1} H$ equipped with the $d^{\prime \prime}$ operator

$$
\begin{equation*}
{ }^{F} \mathfrak{D}_{z}^{\prime \prime}={ }^{F} D_{E}^{\prime \prime}+z^{F} \theta_{E}^{\prime \prime}=\mathfrak{D}_{z}^{\prime \prime}+(1-z) d \bar{t} \tag{2.1}
\end{equation*}
$$

We obtain a holomorphic subbundle ${ }^{F} \mathcal{H}^{\prime}=\operatorname{ker}{ }^{F} \mathfrak{D}_{z}^{\prime \prime} \subset \mathcal{H}^{a n}$ equipped with a z-connection given by ${ }^{F} \mathfrak{D}_{z}^{\prime}=z^{F} D_{E}^{\prime}+{ }^{F} \theta_{E}^{\prime}=\mathfrak{D}_{z}^{\prime}-d t$. We set

$$
{ }^{F} \mathfrak{D}_{z}={ }^{F} \mathfrak{D}_{z}^{\prime}+{ }^{F} \mathfrak{D}_{z}^{\prime \prime}=\mathfrak{D}_{z}-d t+(1-z) d \bar{t}
$$

Moreover, if $\pi: X^{*}=X^{*} \times \mathbb{C} \rightarrow X^{*}$ is the natural projection, then the bundle $\mathcal{H}^{a n}$ can be equipped with the metric $\pi^{*} h$ or the metric $\pi^{* F} h$. These metrics are constant with respect to z. We shall also consider the metric $e^{2 \operatorname{Re}(z \bar{t})} \pi^{*} h$, which varies as z varies.

We have an isomorphism of locally free $\mathcal{C}_{X^{*}}^{\infty, a n}$-modules with metric and z connection:

$$
\begin{equation*}
\left(\mathcal{H}^{a n}, \pi^{* F} h,{ }^{F} \mathfrak{D}_{z}\right) \xrightarrow{\cdot e^{(1-z) \bar{t}}}\left(\mathcal{H}^{a n}, e^{2 \operatorname{Re}(z \bar{t})} \pi^{*} h, \mathfrak{D}_{z}-d t\right) . \tag{2.2}
\end{equation*}
$$

This isomorphism sends the holomorphic subbundle ${ }^{F} \mathcal{H}^{\prime}$ to $\mathcal{H}^{\prime}=\operatorname{ker} \mathfrak{D}_{z}^{\prime \prime}$.
It will also be useful to have a model related to the metric $\pi^{*} h$. This model is defined on the sheaf $\mathcal{C}_{X^{*}}^{\infty}$ rather than on $\mathcal{C}_{X^{*}}^{\infty, a n}$. We set $\mathcal{H}=\mathcal{C}_{X^{*}}^{\infty} \otimes_{\pi^{-1}} \mathcal{C}_{X^{*}}^{\infty} \pi^{-1} H$. There is an isomorphism

$$
\begin{equation*}
\left(\mathcal{H}, \pi^{* F} h,{ }^{F} \mathcal{D}_{z}\right) \xrightarrow{\cdot e^{\bar{t}-2 i \operatorname{Im}(z \bar{t})}}\left(\mathcal{H}, \pi^{*} h, \mathfrak{D}_{z}-\left(1+|z|^{2}\right) d t\right) \tag{2.3}
\end{equation*}
$$

This isomorphism is not defined over $\mathcal{C}_{X^{*}}^{\infty, a n}$.

[^3]2.2. Exponential twist in \mathcal{R}-Triples $\left(\boldsymbol{X}^{*}\right)$. We recall the following definitions (see $\S 8.1$.a in [10]). Let \mathcal{M} be a left $\mathcal{R} x$-module, that is, an \mathcal{O}_{X}-module with a flat relative meromorphic connection $\nabla_{x / \mathbb{C}}$ (relative to z, that is, no differentiation with respect to z is carried out). We denote by $\mathcal{M}_{\text {loc }}$ the localized module along P, that is, $\mathcal{M}_{\text {loc }}=\mathcal{O}_{X}[*(P \times \mathbb{C})] \otimes_{\mathcal{O}_{x}} \mathcal{M}$. The twisted $\mathcal{R} X$-module ${ }^{F} \mathcal{M}_{\text {loc }}=\mathcal{M}_{\text {loc }} \otimes \mathcal{E}^{-t / z}$ is defined as the \mathcal{O}_{x}-module $\mathcal{M}_{\text {loc }}$ equipped with the twisted connection $e^{t / z} \circ \nabla_{X / \mathbb{C}} \circ$ $e^{-t / z}$.

Let $C: \mathcal{M}_{\mid \mathbf{S}}^{\prime} \otimes_{\mathcal{O}_{x \mid \mathbf{S}}}{\overline{\mathcal{M}_{\mid \mathbf{S}}}}^{\prime \prime} \rightarrow \mathfrak{D b}_{X_{\mathbb{R}}} \times \mathbf{S} / \mathbf{S}$ be a sesquilinear pairing. If the restriction of $\left(\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}, C\right)$ to X^{*} is a smooth twistor structure, then the restriction of C to $X^{*} \times \mathbf{S}$ takes values in $\mathcal{C}_{X^{*}}^{\infty, a n}$, and the extension C_{loc} of C to $\mathcal{M}_{\mathrm{loc} \mid \mathbf{S}}^{\prime} \otimes_{\mathcal{O}_{x \mid \mathbf{s}}} \overline{\mathcal{M}_{\mathrm{loc} \mid \mathbf{S}}^{\prime \prime}}$ takes values in the extension of $\mathcal{C}_{X^{*}}^{\infty}, a n$ formed by the functions on \mathcal{X}^{*} which can be extended as distributions continuous with respect to $z \in \mathbf{S}$. Moreover, if we assume that $\left(\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}, C\right)$ underlies a polarized regular twistor \mathcal{D}-module, then, using (5.3.3) in [10], we can see that $C_{\text {loc }}$ takes values in the extension of $\mathcal{C}_{X^{*}}^{\infty, a n}$ formed by the functions on X^{*} having moderate growth near each puncture in P, locally uniformly with respect to $z \in \mathbf{S}$.

We note that the number $z \bar{t}-t / z$ is purely imaginary for any $z \in \mathbf{S}$. Then under the above assumption the map ${ }^{F} C_{\text {loc }}:=\exp (z \bar{t}-t / z) C_{\text {loc }}$ is a sesquilinear pairing on ${ }^{F} \mathcal{M}_{\mathrm{loc} \mid \mathbf{S}}^{\prime} \otimes_{\mathcal{O}_{x \mid \mathbf{S}}} \overline{{ }_{\mathcal{M}} \mathcal{M}_{\mathrm{loc} \mid \mathbf{S}}}$ taking values in the same sheaf of functions with moderate growth.

With a harmonic bundle $\left(H, h, D_{V}\right)$ on X^{*} one can associate a smooth twistor structure $\left(\mathcal{H}^{\prime}, \mathcal{H}^{\prime}, \pi^{*} h_{\mathcal{H}_{\mid \mathbf{S}}^{\prime} \otimes \overline{\mathcal{H}_{\mid \mathbf{S}}^{\prime}}}\right)$, where $\mathcal{H}^{\prime} \subset \mathcal{H}^{a n}$ is the kernel ker $\mathfrak{D}_{z}^{\prime \prime}$ equipped with the $\mathcal{R}_{x * \text {-structure }}$ given by the z-connection $\mathfrak{D}_{z}^{\prime}$.

This harmonic bundle can be exponentially twisted as an object of the category \mathcal{R}-Triples $\left(X^{*}\right)$, and the result is the triple

$$
\left(\mathcal{H}^{\prime}, \mathcal{H}^{\prime}, \exp (z \bar{t}-t / z) \pi^{*} h_{\mathcal{H}_{\mathbf{|}}^{\prime} \otimes \overline{\mathcal{H}_{\mathbf{|}}^{\prime}}}\right)
$$

where \mathcal{H}^{\prime} is equipped with the $\mathcal{R}_{X^{*}}$-structure defined by the z-connection $\mathfrak{D}_{z}^{\prime}-d t$.
The isomorphism (2.2) identifies the twisted harmonic bundle with the smooth twistor structure associated with $\left(H,{ }^{F} h,{ }^{F} D_{V}\right)$ (see Lemma 8.1.2 of [10]).
2.3. Exponential twist in \mathcal{R} - $\operatorname{Triples}(\boldsymbol{X})$. Let \mathcal{M} be a left $\mathcal{R} x$-module. We denote by $\widetilde{\mathcal{M}}$ the localization of \mathcal{M} only at infinity. Then ${ }^{F} \mathcal{M}$ is defined as the twisted $\mathcal{R} x$-module $\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t / z}$ (the \mathcal{R}_{x}-structure is defined as above). In particular, the module ${ }^{F} \mathcal{M}$ is localized at ∞, and the module ${ }^{F} \mathcal{M}_{\text {loc }}$ is the localization of ${ }^{F} \mathcal{M}$ at $P \backslash\{\infty\}$. We know (see Proposition 8.3.1(i) in [10]) that the $\mathcal{R} x$-module ${ }^{F} \mathcal{M}$ is coherent under a certain condition on \mathcal{M} near ∞, and this condition is satisfied if \mathcal{M} corresponds to a (polarized) regular twistor \mathcal{D}-module on X.

For a given (polarized) regular twistor \mathcal{D}-module $\left(\mathcal{M}^{\prime}, \mathcal{M}^{\prime \prime}, C\right)$ on X the definition of the sesquilinear pairing ${ }^{F} C$ on ${ }^{F} \mathcal{M}_{\mid \mathbf{S}}^{\prime} \otimes_{\mathcal{O}_{x \mid \mathbf{S}}} \overline{F \mathcal{M}_{\mid \mathbf{S}}^{\prime \prime}}$ with values in $\mathfrak{D b}_{X_{\mathbb{R}} \times \mathbf{S} / \mathbf{S}}$ needs some care, because one must define a lifting of the localized distribution (or C^{∞} function of moderate growth) ${ }^{F} C_{\text {loc }}$ to distributions on X. In [10] one first defines a pairing ${ }^{\mathcal{F}} C$ on the total exponential twist ${ }^{\mathcal{F}} \mathcal{M}_{\mid \mathbf{S}}^{\prime} \otimes{ }^{\overline{\mathcal{F}} \mathcal{M}_{\mid \mathbf{S}}^{\prime \prime}}$ (where one must not forget the variable τ); the module ${ }^{F} \mathcal{M}$ is regarded as the specialization of the module $\mathcal{F M}$ at $\tau=1$, and then the pairing ${ }^{F} C$ is defined as the specialization (by means of the Mellin transform) of the pairing ${ }^{\mathcal{F}} C$.
2.4. Restriction to the submanifold $z=\boldsymbol{z}_{\boldsymbol{o}}$. Let us analyze the behaviour of the above constructions under restriction to the submanifold $z=z_{0}$.

The restriction to the submanifold $z=z_{o}$ of the triple $\left(\mathcal{H}^{a n}, \pi^{* F} h,{ }^{F} \mathfrak{D}_{z}\right)$ is the bundle H equipped with the metric ${ }^{F} h$ and the z_{o}-connection ${ }^{F} \mathfrak{D}_{z_{o}}$. The isomorphism (2.2) specializes to an isomorphism

$$
\begin{equation*}
\left(H,{ }^{F} h,{ }^{F} \mathfrak{D}_{z_{o}}\right) \xrightarrow{\cdot e^{\left(1-z_{o}\right) \bar{t}}}\left(H, e^{2 \operatorname{Re}\left(z_{o} \bar{t}\right)} h, \mathfrak{D}_{z_{o}}-d t\right) \tag{2.4}
\end{equation*}
$$

and the isomorphism (2.3) specializes to an isomorphism

$$
\begin{equation*}
\left(H,{ }^{F} h,{ }^{F} \mathfrak{D}_{z_{o}}\right) \xrightarrow{\cdot e^{\bar{t}-2 i \operatorname{Im}\left(z_{o} \bar{t}\right)}}\left(H, h, \mathfrak{D}_{z_{o}}-\left(1+\left|z_{o}\right|^{2}\right) d t\right) \tag{2.5}
\end{equation*}
$$

On the other hand, since the module $\mathcal{O}_{x}[*(P \times \mathbb{C})]$ (or $\left.\mathcal{O}_{x}[*(\{\infty\} \times \mathbb{C})]\right)$ is flat over the ring \mathcal{O}_{x}, it follows that if \mathcal{M} is a strict \mathcal{R}_{x}-module (that is, if it is $\mathcal{O}_{\mathbb{C}^{-}}$ torsion-free), then so is its localization $\mathcal{M}_{\text {loc }}$ or $\widetilde{\mathcal{M}}$. If we set $\mathfrak{M}_{z_{o}}=\mathcal{M} /\left(z-z_{o}\right) \mathcal{M}$, then the localization loc or ${ }^{\sim}$ of the module $\mathfrak{M}_{z_{o}}$ is the restriction to $z=z_{o}$ of the corresponding localization of \mathcal{M}.

We introduce the twisted module ${ }^{F} \mathfrak{M}_{z_{o}}$ for $z_{o} \neq 0$ as the module $\widetilde{\mathfrak{M}}_{z_{o}} \otimes \mathcal{E}^{-t / z_{o}}$ (that is, we twist the z_{o}-connection by adding $-d t$) and for $z_{o}=0$ as the module $\widetilde{\mathfrak{M}}_{0}$ with the Higgs field obtained by adding $-d t$. In this case if \mathcal{M} is strict, then ${ }^{F} \mathfrak{M}_{z_{o}}={ }^{F} \mathcal{M} /\left(z-z_{o}\right)^{F} \mathcal{M}$ and ${ }^{F} \mathfrak{M}_{z_{o}, \text { loc }}={ }^{F} \mathcal{M}_{\text {loc }} /\left(z-z_{o}\right)^{F} \mathcal{M}_{\text {loc }}$.

3. Proof of Theorem 1

Let $(\mathcal{T}, \mathcal{S})$ be a polarized regular twistor \mathcal{D}-module of weight 0 on \mathbb{P}^{1} (that is, an object of $\operatorname{MT}^{r}\left(\mathbb{P}^{1}, w\right)^{(p)}$; see [10]). We can assume that it is of the form $\mathcal{T}=$ $(\mathcal{M}, \mathcal{M}, C)$ and $\mathcal{S}=(\mathrm{Id}, \mathrm{Id})$. The restriction of this module to X^{*} corresponds to a harmonic bundle $\left(H, h, D_{V}\right)$. Using the notation of (1.2), we prove the following assertion in this section.

Proposition 1. The complex $\mathbf{R} \Gamma\left(X, \mathrm{DR}^{F} \mathcal{M}\right)$ has non-trivial cohomology only of degree 0 , and its non-zero cohomology is a locally free $\mathcal{O}_{\mathbb{C}}$ module of finite rank \widehat{d}.
3.1. Proof of Theorem 1. We recall (see Chapter 8 of [10]) that we set $\widetilde{\mathcal{M}}=$ $\mathcal{O}_{x}(* \infty) \otimes_{\mathcal{O}_{x}} \mathcal{M}$, and if $p: X \times \widehat{X} \times \mathbb{C} \rightarrow X \times \mathbb{C}=X$ and $\widehat{p}: X \times \widehat{X} \times \mathbb{C} \rightarrow$ $\widehat{X} \times \mathbb{C}=\widehat{X}$ denote the projections and $\otimes \mathcal{E}^{-t \tau / z}$ denotes the exponential twist of the \mathcal{R}-structure, then we write

$$
\widehat{\mathcal{M}}:=\widehat{p}_{+} p^{+}\left(\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t \tau / z}\right)=\widehat{p}_{+}^{0} p^{+}\left(\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t \tau / z}\right):=\widehat{p}_{+}^{0 \mathcal{F}} \mathcal{M}
$$

The sesquilinear pairing ${ }^{\mathcal{F}} C$ on ${ }^{\mathcal{F}} \mathcal{M}_{\mid \mathbf{S}} \otimes \overline{\mathcal{F} \mathcal{M}_{\mid \mathbf{S}}}$ is defined in Chapter 8 of [10], and we can write $\widehat{C}=\widehat{p}_{+}^{0}{ }^{\mathcal{F}} C$.

1. It follows from Theorem 8.4 .1 of [10] that, along the submanifold $\tau=0$, all necessary conditions for the existence of a polarized regular twistor \mathcal{D}-module (see Definition 4.1.2 in [10]) are satisfied.
2. The main question is now concerned with the behaviour of $\widehat{\mathcal{M}}$ away from the point $\tau=0$. Let us fix some $\tau_{o} \neq 0$ in \widehat{X}. We recall Proposition 8.3.1(i) of [10]
claiming that the module $\tilde{\mathcal{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}$ is \mathcal{R}_{x}-good. In fact, it suffices to take $\tau_{o}=1$ by the obvious homogeneity considerations. We denote by ${ }^{F} \mathcal{M}$ the \mathcal{R}_{x}-module $\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t / z}$.
3. Since the module ${ }^{\mathcal{F}} \mathcal{M}$ is regular and strictly specializable along $\tau=\tau_{o}$ and since, according to $[10]$ (Proposition 8.3.1(ii) and (iii), Theorem 3.1.8, and §3.1.d), the following assertion holds by virtue of Proposition 1 (which holds for any $\tau_{o} \neq 0$).

Corollary 2. For any $\tau_{o} \neq 0$ the module $\widehat{\mathcal{M}}$ is strictly specializable and regular along $\tau=\tau_{o}$, and for any $\alpha \in \mathbb{C}$

$$
\psi_{\tau-\tau_{o}, \alpha} \widehat{\mathcal{M}}= \begin{cases}0 & \text { if } \alpha \notin-\mathbb{N}^{*} \\ \mathbf{R}^{0} \Gamma\left(X, \operatorname{DR} \widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t \tau_{o} / z}\right) & \text { if } \alpha \in-\mathbb{N}^{*}\end{cases}
$$

4. This corollary implies that, near any $\tau_{o} \neq 0$, the module $\widehat{\mathcal{M}}$ is equal to the level -1 of its V-filtration along $\tau=\tau_{o}$. By the regularity, the module $\widehat{\mathcal{M}}$ is $\mathcal{O}_{\widehat{x}}$-coherent, and since $\operatorname{dim} \widehat{\mathcal{M}} /\left(\tau-\tau_{o}\right) \widehat{\mathcal{M}}=\operatorname{dim} \psi_{\tau-\tau_{o}, \alpha} \widehat{\mathcal{M}}=\widehat{d}$ does not depend on $\tau_{o} \neq 0$, it follows that $\widehat{\mathcal{M}}$ is $\mathcal{O}_{\widehat{x}}$-locally free of rank \widehat{d} away from the point $\tau=0$. The characteristic variety of this module in $T^{*}(\widehat{X} \backslash\{0\}) \times \mathbb{C}$ is equal to $\{$ the zero section $\} \times \mathbb{C}$ and the characteristic variety in $T^{*}(\widehat{X}) \times \mathbb{C}$ is contained in

$$
\text { (the zero section of } \left.\cup T_{0}^{*} \widehat{X}\right) \times \mathbb{C}
$$

and thus the module $\widehat{\mathcal{M}}$ is holonomic (see Definition 1.2.4 in [10]). It also follows from the corollary that the S-decomposability (see Definition 3.5.1 in [10]) is trivially satisfied near $\tau_{o} \neq 0$. We have therefore obtained the condition (HSD) of (see Definition 4.1.2 in [10]).
5. At this step we know that the module $\widehat{\mathcal{M}}$ is $\mathcal{O}_{\widehat{x}}$-locally free of finite rank away from $\tau=0$. By Lemma 1.5.3 in [10], this implies that $(\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C})$ is a smooth object of the category \mathcal{R}-Triples $\left(\widehat{X}^{*}\right)$ on this domain. We claim that the pairing \widehat{C} defines, by gluing, a family of trivial vector bundles on \mathbb{P}^{1} parametrized by the punctured complex line \widehat{X}^{*}. This family is obtained from a C^{∞} vector bundle \widehat{H} on \widehat{X}^{*} equipped with a Hermitian metric \widehat{h} by using the correspondence described in Lemma 2.2.2 of [10]. By this construction, the metric turns out to be harmonic. By simple homogeneity considerations with respect to τ, it suffices to prove this property in some neighbourhood of $\tau=0$, which we still denote by \widehat{X}^{*}.

As is known by Theorem 8.4 .1 of [10], the twistor properties are satisfied by the triple $\widehat{\mathcal{T}}=(\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C})$ equipped with the polarization $\widehat{\mathcal{S}}=($ Id, Id $)$ along $\tau=0$, and we can apply the argument used in $\S \S 5.4 . \mathrm{c}-5.4$.e of [10] to obtain the twistor property and the polarizability in some neighbourhood of $\tau=0$. This completes the proof of Theorem 1.

Let us now prove Proposition 1. Since ${ }^{F} \mathcal{M}$ is a good \mathcal{R}_{X}-module, we know a priori that the cohomology of the complex $\mathbf{R} \Gamma\left(X, \mathrm{DR}^{F} \mathcal{M}\right)$ is $\mathcal{O}_{\mathbb{C}}$-coherent. Therefore, it suffices to prove that for any $z_{o} \in \mathbb{C}$ the complex $\mathbf{R} \Gamma\left(X, \mathrm{DR}^{F} \mathfrak{M}_{z_{o}}\right)$ has cohomology only of degree 0 and that the dimension of the space $\mathbf{H}^{0}\left(X, \mathrm{DR}^{F} \mathfrak{M}_{z_{o}}\right)$ is equal to \widehat{d} (we recall that $\left.{ }^{F} \mathfrak{M}_{z_{o}}={ }^{F} \mathcal{M} /\left(z-z_{o}\right)^{F} \mathcal{M}\right)$.

As in [15], we identify the complex $\mathrm{DR}^{F} \mathfrak{M}_{z_{o}}$ with an L^{2} complex. This identification is local on X. The L^{2} cohomology on X can then be obtained by the L^{2}-Hodge theory. The independence of the dimension of $\mathbf{H}^{*}\left(X, \mathrm{DR}^{F} \mathfrak{M}_{z_{o}}\right)$ with respect to z_{o} will follow from the independence of the corresponding Laplacian with respect to z_{o} (one can extract this argument from [12]).
3.2. The meromorphic L^{2} de Rham and Dolbeault complexes. In order to give a common proof which holds both if z_{o} is zero and if it is non-zero, it is convenient to consider the twisted module ${ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}$, where $c\left(z_{o}\right)$ stands for the usual conjugate of z_{o}, and thus we can write $\left|z_{o}\right|^{2}=z_{o} c\left(z_{o}\right)$ (we keep the more traditional notation \bar{z}_{o} for the 'geometric conjugate' $-1 / z_{o}$). In other words, ${ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}$ is simply the \mathcal{O}_{x}-module $\widetilde{\mathfrak{M}}_{z_{o}}$ equipped with the twisted z_{o}-connection $\mathfrak{D}_{z_{o}}^{\prime}-\left(1+\left|z_{o}\right|^{2}\right) d t$.

We recall that the symbol ${ }^{F} \mathfrak{M}_{\text {loc, } z_{o}}$ means the localized module of ${ }^{F} \mathfrak{M}_{z_{o}}$ at all points of P (but localization at ∞ is unnecessary because ${ }^{F} \mathfrak{M}_{z_{o}}$ is already localized at $\infty)$. We consider the meromorphic L^{2} complex of the form $\operatorname{DR}\left({ }^{F} \mathfrak{M}_{\text {loc }, z_{o}} \otimes\right.$ $\left.\mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)}$ obtained by taking sections of the sheaf $\mathfrak{M}_{\text {loc }, z_{o}}$ or the sheaf $\mathfrak{M}_{\text {loc }, z_{o}} \otimes$ Ω_{X}^{1}. These are locally L^{2} sections, as well as their images under the connection $\mathfrak{D}_{z_{o}}^{\prime}-\left(1+\left|z_{o}\right|^{2}\right) d t$ if one takes the metric h on the restriction $V_{z_{o}}$ of the sheaf $\mathfrak{M}_{\text {loc }, z_{o}}$ to $X^{* a n}$ ($V_{z_{o}}$ stands for the holomorphic subbundle of H determined by the $d^{\prime \prime}$ operator $\left.\mathfrak{D}_{z_{o}}^{\prime \prime}=D_{V}^{\prime \prime}+\left(z_{o}-1\right) \theta_{E}^{\prime \prime}\right)$ and a metric locally equivalent to the Poincaré metric near each puncture in P on X^{*}. We have a natural morphism

$$
\mathrm{DR}\left({ }^{F} \mathfrak{M}_{\mathrm{loc}, z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)} \rightarrow \mathrm{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)
$$

Indeed, this holds away from ∞, as was explained in $\S 6.2$ a of [10] (this needs explanation, because it is unclear that the terms of the left-hand complex are contained in the corresponding terms of the right-hand complex). The inclusion is clear near the point at infinity, because the module ${ }^{F} \mathfrak{M}_{z_{o}}$ is equal there to the module ${ }^{F} \mathfrak{M}_{\text {loc }, z_{o}}$.
Lemma 3. The natural morphism $\operatorname{DR}\left({ }^{F} \mathfrak{M}_{\text {loc }, z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)} \rightarrow \operatorname{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes\right.$ $\left.\mathcal{E}^{-c\left(z_{o}\right) t}\right)$ is a quasi-isomorphism.
Proof. Away from the point at infinity, this was proved in Proposition 6.2.4 of [10]. We therefore consider the situation near ∞ with a local coordinate t^{\prime} and omit the index 'loc', because the sheaf ${ }^{F} \mathfrak{M}_{z_{o}}$ is equal to its localized module near $t^{\prime}=0$.

By the regularity assumption of the module \mathcal{M} near ∞, we know that there is a local meromorphic basis $\mathbf{e}^{\left(z_{o}\right)}$ of $\widetilde{\mathfrak{M}}_{z_{o}}$ in which the connection matrix of $\mathfrak{D}_{z_{o}}^{\prime}$ has a simple pole at $t^{\prime}=0$ (see (5.3.7) in [10]). By considering the maximal order of the poles of the coefficients in the basis $\mathbf{e}^{\left(z_{o}\right)}$ for a section of the sheaf $\widetilde{\mathfrak{M}}_{z_{o}}$ and using the term $\left(1+\left|z_{o}\right|^{2}\right) d t^{\prime} / t^{\prime 2}$ in the z_{o}-connection, we see that $\mathcal{H}^{-1}\left(\mathrm{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)\right)=0$, and hence $\mathcal{H}^{-1}\left(\mathrm{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)}\right)=0$.

On the other hand, the same argument shows that any local section at $t^{\prime}=0$ of $\widetilde{\mathfrak{M}}_{z_{o}} \otimes \Omega_{X}^{1}$ with maximum order of a pole equal to k is equivalent, modulo the image of the operator $\mathfrak{D}_{z_{o}}^{\prime}+\left(1+|e| z_{o}^{2}\right) d t^{\prime} / t^{\prime 2}$, to a section having a pole of maximum order $\leqslant k-1$. Iterating this process and using the moderate behaviour of the h-norm of each element in the basis $\mathbf{e}^{\left(z_{o}\right)}$, we see that such a section is equivalent
to a section of $\widetilde{\mathfrak{M}}_{z_{o}} \otimes \Omega_{X}^{1}$ which is an L^{2} section with respect to the metric h, or, equivalently, that the morphism

$$
\left.\mathcal{H}^{0}\left(\operatorname{DR}^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)}\right) \rightarrow \mathcal{H}^{0}\left(\operatorname{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)\right)
$$

is onto.
Finally, for a given local section of the sheaf $\widetilde{\mathfrak{M}}_{z_{o}} \otimes \Omega_{X}^{1}$ which is an L^{2} section (with respect to the metric h) and belongs to the image of $\left(\mathfrak{D}_{z_{o}}^{\prime}-\left(1+\left|z_{o}\right|^{2}\right)\right) \widetilde{\mathfrak{M}}_{z_{o}}$, an argument of the same kind shows that this section is in the image of an L^{2} section of $\widetilde{\mathfrak{M}}_{z_{o}} ;$ equivalently, the morphism

$$
\mathcal{H}^{0}\left(\mathrm{DR}\left({ }^{F} \mathfrak{M}_{\mathrm{loc}, z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)}\right) \rightarrow \mathcal{H}^{0}\left(\operatorname{DR}\left({ }^{F} \mathfrak{M}_{\mathrm{loc}, z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)\right)
$$

is injective. This completes the proof of Lemma 3.
3.3. $\boldsymbol{L}^{\mathbf{2}}$ de Rham-Dolbeault lemma. We consider the C^{∞} bundle H equipped with the metric h and with the z_{o}-connection $\mathfrak{D}_{z_{o}}-\left(1+\left|z_{o}\right|^{2}\right) d t$ (which we denote below by $\widetilde{\mathfrak{D}}_{z_{o}}$ for simplicity) together with the associated L^{2} complex $\mathcal{L}_{(2)}^{\bullet}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right)$. In particular, we note that the $d^{\prime \prime}$-operator is $\mathfrak{D}_{z_{o}}^{\prime \prime}$, the corresponding holomorphic subbundle is $V_{z_{o}}$, and the extension of this holomorphic subbundle obtained by considering the sections with h-norm of moderate growth is $\mathfrak{M}_{\text {loc }, z_{o}}$ (see Corollary $5.3 .1(1)$ in [10]).

The 'holomorphic' L^{2} subcomplex is the following subcomplex of the L^{2} complex $\mathcal{L}_{(2)}^{\bullet}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right):$

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker} \mathfrak{D}_{z_{o}}^{\prime \prime(0)} \xrightarrow{\widetilde{\mathfrak{D}}_{z_{o}}} \operatorname{ker} \mathfrak{D}_{z_{o}}^{\prime \prime(1)} \cap \mathcal{L}_{(2)}^{(1,0)}\left(H, h, \mathfrak{D}_{z_{o}}^{\prime \prime}\right) \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

where $\mathfrak{D}_{z_{o}}^{\prime \prime(k)}$ stands for the action of the operator $\mathfrak{D}_{z_{o}}^{\prime \prime}$ on $\mathcal{L}_{(2)}^{k}\left(H, h, \mathfrak{D}_{z_{o}}^{\prime \prime}\right)$. Our objective in this subsection is to prove the following assertion.
Lemma 4 (L^{2} de Rham-Dolbeault lemma). Suppose that $\left(H, h, D_{V}\right)$ is a tame harmonic bundle on $X^{* a n}$. In this case the inclusion map of the holomorphic L^{2} subcomplex (3.1) into $\mathcal{L}_{(2)}^{\bullet}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right)$ is a quasi-isomorphism of complexes.

The proof is analogous to that of the Dolbeault lemma in [15] and is parallel to the proof of Theorem 6.2 .5 in the preprint [10], to which we shall repeatedly refer. As above, we work near ∞ because the result away from the point ∞ is contained in $\S \S 6.2$.d and 6.2.e of [10].

In the definition of the L^{2} complex the L^{2} condition on sections and the condition concerning the action of the anti-holomorphic part of the connection are the same as in $\S \S 6.2$.d and 6.2.e of [10]. The L^{2} condition on the derivative of sections is changed. The new term $\left(1+\left|z_{o}\right|^{2}\right) d t^{\prime} / t^{\prime 2}$ in the holomorphic part of the connection simplifies the proofs.

We use polar coordinates: $t^{\prime}=r e^{i \theta}$. Let us first recall some notation used in [10]. Near the point $t^{\prime}=0$ the bundle H is equipped with a $\mathfrak{D}_{z_{o}}^{\prime \prime}$-holomorphic basis $\mathbf{e}^{\prime\left(z_{o}\right)}$. The h-norms of the elements of this basis are of moderate growth near $t^{\prime}=0$. We denote these elements by $e_{\beta, \ell, k}^{\prime\left(z_{o}\right)}$, where $\beta=\beta^{\prime}+i \beta^{\prime \prime}$ ranges over a finite
set of complex numbers whose real parts β^{\prime} belong to $[0,1[, \ell$ is an integer (the weight of the element), and k is an index used to distinguish different elements having the same data β and ℓ. Let $\Theta_{z_{o}}^{\prime}$ be the connection matrix of $\mathfrak{D}_{z_{o}}^{\prime}$ in the basis. This matrix can be represented as the sum of a diagonal part and a nilpotent part, $\Theta_{z_{o}, \text { diag }}^{\prime}+\Theta_{z_{o}, \text { nilp }}^{\prime}$, with

$$
\begin{aligned}
& \Theta_{z_{o}, \text { diag }}^{\prime}=\bigoplus_{\beta}\left(q_{\beta, \zeta_{o}}+\beta\right) \star z \operatorname{Id} \frac{d t^{\prime}}{t^{\prime}} \\
& \Theta_{z_{o}, \text {,ilp }}^{\prime}=[\mathrm{Y}+P(t, z)] \frac{d t^{\prime}}{t^{\prime}}
\end{aligned}
$$

where $\mathrm{Y}=\left(\bigoplus_{\beta} \mathrm{Y}_{\beta}\right)$ and $q_{\beta, \zeta_{o}}$ stands for an integer chosen in such a way that the number $\ell_{z_{o}}\left(q_{\beta, \zeta_{o}}+\beta\right):=q_{\beta, \zeta_{o}}+\beta^{\prime}-\zeta_{o} \beta^{\prime \prime}$ belongs to $\left[0,1\left[, \zeta_{o}\right.\right.$ being the imaginary part of z_{o}. Let the basis be indexed so that $\mathrm{Y}\left(e_{\beta, \ell, k}^{\prime\left(z_{o}\right)}\right)=e_{\beta, \ell-2, k}^{\prime\left(z_{o}\right)}$ for any ℓ and k and let the term $P\left(t, z_{o}\right)$ be given by the formula (6.2.7) in [10].

We recall the notation $\widetilde{\mathfrak{D}}_{z_{o}}=\mathfrak{D}_{z_{o}}+\left(1+\left|z_{o}\right|^{2}\right) d t^{\prime} / t^{\prime 2}$. Then $\widetilde{\Theta}_{z_{o}, \text { nilp }}^{\prime}=\Theta_{z_{o} \text {,nilp }}^{\prime}$ and $\widetilde{\Theta}_{z_{o}, \text { diag }}^{\prime}=\Theta_{z_{o}, \text { diag }}^{\prime}+\left(1+\left|z_{o}\right|^{2}\right) \operatorname{Id} d t^{\prime} / t^{\prime 2}$ in an obvious notation.
Vanishing of H^{2}. First, we can apply Lemma 6.2 .11 of [10] with a fixed value $z=z_{o}$ without any modification. The entire proof is thus reduced to showing that if the expression $f(r) e_{\beta, \ell, k}^{\prime} \frac{d t^{\prime}}{t^{\prime}} \wedge \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}}$ defines a local section of the sheaf $\mathcal{L}_{(2)}^{2}(H)$ for any β with $\ell_{z_{o}}\left(q_{\beta, \zeta_{o}}+\beta\right)=0$ and any $\ell \leqslant-1$ (in fact, it suffices to use $\ell=-1$, because z is equated to z_{o} here), then this section belongs to the image of the operator $\widetilde{\mathfrak{D}}_{z_{o}}$.

We note that

$$
\begin{aligned}
\tilde{\mathfrak{D}}_{z_{o}}\left(t^{\prime} f(r) e_{\beta, \ell, k}^{\prime}\left(z_{o} \frac{d t^{\prime}}{t^{\prime}}+\frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}}\right)\right)=(1 & \left.+\left|z_{o}\right|^{2}+z_{o}+\left(\beta \star z_{o}\right) t^{\prime}\right) f(r) e_{\beta, \ell, k}^{\prime} \frac{d t^{\prime}}{t^{\prime}} \wedge \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}} \\
& +\Theta_{z_{o}, \text { nilp }}^{\prime}\left(t^{\prime} f(r) e_{\beta, \ell, k}^{\prime}\left(z_{o} \frac{d t^{\prime}}{t^{\prime}}+\frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}}\right)\right)
\end{aligned}
$$

As in [15] and [10], one can readily see that the last term is in L^{2}. Thanks to the factor t^{\prime}, this term belongs to the image of the operator $\widetilde{\mathfrak{D}}_{z_{o}}^{\prime \prime}=\mathfrak{D}_{z_{o}}^{\prime \prime}$ (see Lemma 6.2.11 in [10]). For the same reason, the part multiplied by t^{\prime} in the middle term is in the image of $\mathfrak{D}_{z_{o}}^{\prime \prime}$. Hence, both expressions belong to the image of $\widetilde{\mathfrak{D}}_{z_{o}}$. To complete the proof, it remains to note that the constant $1+\left|z_{o}\right|^{2}+z_{o}$ cannot vanish.
Computation of H^{1}. By the previous result, the L^{2} complex $\mathcal{L}_{(2)}^{\bullet}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right)$ is quasi-isomorphic to its subcomplex

$$
0 \longrightarrow \mathcal{L}_{(2)}^{0}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right) \xrightarrow{\tilde{\mathfrak{D}}_{z_{2}}} \operatorname{ker} \widetilde{\mathfrak{D}}_{z_{o}}^{(1)} \longrightarrow 0
$$

Let us now prove an analogue of Lemma 6.2.13 in [10]. That is, we claim that any local section $\psi d t / t+\varphi d \bar{t} / \bar{t}$ in $\operatorname{ker} \widetilde{\mathfrak{D}}_{z_{o}}^{(1)} \subset \mathcal{L}_{(2)}^{1}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right)$ can be represented as the sum of a term in Image $\widetilde{\mathfrak{D}}_{z_{o}}$ and a term in $\mathcal{L}_{(2)}^{(1,0)}(H, h) \cap \operatorname{ker} \widetilde{\mathfrak{D}}_{z_{o}}^{(1)}$.

The first part of the proof of Lemma 6.2.13 in [10] can be applied similarly to the present situation, and this reduces the proof to the case in which we start from a local section $\omega=\psi \frac{d t^{\prime}}{t^{\prime}}+\varphi \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}}$ in $\operatorname{ker} \widetilde{\mathfrak{D}}_{z_{o}}^{(1)}$, where $\varphi=\sum_{\beta, \ell, k} \varphi_{\beta, \ell, k}(r) e_{\beta, \ell, k}^{\prime\left(z_{o}\right)}$, and ω satisfies the equation $\widetilde{\mathfrak{D}}_{z_{o}} \omega=0$.

Further, we consider the coefficient of $e^{-i \theta} e_{\beta, \ell, k}^{\prime\left(z_{o}\right)} \frac{d t^{\prime}}{t^{\prime}} \wedge \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}}$ in the relation

$$
\mathfrak{D}_{z_{o}}^{\prime \prime}\left(\psi \frac{d t^{\prime}}{t^{\prime}}\right)+\widetilde{\mathfrak{D}}_{z_{o}}^{\prime}\left(\varphi \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}}\right)=0
$$

Denoting by $\psi_{\beta, \ell, k ;-1}(r)$ the coefficient of $e^{-i \theta}$ in the Fourier expansion of $\psi_{\beta, \ell, k}$, we see that for any β, ℓ, k

$$
\begin{aligned}
\varphi_{\beta, \ell, k}(r) e_{\beta, \ell, k}^{\prime\left(z_{o}\right)} \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}} & =\frac{1}{2} r\left(r \partial_{r}-1\right) \psi_{\beta, \ell, k ;-1}(r) e_{\beta, \ell, k}^{\prime\left(z_{o}\right)} \frac{d \overline{t^{\prime}}}{\overline{t^{\prime}}} \\
& =\mathfrak{D}_{z_{o}}^{\prime \prime}\left(r e^{-2 i \theta} \psi_{\beta, \ell, k ;-1}(r) e_{\beta, \ell, k}^{\prime\left(z_{o}\right)}\right)
\end{aligned}
$$

Since the local section $\psi d t^{\prime} / t^{\prime}$ is an L^{2} section, it follows that $r \psi$ is also, and hence $\widetilde{\mathfrak{D}}_{0}^{\prime}\left(r e^{-2 i \theta} \psi_{\beta, \ell, k ;-1} e_{\beta, \ell, k}^{\prime\left(z_{o}\right)}\right)$ is also an L^{2} section.

This computation shows that ω is equivalent modulo Image $\widetilde{\mathfrak{D}}_{z_{o}}$ to a $(1,0)$-section which is an L^{2} section and belongs to $\operatorname{ker} \widetilde{\mathfrak{D}}_{z_{o}}^{(1)}$ (because $\widetilde{\mathfrak{D}}_{z_{o}} \omega=0$), as was expected.
3.4. End of the proof of Proposition 1. We present the proof in four steps.

1. Arguing exactly as in $\S 6.2$.f of [10], we show that the 'holomorphic' L^{2} complex (3.1) is equal to its subcomplex $\operatorname{DR}\left({ }^{F} \mathfrak{M}_{\text {loc }, z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)_{(2)}$. By the coherence, the hypercohomology of the complex $\operatorname{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)$ is finite-dimensional. By Lemma 3 and the above arguments, so is the hypercohomology of the holomorphic L^{2} complex (3.1).
2. It follows from Lemma 4 and the previous result that the cohomology of the complex of sections $\Gamma\left(X, \mathcal{L}_{(2)}^{\bullet}\left(H, h, \widetilde{\mathfrak{D}}_{z_{o}}\right)\right)$ is finite-dimensional. According to the isometry (2.5), the cohomology of the complex $\Gamma\left(X, \mathcal{L}_{(2)}^{\bullet}\left(H,{ }^{F} h,{ }^{F} \mathfrak{D}_{z_{o}}\right)\right)$ is also finite-dimensional. We can therefore apply Hodge theory to this L^{2} cohomology. The corresponding space of harmonic k-forms $(k=0,1,2)$ is finite-dimensional, and its dimension does not depend on z_{o}, because the Laplacian of ${ }^{F} \mathfrak{D}_{z_{o}}$ with respect to the metric ${ }^{F} h$ is essentially independent of z_{o}, since the triple $\left(H,{ }^{F} h,{ }^{F} D_{V}\right)$ is harmonic.
3. Arguing in the reverse direction, we see that the dimension of the space $\mathbf{H}^{k}\left(X, \operatorname{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c\left(z_{o}\right) t}\right)\right)(k=-1,0,1)$ does not depend on z_{o}. If $z_{o}=1$, then the non-trivial cohomology is of degree 0 only (this is well known for a regular holonomic \mathcal{D}_{X}-module twisted by an exponential $e^{\lambda t}$ with $\left.\lambda \in \mathbb{C}^{*}\right)$. This is therefore true for any z_{o}; moreover, the dimension of \mathbf{H}^{0} is independent of z_{o}.
4. It remains to note that the hypercohomologies of the complexes $\operatorname{DR}\left({ }^{F} \mathfrak{M}_{z_{o}} \otimes\right.$ $\left.\mathcal{E}^{-c\left(z_{o}\right) t}\right)$ and $\operatorname{DR}\left({ }^{F} \mathfrak{M}_{z_{o}}\right)$ are of the same dimension. This is clear if $z_{o}=0$, because the objects are equal in this case. On the other hand, if $z_{o} \neq 0$, then we reduce the problem to \mathcal{D}_{X}-modules. Working algebraically, we reduce the problem to proving
the following fact: for a given regular holonomic $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-module the dimension of the cokernel of the operator

$$
\partial_{t}-\lambda: M \rightarrow M
$$

does not depend on $\lambda \in \mathbb{C}^{*}$. This follows from the regularity of the module M at infinity.

Remark 1. One can give another proof of Proposition 1 if $z_{o} \neq 0$ by using the z_{o}-connection $\mathfrak{D}_{z_{o}}-d t$ on H with the metric $e^{2 \operatorname{Re}\left(z_{o} \bar{t}\right)} h$. This proof would be analogous to that in [8] and one can use the isometry (2.4) instead of (2.5). ${ }^{7}$ Nevertheless, the intermediate steps will be different, because an analogue of Lemma 3 in which the L^{2} condition is taken with respect to the metric $e^{2 \operatorname{Re}\left(z_{o} \bar{t}\right)} h$ fails. As in [8], the lemma works in the space obtained from X by a blowing-up at infinity over the reals. The comparison between various complexes must be made on this space. However, such a proof seems to have no extension to the case $z_{o}=0$, and we do not present it here for that reason.

Bibliography

[1] O. Biquard, "Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse)", Ann. Sci. École Norm. Sup. (4) 30:1 (1997), 41-96.
[2] A. A. Bolibrukh, "The Riemann-Hilbert problem", Uspekhi Mat. Nauk 45:2 (1990), 3-47; English transl., Russian Math. Surveys 45:2 (1990), 1-58.
[3] A. A. Bolibrukh, "On sufficient conditions for the positive solvability of the RiemannHilbert problem", Mat. Zametki 51:2 (1992), 9-18; English transl., Math. Notes 51 (1992), 110-117.
[4] A. A. Bolibrukh, "On analytic transformation to Birkhoff standard form", Ross. Akad. Nauk Dokl. 334 (1994), 553-555; English transl., Russian Acad. Sci. Dokl. Math. 49 (1994), 150-153.
[5] A. Borel, F. Ehlers, P.-P. Grivel, A. Haefliger, B. Kaup, and B. Malgrange, Algebraic D-modules, Academic Press, Boston, MA 1987.
[6] B. Malgrange, Équations différentielles à coefficients polynomiaux, Birkhäuser, Boston, MA 1991.
[7] C. Sabbah, "Introduction to algebraic theory of linear systems of differential equations", Éléments de la théorie des systèmes différentiels. I: D-modules cohérents et holonomes (P. Maisonobe and C. Sabbah, eds.), Hermann, Paris 1993, pp. 1-80.
[8] C. Sabbah, "Harmonic metrics and connections with irregular singularities", Ann. Inst. Fourier (Grenoble) 49 (1999), 1265-1291.
[9] C. Sabbah, Déformations isomonodromiques et variétés de Frobenius, CNRS Éditions and EDP Sciences, Paris 2002.
[10] C. Sabbah, "Polarizable twistor D-modules", http://math.polytechnique.fr/cmat/ sabbah/articles.html.
[11] C. Simpson, "Harmonic bundles on noncompact curves", J. Amer. Math. Soc. 3 (1990), 713-770.
[12] C. Simpson, "Higgs bundles and local systems", Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.

[^4][13] C. Simpson, "Mixed twistor structures", Prépublication, Université de Toulouse, Toulouse 1997; arXiv:math.AG/9705006.
[14] S. Szabo, "Nahm transform of meromorphic integrable connections on the Riemann sphere", manuscript, 2004.
[15] S. Zucker, "Hodge theory with degenerating coefficients: L_{2}-cohomology in the Poincaré metric", Ann. of Math. (2) 109 (1979), 415-476.

Centre de Mathématiques Laurent Schwartz,
École Polytechnique, Palaiseau, France
E-mail: sabbah@math.polytechnique.fr
http://www.math.polytechnique.fr/cmat/sabbah/sabbah.html

[^0]: AMS 2000 Mathematics Subject Classification. Primary 32S40; Secondary 34Mxx, 14C30, 32L25.

[^1]: ${ }^{1}$ Semisimple objects are direct sums of irreducible objects.
 ${ }^{2}$ Russian Editor's note: This means a sheaf of modules over the sheaf of rings of meromorphic functions having poles only at points of the set P.
 ${ }^{3}$ Russian Editor's note: This means the growth of analytic functions in sectors of finite aperture with vertex at infinity.
 ${ }^{4}$ See, however, § V.2c in [9].

[^2]: ${ }^{5}$ Russian Editor's note: That is, bundles with a tame harmonic metric.

[^3]: ${ }^{6}$ In [10] we simply denoted this module by \mathcal{H}; here we stress its analytic dependence on z.

[^4]: ${ }^{7}$ We use this opportunity to correct a minor mistake in [8]: the inequality on page 1283 should read

 $$
 \int_{\rho}^{r_{1}} r^{2 \beta}|\log r|^{k-2} \psi(r) \frac{d r}{r} \leqslant \rho^{2 \beta}|\log \rho|^{k-2} \psi(\rho)\left(|\log \rho|-\left|\log r_{1}\right|\right)
 $$

 and the constant C is bounded above by the quantity $4\left|\log r_{1}\right|^{-1}<+\infty$. Similarly, on page 1284, line 5 , the constant C is bounded above by $4 \kappa(\epsilon)\left|\log r_{1}\right|^{-1}<+\infty$.

