Uspekhi Mat. Nauk 59:6 161–176

DOI 10.1070/RM2004v059n06ABEH000800

Dedicated to the memory of Andrei Bolibrukh

Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere

C. Sabbah

Abstract. It is shown that the Fourier–Laplace transform of an irreducible regular differential system on the Riemann sphere underlies a polarizable regular twistor \mathcal{D} -module if one considers only the part at finite distance. The associated holomorphic bundle defined away from the origin of the complex plane is therefore equipped with a natural harmonic metric having a tame behaviour near the origin.

Contents

Introduction		1166
§1. Statement of the results		1167
1.1.	Fourier–Laplace transform of flat bundles	1167
1.2.	Fourier–Laplace transform of an irreducible bundle with con-	
	nection	1168
1.3.	Fourier–Laplace transform of a bundle with connection and	
	Hermitian metrics	1169
§ 2. Exponential twist of harmonic bundles and twistor \mathcal{D} -modules		1171
2.1.	Exponential twist of smooth twistor structures	1171
2.2.	Exponential twist in \mathcal{R} -Triples (X^*)	1172
2.3.	Exponential twist in \mathcal{R} -Triples (X)	1172
2.4.	Restriction to the submanifold $z = z_o$	1173
§ 3. Proof of Theorem 1		1173
3.1.	Proof of Theorem 1	1173
3.2.	The meromorphic L^2 de Rham and Dolbeault complexes	1175
3.3.	L^2 de Rham–Dolbeault lemma	1176
3.4.	End of the proof of Proposition 1	1178
Bibliography		1179
~		

AMS 2000 Mathematics Subject Classification. Primary 32S40; Secondary 34Mxx, 14C30, 32L25.

Introduction

A positive answer to the Riemann–Hilbert problem for semisimple¹ linear representations of the fundamental group of the complement of a finite point set on the Riemann sphere is an important result of A. A. Bolibrukh ([2], [3]). Similarly, he proved [4] that the Birkhoff problem has a positive answer when the corresponding system of meromorphic linear differential equations is semisimple, thus generalizing previous results of W. Balser.

The two results can be stated in a similar way, using the language of meromorphic bundles on the Riemann sphere. Namely, let $P = \{p_1, \ldots, p_r, p_{r+1} = \infty\}$ be a nonempty finite set of points on \mathbb{P}^1 and let M be a finite-rank free $\mathcal{O}(*P)$ -module² equipped with a connection ∇ . We assume that there is a basis of M for which the connection ∇ has Poincaré rank $m_i \geq 0$ at p_i for $i = 1, \ldots, r$ (that is, the order of the pole of the matrix of ∇ at p_i is equal to $m_i + 1$); moreover, we assume that ∇ has a regular singularity at the point ∞ (that is, the coefficients in the given basis of horizontal sections are multivalued holomorphic functions with at most powerlaw growth at infinity³). In this case, if (M, ∇) is *irreducible* (or semisimple), then there is a basis of M in which the Poincaré rank of ∇ at p_i is m_i $(i = 1, \ldots, r)$ and ∇ has at most a logarithmic pole at ∞ (that is, ∇ has zero Poincaré rank at infinity).

After an easy preliminary reduction we can see that the case when $m_i = 0$ for all *i* corresponds to the Riemann–Hilbert problem and the case when r = 1 corresponds to the Birkhoff problem.

Starting from a system of linear meromorphic differential equations having only regular singularities (or, more precisely, from a regular holonomic \mathcal{D} -module) on the Riemann sphere, one obtains a new system by using the Fourier–Laplace transform, and the Riemann–Hilbert problem for the original system is transformed into the Birkhoff problem for the new system. These problems (for a given system and its Fourier–Laplace transform) are not directly related to each other;⁴ however, one of these systems is semisimple if and only if the other is, and there is a common condition under which both problems have a positive answer simultaneously.

The semisimple linear representations discussed above share another remarkable property: there is a *tame harmonic metric* on the associated flat bundle (see [11]). This property can be expressed by using the language of *polarized twistor* \mathcal{D} -modules introduced by the author in [10] by extending a notion due to Simpson [13]. Namely, to any representation of this kind one can assign a regular holonomic \mathcal{D} -module on the Riemann sphere, and this module is unique up to isomorphism and has neither submodules nor quotient modules supported at a point. The last property can be expressed as follows: this \mathcal{D} -module underlies a polarizable regular twistor \mathcal{D} -module in the sense defined in the cited papers (see also below).

In the present paper we study the behaviour of polarized regular twistor \mathcal{D} modules on the Riemann sphere under the Fourier–Laplace transform. However,

¹Semisimple objects are direct sums of irreducible objects.

²Russian Editor's note: This means a sheaf of modules over the sheaf of rings of meromorphic functions having poles only at points of the set P.

 $^{^3}Russian \ Editor's \ note:$ This means the growth of analytic functions in sectors of finite aperture with vertex at infinity.

⁴See, however, \S V.2c in [9].

we give no information on the behaviour at infinity in the Fourier plane, where an irregular singularity can occur.

We note that, using another apparatus, Szabo [14] has established a perfect Fourier correspondence in a more general situation in which an irregular singularity at infinity is admitted but some other more restrictive assumptions are imposed.

We refer to [10] for diverse results (used below) related to polarizable twistor \mathcal{D} -modules.

§1. Statement of the results

We regard the projective line $X = \mathbb{P}^1$ as the union of two affine charts $\operatorname{Spec} \mathbb{C}[t]$ and $\operatorname{Spec} \mathbb{C}[t']$ with t' = 1/t on the intersection, and we define ∞ as the point where t' = 0. As above, let $P = \{p_1, \ldots, p_r, p_\infty\}$ be a finite set of r + 1 distinct points in \mathbb{P}^1 . We set $X^* = \mathbb{P}^1 \setminus P$.

Let the pair (H, D_V) be formed by a C^{∞} vector bundle H with a flat connection D_V on X^{*an} . The bundle is holomorphic with respect to the (0, 1)-part D''_V , and we set $(V, \nabla) = (\ker D'', D'_V)$. The associated local system is $\mathcal{L} \stackrel{\text{def}}{=} \ker[\nabla : V \to V \otimes_{\mathcal{O}_{X^{*an}}} \Omega^1_{X^{*an}}]$. We denote by T_j the local monodromy of this local system at each point p_j of P.

1.1. Fourier-Laplace transform of flat bundles. The notion of Fourier-Laplace transform is a priori defined for algebraic \mathcal{D} -modules on the affine line $\mathbb{A}^1 = \mathbb{P}^1 \setminus \{\infty\}$ and not for holomorphic bundles with connection on X^* nor for holomorphic vector bundles on \mathbb{P}^1 equipped with a meromorphic connection.

We denote by $\mathbb{C}[t]\langle\partial_t\rangle$ the Weyl algebra in dimension one, that is, the quotient by the relation $[\partial_t, t] = 1$ of the free algebra generated by $\mathbb{C}[t]$ and $\mathbb{C}[\partial_t]$ (see, for instance, [5] and [7]). Let M be a holonomic $\mathbb{C}[t]\langle\partial_t\rangle$ -module. The module M is said to be a *minimal extension* if it has neither submodules nor quotient modules supported by some point of \mathbb{A}^1 . The following assertion is well known.

Lemma 1 (Riemann–Hilbert correspondence). The functor assigning to any holonomic $\mathbb{C}[t]\langle\partial_t\rangle$ -module with all its singularities in P the restriction of this module to X^{*an} induces an equivalence between the category of holonomic $\mathbb{C}[t]\langle\partial_t\rangle$ -modules that have regular singularities (including the point at infinity) and are minimal extensions (the morphisms are the morphisms of $\mathbb{C}[t]\langle\partial_t\rangle$ -modules), and the category of all flat holomorphic bundles on X^{*an} .

For a given holomorphic bundle with connection (V, ∇) on X^{*an} we denote by M the regular holonomic $\mathbb{C}[t]\langle\partial_t\rangle$ -module associated with (V, ∇) by Lemma 1. The Fourier–Laplace transform \widehat{M} of M is the \mathbb{C} -vector space M equipped with an action of the Weyl algebra $\mathbb{C}[\tau]\langle\partial_{\tau}\rangle$ (with respect to the variable τ) defined by the formula

$$\tau \cdot m = \partial_t m, \qquad \partial_\tau = -tm.$$
 (1.1)

We denote by $\widehat{X} = \widehat{\mathbb{A}}^1$ the affine line with the coordinate τ and by $\widehat{\mathbb{P}}^1$ the corresponding projective line. As is known, the module \widehat{M} has a single singularity at a finite distance, namely, at $\tau = 0$, and this singularity is regular. However, the module has an irregular singularity at $\tau = \infty$ in general (for general results concerning Fourier transforms of holonomic $\mathbb{C}[t]\langle \partial_t \rangle$ -modules, see, for instance, [7]).

We therefore obtain a holomorphic bundle with connection $(\widehat{V}, \widehat{P})$ on the punctured projective line $\widehat{X} = \widehat{\mathbb{P}}^1 \setminus \widehat{P}$, where $\widehat{\mathbb{P}}^1$ is the projective line with the coordinate τ and $\widehat{P} = \{0, \infty\}$. The associated flat bundle of class C^{∞} is denoted by $(\widehat{H}, D_{\widehat{V}})$. However, the module \widehat{M} cannot be recovered from a given pair $(\widehat{V}, \widehat{\nabla})$ in general.

Let d denote the rank of H. We indicate how to compute the rank \hat{d} of \hat{H} . As is known, for any $\tau_o \neq 0$ the C-linear morphism

$$M \xrightarrow{\partial_t - \tau_o} M$$

is injective and its cokernel is a finite-dimensional vector space, namely, the fibre of the bundle \hat{V} at the point τ_o . The dimension of the cokernel, which coincides with the total number μ of 'vanishing cycles' of M at the points of the set $P \setminus \infty$ (that is, the sum of multiplicities of the characteristic variety of M along its components $T_{p_i}^* X$; see, for instance, §4 (p. 66) in [6]), can be readily computed here by the following formulae (see Proposition 1.5 (p. 79) of [7]):

$$\widehat{d} = \mu = rd - d_1, \quad r = \text{card } P - 1, \quad d_1 \stackrel{\text{def}}{=} \sum_{j=1}^r \dim \text{Ker}(T_j - \text{Id}).$$
 (1.2)

More precisely, the tensor product $\mathbb{C}[\tau, \tau^{-1}] \otimes_{\mathbb{C}[\tau]} \widehat{M}$ is a free $\mathbb{C}[\tau, \tau^{-1}]$ -module of rank μ .

1.2. Fourier-Laplace transform of an irreducible bundle with connection. We assume now that (H, D_V) is irreducible, or, equivalently, that no nontrivial subspace of L is invariant under all T_j (j = 1, ..., r + 1). One can readily prove another equivalent condition claiming that the associated regular holonomic \mathcal{D} -module M is irreducible as a $\mathbb{C}[\tau]\langle\partial_{\tau}\rangle$ -module. In turn, this is (very easily) equivalent to the irreducibility of the Fourier-Laplace transform \widehat{M} . However, since the module \widehat{M} can be irregular at infinity, this does not imply the irreducibility of $(\widehat{H}, D_{\widehat{V}})$ (see below). The rank \widehat{d} of \widehat{H} is positive unless $(V, \nabla) = (\mathcal{O}_X, d)$, because irreducibility is assumed. In the following we implicitly assume that $\widehat{d} > 0$.

The bundle $(\hat{H}, D_{\hat{V}})$ is determined by its monodromy \hat{T}_0 around the point $\tau = 0$. The Jordan structure of the monodromy operator \hat{T}_0 is determined by that of the monodromy T_{∞} of (H, D_V) around ∞ (below we denote by A_{λ} the restriction of an endomorphism A to the generalized eigenspace (root subspace) corresponding to the eigenvalue λ). This is the content of the following lemma, which can be derived from Proposition 8.4.20 of [10].

Lemma 2. Suppose that a pair (H, D_V) is irreducible. Then:

- 1) for any $\lambda \neq 1$ the Jordan structures of the restrictions of the monodromy operators $\widehat{T}_{0,\lambda}$ and $T_{\infty,\lambda}$ coincide;
- 2) any Jordan block of size $k \ge 1$ of $T_{\infty,1}$ induces a Jordan block of size k + 1 of $\widehat{T}_{0,1}$;
- 3) the remaining Jordan blocks of $\widehat{T}_{0,1}$ are of size one.

The semisimplicity of the pair (the decomposability as the direct sum of irreducible bundles with connection) is equivalent to that of the monodromy operator \hat{T}_0 . This holds (provided that (H, D_V) is irreducible) if and only if the operator T_{∞} is semisimple and 1 is not an eigenvalue of T_{∞} .

1.3. Fourier-Laplace transform of a bundle with connection and Hermitian metrics. We assume first that the monodromy representation associated with the local system $\mathcal{L} = \ker \nabla$ is unitary. In other words, we assume that there is a D_V -flat Hermitian metric h on H. In particular,

- 1) the local system \mathcal{L} is an orthogonal direct sum of irreducible local systems, so in what follows we assume that the local system is *irreducible* (the case of a constant rank-one local system is trivial, and we therefore also assume that \mathcal{L} is not a constant local system);
- 2) the local monodromy T_j of the local system at each point p_j of P is (unitary and) semisimple and the eigenvalues of T_j are roots of unity.

We can ask whether the space \hat{H} can be naturally equipped with a Hermitian metric and whether this metric is $D_{\hat{V}}$ -flat. We note that flatness would imply semisimplicity and unitarity of the monodromy \hat{T}_0 . By the above assumptions and Lemma 2, this holds if and only if 1 is not an eigenvalue of the monodromy operator T_{∞} .

If we only assume that (H, D_V) is irreducible but not necessarily unitary, then there is still a unique *tame harmonic Hermitian metric* h on (H, D_V) (by [11]), which is therefore a natural metric to be considered. Such a metric also exists if (H, D_V) is a semisimple pair, but it can fail to be unique.

Tame harmonic metrics. Let us recall the definition of these metrics. We can fix a choice of a metric connection on H, which we denote by D_E , by the following condition: if we introduce a 1-form $\theta_E = D_V - D_E$ and decompose it into the (1,0)and (0,1) parts, $\theta_E = \theta'_E + \theta''_E$, then the *h*-adjoint of θ'_E is defined as the form θ''_E . Since X is of dimension one, it follows that the bundle $E = \ker D''_E$ is holomorphic on X^{*an} , and the form θ'_E satisfies the Higgs condition $\theta'_E \wedge \theta'_E = 0$.

A triple (H, D_V, h) (where D_V is a flat connection) is said to be *harmonic* if the Higgs field is holomorphic on E, that is, if the 1-form $\theta'_E \colon E \to E \otimes_{\mathcal{O}_{X^{*an}}} \Omega^1_{\mathcal{O}_{X^{*an}}}$ is holomorphic.

Following [11], we say that a triple (H, D_V, h) of this kind is *tame* if the eigenvalues of the Higgs field (which are multivalued holomorphic one-forms) have at most a simple pole at each point of P.

One can ask whether the pair $(\hat{H}, D_{\hat{V}})$ also carries a harmonic metric of this kind with tame behaviour at $\tau = 0$. We give a positive answer in Corollary 1.

Twistor \mathcal{D} -modules. We speak in the language of twistor \mathcal{D} -modules used in the preprint [10], to which the reader is referred. Let us briefly recall some basic definitions.

We still denote by X the Riemann sphere and write $\mathfrak{X} = X \times \mathbb{C}$, using the coordinate z on the factor \mathbb{C} . We also denote by **S** the circle $\{|z| = 1\}$ and by \mathcal{D}_X the sheaf of holomorphic differential operators on X, and we consider the sheaf $\mathcal{R}_{\mathfrak{X}}$ of z-differential operators on \mathfrak{X} , namely, in any local coordinate x on X the module $\mathcal{R}_{\mathfrak{X}}$ is equal to $\mathcal{O}_{\mathfrak{X}}\langle \eth_x \rangle$, where $\eth_x = z \eth_x$. In particular, $\mathcal{D}_X = \mathcal{R}_X/(z-1)\mathcal{R}_X$.

Let us consider the category \mathcal{R} -Triples(X) whose objects are triples of the form $(\mathcal{M}', \mathcal{M}'', C)$, where $\mathcal{M}', \mathcal{M}''$ are coherent $\mathcal{R}_{\mathcal{X}}$ -modules and C is a sesquilinear pairing between these modules, that is, for any point z_o on the circle **S** this is a pairing between the stalk of the sheaf \mathcal{M}'_{z_o} and the conjugate stalk of \mathcal{M}''_{-z_o} , and this pairing takes values in the sheaf $\mathfrak{Db}_{X_{\mathbb{R}}}$ of distributions on X and is linear with respect to the action of holomorphic differential operators on \mathcal{M}'_{z_o} and of antiholomorphic differential operators on the conjugate module of \mathcal{M}''_{-z_o} under the natural action of the differential operators of both types on the distributions on X. Finally, this pairing must be continuous with respect to the point $z \in \mathbf{S}$. We treat C as a sesquilinear pairing of sheaves $\mathcal{M}'_{|S} \otimes_{\mathfrak{O}_{X|\mathbf{S}}} \overline{\mathcal{M}''_{|S}} \to \mathfrak{Db}_{X_{\mathbb{R}\times\mathbf{S}}/\mathbf{S}}$, where $\mathfrak{Db}_{X_{\mathbb{R}\times\mathbf{S}}/\mathbf{S}}$ stands for the sheaf of distributions on $X \times \mathbf{S}$ that are continuous with respect to $z \in \mathbf{S}$ and the conjugation is opposite to the usual conjugation on \mathbf{S} (see §1.5.a in [10]).

The notion of polarized regular twistor \mathcal{D} -module of weight $w \in \mathbb{Z}$ on X was defined in [10]. Namely, these are objects of the form $(\mathcal{T}, \mathcal{S})$, where $\mathcal{T} = (\mathcal{M}', \mathcal{M}'', C)$ are the triples discussed above and \mathcal{S} (the so-called *polarization*) consists of two isomorphisms $\mathcal{M}'' \xrightarrow{\sim} \mathcal{M}'$. Some axioms are introduced (which we do not recall here; see Chapter 4 of [10]). Most arguments can be reduced to the case in which the weight w is equal to 0, $\mathcal{M}' = \mathcal{M}''$, and both isomorphisms in \mathcal{S} are equal to Id. Objects of this kind are denoted simply by $(\mathcal{M}, \mathcal{M}, C, \mathrm{Id})$ or just by $(\mathcal{M}, \mathcal{M}, C)$.

Introducing such an object of weight 0, we obtain a \mathcal{D}_X -module by considering the quotient $\mathcal{M}/(z-1)\mathcal{M}$. Moreover, by restricting to X^{*an} , we obtain a holomorphic bundle V with connection ∇ . Finally, it follows from the axioms that the sesquilinear pairing C enables one to define a metric h associated with V on the C^{∞} bundle H and that this metric is *harmonic*. Moreover, this metric is *tame* by the regularity assumption. More precisely, using results of [11] and [1], the author proved in Chapter 5 of [10] that the category of polarized regular twistor \mathcal{D}_X modules is equivalent to the category of tame harmonic bundles⁵ (H, D_V, h) on X^{*an} with a certain parabolic structure (this structure is referred to as being 'of Deligne type' in [10]). According to Simpson [11], the latter category is equivalent to the category of semisimple bundles (H, D_V) with flat connection on X^{*an} .

The Fourier–Laplace transform of a given object of the form $(\mathcal{M}', \mathcal{M}'', C, S)$ is introduced in Chapter 8 of [10] (see also below). The transform is defined as a quadruple $(\widehat{\mathcal{M}}', \widehat{\mathcal{M}}'', \widehat{C}, \widehat{S})$ over $\widehat{\mathbb{A}}^{1an} \times \mathbb{C}$. The main result of the paper is as follows.

Theorem 1. If $(\mathcal{M}, \mathcal{M}, C, \mathrm{Id})$ is a polarized regular twistor \mathcal{D}_X -module of weight 0, then $(\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C}, \mathrm{Id})$ is a polarized regular twistor \mathcal{D} -module of weight 0 over $\widehat{\mathbb{A}}^{1an} \times \mathbb{C}$.

This statement can be directly extended to polarized regular twistor \mathcal{D} -modules of weight w. We note that a part of the theorem was already proved in Theorem 8.4.1 of [10], namely, the condition on cycles near $\tau = 0$. We are therefore mainly interested in the behaviour at points $\tau_o \neq 0$. The 'fibre' of $(\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C})$ at $\tau = \tau_o = 0$ is obtained from that at $\tau = 1$ by a rescaling, that is, by a preliminary change of variable $t \to t/\tau_o$, because the kernel of the Fourier–Laplace transform is $e^{-t\tau/z}$.

We obtain the following assertion as a corollary.

⁵Russian Editor's note: That is, bundles with a tame harmonic metric.

Corollary 1. If a flat bundle (H, D_V) is semisimple, then the Fourier–Laplace transform $(\widehat{H}, D_{\widehat{V}})$ on \widehat{X}^* carries a harmonic metric with tame behaviour at $\tau = 0$.

§ 2. Exponential twist of harmonic bundles and twistor \mathcal{D} -modules

Let us recall the basic correspondences indicated in §8.1.b of [10]. We keep the notation of §1, but now we fix the point $\tau_o = 1$.

2.1. Exponential twist of smooth twistor structures. We begin with a triple (H, h, D_V) on X^* , rescale the metric h, and twist the connection D_V by defining

$${}^{F}D_{V} = e^{t} \circ D_{V} \circ e^{-t}$$
, that is, ${}^{F}D'_{V} = D'_{V} - dt$, ${}^{F}D''_{V} = d''$,
 ${}^{F}h = e^{2\operatorname{Re}t}h$.

We recall that, in terms of the definitions in [11] and [12], if the triple (H, D_V, h) is harmonic on X^* , then so is the triple $(H, {}^FD_V, {}^Fh)$. The Higgs field is defined by the formulae

$${}^{F}\theta'_{E} = \theta'_{E} - dt, \qquad {}^{F}\theta''_{E} = \theta''_{E} - d\overline{t},$$

and the metric connection ${}^{F}h$ given by ${}^{F}D_{E} = {}^{F}D'_{E} + {}^{F}D''_{E}$ by the formulae

$${}^{F}D_{E} = e^{-\overline{t}} \circ D_{E} \circ e^{\overline{t}}, \text{ that is, } {}^{F}D'_{E} = D'_{E}, \quad {}^{F}D''_{E} = D''_{E} + d\overline{t}.$$

The exponential twist exists at the level of smooth twistor structures. As in [10], we denote by $\mathbb{C}_{\chi^*}^{\infty,an}$ the sheaf on \mathfrak{X}^* of C^{∞} functions holomorphic with respect to z. Let us consider the $\mathbb{C}_{\chi^*}^{\infty,an}$ -module⁶ $\mathfrak{H}^{an} = \mathbb{C}_{\chi^*}^{\infty,an} \otimes_{\pi^{-1} \mathbb{C}_{\chi^*}} \pi^{-1} H$ equipped with the d'' operator

$${}^{F}\mathfrak{D}_{z}^{\prime\prime} = {}^{F}D_{E}^{\prime\prime} + z^{F}\theta_{E}^{\prime\prime} = \mathfrak{D}_{z}^{\prime\prime} + (1-z)d\overline{t}.$$
(2.1)

We obtain a holomorphic subbundle ${}^{F}\mathcal{H}' = \ker {}^{F}\mathfrak{D}''_{z} \subset \mathcal{H}^{an}$ equipped with a z-connection given by ${}^{F}\mathfrak{D}'_{z} = z^{F}D'_{E} + {}^{F}\theta'_{E} = \mathfrak{D}'_{z} - dt$. We set

 ${}^{F}\mathfrak{D}_{z} = {}^{F}\mathfrak{D}_{z}' + {}^{F}\mathfrak{D}_{z}'' = \mathfrak{D}_{z} - dt + (1-z)d\overline{t}.$

Moreover, if $\pi: \mathfrak{X}^* = X^* \times \mathbb{C} \to X^*$ is the natural projection, then the bundle \mathcal{H}^{an} can be equipped with the metric π^*h or the metric π^*Fh . These metrics are constant with respect to z. We shall also consider the metric $e^{2\operatorname{Re}(z\overline{t})}\pi^*h$, which varies as z varies.

We have an isomorphism of locally free $C_{\chi^*}^{\infty,an}$ -modules with metric and z-connection:

$$(\mathcal{H}^{an}, \pi^{*F}h, {}^{F}\mathfrak{D}_{z}) \xrightarrow{\cdot e^{(1-z)\overline{t}}} (\mathcal{H}^{an}, e^{2\operatorname{Re}(z\overline{t})}\pi^{*}h, \mathfrak{D}_{z} - dt).$$
(2.2)

This isomorphism sends the holomorphic subbundle ${}^{F}\mathcal{H}'$ to $\mathcal{H}' = \ker \mathfrak{D}''_{z}$.

It will also be useful to have a model related to the metric π^*h . This model is defined on the sheaf $\mathcal{C}^{\infty}_{\chi^*}$ rather than on $\mathcal{C}^{\infty,an}_{\chi^*}$. We set $\mathcal{H} = \mathcal{C}^{\infty}_{\chi^*} \otimes_{\pi^{-1}\mathcal{C}^{\infty}_{\chi^*}} \pi^{-1}H$. There is an isomorphism

$$(\mathfrak{H}, \pi^{*F}h, {}^{F}\mathfrak{D}_{z}) \xrightarrow{\cdot e^{\overline{t}-2i\operatorname{Im}(z\overline{t})}} (\mathfrak{H}, \pi^{*}h, \mathfrak{D}_{z} - (1+|z|^{2})dt).$$
(2.3)

This isomorphism is not defined over $\mathcal{C}_{\chi^*}^{\infty,an}$.

⁶In [10] we simply denoted this module by \mathcal{H} ; here we stress its analytic dependence on z.

2.2. Exponential twist in \mathcal{R} -Triples(X^*). We recall the following definitions (see § 8.1.a in [10]). Let \mathcal{M} be a left \mathcal{R}_X -module, that is, an \mathcal{O}_X -module with a flat relative meromorphic connection $\nabla_{\mathcal{X}/\mathbb{C}}$ (relative to z, that is, no differentiation with respect to z is carried out). We denote by \mathcal{M}_{loc} the localized module along P, that is, $\mathcal{M}_{\text{loc}} = \mathcal{O}_X[*(P \times \mathbb{C})] \otimes_{\mathcal{O}_X} \mathcal{M}$. The twisted \mathcal{R}_X -module ${}^F\mathcal{M}_{\text{loc}} = \mathcal{M}_{\text{loc}} \otimes \mathcal{E}^{-t/z}$ is defined as the \mathcal{O}_X -module \mathcal{M}_{loc} equipped with the twisted connection $e^{t/z} \circ \nabla_{\mathcal{X}/\mathbb{C}} \circ e^{-t/z}$.

Let $C: \mathcal{M}'_{|\mathbf{S}} \otimes_{\mathcal{O}_{\mathcal{X}|\mathbf{S}}} \overline{\mathcal{M}_{|\mathbf{S}}}'' \to \mathfrak{D}\mathfrak{b}_{X_{\mathbb{R}}} \times \mathbf{S}/\mathbf{S}$ be a sesquilinear pairing. If the restriction of $(\mathcal{M}', \mathcal{M}'', C)$ to \mathcal{X}^* is a smooth twistor structure, then the restriction of C to $X^* \times \mathbf{S}$ takes values in $\mathcal{C}^{\infty,an}_{\mathcal{X}^*}$, and the extension C_{loc} of C to $\mathcal{M}'_{\mathrm{loc}|\mathbf{S}} \otimes_{\mathcal{O}_{\mathcal{X}|\mathbf{S}}} \overline{\mathcal{M}}''_{\mathrm{loc}|\mathbf{S}}$ takes values in the extension of $\mathcal{C}^{\infty,an}_{\mathcal{X}^*}$ formed by the functions on \mathcal{X}^* which can be extended as distributions continuous with respect to $z \in \mathbf{S}$. Moreover, if we assume that $(\mathcal{M}', \mathcal{M}'', C)$ underlies a polarized regular twistor \mathcal{D} -module, then, using (5.3.3) in [10], we can see that C_{loc} takes values in the extension of $\mathcal{C}^{\infty,an}_{\mathcal{X}^*}$ formed by the functions on \mathcal{X}^* having moderate growth near each puncture in P, locally uniformly with respect to $z \in \mathbf{S}$.

We note that the number $z\overline{t} - t/z$ is purely imaginary for any $z \in \mathbf{S}$. Then under the above assumption the map ${}^{F}C_{\text{loc}} := \exp(z\overline{t} - t/z)C_{\text{loc}}$ is a sesquilinear pairing on ${}^{F}\mathcal{M}'_{\text{loc}|\mathbf{S}} \otimes_{\mathcal{O}_{\mathcal{X}|\mathbf{S}}} \overline{{}^{F}\mathcal{M}''_{\text{loc}|\mathbf{S}}}$ taking values in the same sheaf of functions with moderate growth.

With a harmonic bundle (H, h, D_V) on X^* one can associate a smooth twistor structure $(\mathcal{H}', \mathcal{H}', \pi^* h_{\mathcal{H}'_{|\mathbf{S}} \otimes \overline{\mathcal{H}'_{|\mathbf{S}}}})$, where $\mathcal{H}' \subset \mathcal{H}^{an}$ is the kernel ker \mathfrak{D}''_z equipped with the \mathcal{R}_{X^*} -structure given by the z-connection \mathfrak{D}'_z .

This harmonic bundle can be exponentially twisted as an object of the category \mathcal{R} -Triples(X^*), and the result is the triple

$$(\mathcal{H}',\mathcal{H}',\exp(z\overline{t}-t/z)\pi^*h_{\mathcal{H}'_{1\mathbf{G}}\otimes\overline{\mathcal{H}'_{1\mathbf{G}}}}),$$

where \mathcal{H}' is equipped with the $\mathcal{R}_{\chi*}$ -structure defined by the z-connection $\mathfrak{D}'_z - dt$.

The isomorphism (2.2) identifies the twisted harmonic bundle with the smooth twistor structure associated with $(H, {}^{F}h, {}^{F}D_{V})$ (see Lemma 8.1.2 of [10]).

2.3. Exponential twist in \mathcal{R} -Triples(X). Let \mathcal{M} be a left $\mathcal{R}_{\mathcal{X}}$ -module. We denote by $\widetilde{\mathcal{M}}$ the localization of \mathcal{M} only at infinity. Then ${}^{F}\mathcal{M}$ is defined as the twisted $\mathcal{R}_{\mathcal{X}}$ -module $\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t/z}$ (the $\mathcal{R}_{\mathcal{X}}$ -structure is defined as above). In particular, the module ${}^{F}\mathcal{M}$ is localized at ∞ , and the module ${}^{F}\mathcal{M}_{\text{loc}}$ is the localization of ${}^{F}\mathcal{M}$ at $P \setminus \{\infty\}$. We know (see Proposition 8.3.1(i) in [10]) that the $\mathcal{R}_{\mathcal{X}}$ -module ${}^{F}\mathcal{M}$ is coherent under a certain condition on \mathcal{M} near ∞ , and this condition is satisfied if \mathcal{M} corresponds to a (polarized) regular twistor \mathcal{D} -module on X.

For a given (polarized) regular twistor \mathcal{D} -module $(\mathcal{M}', \mathcal{M}'', C)$ on X the definition of the sesquilinear pairing ${}^{F}C$ on ${}^{F}\mathcal{M}'_{|\mathbf{S}} \otimes_{\mathcal{O}_{X|\mathbf{S}}} \overline{{}^{F}\mathcal{M}''_{|\mathbf{S}}}$ with values in $\mathfrak{D}\mathfrak{b}_{X_{\mathbb{R}}\times\mathbf{S}/\mathbf{S}}$ needs some care, because one must define a lifting of the localized distribution (or C^{∞} function of moderate growth) ${}^{F}C_{\text{loc}}$ to distributions on X. In [10] one first defines a pairing ${}^{\mathcal{F}}C$ on the total exponential twist ${}^{\mathcal{F}}\mathcal{M}'_{|\mathbf{S}} \otimes \overline{{}^{\mathcal{F}}\mathcal{M}''_{|\mathbf{S}}}$ (where one must not forget the variable τ); the module ${}^{F}\mathcal{M}$ is regarded as the specialization of the module $\mathcal{F}\mathcal{M}$ at $\tau = 1$, and then the pairing ${}^{F}C$ is defined as the specialization (by means of the Mellin transform) of the pairing ${}^{\mathcal{F}}C$. **2.4. Restriction to the submanifold** $z = z_o$. Let us analyze the behaviour of the above constructions under restriction to the submanifold $z = z_o$.

The restriction to the submanifold $z = z_o$ of the triple $(\mathcal{H}^{an}, \pi^{*F}h, {}^F\mathfrak{D}_z)$ is the bundle H equipped with the metric Fh and the z_o -connection ${}^F\mathfrak{D}_{z_o}$. The isomorphism (2.2) specializes to an isomorphism

$$(H, {}^{F}h, {}^{F}\mathfrak{D}_{z_{o}}) \xrightarrow{\cdot e^{(1-z_{o})\overline{t}}} (H, e^{2\operatorname{Re}(z_{o}\overline{t})}h, \mathfrak{D}_{z_{o}} - dt),$$
(2.4)

and the isomorphism (2.3) specializes to an isomorphism

$$(H, {}^{F}h, {}^{F}\mathfrak{D}_{z_o}) \xrightarrow{\cdot e^{\overline{t}-2i\operatorname{Im}(z_o\overline{t})}} (H, h, \mathfrak{D}_{z_o} - (1+|z_o|^2)dt).$$
(2.5)

On the other hand, since the module $\mathcal{O}_{\mathfrak{X}}[*(P \times \mathbb{C})]$ (or $\mathcal{O}_{\mathfrak{X}}[*(\{\infty\} \times \mathbb{C})]$) is flat over the ring $\mathcal{O}_{\mathfrak{X}}$, it follows that if \mathcal{M} is a *strict* $\mathcal{R}_{\mathfrak{X}}$ -module (that is, if it is $\mathcal{O}_{\mathbb{C}}$ torsion-free), then so is its localization \mathcal{M}_{loc} or $\widetilde{\mathcal{M}}$. If we set $\mathfrak{M}_{z_o} = \mathcal{M}/(z-z_o)\mathcal{M}$, then the localization $_{\text{loc}}$ or \sim of the module \mathfrak{M}_{z_o} is the restriction to $z = z_o$ of the corresponding localization of \mathcal{M} .

We introduce the twisted module ${}^{F}\mathfrak{M}_{z_{o}}$ for $z_{o} \neq 0$ as the module $\widetilde{\mathfrak{M}}_{z_{o}} \otimes \mathcal{E}^{-t/z_{o}}$ (that is, we twist the z_{o} -connection by adding -dt) and for $z_{o} = 0$ as the module $\widetilde{\mathfrak{M}}_{0}$ with the Higgs field obtained by adding -dt. In this case if \mathfrak{M} is strict, then ${}^{F}\mathfrak{M}_{z_{o}} = {}^{F}\mathfrak{M}/(z-z_{o}){}^{F}\mathfrak{M}$ and ${}^{F}\mathfrak{M}_{z_{o},\text{loc}} = {}^{F}\mathfrak{M}_{\text{loc}}/(z-z_{o}){}^{F}\mathfrak{M}_{\text{loc}}$.

3. Proof of Theorem 1

Let $(\mathfrak{T}, \mathfrak{S})$ be a polarized regular twistor \mathfrak{D} -module of weight 0 on \mathbb{P}^1 (that is, an object of $\mathrm{MT}^r(\mathbb{P}^1, w)^{(p)}$; see [10]). We can assume that it is of the form $\mathfrak{T} = (\mathfrak{M}, \mathfrak{M}, C)$ and $\mathfrak{S} = (\mathrm{Id}, \mathrm{Id})$. The restriction of this module to X^* corresponds to a harmonic bundle (H, h, D_V) . Using the notation of (1.2), we prove the following assertion in this section.

Proposition 1. The complex $\mathbf{R}\Gamma(X, \mathrm{DR}^F \mathcal{M})$ has non-trivial cohomology only of degree 0, and its non-zero cohomology is a locally free $\mathcal{O}_{\mathbb{C}}$ -module of finite rank \hat{d} .

3.1. Proof of Theorem 1. We recall (see Chapter 8 of [10]) that we set $\widehat{\mathcal{M}} = \mathcal{O}_{\mathfrak{X}}(*\infty) \otimes_{\mathcal{O}_{\mathfrak{X}}} \mathcal{M}$, and if $p: X \times \widehat{X} \times \mathbb{C} \to X \times \mathbb{C} = \mathfrak{X}$ and $\widehat{p}: X \times \widehat{X} \times \mathbb{C} \to \widehat{X} \times \mathbb{C} = \widehat{\mathfrak{X}}$ denote the projections and $\otimes \mathcal{E}^{-t\tau/z}$ denotes the exponential twist of the \mathcal{R} -structure, then we write

$$\widehat{\mathcal{M}} := \widehat{p}_+ p^+ (\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t\tau/z}) = \widehat{p}_+^0 p^+ (\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t\tau/z}) := \widehat{p}_+^0 {}^{\mathcal{F}} \mathcal{M}.$$

The sesquilinear pairing ${}^{\mathcal{F}}C$ on ${}^{\mathcal{F}}\mathcal{M}_{|\mathbf{S}} \otimes \overline{{}^{\mathcal{F}}\mathcal{M}_{|\mathbf{S}}}$ is defined in Chapter 8 of [10], and we can write $\widehat{C} = \widehat{p}_{\perp}^{0}{}^{\mathcal{F}}C$.

1. It follows from Theorem 8.4.1 of [10] that, along the submanifold $\tau = 0$, all necessary conditions for the existence of a polarized regular twistor \mathcal{D} -module (see Definition 4.1.2 in [10]) are satisfied.

2. The main question is now concerned with the behaviour of $\hat{\mathcal{M}}$ away from the point $\tau = 0$. Let us fix some $\tau_o \neq 0$ in \hat{X} . We recall Proposition 8.3.1(i) of [10]

claiming that the module $\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t\tau_o/z}$ is $\mathcal{R}_{\mathcal{X}}$ -good. In fact, it suffices to take $\tau_o = 1$ by the obvious homogeneity considerations. We denote by ${}^F\mathcal{M}$ the $\mathcal{R}_{\mathcal{X}}$ -module $\widetilde{\mathcal{M}} \otimes \mathcal{E}^{-t/z}$.

3. Since the module ${}^{\mathcal{F}}\mathcal{M}$ is regular and strictly specializable along $\tau = \tau_o$ and since, according to [10] (Proposition 8.3.1(ii) and (iii), Theorem 3.1.8, and §3.1.d), the following assertion holds by virtue of Proposition 1 (which holds for any $\tau_o \neq 0$).

Corollary 2. For any $\tau_o \neq 0$ the module $\widehat{\mathcal{M}}$ is strictly specializable and regular along $\tau = \tau_o$, and for any $\alpha \in \mathbb{C}$

$$\psi_{\tau-\tau_o,\alpha}\widehat{\mathfrak{M}} = \begin{cases} 0 & \text{if } \alpha \notin -\mathbb{N}^*, \\ \mathbf{R}^0 \Gamma(X, \operatorname{DR} \widetilde{\mathfrak{M}} \otimes \mathcal{E}^{-t\tau_o/z}) & \text{if } \alpha \in -\mathbb{N}^*. \end{cases}$$

4. This corollary implies that, near any $\tau_o \neq 0$, the module $\widehat{\mathcal{M}}$ is equal to the level -1 of its V-filtration along $\tau = \tau_o$. By the regularity, the module $\widehat{\mathcal{M}}$ is $\mathcal{O}_{\widehat{\chi}}$ -coherent, and since $\dim \widehat{\mathcal{M}}/(\tau - \tau_o)\widehat{\mathcal{M}} = \dim \psi_{\tau-\tau_o,\alpha}\widehat{\mathcal{M}} = \widehat{d}$ does not depend on $\tau_o \neq 0$, it follows that $\widehat{\mathcal{M}}$ is $\mathcal{O}_{\widehat{\chi}}$ -locally free of rank \widehat{d} away from the point $\tau = 0$. The characteristic variety of this module in $T^*(\widehat{X} \setminus \{0\}) \times \mathbb{C}$ is equal to {the zero section} $\times \mathbb{C}$ and the characteristic variety in $T^*(\widehat{X}) \times \mathbb{C}$ is contained in

(the zero section of $\cup T_0^* \widehat{X}$) $\times \mathbb{C}$,

and thus the module $\widehat{\mathcal{M}}$ is holonomic (see Definition 1.2.4 in [10]). It also follows from the corollary that the S-decomposability (see Definition 3.5.1 in [10]) is trivially satisfied near $\tau_o \neq 0$. We have therefore obtained the condition (HSD) of (see Definition 4.1.2 in [10]).

5. At this step we know that the module $\widehat{\mathcal{M}}$ is $\mathcal{O}_{\widehat{\chi}}$ -locally free of finite rank away from $\tau = 0$. By Lemma 1.5.3 in [10], this implies that $(\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C})$ is a smooth object of the category \mathcal{R} -Triples (\widehat{X}^*) on this domain. We claim that the pairing \widehat{C} defines, by gluing, a family of trivial vector bundles on \mathbb{P}^1 parametrized by the punctured complex line \widehat{X}^* . This family is obtained from a C^{∞} vector bundle \widehat{H} on \widehat{X}^* equipped with a Hermitian metric \widehat{h} by using the correspondence described in Lemma 2.2.2 of [10]. By this construction, the metric turns out to be *harmonic*. By simple homogeneity considerations with respect to τ , it suffices to prove this property in some neighbourhood of $\tau = 0$, which we still denote by \widehat{X}^* .

As is known by Theorem 8.4.1 of [10], the twistor properties are satisfied by the triple $\widehat{\Upsilon} = (\widehat{\mathcal{M}}, \widehat{\mathcal{M}}, \widehat{C})$ equipped with the polarization $\widehat{\mathbb{S}} = (\text{Id}, \text{Id})$ along $\tau = 0$, and we can apply the argument used in §§ 5.4.c–5.4.e of [10] to obtain the twistor property and the polarizability in some neighbourhood of $\tau = 0$. This completes the proof of Theorem 1.

Let us now prove Proposition 1. Since ${}^{F}\mathcal{M}$ is a good $\mathcal{R}_{\mathcal{X}}$ -module, we know a priori that the cohomology of the complex $\mathbf{R}\Gamma(X, \mathrm{DR}^{F}\mathcal{M})$ is $\mathcal{O}_{\mathbb{C}}$ -coherent. Therefore, it suffices to prove that for any $z_{o} \in \mathbb{C}$ the complex $\mathbf{R}\Gamma(X, \mathrm{DR}^{F}\mathfrak{M}_{z_{o}})$ has cohomology only of degree 0 and that the dimension of the space $\mathbf{H}^{0}(X, \mathrm{DR}^{F}\mathfrak{M}_{z_{o}})$ is equal to \widehat{d} (we recall that ${}^{F}\mathfrak{M}_{z_{o}} = {}^{F}\mathcal{M}/(z-z_{o}){}^{F}\mathcal{M})$. As in [15], we identify the complex $\mathrm{DR}^F \mathfrak{M}_{z_o}$ with an L^2 complex. This identification is *local* on X. The L^2 cohomology on X can then be obtained by the L^2 -Hodge theory. The independence of the dimension of $\mathbf{H}^*(X, \mathrm{DR}^F \mathfrak{M}_{z_o})$ with respect to z_o will follow from the independence of the corresponding Laplacian with respect to z_o (one can extract this argument from [12]).

3.2. The meromorphic L^2 de Rham and Dolbeault complexes. In order to give a common proof which holds both if z_o is zero and if it is non-zero, it is convenient to consider the twisted module ${}^F\mathfrak{M}_{z_o} \otimes \mathcal{E}^{-c(z_o)t}$, where $c(z_o)$ stands for the usual conjugate of z_o , and thus we can write $|z_o|^2 = z_o c(z_o)$ (we keep the more traditional notation \overline{z}_o for the 'geometric conjugate' $-1/z_o$). In other words, ${}^F\mathfrak{M}_{z_o} \otimes \mathcal{E}^{-c(z_o)t}$ is simply the $\mathcal{O}_{\mathcal{X}}$ -module $\widetilde{\mathfrak{M}}_{z_o}$ equipped with the twisted z_o -connection $\mathfrak{D}'_{z_o} - (1+|z_o|^2)dt$.

We recall that the symbol ${}^{F}\mathfrak{M}_{\mathrm{loc},z_{o}}$ means the localized module of ${}^{F}\mathfrak{M}_{z_{o}}$ at all points of P (but localization at ∞ is unnecessary because ${}^{F}\mathfrak{M}_{z_{o}}$ is already localized at ∞). We consider the meromorphic L^{2} complex of the form $\mathrm{DR}({}^{F}\mathfrak{M}_{\mathrm{loc},z_{o}} \otimes \mathcal{E}^{-c(z_{o})t})_{(2)}$ obtained by taking sections of the sheaf $\mathfrak{M}_{\mathrm{loc},z_{o}}$ or the sheaf $\mathfrak{M}_{\mathrm{loc},z_{o}} \otimes \Omega_{X}^{1}$. These are locally L^{2} sections, as well as their images under the connection $\mathfrak{D}'_{z_{o}} - (1 + |z_{o}|^{2})dt$ if one takes the metric h on the restriction $V_{z_{o}}$ of the sheaf $\mathfrak{M}_{\mathrm{loc},z_{o}}$ to X^{*an} ($V_{z_{o}}$ stands for the holomorphic subbundle of H determined by the d'' operator $\mathfrak{D}''_{z_{o}} = D''_{V} + (z_{o} - 1)\theta''_{E}$) and a metric locally equivalent to the Poincaré metric near each puncture in P on X^{*} . We have a natural morphism

$$\mathrm{DR}(^{F}\mathfrak{M}_{\mathrm{loc},z_{o}}\otimes\mathcal{E}^{-c(z_{o})t})_{(2)}\to\mathrm{DR}(^{F}\mathfrak{M}_{z_{o}}\otimes\mathcal{E}^{-c(z_{o})t}).$$

Indeed, this holds away from ∞ , as was explained in § 6.2.a of [10] (this needs explanation, because it is unclear that the terms of the left-hand complex are contained in the corresponding terms of the right-hand complex). The inclusion is clear near the point at infinity, because the module ${}^{F}\mathfrak{M}_{z_{o}}$ is equal there to the module ${}^{F}\mathfrak{M}_{loc,z_{o}}$.

Lemma 3. The natural morphism $DR({}^{F}\mathfrak{M}_{loc,z_{o}} \otimes \mathcal{E}^{-c(z_{o})t})_{(2)} \to DR({}^{F}\mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c(z_{o})t})$ is a quasi-isomorphism.

Proof. Away from the point at infinity, this was proved in Proposition 6.2.4 of [10]. We therefore consider the situation near ∞ with a local coordinate t' and omit the index 'loc', because the sheaf ${}^{F}\mathfrak{M}_{z_o}$ is equal to its localized module near t' = 0.

By the regularity assumption of the module \mathcal{M} near ∞ , we know that there is a local meromorphic basis $\mathbf{e}^{(z_o)}$ of $\widetilde{\mathfrak{M}}_{z_o}$ in which the connection matrix of \mathfrak{D}'_{z_o} has a simple pole at t' = 0 (see (5.3.7) in [10]). By considering the maximal order of the poles of the coefficients in the basis $\mathbf{e}^{(z_o)}$ for a section of the sheaf $\widetilde{\mathfrak{M}}_{z_o}$ and using the term $(1 + |z_o|^2)dt'/t'^2$ in the z_o -connection, we see that $\mathcal{H}^{-1}(\mathrm{DR}({}^F\mathfrak{M}_{z_o}\otimes \mathcal{E}^{-c(z_o)t})) = 0$, and hence $\mathcal{H}^{-1}(\mathrm{DR}({}^F\mathfrak{M}_{z_o}\otimes \mathcal{E}^{-c(z_o)t})_{(2)}) = 0$.

On the other hand, the same argument shows that any local section at t' = 0 of $\widetilde{\mathfrak{M}}_{z_o} \otimes \Omega^1_X$ with maximum order of a pole equal to k is equivalent, modulo the image of the operator $\mathfrak{D}'_{z_o} + (1 + |e|z_o^2)dt'/t'^2$, to a section having a pole of maximum order $\leqslant k - 1$. Iterating this process and using the moderate behaviour of the h-norm of each element in the basis $\mathbf{e}^{(z_o)}$, we see that such a section is equivalent

to a section of $\widetilde{\mathfrak{M}}_{z_o} \otimes \Omega^1_X$ which is an L^2 section with respect to the metric h, or, equivalently, that the morphism

$$\mathcal{H}^0\big(\mathrm{DR}({}^F\mathfrak{M}_{z_o}\otimes\mathcal{E}^{-c(z_o)t})_{(2)}\big)\to\mathcal{H}^0\big(\mathrm{DR}({}^F\mathfrak{M}_{z_o}\otimes\mathcal{E}^{-c(z_o)t})\big)$$

is onto.

Finally, for a given local section of the sheaf $\widetilde{\mathfrak{M}}_{z_o} \otimes \Omega^1_{\mathfrak{X}}$ which is an L^2 section (with respect to the metric h) and belongs to the image of $(\mathfrak{D}'_{z_o} - (1 + |z_o|^2))\widetilde{\mathfrak{M}}_{z_o}$, an argument of the same kind shows that this section is in the image of an L^2 section of $\widetilde{\mathfrak{M}}_{z_o}$; equivalently, the morphism

$$\mathcal{H}^0\big(\mathrm{DR}({}^F\mathfrak{M}_{\mathrm{loc},z_o}\otimes\mathcal{E}^{-c(z_o)t})_{(2)}\big)\to\mathcal{H}^0\big(\mathrm{DR}({}^F\mathfrak{M}_{\mathrm{loc},z_o}\otimes\mathcal{E}^{-c(z_o)t})\big)$$

is injective. This completes the proof of Lemma 3.

3.3. L^2 de Rham–Dolbeault lemma. We consider the C^{∞} bundle H equipped with the metric h and with the z_o -connection $\mathfrak{D}_{z_o} - (1 + |z_o|^2)dt$ (which we denote below by $\widetilde{\mathfrak{D}}_{z_o}$ for simplicity) together with the associated L^2 complex $\mathcal{L}^{\bullet}_{(2)}(H, h, \widetilde{\mathfrak{D}}_{z_o})$. In particular, we note that the d''-operator is \mathfrak{D}'_{z_o} , the corresponding holomorphic subbundle is V_{z_o} , and the extension of this holomorphic subbundle obtained by considering the sections with h-norm of moderate growth is $\mathfrak{M}_{\mathrm{loc},z_o}$ (see Corollary 5.3.1(1) in [10]).

The 'holomorphic' L^2 subcomplex is the following subcomplex of the L^2 complex $\mathcal{L}^{\bullet}_{(2)}(H, h, \widetilde{\mathfrak{D}}_{z_o})$:

$$0 \longrightarrow \ker \mathfrak{D}_{z_o}^{\prime\prime(0)} \xrightarrow{\widetilde{\mathfrak{D}'}_{z_o}} \ker \mathfrak{D}_{z_o}^{\prime\prime(1)} \cap \mathcal{L}_{(2)}^{(1,0)}(H,h,\mathfrak{D}_{z_o}^{\prime\prime}) \longrightarrow 0,$$
(3.1)

where $\mathfrak{D}_{z_o}^{\prime\prime(k)}$ stands for the action of the operator $\mathfrak{D}_{z_o}^{\prime\prime}$ on $\mathcal{L}_{(2)}^k(H,h,\mathfrak{D}_{z_o}^{\prime\prime})$. Our objective in this subsection is to prove the following assertion.

Lemma 4 (L^2 de Rham-Dolbeault lemma). Suppose that (H, h, D_V) is a tame harmonic bundle on X^{*an} . In this case the inclusion map of the holomorphic L^2 subcomplex (3.1) into $\mathcal{L}^{\bullet}_{(2)}(H, h, \tilde{\mathfrak{D}}_{z_o})$ is a quasi-isomorphism of complexes.

The proof is analogous to that of the Dolbeault lemma in [15] and is parallel to the proof of Theorem 6.2.5 in the preprint [10], to which we shall repeatedly refer. As above, we work near ∞ because the result away from the point ∞ is contained in §§ 6.2.d and 6.2.e of [10].

In the definition of the L^2 complex the L^2 condition on sections and the condition concerning the action of the anti-holomorphic part of the connection are the same as in §§ 6.2.d and 6.2.e of [10]. The L^2 condition on the derivative of sections is changed. The new term $(1 + |z_o|^2) dt'/t'^2$ in the holomorphic part of the connection simplifies the proofs.

We use polar coordinates: $t' = re^{i\theta}$. Let us first recall some notation used in [10]. Near the point t' = 0 the bundle H is equipped with a \mathfrak{D}''_{z_o} -holomorphic basis $\mathbf{e}'^{(z_o)}$. The *h*-norms of the elements of this basis are of moderate growth near t' = 0. We denote these elements by $e'_{\beta,\ell,k}$, where $\beta = \beta' + i\beta''$ ranges over a finite set of complex numbers whose real parts β' belong to $[0,1], \ell$ is an integer (the weight of the element), and k is an index used to distinguish different elements having the same data β and ℓ . Let Θ'_{z_0} be the connection matrix of \mathfrak{D}'_{z_0} in the basis. This matrix can be represented as the sum of a diagonal part and a nilpotent part, $\Theta'_{z_o,\text{diag}} + \Theta'_{z_o,\text{nilp}}$, with

$$\Theta'_{z_o,\text{diag}} = \bigoplus_{\beta} (q_{\beta,\zeta_o} + \beta) \star z \operatorname{Id} \frac{dt'}{t'}$$
$$\Theta'_{z_o,\text{nilp}} = [Y + P(t,z)] \frac{dt'}{t'},$$

where $Y = (\bigoplus_{\beta} Y_{\beta})$ and $q_{\beta,\zeta_{\alpha}}$ stands for an integer chosen in such a way that the number $\ell_{z_o}(q_{\beta,\zeta_o}+\beta) := q_{\beta,\zeta_o}+\beta'-\zeta_o\beta''$ belongs to $[0,1[,\zeta_o]$ being the imaginary part of z_o . Let the basis be indexed so that $Y(e_{\beta,\ell,k}^{\prime(z_o)}) = e_{\beta,\ell-2,k}^{\prime(z_o)}$ for any ℓ and k and let the term $P(t, z_o)$ be given by the formula (6.2.7) in [10].

We recall the notation $\widetilde{\mathfrak{D}}_{z_o} = \mathfrak{D}_{z_o} + (1 + |z_o|^2) dt'/t'^2$. Then $\widetilde{\Theta}'_{z_o,\text{nilp}} = \Theta'_{z_o,\text{nilp}}$ and $\widetilde{\Theta}'_{z_o,\text{diag}} = \Theta'_{z_o,\text{diag}} + (1 + |z_o|^2) \operatorname{Id} dt'/t'^2$ in an obvious notation.

Vanishing of H^2 . First, we can apply Lemma 6.2.11 of [10] with a fixed value $z = z_o$ without any modification. The entire proof is thus reduced to showing that if the expression $f(r)e'_{\beta,\ell,k}\frac{dt'}{t'} \wedge \frac{d\overline{t'}}{\overline{t'}}$ defines a local section of the sheaf $\mathcal{L}^2_{(2)}(H)$ for any β with $\ell_{z_o}(q_{\beta,\zeta_o} + \beta) = 0$ and any $\ell \leq -1$ (in fact, it suffices to use $\ell = -1$, because z = -1). is equated to z_o here), then this section belongs to the image of the operator \mathfrak{D}_{z_o} .

$$\begin{split} \widetilde{\mathfrak{D}}_{z_o} \Big(t'f(r)e'_{\beta,\ell,k} \Big(z_o \frac{dt'}{t'} + \frac{d\overline{t'}}{\overline{t'}} \Big) \Big) &= \Big(1 + |z_o|^2 + z_o + (\beta \star z_o)t' \Big) f(r)e'_{\beta,\ell,k} \frac{dt'}{t'} \wedge \frac{d\overline{t'}}{\overline{t'}} \\ &+ \Theta'_{z_o,\text{nilp}} \Big(t'f(r)e'_{\beta,\ell,k} \left(z_o \frac{dt'}{t'} + \frac{d\overline{t'}}{\overline{t'}} \right) \Big). \end{split}$$

As in [15] and [10], one can readily see that the last term is in L^2 . Thanks to the factor t', this term belongs to the image of the operator $\widetilde{\mathfrak{D}}_{z_o}'' = \mathfrak{D}_{z_o}''$ (see Lemma 6.2.11 in [10]). For the same reason, the part multiplied by t' in the middle term is in the image of \mathfrak{D}''_{z_o} . Hence, both expressions belong to the image of \mathfrak{D}_{z_o} . To complete the proof, it remains to note that the constant $1 + |z_o|^2 + z_o$ cannot vanish.

Computation of H^1 . By the previous result, the L^2 complex $\mathcal{L}^{\bullet}_{(2)}(H,h,\widetilde{\mathfrak{D}}_{z_o})$ is quasi-isomorphic to its subcomplex

$$0 \longrightarrow \mathcal{L}^0_{(2)}(H,h,\widetilde{\mathfrak{D}}_{z_o}) \xrightarrow{\widetilde{\mathfrak{D}}_{z_o}} \ker \widetilde{\mathfrak{D}}^{(1)}_{z_o} \longrightarrow 0.$$

Let us now prove an analogue of Lemma 6.2.13 in [10]. That is, we claim that any local section $\psi \, dt/t + \varphi \, d\overline{t}/\overline{t}$ in ker $\widetilde{\mathfrak{D}}_{z_o}^{(1)} \subset \mathcal{L}_{(2)}^1(H,h,\widetilde{\mathfrak{D}}_{z_o})$ can be represented as the sum of a term in Image $\widetilde{\mathfrak{D}}_{z_o}$ and a term in $\mathcal{L}_{(2)}^{(1,0)}(H,h) \cap \ker \widetilde{\mathfrak{D}}_{z_o}^{(1)}$.

The first part of the proof of Lemma 6.2.13 in [10] can be applied similarly to the present situation, and this reduces the proof to the case in which we start from a local section $\omega = \psi \frac{dt'}{t'} + \varphi \frac{d\overline{t'}}{\overline{t'}}$ in ker $\widetilde{\mathfrak{D}}_{z_o}^{(1)}$, where $\varphi = \sum_{\beta,\ell,k} \varphi_{\beta,\ell,k}(r) e_{\beta,\ell,k}^{\prime(z_o)}$, and ω satisfies the equation $\widetilde{\mathfrak{D}}_{z_o} \omega = 0$.

Further, we consider the coefficient of $e^{-i\theta}e'^{(z_o)}_{\beta,\ell,k}\frac{dt'}{t'}\wedge \frac{d\overline{t'}}{\overline{t'}}$ in the relation

$$\mathfrak{D}_{z_o}''\left(\psi\frac{dt'}{t'}\right) + \widetilde{\mathfrak{D}}_{z_o}'\left(\varphi\frac{d\overline{t'}}{\overline{t'}}\right) = 0.$$

Denoting by $\psi_{\beta,\ell,k;-1}(r)$ the coefficient of $e^{-i\theta}$ in the Fourier expansion of $\psi_{\beta,\ell,k}$, we see that for any β, ℓ, k

$$\varphi_{\beta,\ell,k}(r)e_{\beta,\ell,k}^{\prime(z_o)}\frac{d\overline{t'}}{\overline{t'}} = \frac{1}{2}r(r\partial_r - 1)\psi_{\beta,\ell,k;-1}(r)e_{\beta,\ell,k}^{\prime(z_o)}\frac{d\overline{t'}}{\overline{t'}}$$
$$= \mathfrak{D}_{z_o}^{\prime\prime}(re^{-2i\theta}\psi_{\beta,\ell,k;-1}(r)e_{\beta,\ell,k}^{\prime(z_o)}).$$

Since the local section $\psi dt'/t'$ is an L^2 section, it follows that $r\psi$ is also, and hence $\widetilde{\mathfrak{D}}'_0(re^{-2i\theta}\psi_{\beta,\ell,k;-1}e'^{(z_0)}_{\beta,\ell,k})$ is also an L^2 section.

This computation shows that ω is equivalent modulo Image $\widetilde{\mathfrak{D}}_{z_o}$ to a (1,0)-section which is an L^2 section and belongs to ker $\widetilde{\mathfrak{D}}_{z_o}^{(1)}$ (because $\widetilde{\mathfrak{D}}_{z_o}\omega = 0$), as was expected.

3.4. End of the proof of Proposition 1. We present the proof in four steps.

1. Arguing exactly as in § 6.2.f of [10], we show that the 'holomorphic' L^2 complex (3.1) is equal to its subcomplex $\mathrm{DR}({}^F\mathfrak{M}_{\mathrm{loc},z_o}\otimes \mathcal{E}^{-c(z_o)t})_{(2)}$. By the coherence, the hypercohomology of the complex $\mathrm{DR}({}^F\mathfrak{M}_{z_o}\otimes \mathcal{E}^{-c(z_o)t})$ is finite-dimensional. By Lemma 3 and the above arguments, so is the hypercohomology of the holomorphic L^2 complex (3.1).

2. It follows from Lemma 4 and the previous result that the cohomology of the complex of sections $\Gamma(X, \mathcal{L}^{\bullet}_{(2)}(H, h, \widetilde{\mathfrak{D}}_{z_o}))$ is finite-dimensional. According to the isometry (2.5), the cohomology of the complex $\Gamma(X, \mathcal{L}^{\bullet}_{(2)}(H, {}^F h, {}^F \mathfrak{D}_{z_o}))$ is also finite-dimensional. We can therefore apply Hodge theory to this L^2 cohomology. The corresponding space of harmonic k-forms (k = 0, 1, 2) is finite-dimensional, and its dimension does not depend on z_o , because the Laplacian of ${}^F\mathfrak{D}_{z_o}$ with respect to the metric ${}^F h$ is essentially independent of z_o , since the triple $(H, {}^F h, {}^F D_V)$ is harmonic.

3. Arguing in the reverse direction, we see that the dimension of the space $\mathbf{H}^{k}(X, \mathrm{DR}(^{F}\mathfrak{M}_{z_{o}} \otimes \mathcal{E}^{-c(z_{o})t}))$ (k = -1, 0, 1) does not depend on z_{o} . If $z_{o} = 1$, then the non-trivial cohomology is of degree 0 only (this is well known for a regular holonomic \mathcal{D}_{X} -module twisted by an exponential $e^{\lambda t}$ with $\lambda \in \mathbb{C}^{*}$). This is therefore true for any z_{o} ; moreover, the dimension of \mathbf{H}^{0} is independent of z_{o} .

4. It remains to note that the hypercohomologies of the complexes $\mathrm{DR}({}^F\mathfrak{M}_{z_o}\otimes \mathcal{E}^{-c(z_o)t})$ and $\mathrm{DR}({}^F\mathfrak{M}_{z_o})$ are of the same dimension. This is clear if $z_o = 0$, because the objects are equal in this case. On the other hand, if $z_o \neq 0$, then we reduce the problem to \mathcal{D}_X -modules. Working algebraically, we reduce the problem to proving

the following fact: for a given regular holonomic $\mathbb{C}[t]\langle \partial_t \rangle$ -module the dimension of the cokernel of the operator

$$\partial_t - \lambda \colon M \to M$$

does not depend on $\lambda \in \mathbb{C}^*$. This follows from the regularity of the module M at infinity.

Remark 1. One can give another proof of Proposition 1 if $z_o \neq 0$ by using the z_o -connection $\mathfrak{D}_{z_o} - dt$ on H with the metric $e^{2\operatorname{Re}(z_o\overline{t})}h$. This proof would be analogous to that in [8] and one can use the isometry (2.4) instead of (2.5).⁷ Nevertheless, the intermediate steps will be different, because an analogue of Lemma 3 in which the L^2 condition is taken with respect to the metric $e^{2\operatorname{Re}(z_o\overline{t})}h$ fails. As in [8], the lemma works in the space obtained from X by a blowing-up at infinity over the reals. The comparison between various complexes must be made on this space. However, such a proof seems to have no extension to the case $z_o = 0$, and we do not present it here for that reason.

Bibliography

- O. Biquard, "Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse)", Ann. Sci. École Norm. Sup. (4) 30:1 (1997), 41–96.
- [2] A. A. Bolibrukh, "The Riemann-Hilbert problem", Uspekhi Mat. Nauk 45:2 (1990), 3–47; English transl., Russian Math. Surveys 45:2 (1990), 1–58.
- [3] A. A. Bolibrukh, "On sufficient conditions for the positive solvability of the Riemann– Hilbert problem", Mat. Zametki 51:2 (1992), 9–18; English transl., Math. Notes 51 (1992), 110–117.
- [4] A. A. Bolibrukh, "On analytic transformation to Birkhoff standard form", Ross. Akad. Nauk Dokl. 334 (1994), 553–555; English transl., Russian Acad. Sci. Dokl. Math. 49 (1994), 150–153.
- [5] A. Borel, F. Ehlers, P.-P. Grivel, A. Haefliger, B. Kaup, and B. Malgrange, Algebraic D-modules, Academic Press, Boston, MA 1987.
- B. Malgrange, Équations différentielles à coefficients polynomiaux, Birkhäuser, Boston, MA 1991.
- [7] C. Sabbah, "Introduction to algebraic theory of linear systems of differential equations", Éléments de la théorie des systèmes différentiels. I: D-modules cohérents et holonomes (P. Maisonobe and C. Sabbah, eds.), Hermann, Paris 1993, pp. 1–80.
- [8] C. Sabbah, "Harmonic metrics and connections with irregular singularities", Ann. Inst. Fourier (Grenoble) 49 (1999), 1265–1291.
- C. Sabbah, Déformations isomonodromiques et variétés de Frobenius, CNRS Éditions and EDP Sciences, Paris 2002.
- [10] C. Sabbah, "Polarizable twistor D-modules", http://math.polytechnique.fr/cmat/ sabbah/articles.html.
- [11] C. Simpson, "Harmonic bundles on noncompact curves", J. Amer. Math. Soc. 3 (1990), 713–770.
- [12] C. Simpson, "Higgs bundles and local systems", Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95.

$$\int_{\rho}^{r_1} r^{2\beta} |\log r|^{k-2} \psi(r) \frac{dr}{r} \leq \rho^{2\beta} |\log \rho|^{k-2} \psi(\rho) (|\log \rho| - |\log r_1|),$$

and the constant C is bounded above by the quantity $4|\log r_1|^{-1} < +\infty$. Similarly, on page 1284, line 5, the constant C is bounded above by $4\kappa(\epsilon)|\log r_1|^{-1} < +\infty$.

 $^{^7\}mathrm{We}$ use this opportunity to correct a minor mistake in [8]: the inequality on page 1283 should read

- [13] C. Simpson, "Mixed twistor structures", Prépublication, Université de Toulouse, Toulouse 1997; arXiv:math.AG/9705006.
- [14] S. Szabo, "Nahm transform of meromorphic integrable connections on the Riemann sphere", manuscript, 2004.
- [15] S. Zucker, "Hodge theory with degenerating coefficients: L₂-cohomology in the Poincaré metric", Ann. of Math. (2) 109 (1979), 415–476.

Centre de Mathématiques Laurent Schwartz, École Polytechnique, Palaiseau, France

E-mail: sabbah@math.polytechnique.fr

http://www.math.polytechnique.fr/cmat/sabbah/sabbah.html

Received 27/JUL/04 Translated by C. SABBAH

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!X$