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Fourier–Laplace transform of irreducible regular

differential systems on the Riemann sphere

C. Sabbah

Abstract. It is shown that the Fourier–Laplace transform of an irreducible regular
differential system on the Riemann sphere underlies a polarizable regular twistor
D-module if one considers only the part at finite distance. The associated holomor-
phic bundle defined away from the origin of the complex plane is therefore equipped
with a natural harmonic metric having a tame behaviour near the origin.
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Introduction

A positive answer to the Riemann–Hilbert problem for semisimple1 linear repre-
sentations of the fundamental group of the complement of a finite point set on the
Riemann sphere is an important result of A. A. Bolibrukh ([2], [3]). Similarly, he
proved [4] that the Birkhoff problem has a positive answer when the corresponding
system of meromorphic linear differential equations is semisimple, thus generalizing
previous results of W. Balser.
The two results can be stated in a similar way, using the language of meromorphic

bundles on the Riemann sphere. Namely, let P = {p1, . . . , pr, pr+1 =∞} be a non-
empty finite set of points on P1 and let M be a finite-rank free O(∗P )-module2
equipped with a connection ∇. We assume that there is a basis of M for which the
connection ∇ has Poincaré rank mi ≥ 0 at pi for i = 1, . . . , r (that is, the order of
the pole of the matrix of ∇ at pi is equal to mi + 1); moreover, we assume that ∇
has a regular singularity at the point ∞ (that is, the coefficients in the given basis
of horizontal sections are multivalued holomorphic functions with at most power-
law growth at infinity3). In this case, if (M,∇) is irreducible (or semisimple), then
there is a basis of M in which the Poincaré rank of ∇ at pi is mi (i = 1, . . . , r)
and ∇ has at most a logarithmic pole at ∞ (that is, ∇ has zero Poincaré rank at
infinity).
After an easy preliminary reduction we can see that the case whenmi = 0 for all i

corresponds to the Riemann–Hilbert problem and the case when r = 1 corresponds
to the Birkhoff problem.
Starting from a system of linear meromorphic differential equations having only

regular singularities (or, more precisely, from a regular holonomicD-module) on the
Riemann sphere, one obtains a new system by using the Fourier–Laplace transform,
and the Riemann–Hilbert problem for the original system is transformed into the
Birkhoff problem for the new system. These problems (for a given system and its
Fourier–Laplace transform) are not directly related to each other;4 however, one
of these systems is semisimple if and only if the other is, and there is a common
condition under which both problems have a positive answer simultaneously.
The semisimple linear representations discussed above share another remarkable

property: there is a tame harmonic metric on the associated flat bundle (see [11]).
This property can be expressed by using the language of polarized twistorD-modules
introduced by the author in [10] by extending a notion due to Simpson [13]. Namely,
to any representation of this kind one can assign a regular holonomic D-module
on the Riemann sphere, and this module is unique up to isomorphism and has
neither submodules nor quotient modules supported at a point. The last property
can be expressed as follows: this D-module underlies a polarizable regular twistor
D-module in the sense defined in the cited papers (see also below).
In the present paper we study the behaviour of polarized regular twistor D-

modules on the Riemann sphere under the Fourier–Laplace transform. However,

1Semisimple objects are direct sums of irreducible objects.
2Russian Editor’s note: This means a sheaf of modules over the sheaf of rings of meromorphic

functions having poles only at points of the set P .
3Russian Editor’s note: This means the growth of analytic functions in sectors of finite aperture

with vertex at infinity.
4See, however, §V.2c in [9].
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we give no information on the behaviour at infinity in the Fourier plane, where an
irregular singularity can occur.
We note that, using another apparatus, Szabo [14] has established a perfect

Fourier correspondence in a more general situation in which an irregular singularity
at infinity is admitted but some other more restrictive assumptions are imposed.
We refer to [10] for diverse results (used below) related to polarizable twistor

D-modules.

§1. Statement of the results
We regard the projective line X = P1 as the union of two affine charts SpecC[t]

and SpecC[t′] with t′ = 1/t on the intersection, and we define∞ as the point where
t′ = 0. As above, let P = {p1, . . . , pr, p∞} be a finite set of r+ 1 distinct points in
P1. We set X∗ = P1 \ P .
Let the pair (H,DV ) be formed by a C

∞ vector bundle H with a flat connection
DV on X

∗an. The bundle is holomorphic with respect to the (0, 1)-part D′′V , and

we set (V,∇) = (kerD′′, D′V ). The associated local system is L
def
= ker[∇ : V →

V ⊗OX∗an Ω1X∗an ]. We denote by Tj the local monodromy of this local system at
each point pj of P .

1.1. Fourier–Laplace transform of flat bundles. The notion of Fourier–
Laplace transform is a priori defined for algebraic D-modules on the affine line
A1 = P1 \ {∞} and not for holomorphic bundles with connection on X∗ nor for
holomorphic vector bundles on P1 equipped with a meromorphic connection.
We denote by C[t]〈∂t〉 the Weyl algebra in dimension one, that is, the quotient

by the relation [∂t, t] = 1 of the free algebra generated by C[t] and C[∂t] (see, for
instance, [5] and [7]). Let M be a holonomic C[t]〈∂t〉-module. The module M is
said to be a minimal extension if it has neither submodules nor quotient modules
supported by some point of A1. The following assertion is well known.

Lemma 1 (Riemann–Hilbert correspondence). The functor assigning to any holo-
nomic C[t]〈∂t〉-module with all its singularities in P the restriction of this module
to X∗an induces an equivalence between the category of holonomic C[t]〈∂t〉-modules
that have regular singularities (including the point at infinity) and are minimal
extensions (the morphisms are the morphisms of C[t]〈∂t〉-modules), and the cate-
gory of all flat holomorphic bundles on X∗an.

For a given holomorphic bundle with connection (V,∇) on X∗an we denote by
M the regular holonomic C[t]〈∂t〉-module associated with (V,∇) by Lemma 1. The
Fourier–Laplace transform M̂ of M is the C-vector space M equipped with an
action of the Weyl algebra C[τ ]〈∂τ〉 (with respect to the variable τ) defined by the
formula

τ ·m = ∂tm, ∂τ = −tm. (1.1)

We denote by X̂ = Â1 the affine line with the coordinate τ and by P̂1 the cor-

responding projective line. As is known, the module M̂ has a single singularity
at a finite distance, namely, at τ = 0, and this singularity is regular. However,
the module has an irregular singularity at τ = ∞ in general (for general results
concerning Fourier transforms of holonomicC[t]〈∂t〉-modules, see, for instance, [7]).
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We therefore obtain a holomorphic bundle with connection (V̂ , P̂) on the punctured

projective line X̂ = P̂1 \ P̂ , where P̂1 is the projective line with the coordinate τ
and P̂ = {0,∞}. The associated flat bundle of class C∞ is denoted by (Ĥ, DV̂ ).
However, the module M̂ cannot be recovered from a given pair (V̂ , ∇̂) in general.
Let d denote the rank of H. We indicate how to compute the rank d̂ of Ĥ. As

is known, for any τo 	= 0 the C-linear morphism

M
∂t−τo−→ M

is injective and its cokernel is a finite-dimensional vector space, namely, the fibre
of the bundle V̂ at the point τo. The dimension of the cokernel, which coincides
with the total number µ of ‘vanishing cycles’ ofM at the points of the set P\∞ (that
is, the sum of multiplicities of the characteristic variety of M along its components
T ∗piX; see, for instance, § 4 (p. 66) in [6]), can be readily computed here by the
following formulae (see Proposition 1.5 (p. 79) of [7]):

d̂ = µ = rd− d1, r = cardP − 1, d1
def
=

r∑
j=1

dimKer(Tj − Id). (1.2)

More precisely, the tensor product C[τ, τ−1] ⊗C[τ] M̂ is a free C[τ, τ−1]-module of
rank µ.

1.2. Fourier–Laplace transform of an irreducible bundle with connec-
tion. We assume now that (H,DV ) is irreducible, or, equivalently, that no non-
trivial subspace of L is invariant under all Tj (j = 1, . . . , r + 1). One can readily
prove another equivalent condition claiming that the associated regular holonomic
D-moduleM is irreducible as a C[τ ]〈∂τ〉-module. In turn, this is (very easily) equiv-
alent to the irreducibility of the Fourier–Laplace transform M̂ . However, since the

module M̂ can be irregular at infinity, this does not imply the irreducibility of

(Ĥ, DV̂ ) (see below). The rank d̂ of Ĥ is positive unless (V,∇) = (OX , d), because
irreducibility is assumed. In the following we implicitly assume that d̂ > 0.

The bundle (Ĥ, DV̂ ) is determined by its monodromy T̂0 around the point τ = 0.

The Jordan structure of the monodromy operator T̂0 is determined by that of the
monodromy T∞ of (H,DV ) around∞ (below we denote by Aλ the restriction of an
endomorphism A to the generalized eigenspace (root subspace) corresponding to
the eigenvalue λ). This is the content of the following lemma, which can be derived
from Proposition 8.4.20 of [10].

Lemma 2. Suppose that a pair (H,DV ) is irreducible. Then:

1) for any λ 	= 1 the Jordan structures of the restrictions of the monodromy
operators T̂0,λ and T∞,λ coincide;

2) any Jordan block of size k ≥ 1 of T∞,1 induces a Jordan block of size k + 1
of T̂0,1;

3) the remaining Jordan blocks of T̂0,1 are of size one.
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The semisimplicity of the pair (the decomposability as the direct sum of
irreducible bundles with connection) is equivalent to that of the monodromy opera-

tor T̂0. This holds (provided that (H,DV ) is irreducible) if and only if the operator
T∞ is semisimple and 1 is not an eigenvalue of T∞.

1.3. Fourier–Laplace transform of a bundle with connection and Her-
mitian metrics. We assume first that the monodromy representation associated
with the local system L = ker∇ is unitary. In other words, we assume that there
is a DV -flat Hermitian metric h on H. In particular,

1) the local system L is an orthogonal direct sum of irreducible local systems,
so in what follows we assume that the local system is irreducible (the case
of a constant rank-one local system is trivial, and we therefore also assume
that L is not a constant local system);

2) the local monodromy Tj of the local system at each point pj of P is (unitary
and) semisimple and the eigenvalues of Tj are roots of unity.

We can ask whether the space Ĥ can be naturally equipped with a Hermitian
metric and whether this metric is DV̂ -flat. We note that flatness would imply

semisimplicity and unitarity of the monodromy T̂0. By the above assumptions
and Lemma 2, this holds if and only if 1 is not an eigenvalue of the monodromy
operator T∞.
If we only assume that (H,DV ) is irreducible but not necessarily unitary, then

there is still a unique tame harmonic Hermitian metric h on (H,DV ) (by [11]),
which is therefore a natural metric to be considered. Such a metric also exists if
(H,DV ) is a semisimple pair, but it can fail to be unique.

Tame harmonic metrics. Let us recall the definition of these metrics. We can fix
a choice of a metric connection on H, which we denote by DE , by the following
condition: if we introduce a 1-form θE = DV −DE and decompose it into the (1, 0)
and (0, 1) parts, θE = θ

′
E + θ

′′
E , then the h-adjoint of θ

′
E is defined as the form θ

′′
E .

Since X is of dimension one, it follows that the bundle E = kerD′′E is holomorphic
on X∗an, and the form θ′E satisfies the Higgs condition θ

′
E ∧ θ′E = 0.

A triple (H,DV , h) (where DV is a flat connection) is said to be harmonic if the
Higgs field is holomorphic on E, that is, if the 1-form θ′E : E → E ⊗OX∗an Ω1OX∗an
is holomorphic.
Following [11], we say that a triple (H,DV , h) of this kind is tame if the eigen-

values of the Higgs field (which are multivalued holomorphic one-forms) have at
most a simple pole at each point of P .

One can ask whether the pair (Ĥ, DV̂ ) also carries a harmonic metric of this
kind with tame behaviour at τ = 0. We give a positive answer in Corollary 1.

Twistor D-modules. We speak in the language of twistor D-modules used in the
preprint [10], to which the reader is referred. Let us briefly recall some basic
definitions.
We still denote by X the Riemann sphere and write X = X × C, using the

coordinate z on the factor C. We also denote by S the circle {|z| = 1} and by DX
the sheaf of holomorphic differential operators on X, and we consider the sheaf RX
of z-differential operators on X, namely, in any local coordinate x on X the module
RX is equal to OX〈ðx〉, where ðx = z∂x. In particular, DX = RX/(z − 1)RX.
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Let us consider the category R-Triples(X) whose objects are triples of the
form (M′,M′′, C), where M′,M′′ are coherent RX-modules and C is a sesqui-
linear pairing between these modules, that is, for any point zo on the circle S this
is a pairing between the stalk of the sheafM′zo and the conjugate stalk ofM

′′
−zo, and

this pairing takes values in the sheaf DbXR of distributions on X and is linear with
respect to the action of holomorphic differential operators on M′zo and of antiholo-
morphic differential operators on the conjugate module of M′′−zo under the natural
action of the differential operators of both types on the distributions on X. Finally,
this pairing must be continuous with respect to the point z ∈ S. We treat C as
a sesquilinear pairing of sheaves M′|S ⊗OX|S M′′|S → DbXR×S/S, where DbXR×S/S
stands for the sheaf of distributions on X × S that are continuous with respect to
z ∈ S and the conjugation is opposite to the usual conjugation on S (see § 1.5.a
in [10]).

The notion of polarized regular twistor D-module of weight w ∈ Z on X was
defined in [10]. Namely, these are objects of the form (T, S), where T = (M′,M′′, C)
are the triples discussed above and S (the so-called polarization) consists of two

isomorphisms M′′
∼→ M′. Some axioms are introduced (which we do not recall

here; see Chapter 4 of [10]). Most arguments can be reduced to the case in which
the weight w is equal to 0, M′ =M′′, and both isomorphisms in S are equal to Id.
Objects of this kind are denoted simply by (M,M, C, Id) or just by (M,M, C).
Introducing such an object of weight 0, we obtain a DX -module by considering

the quotient M/(z − 1)M. Moreover, by restricting to X∗an, we obtain a holo-
morphic bundle V with connection ∇. Finally, it follows from the axioms that the
sesquilinear pairing C enables one to define a metric h associated with V on the C∞

bundle H and that this metric is harmonic. Moreover, this metric is tame by the
regularity assumption. More precisely, using results of [11] and [1], the author
proved in Chapter 5 of [10] that the category of polarized regular twistor DX -
modules is equivalent to the category of tame harmonic bundles5 (H,DV , h) on
X∗an with a certain parabolic structure (this structure is referred to as being ‘of
Deligne type’ in [10]). According to Simpson [11], the latter category is equivalent
to the category of semisimple bundles (H,DV ) with flat connection on X

∗an.

The Fourier–Laplace transform of a given object of the form (M′,M′′, C, S) is
introduced in Chapter 8 of [10] (see also below). The transform is defined as a

quadruple (M̂′, M̂′′, Ĉ, Ŝ) over Â1an×C. The main result of the paper is as follows.

Theorem 1. If (M,M, C, Id) is a polarized regular twistor DX -module of weight 0,

then (M̂, M̂, Ĉ, Id) is a polarized regular twistorD-module of weight 0 over Â1an×C.

This statement can be directly extended to polarized regular twistor D-modules
of weight w. We note that a part of the theorem was already proved in Theorem
8.4.1 of [10], namely, the condition on cycles near τ = 0. We are therefore mainly

interested in the behaviour at points τo 	= 0. The ‘fibre’ of (M̂, M̂, Ĉ) at τ = τo = 0
is obtained from that at τ = 1 by a rescaling, that is, by a preliminary change of
variable t→ t/τo, because the kernel of the Fourier–Laplace transform is e−tτ/z .
We obtain the following assertion as a corollary.

5Russian Editor’s note: That is, bundles with a tame harmonic metric.
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Corollary 1. If a flat bundle (H,DV ) is semisimple, then the Fourier–Laplace

transform (Ĥ, DV̂ ) on X̂
∗ carries a harmonic metric with tame behaviour at τ = 0.

§2. Exponential twist of harmonic bundles and twistor DDD-modules
Let us recall the basic correspondences indicated in § 8.1.b of [10]. We keep the

notation of § 1, but now we fix the point τo = 1.
2.1. Exponential twist of smooth twistor structures. We begin with a triple
(H, h,DV ) on X

∗, rescale the metric h, and twist the connection DV by defining

FDV = e
t ◦DV ◦ e−t, that is, FD′V = D

′
V − dt, FD′′V = d

′′,

Fh = e2Re th.

We recall that, in terms of the definitions in [11] and [12], if the triple (H,DV , h)
is harmonic on X∗, then so is the triple (H, FDV ,

Fh). The Higgs field is defined
by the formulae

Fθ′E = θ
′
E − dt, F θ′′E = θ

′′
E − dt,

and the metric connection Fh given by FDE =
FD′E +

FD′′E by the formulae

FDE = e
−t ◦DE ◦ et, that is, FD′E = D

′
E ,

FD′′E = D
′′
E + dt.

The exponential twist exists at the level of smooth twistor structures. As in [10],
we denote by C∞,anX∗ the sheaf on X∗ of C∞ functions holomorphic with respect
to z. Let us consider the C∞,anX∗ -module6 Han = C∞,anX∗ ⊗π−1C∞

X∗
π−1H equipped

with the d′′ operator

FD′′z =
FD′′E + z

Fθ′′E = D
′′
z + (1− z)dt. (2.1)

We obtain a holomorphic subbundle FH′ = ker FD′′z ⊂ Han equipped with a
z-connection given by FD′z = z

FD′E +
F θ′E = D

′
z − dt. We set

FDz =
FD′z +

FD′′z = Dz − dt+ (1 − z)dt.

Moreover, if π : X∗ = X∗ × C → X∗ is the natural projection, then the bundle
Han can be equipped with the metric π∗h or the metric π∗Fh. These metrics are
constant with respect to z. We shall also consider the metric e2Re(zt)π∗h, which
varies as z varies.
We have an isomorphism of locally free C∞,anX∗ -modules with metric and z-

connection:

(Han, π∗Fh, FDz)
·e(1−z)t−→ (Han, e2Re(zt)π∗h,Dz − dt). (2.2)

This isomorphism sends the holomorphic subbundle FH′ to H′ = kerD′′z .
It will also be useful to have a model related to the metric π∗h. This model is

defined on the sheaf C∞X∗ rather than on C
∞,an
X∗ . We set H = C∞X∗ ⊗π−1C∞X∗ π

−1H.

There is an isomorphism

(H, π∗Fh, FDz)
·et−2i Im(zt)−→ (H, π∗h,Dz − (1 + |z|2)dt). (2.3)

This isomorphism is not defined over C∞,anX∗ .

6In [10] we simply denoted this module by H; here we stress its analytic dependence on z.
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2.2. Exponential twist in RRR-Triples(X∗)(X∗)(X∗). We recall the following definitions
(see § 8.1.a in [10]). Let M be a left RX-module, that is, an OX-module with a flat
relative meromorphic connection ∇X/C (relative to z, that is, no differentiation with
respect to z is carried out). We denote by Mloc the localized module along P , that
is, Mloc = OX[∗(P ×C)]⊗OX M. The twisted RX-module FMloc =Mloc ⊗ E−t/z is
defined as the OX-moduleMloc equipped with the twisted connection e

t/z ◦∇X/C ◦
e−t/z.
Let C : M′|S⊗OX|SM|S

′′ → DbXR×S/S be a sesquilinear pairing. If the restriction
of (M′,M′′, C) to X∗ is a smooth twistor structure, then the restriction of C to

X∗ × S takes values in C∞,anX∗ , and the extension Cloc of C to M
′
loc|S ⊗OX|S M′′loc|S

takes values in the extension of C∞,anX∗ formed by the functions on X∗ which can be
extended as distributions continuous with respect to z ∈ S. Moreover, if we assume
that (M′,M′′, C) underlies a polarized regular twistorD-module, then, using (5.3.3)
in [10], we can see that Cloc takes values in the extension of C

∞,an
X∗ formed by the

functions on X∗ having moderate growth near each puncture in P , locally uniformly
with respect to z ∈ S.
We note that the number zt − t/z is purely imaginary for any z ∈ S. Then

under the above assumption the map FCloc := exp(zt − t/z)Cloc is a sesquilinear
pairing on FM′loc|S⊗OX|S FM′′loc|S taking values in the same sheaf of functions with
moderate growth.
With a harmonic bundle (H, h,DV ) on X

∗ one can associate a smooth twistor
structure (H′,H′, π∗h

H′|S⊗H
′
|S
), where H′ ⊂ Han is the kernel kerD′′z equipped

with the RX∗ -structure given by the z-connection D
′
z.

This harmonic bundle can be exponentially twisted as an object of the category
R-Triples(X∗), and the result is the triple(

H′,H′, exp(zt− t/z)π∗h
H′|S⊗H

′
|S

)
,

where H′ is equipped with the RX∗ -structure defined by the z-connection D
′
z − dt.

The isomorphism (2.2) identifies the twisted harmonic bundle with the smooth
twistor structure associated with (H, Fh, FDV ) (see Lemma 8.1.2 of [10]).

2.3. Exponential twist in RRR-Triples(X)(X)(X). Let M be a left RX-module. We

denote by M̃ the localization of M only at infinity. Then FM is defined as the

twisted RX-module M̃⊗E−t/z (the RX-structure is defined as above). In particular,
the module FM is localized at ∞, and the module FMloc is the localization of FM
at P \ {∞}. We know (see Proposition 8.3.1(i) in [10]) that the RX-module FM is
coherent under a certain condition on M near ∞, and this condition is satisfied if
M corresponds to a (polarized) regular twistor D-module on X.
For a given (polarized) regular twistorD-module (M′,M′′, C) onX the definition

of the sesquilinear pairing FC on FM′|S⊗OX|S FM′′|S with values in DbXR×S/S needs
some care, because one must define a lifting of the localized distribution (or C∞

function of moderate growth) FCloc to distributions on X. In [10] one first defines a

pairing FC on the total exponential twist FM′|S⊗FM′′|S (where one must not forget
the variable τ); the module FM is regarded as the specialization of the module FM
at τ = 1, and then the pairing FC is defined as the specialization (by means of the
Mellin transform) of the pairing FC.
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2.4. Restriction to the submanifold z = zoz = zoz = zo. Let us analyze the behaviour of
the above constructions under restriction to the submanifold z = zo.
The restriction to the submanifold z = zo of the triple (H

an, π∗Fh, FDz) is
the bundle H equipped with the metric Fh and the zo-connection

FDzo. The
isomorphism (2.2) specializes to an isomorphism

(H, Fh, FDzo)
·e(1−zo)t−→ (H, e2Re(zot)h,Dzo − dt), (2.4)

and the isomorphism (2.3) specializes to an isomorphism

(H, Fh, FDzo)
·et−2i Im(zot)−→ (H, h,Dzo − (1 + |zo|2)dt). (2.5)

On the other hand, since the module OX[∗(P × C)] (or OX[∗({∞}× C)]) is flat
over the ring OX, it follows that if M is a strict RX-module (that is, if it is OC-

torsion-free), then so is its localization Mloc or M̃. If we set Mzo =M/(z − zo)M,
then the localization loc or ˜ of the module Mzo is the restriction to z = zo of the
corresponding localization of M.

We introduce the twisted module FMzo for zo 	= 0 as the module M̃zo ⊗ E−t/zo
(that is, we twist the zo-connection by adding −dt) and for zo = 0 as the module
M̃0 with the Higgs field obtained by adding −dt. In this case if M is strict, then
FMzo =

FM/(z − zo)FM and FMzo,loc = FMloc/(z − zo)FMloc.

3. Proof of Theorem 1

Let (T, S) be a polarized regular twistor D-module of weight 0 on P1 (that is,
an object of MTr(P1, w)(p); see [10]). We can assume that it is of the form T =
(M,M, C) and S = (Id, Id). The restriction of this module to X∗ corresponds to
a harmonic bundle (H, h,DV ). Using the notation of (1.2), we prove the following
assertion in this section.

Proposition 1. The complex RΓ(X,DR FM) has non-trivial cohomology only of

degree 0, and its non-zero cohomology is a locally free OC-module of finite rank d̂.

3.1. Proof of Theorem 1. We recall (see Chapter 8 of [10]) that we set M̃ =

OX(∗∞) ⊗OX M, and if p : X × X̂ × C → X × C = X and p̂ : X × X̂ × C →
X̂ × C = X̂ denote the projections and ⊗ E−tτ/z denotes the exponential twist of
the R-structure, then we write

M̂ := p̂+p
+(M̃ ⊗ E−tτ/z) = p̂0+p+(M̃⊗ E−tτ/z) := p̂0+FM.

The sesquilinear pairing FC on FM|S ⊗ FM|S is defined in Chapter 8 of [10], and
we can write Ĉ = p̂0+

FC.
1. It follows from Theorem 8.4.1 of [10] that, along the submanifold τ = 0, all

necessary conditions for the existence of a polarized regular twistor D-module (see
Definition 4.1.2 in [10]) are satisfied.

2. The main question is now concerned with the behaviour of M̂ away from the
point τ = 0. Let us fix some τo 	= 0 in X̂. We recall Proposition 8.3.1(i) of [10]
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claiming that the module M̃⊗E−tτo/z is RX-good. In fact, it suffices to take τo = 1
by the obvious homogeneity considerations. We denote by FM the RX-module

M̃⊗ E−t/z.
3. Since the module FM is regular and strictly specializable along τ = τo and

since, according to [10] (Proposition 8.3.1(ii) and (iii), Theorem 3.1.8, and § 3.1.d),
the following assertion holds by virtue of Proposition 1 (which holds for any τo 	= 0).

Corollary 2. For any τo 	= 0 the module M̂ is strictly specializable and regular
along τ = τo, and for any α ∈ C

ψτ−τo ,αM̂ =

{
0 if α /∈ −N∗,
R0Γ(X,DR M̃⊗ E−tτo/z) if α ∈ −N∗.

4. This corollary implies that, near any τo 	= 0, the module M̂ is equal to
the level −1 of its V -filtration along τ = τo. By the regularity, the module M̂ is
O
X̂
-coherent, and since dim M̂/(τ − τo)M̂ = dimψτ−τo,αM̂ = d̂ does not depend

on τo 	= 0, it follows that M̂ is OX̂-locally free of rank d̂ away from the point
τ = 0. The characteristic variety of this module in T ∗(X̂ \ {0}) × C is equal to
{the zero section} ×C and the characteristic variety in T ∗(X̂) ×C is contained in

(
the zero section of ∪ T ∗0 X̂

)
×C,

and thus the module M̂ is holonomic (see Definition 1.2.4 in [10]). It also follows
from the corollary that the S-decomposability (see Definition 3.5.1 in [10]) is triv-
ially satisfied near τo 	= 0. We have therefore obtained the condition (HSD) of
(see Definition 4.1.2 in [10]).

5. At this step we know that the module M̂ is O
X̂
-locally free of finite rank

away from τ = 0. By Lemma 1.5.3 in [10], this implies that (M̂, M̂, Ĉ) is a smooth

object of the category R-Triples(X̂∗) on this domain. We claim that the pairing

Ĉ defines, by gluing, a family of trivial vector bundles on P1 parametrized by the
punctured complex line X̂∗. This family is obtained from a C∞ vector bundle Ĥ

on X̂∗ equipped with a Hermitian metric ĥ by using the correspondence described
in Lemma 2.2.2 of [10]. By this construction, the metric turns out to be harmonic.
By simple homogeneity considerations with respect to τ , it suffices to prove this

property in some neighbourhood of τ = 0, which we still denote by X̂∗.
As is known by Theorem 8.4.1 of [10], the twistor properties are satisfied by

the triple T̂ = (M̂, M̂, Ĉ) equipped with the polarization Ŝ = (Id, Id) along τ = 0,
and we can apply the argument used in §§ 5.4.c–5.4.e of [10] to obtain the twistor
property and the polarizability in some neighbourhood of τ = 0. This completes
the proof of Theorem 1.

Let us now prove Proposition 1. Since FM is a goodRX-module, we know a priori
that the cohomology of the complex RΓ(X,DRF M) is OC-coherent. Therefore, it
suffices to prove that for any zo ∈ C the complexRΓ(X,DRF Mzo) has cohomology
only of degree 0 and that the dimension of the space H0(X,DRFMzo) is equal to

d̂ (we recall that FMzo =
FM/(z − zo)FM).
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As in [15], we identify the complex DRF Mzo with an L
2 complex. This iden-

tification is local on X. The L2 cohomology on X can then be obtained by the
L2-Hodge theory. The independence of the dimension of H∗(X,DRF Mzo) with
respect to zo will follow from the independence of the corresponding Laplacian
with respect to zo (one can extract this argument from [12]).

3.2. The meromorphic L2L2L2 de Rham and Dolbeault complexes. In order
to give a common proof which holds both if zo is zero and if it is non-zero, it is
convenient to consider the twisted module FMzo ⊗ E−c(zo)t, where c(zo) stands
for the usual conjugate of zo, and thus we can write |zo|2 = zoc(zo) (we keep
the more traditional notation zo for the ‘geometric conjugate’ −1/zo). In other
words, FMzo ⊗ E−c(zo)t is simply the OX-module M̃zo equipped with the twisted
zo-connection D

′
zo − (1 + |zo|2)dt.

We recall that the symbol FMloc,zo means the localized module of
FMzo at all

points of P (but localization at∞ is unnecessary because FMzo is already localized
at ∞). We consider the meromorphic L2 complex of the form DR(FMloc,zo ⊗
E−c(zo)t)(2) obtained by taking sections of the sheaf Mloc,zo or the sheaf Mloc,zo ⊗
Ω1X . These are locally L

2 sections, as well as their images under the connection
D′zo − (1 + |zo|

2)dt if one takes the metric h on the restriction Vzo of the sheaf
Mloc,zo to X

∗an (Vzo stands for the holomorphic subbundle of H determined by the
d′′ operator D′′zo = D

′′
V +(zo−1)θ′′E) and a metric locally equivalent to the Poincaré

metric near each puncture in P on X∗. We have a natural morphism

DR(FMloc,zo ⊗ E−c(zo)t)(2) → DR(FMzo ⊗ E−c(zo)t).

Indeed, this holds away from ∞, as was explained in § 6.2.a of [10] (this needs
explanation, because it is unclear that the terms of the left-hand complex are con-
tained in the corresponding terms of the right-hand complex). The inclusion is clear
near the point at infinity, because the module FMzo is equal there to the module
FMloc,zo.

Lemma 3. The natural morphism DR(FMloc,zo ⊗ E−c(zo)t)(2) → DR(FMzo ⊗
E−c(zo)t) is a quasi-isomorphism.

Proof. Away from the point at infinity, this was proved in Proposition 6.2.4 of [10 ].
We therefore consider the situation near ∞ with a local coordinate t′ and omit the
index ‘loc’, because the sheaf FMzo is equal to its localized module near t

′ = 0.
By the regularity assumption of the module M near ∞, we know that there is

a local meromorphic basis e(zo) of M̃zo in which the connection matrix of D
′
zo

has a simple pole at t′ = 0 (see (5.3.7) in [10]). By considering the maximal
order of the poles of the coefficients in the basis e(zo) for a section of the sheaf

M̃zo and using the term (1 + |zo|2)dt′/t′2 in the zo-connection, we see that
H−1(DR(FMzo ⊗ E−c(zo)t)) = 0, and hence H−1(DR(FMzo ⊗ E−c(zo)t)(2)) = 0.
On the other hand, the same argument shows that any local section at t′ = 0 of

M̃zo⊗Ω1X with maximum order of a pole equal to k is equivalent, modulo the image
of the operator D′zo + (1 + |e|zo2)dt′/t′2, to a section having a pole of maximum
order � k − 1. Iterating this process and using the moderate behaviour of the
h-norm of each element in the basis e(zo), we see that such a section is equivalent
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to a section of M̃zo ⊗ Ω1X which is an L2 section with respect to the metric h, or,
equivalently, that the morphism

H0
(
DR(FMzo ⊗ E−c(zo)t)(2)

)
→ H0

(
DR(FMzo ⊗ E−c(zo)t)

)
is onto.
Finally, for a given local section of the sheaf M̃zo ⊗ Ω1X which is an L2 section

(with respect to the metric h) and belongs to the image of (D′zo − (1 + |zo|2))M̃zo,
an argument of the same kind shows that this section is in the image of an L2

section of M̃zo; equivalently, the morphism

H0
(
DR(FMloc,zo ⊗ E−c(zo)t)(2)

)
→ H0

(
DR(FMloc,zo ⊗ E−c(zo)t)

)
is injective. This completes the proof of Lemma 3.

3.3. L2L2L2 de Rham–Dolbeault lemma. We consider the C∞ bundle H equipped
with the metric h and with the zo-connection Dzo − (1 + |zo|2)dt (which we denote
below by D̃zo for simplicity)together with the associatedL

2 complex L•(2)(H, h, D̃zo).

In particular, we note that the d′′-operator is D′′zo , the corresponding holomorphic
subbundle is Vzo , and the extension of this holomorphic subbundle obtained by
considering the sections with h-norm of moderate growth is Mloc,zo (see Corol-
lary 5.3.1(1) in [10]).
The ‘holomorphic’L2 subcomplex is the following subcomplex of the L2 complex

L•(2)(H, h, D̃zo):

0 −→ kerD′′(0)zo

D̃′zo−→ kerD′′(1)zo
∩ L(1,0)

(2)
(H, h,D′′zo) −→ 0, (3.1)

where D
′′(k)
zo stands for the action of the operator D′′zo on L

k
(2)(H, h,D

′′
zo). Our

objective in this subsection is to prove the following assertion.

Lemma 4 (L2 de Rham–Dolbeault lemma). Suppose that (H, h,DV ) is a tame
harmonic bundle on X∗an. In this case the inclusion map of the holomorphic L2

subcomplex (3.1) into L•(2)(H, h, D̃zo) is a quasi-isomorphism of complexes.

The proof is analogous to that of the Dolbeault lemma in [15] and is parallel to
the proof of Theorem 6.2.5 in the preprint [10], to which we shall repeatedly refer.
As above, we work near ∞ because the result away from the point ∞ is contained
in §§ 6.2.d and 6.2.e of [10].
In the definition of the L2 complex the L2 condition on sections and the condition

concerning the action of the anti-holomorphic part of the connection are the same
as in §§ 6.2.d and 6.2.e of [10]. The L2 condition on the derivative of sections is
changed. The new term (1+ |zo|2)dt′/t′2 in the holomorphic part of the connection
simplifies the proofs.
We use polar coordinates: t′ = reiθ. Let us first recall some notation used

in [10]. Near the point t′ = 0 the bundle H is equipped with a D′′zo-holomorphic

basis e′(zo). The h-norms of the elements of this basis are of moderate growth near

t′ = 0. We denote these elements by e
′(zo)
β,�,k, where β = β

′ + iβ′′ ranges over a finite
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set of complex numbers whose real parts β′ belong to [0, 1[, 	 is an integer (the
weight of the element), and k is an index used to distinguish different elements
having the same data β and 	. Let Θ′zo be the connection matrix of D

′
zo
in the

basis. This matrix can be represented as the sum of a diagonal part and a nilpotent
part, Θ′zo,diag +Θ

′
zo,nilp

, with

Θ′zo,diag =
⊕
β

(qβ,ζo + β) 
 z Id
dt′

t′
,

Θ′zo,nilp =
[
Y+ P (t, z)

]dt′
t′
,

where Y =
(⊕

β Yβ
)
and qβ,ζo stands for an integer chosen in such a way that the

number 	zo(qβ,ζo + β) := qβ,ζo + β
′ − ζoβ′′ belongs to [0, 1[, ζo being the imaginary

part of zo. Let the basis be indexed so that Y(e
′(zo)
β,�,k) = e

′(zo)
β,�−2,k for any 	 and k

and let the term P (t, zo) be given by the formula (6.2.7) in [10].

We recall the notation D̃zo = Dzo + (1 + |zo|2)dt′/t′2. Then Θ̃′zo,nilp = Θ
′
zo,nilp

and Θ̃′zo,diag = Θ
′
zo,diag

+ (1 + |zo|2) Id dt′/t′2 in an obvious notation.

Vanishing of H2. First, we can apply Lemma 6.2.11 of [10] with a fixed value z = zo
without any modification. The entire proof is thus reduced to showing that if the

expression f(r)e′β,�,k
dt′

t′
∧ dt

′

t′
defines a local section of the sheaf L2(2)(H) for any β

with 	zo(qβ,ζo +β) = 0 and any 	 � −1 (in fact, it suffices to use 	 = −1, because z
is equated to zo here), then this section belongs to the image of the operator D̃zo.
We note that

D̃zo

(
t′f(r)e′β,�,k

(
zo
dt′

t′
+
dt′

t′

))
=
(
1 + |zo|2 + zo + (β 
 zo)t′

)
f(r)e′β,�,k

dt′

t′
∧ dt

′

t′

+Θ′zo,nilp

(
t′f(r)e′β,�,k

(
zo
dt′

t′
+
dt′

t′

))
.

As in [15] and [10], one can readily see that the last term is in L2. Thanks to the fac-

tor t′, this term belongs to the image of the operator D̃′′zo = D
′′
zo (see Lemma 6.2.11

in [10]). For the same reason, the part multiplied by t′ in the middle term is in the

image of D′′zo . Hence, both expressions belong to the image of D̃zo. To complete
the proof, it remains to note that the constant 1 + |zo|2 + zo cannot vanish.

Computation of H1. By the previous result, the L2 complex L•(2)(H, h, D̃zo) is

quasi-isomorphic to its subcomplex

0 −→ L0(2)(H, h, D̃zo)
D̃zo−→ ker D̃(1)zo −→ 0.

Let us now prove an analogue of Lemma 6.2.13 in [10]. That is, we claim that any

local section ψ dt/t+ϕdt/t in ker D̃
(1)
zo ⊂ L1(2)(H, h, D̃zo) can be represented as the

sum of a term in Image D̃zo and a term in L
(1,0)
(2) (H, h)∩ ker D̃

(1)
zo .
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The first part of the proof of Lemma 6.2.13 in [10] can be applied similarly to
the present situation, and this reduces the proof to the case in which we start from

a local section ω = ψ
dt′

t′
+ ϕ
dt′

t′
in ker D̃

(1)
zo , where ϕ =

∑
β,�,k ϕβ,�,k(r)e

′(zo)
β,�,k, and

ω satisfies the equation D̃zoω = 0.

Further, we consider the coefficient of e−iθe
′(zo)
β,�,k

dt′

t′
∧ dt

′

t′
in the relation

D
′′
zo

(
ψ
dt′

t′

)
+ D̃′zo

(
ϕ
dt′

t′

)
= 0.

Denoting by ψβ,�,k;−1(r) the coefficient of e
−iθ in the Fourier expansion of ψβ,�,k,

we see that for any β, 	, k

ϕβ,�,k(r)e
′(zo)
β,�,k

dt′

t′
=
1

2
r(r∂r − 1)ψβ,�,k;−1(r)e′(zo)β,�,k

dt′

t′

= D′′zo
(
re−2iθψβ,�,k;−1(r)e

′(zo)
β,�,k

)
.

Since the local section ψdt′/t′ is an L2 section, it follows that rψ is also, and hence

D̃′0(re
−2iθψβ,�,k;−1e

′(zo)
β,�,k) is also an L

2 section.

This computation shows that ω is equivalent modulo Image D̃zo to a (1, 0)-section

which is an L2 section and belongs to ker D̃
(1)
zo (because D̃zoω = 0), as was expected.

3.4. End of the proof of Proposition 1. We present the proof in four steps.
1. Arguing exactly as in § 6.2.f of [10], we show that the ‘holomorphic’ L2 com-

plex (3.1) is equal to its subcomplex DR(FMloc,zo ⊗E−c(zo)t)(2). By the coherence,
the hypercohomology of the complex DR(FMzo⊗E−c(zo)t) is finite-dimensional. By
Lemma 3 and the above arguments, so is the hypercohomology of the holomorphic
L2 complex (3.1).
2. It follows from Lemma 4 and the previous result that the cohomology

of the complex of sections Γ(X,L•(2)(H, h, D̃zo)) is finite-dimensional. According to

the isometry (2.5), the cohomology of the complex Γ(X,L•(2)(H,
F h,F Dzo)) is also

finite-dimensional. We can therefore apply Hodge theory to this L2 cohomology.
The corresponding space of harmonic k-forms (k = 0, 1, 2) is finite-dimensional, and
its dimension does not depend on zo, because the Laplacian of

FDzo with respect
to the metric Fh is essentially independent of zo, since the triple (H,

F h,F DV ) is
harmonic.
3. Arguing in the reverse direction, we see that the dimension of the space

Hk(X,DR(FMzo ⊗ E−c(zo)t)) (k = −1, 0, 1) does not depend on zo. If zo = 1,
then the non-trivial cohomology is of degree 0 only (this is well known for a regular
holonomicDX -module twisted by an exponential e

λt with λ ∈ C∗). This is therefore
true for any zo; moreover, the dimension of H

0 is independent of zo.
4. It remains to note that the hypercohomologies of the complexes DR(FMzo ⊗

E−c(zo)t) and DR(FMzo) are of the same dimension. This is clear if zo = 0, because
the objects are equal in this case. On the other hand, if zo 	= 0, then we reduce the
problem to DX -modules. Working algebraically, we reduce the problem to proving
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the following fact: for a given regular holonomic C[t]〈∂t〉-module the dimension
of the cokernel of the operator

∂t − λ : M →M

does not depend on λ ∈ C∗. This follows from the regularity of the module M at
infinity.

Remark 1. One can give another proof of Proposition 1 if zo 	= 0 by using the
zo-connection Dzo − dt on H with the metric e2 Re(zot)h. This proof would be
analogous to that in [8] and one can use the isometry (2.4) instead of (2.5).7

Nevertheless, the intermediate steps will be different, because an analogue of
Lemma 3 in which the L2 condition is taken with respect to the metric e2 Re(zot)h
fails. As in [8], the lemma works in the space obtained from X by a blowing-up at
infinity over the reals. The comparison between various complexes must be made
on this space. However, such a proof seems to have no extension to the case zo = 0,
and we do not present it here for that reason.
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