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Wild twistor 2-modules

Claude Sabbah

Abstract.

We propose a definition of (polarized) wild twistor 2-modules,
generalizing to objects with irregular singularities that of (polarized)
regular twistor Z-modules. We give a precise analysis in dimension

one.
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§ Introduction

In [20], we have introduced the notion of polarized regular twistor
2-module on a complex manifold, and one of the main results was a de-
composition theorem for the direct image of such objects by a projective
morphism between complex manifolds. A consequence of this theorem
was the proof of a particular case of a conjecture of M. Kashiwara, say-
ing that the direct image by a projective morphism of an irreducible
holonomic Z-module on a projective manifold should decompose into
direct sums of irreducible holonomic Z-module on the target manifold.
The particular case treated was that of a smooth twistor Z-module.
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T. Mochizuki, through a very precise analysis of harmonic metrics
on the complement of a normal crossing divisor in a projective complex
manifold [14], succeeded in proving the equivalence

polarized reqular twistor 2-module

I

semisimple regular holonomic P-modules

on a projective manifold, giving therefore a proof of the conjecture of
M. Kashiwara for semisimple regular holonomic Z-modules.

On the other hand, using the Riemann—Hilbert correspondence, one
can state the conjecture for perverse sheaves, and it is equivalent to the
conjecture in the regular case. From this point of view, the conjecture
has been proved by V.Drinfeld [4], modulo a conjecture of de Jong,
partly proved later by G. Bockle and C. Khare [2] on the one hand and
proved by D. Gaitsgory [5] modulo results not yet written up on the
other hand.

The goal of this article is to introduce a category of (polarized)
wild twistor Z-modules. Conjecturally, on any projective manifold, this
category (in the polarized case) would be equivalent to the category of
semisimple holonomic Z-modules, and this would provide us with a tool
for an analytic proof of the conjecture of M. Kashiwara for (possibly non
regular) semisimple holonomic modules. We develop, in this context, an
idea of P. Deligne [3] for defining nearby cycles for irregular Z2-modules.

However, we do not give here any result in the direction of the
previous conjecture. One would need to develop an analysis of harmonic
metrics analogous to that developed by T. Mochizuki for tame harmonic
metrics. Nevertheless, in dimension one, such kind of results have been
obtained by O.Biquard and Ph. Boalch [1].

The main result of this article (Theorem 5.0.1) is an analysis of
the behaviour of wild twistor Z-modules on a Riemann surface in the
neighbourhood of the singularities.

Remark. In the recent preprint [15], T. Mochizuki enlarges the frame-
work developed here and gives complete results on the theory.

Acknowledgements. 1 thank the referee for his useful comments.

§1. Preliminaries

In §§1.1, 1.2 and 1.3, we quickly review definitions and results from
[20] concerning Z g -modules, which we refer to for more details. In
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§1.4, we give complements on the notion of strict S-decomposability
which was used in [20].

1.1. Notation and basic definitions

We fix a coordinate z on the complex line C. We denote by A the
closed disc |z] < 1 and by S its boundary |z| = 1. We will usually denote
by Qg some open disc of radius r > 1, and r—1 can be chosen arbitrarily
small.

Let X be a complex manifold. We denote by a curly 2" the product
X x Ap and by Og the sheaf on 2 of germs on 2 of holomorphic
functions on X x Q. The sheaf Z 4 of holomorphic differential operators
is locally defined in coordinates as g (0, , ..., 0z,) With 0,; := 20,
and, for any f € Og, [0.,, f] = 20f/0x;. The category of left Za -
modules is equivalent to the category of &2 -modules equipped with a
z-connection (i.e., a C-linear endomorphism satisfying Leibniz rule with
2d instead of the usual differential d).

A O -module is said to be strict if it has no &g, ja,-torsion. The
word “strict” always refer to such a property.

We often use the notion of coherent, good, and holonomic (left or
right) Z 2-module (cf. [20, Def. 1.2.4]).

Regarding the projective line P* as the union of two charts o and
Qoo, we denote by o the anti-linear involution z — —1/%, where %z de-
notes the usual conjugate of z. We use the notation ™ for the “twistor
conjugation”: if f € €(Q), we define f € &(c()) by the formula
f(2) = f(=1/%) (on the right-hand side, the conjugation is the usual
one on complex numbers). If 5 is a holomorphic bundle on Qg, then
its “conjugate” =0 His a holomorphic bundle on Q.

Twistor conjugation on £ is meant as the usual conjugation on
functions on X and twistor conjugation with respect to z. We denote by
Z the product X x Ao and by O the sheaf of holomorphic functions
on X x A (i.e., anti-holomorphic with respect to X). The conjugate
A of aleft Zg--module is a left F-module.

We denote by €5 """ the sheaf of C* functions on 2  which are
holomorphic with respect to z. Similarly, €y ¥ denotes the sheaf of
continuous functions on £~ which are C* with respect to X. We denote
by Dbxs/s the sheaf on X x S of distributions which are continuous
with respect to S.

An object F of the category %-Triples(X) consists of a triple
T = (M, M", C), where ', H" are left A4 -modules and C is a
sesquilinear pairing ///|’S ®6s ///l’é — Dbxys/s, with Ojs 1= Oq 5. We
say that 7 is smooth if #', #" are € g -locally free. In such a case,
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C takes values in ‘@}olg (cf. [20, Lemma 1.5.3] where ‘g%gn should read

0,0
(fms)'

The Tate twist by k € 3Z of .7 is defined by
T (k)= (A, ", (iz)"*C).

1.2. Localization away from a hypersurface

Let Xo be a complex manifold, let D be an open disc in C centered
at the origin with coordinate ¢, and let X be an open set in Xy x D. We
also regard t as a function on X, and we denote by 0; the correspond-
ing vector field. For simplicity, we may also denote by Xy the divisor
t=1(0) C X (which is open in the original Xj).

We can extend the previous definitions to %4 [t~!]-modules:

Definition 1.2.1. The category 7 Triples(X) consists of objects
T = (/Z/T, //?7’,5), where /ZZ, M are R 2 [t ']-coherent and Cisa
sesquilinear pairing between them taking values in the sheaf Db x x5/ [t71]
of distributions on {¢ # 0} depending continuously on z € S and having
moderate growth along {t = 0}.

There is a natural functor (localization away from {t = 0}) from
- Triples(X) to %- Triples(X).

1.3. Strict specializability
We keep notation of §1.2. Let .# be a coherent #Z g -module. We

say that .# is strictly specializable along {t = 0} (cf. [20, Def. 3.3.8)]) if it
has locally a decreasing Kashiwara—Malgrange filtration V(;O)/// indexed

by R with Bernstein polynomial having the special form' of a product
of terms td; — 8 x z, where 3 z := Ref + i(2? + 1)Im3/2 (cf. [20,
(3.3.3)] where we replace 8;t 4+ ax z with t8; — 3%z with 3 = —a— 1) for
which the graded pieces have no z-torsion, and are generated through
the action of ¢ or 8, by those for which the real part of the index belongs
to [—1,0]. We will also use the notation 8 = 8’ + 16" with 3/,8" ¢ R
and £,(8) := Re(f8' +iz8") = 3’ — 8" Imz (cf. [20, §0.9], or [14] for a
different notation p, ¢).

Remark 1.3.1 {Decreasing V-filtration). In this article, we use the
decreasing convention for the V-filtrations. We indicate increasing fil-
trations with lower indices, and decreasing ones with upper indices. The

'One can introduce more general kinds of Bernstein relations, in order to
take into account various parabolic filtrations, as in [14]. We will not do this
here.
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correspondence with [20] is as follows, setting 8 = —a — 1,

V(Zo) — ‘/(z ), ¢f,0¢ = 1/)?7
and Upo= \Ilf for Rea € [-1,0), so Re3 € (—1,0].

If A is strictly specializable along {t = 0} then, for any 8 € C,
one defines the Zg,-modules 1/Jt A, equipped with a nilpotent endo-
morphism N induced by —(¢8: — B x 2). The monodromy filtration
M, attached to N on 1/)5 M, indexed by Z, is defined by the prop-
erties that N sends My in My_o and that, for each ¢ > 0, N in-
duces an isomorphism gr}! < gr™,. (In general, gr)! 4 .# is possibly
not strict, but it is so when .# underlies a twistor 2-module.) The
primitive submodule P gr)! tB A is defined, as usual, as the kernel of
N oMoyl g — oMyl

These notions can be extended (with a similar notation) to Za [t ~1]-
modules .4, cf. [20, § 3.4].

We have functors between the categories of Zg- and Z4[t™1]-
modules which are strictly specializable along {t = 0}: the first one
is the localization away from {t = 0}, and the other one is the minimal
extension across {t = 0}.

If A is strictly specializable along {t = 0}, then the localized mod-
ule #[t~1] is Za [t~!]-coherent and strictly specializable along {t = 0},
and we define WP .# = ¢?(#[t™']). The properties of ¥ are given in
(20, §3.4].

Conversely, given any strictly specializable //{ we can define its
minimal extension .#pnin, across {t = 0} as the Z g -submodule of M
locally generated by V7§ 1/// (cf. [20, § 3.4.b]).

Starting from a strlctly specializable Z 2 -module ., we then de-
note by M min, the Z g -module obtained from .# by composing both
functors, namely i, = (%mint. We say that . is a minimal
extension across {t = 0} if A = M, -

If 7 = (A, #" C) is an object of %Z- Triples(X) and if A, #"
are strictly specializable along {t = 0}, then the pairing C can be special-
ized to each 1/1?///’,1#?//{”, defining thus gbtﬁ.? (cf. [20, (3.6.10)]). For
any £ > 0, the pairing d) C induces a pairing 1/)t £C between g™, Q/Jt M
and the conjugate of gr, wtﬁ M". We denote by Py>*C the pairing
Y2 ((iN)4e,7) induced between Pgrd P 4" and P grd ¢P. 4", This
defines an object P gr)! 1/)t . We will also have to consider the twisted
object P grM P 7 (£/2), with Py C(0/2) = (iz) "t Py *C.
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Similarly, if T = (A, M C) is an object of %- Triples(X) and if
/AN 7', M" are strictly spec1ahzable along {t = 0}, then the pairing C can
be specialized to each wf AR 7 /// #", with the same procedure as above.
This defines wtﬁ g.

If 7 is obtained by localization of Z then, for Re 3 € (—1,0], the
specialized pairing ¢°C is equal to ¢ C (this follows from [20, (3.6.10)
and Rem. 3.4.4]). In other words, we can define U7 .7 as o 7, consis-
tently with [20, Def. 3.6.11].

Let now f : X — D be a holomorphic function. We denote by
if : X — X' := X x D the graph inclusion = — (z, f(z)).

Definition 1.3.2. If .# is a coherent Z g-module (resp. if J is an
object of Z- Triples(X)), we say that .# (resp. 7) is strictly specializable
along {f =0} if iy A (resp. iy +7) is so along {¢t = 0}.

A similar definition can be made for a Z 4 [t~!]-module M or an ob-
ject T of %- Triples(X). The notion of direct image i+ is well-defined
from the category of Z[1/f]-modules to that of Zg[t~1]-modules
in a way compatible with the direct image of #Z4-modules, that is, if
M= A1/ f], then iy M = (ig )]t~ 1. A similar notion applies to

the corresponding categories %- Triples(X) and 7 Triples(X’).

1.4. Strictly S-decomposable objects

Let .4 be a strictly specializable # g -module along {t = 0}. We
say that it is strictly S-decomposable along {t = 0} if M = Mpin, ® A",
with .#" having support in {t = 0}. We notice that .#", being a direct
summand of a strictly specializable object, is also strictly specializable
along {t = 0}, hence take the form iy .4/ for some coherent % o, -module
(Kashiwara’s equivalence [20, Cor. 3.3.12]), where i : Xy < X denotes
the inclusion, and in fact A7 = Ker[t : 4" — #"]| (given any 4"
supported in {t = 0}, we always can define .#"” by the previous formula,
and the strict specializability of .#" insures that #" =i, .#"). In |20,
Prop. 3.3.11], we gave a characterization of such strictly specializable
modules in terms of the morphisms can and var, in a way analogous to
[22, Lemme 5.1.4].

__Remark 1.4.1. Let f : X — D be a holomorphic function and let
4 be a coherent Z 4 [1/ f]-module. With the only assumption of strict
specializability along { f = 0}, it is not clear whether (3¢ # )min, is if+
of some #Zg-module. We will show below that, with the stronger as-
sumption of strict S-decomposability, this property holds, and it enables
us to define the minimal extension of .# across {f = 0}.
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We say that 4 (resp. J) is strictly S-decomposable along {f = 0}
ifig M (resp. if 4 T) is strictly S-decomposable along {t = 0}.

Lemma 1.4.2. If # is strictly S-decomposable along {f = 0}, then
the decomposition i 1 M = (if ¢ M )min, B (i5,+.#)" is the direct image
by i of a decomposition M = M S H".

We will then denote .#’ by .#min ; and call it the minimal exten-
sion of . across {f = 0}. (This lemma is implicitly used in [20,
Prop. 3.5.4], when proving the existence of the decomposition of a strictly
S-decomposable holonomic Z #-module with respect to the strict sup-
port.)

Proof of Lemma 1.4.2. Wehave # = Ker[t—f :i5 M — if  M].
We set A" = Ker[t — f : (if+ M )min, — (if,+ M )min,] and A" =
Kerl[t—f : (if+.#)" — (if,+.#)"]. Then we clearly have # = .#'®.4"
and iy A" C (bf+ M )min,, t5+ A" C (if+.#)". Both inclusions are
equalities, as their direct sum is an equality by assumption. Q.E.D.

Remark 1.4.3. If .# is strictly specializable along {f = 0}, it is also
strictly specializable along { f™ = 0} for any r > 1 (cf. [20, Prop. 3.3.13]).
If A is strictly S-decomposable along {f = 0}, then the decomposition
M = Mmin, ®.#" is also a decomposition relative to f7, so in particular
AMmin, 18 also the minimal extension relative to f.

We say that . is strictly S-decomposable at z, € X if it is strictly
S-decomposable with respect to any germ at z, of holomorphic function
on X, and that .# is strictly S-decomposable if it is so at any point z,
of X.

The following lemma is implicitly used in loc. cit.:

Lemma 1.4.4 (Kashiwara’s equivalence for strictly S-decompos-
able Z 4 -modules). Let i : Z — X be the inclusion of a submanifold.
A coherent Z o -module A is strictly S-decomposable and is supported
i Z if and only if there exists a coherent strictly S-decomposable Iz -
module M such that iy H# = A . We then have # = Ox Qp, N .

Proof. According to the second part, the problem is local, so we
can reduce to the case where Z is defined by an equation ¢t = 0, where ¢
is part of a coordinate system on X.

Let .# be a coherent strictly S-decomposable Z z-module. We will
first prove that i..# is a strictly S-decomposable Z 4 -module.

On the one hand, let f be a holomorphic function which vanishes
identically on Z. Denote by if : X — X x C the natural inclusion, and
by w the coordinate on C (corresponding to f). Then i(z) = (z,0) and
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if oi(z) = (2,0,0), and the strict decomposition of (if o4).# along
u = 0 is clear from that of i, .# along ¢t = 0.

On the other hand, if f does not vanish identically on Z. Denote by
if: X = X xC and i5)z : Z — Z x C the natural inclusions, and by u
the coordinate on C (corresponding to f or f|Z). Denote by i’ : ZxC —
X x C the inclusion ¢ x Idc. Then if oi = 4’ 0 if|z. By assumption,
if|z,+# is strictly S-decomposable along {u = 0}. Then one easily
checks that i/, (ifz 4. #) = if  (i4.#) is strictly S-decomposable along
{u = 0}, as the V-filtration relative to u is obtained from that of iy 7 , .#
by applying ¢/, .

Conversely, assume that .4 is strictly S-decomposable on X and
supported on Z. It then strictly specializable along {t = 0} and, by
[20, Prop.3.3.11(b)], it takes the form i,.# with # = V-'A4". Any
holomorphic function f on Z locally extends as a holomorphic function
on X, and the V-filtrations of is .# and i .4 along {t = 0} are
easily related, showing that .# is strictly specializable along {f = 0}
(resp. strictly S-decomposable) if .4 is so. Q.E.D.

Let now J = (A',.#",C) be an object of Z-Triples(X). We
say that it is strictly S-decomposable (resp. holonomic) if .#’, .#" are
so. If 7 is holonomic and strictly S-decomposable, then .#", .#" have a
decomposition with respect to the strict support, and C also decomposes,
according to [20, Prop. 3.5.8], hence 7 also admits a decomposition with
respect to the strict support.

Lemma 1.4.5. Kashiwara’s equivalence 1.4.4 applies to strictly S-
decomposable objects of Z- Triples(X).

Proof. This is Lemma 3.6.32 in [20]. QE.D.

1.5. Minimal extension of strictly specializable objects
of Z#- Triples

Let us take the setting of § 1.2. We have considered the two func-
tors called “localization along {t = 0}” and “minimal extension across
{t = 0}” between strictly specializable® Z 4 [t~!] and % -modules.

At many places it is simpler to work with Z4 [t~!]-modules, for
instance when considering ramification along {¢ = 0}. However, when
taking de Rham complexes (or direct images), finiteness (or coherence) is
obtained for coherent #Z g -modules only. When trying to extend similar
properties to objects of Z- Triples(X ), we are led to define these functors

at the level of the categories - Triples(X) and %- Triples(X).

2along {t = 0}, if no other indication.
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Let F = (A',.#",C) be an object of %-Triples(X) which is
strictly specializable along {t = 0}. Then we say that  is a mini-
mal extension across {t = 0} if A, #" are so.

Given any strictly specializable object = (&', .#",C), the local-
ization along {t = 0} is the object T = (//?7, M, C), where MM
are the localization of .#',.#", and C is the natural extension of C
taking values in Dby ys/s[t™].

On the other hand, we did not define in [20] the minimal extension
Tmin,, that is, we did not define a sesquilinear pairing Ciin, between the
minimal extensions .#;, and . . The sesquilinear pairing C be-
tween 4’ and .#" takes values in distributions having moderate growth
along {t = 0}, and one searches for a natural “principal value” Cpipn, of
C as being a sesquilinear pairing between in, and A taking val-
ues in ordinary distributions (being understood that the distributions
depend on z € S in a continuous way; in other words, we work with
Dbx «s/s and Dby ,s/s[t™']). Such a result was not needed in [20], as
we mainly worked with strictly S-decomposable objects.

We will use the results of [20, Appendix], as detailed in [21], to
construct Cpin, , hence Jmin,. We introduce a new variable 7 and denote
by Al the corresponding complex line. We denote by p the projection
Z = X x Al - X. We denote by &7/t the free O[t~']-module of
rank one, with generator denoted by “e~7/#*” equipped with the action
of Z[t!] defined by

o, “e—'T/Zt” — __cce—‘r/ztn

t26t 446—1/21,‘77 =T. :ce—r/ztn7
and we set %4 := &-7/** @ pT A, where the tensor product is taken
over O«[t~!] and is equipped with its natural structure of left Z4[t~!]-
module (see loc. cit. but be careful that the variable called ¢ here corre-
sponds to the variable called t’ in loc. cit., and we do not consider here
the chart with variable 1/, called ¢ in loc. cit.).

Proposition 1.5.1. Let M be Ra [t™1]-coherent and strictly spe-
cializable along {t = 0}. Then Z# is Ra-coherent and strictly spe-
cializable along {T = 0} and is a minimal extension across {T = 0}.
Moreover, we have a natural isomorphism

Menin, = Pere 922

Proof. This is proved in [21, Prop.4.1]. One has to notice that
the assumption of regularity made in loc. cit. is only used to obtain
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regularity of 24 along {r = 0} and to obtain properties of Z# along
T =71, # 0. These properties are not used here. Q.E.D.

Remark 1.5.2. In [21, Prop.4.1], we start from a coherent Za-
module .# which is strictly specializable along {¢ = 0}, but the proof

only uses the localized object ..

Let 7 = (//?7 M C) be a strictly specializable object of

- Triples(X). In [20, §A.2.c], we have defined the object ¥7 =

(Z#',%H",7C) of - Triples(Z) and we have proved (cf. [21, Prop. 5.8]):

Proposition 1.5.3. If 7 is a minimal extension across {t = 0},
then

T = Par¥ (7). Q.E.D.

In fact, the construction of %7 in loc. cit. is done starting from an

object of Z- Triples(X), but it is well-defined starting from an object T
instead of an object 7. It is therefore natural to define in general:

Deﬁni~ti0n 1.5.4 (of %int). Let 7 be any strictly specializable
object of Z- Triples(X). We define

(1.5.4)(x) Tomin, = P grM (% 7).

§2. Strict Deligne specializability

In §2.1 we recall the notion of nearby cycles for irregular Z-mod-
ules introduced by P.Deligne [3], in order to explain the analogue for
X 2-modules.

2.1. Irregular nearby cycles, after Deligne

In this section, we use the setting of § 1.2, but we work with holo-
nomic Zx-modules. Let M be a holonomic @X—modflﬂe and let M be
its localization away from {t = 0}. We denote by V*M its Kashiwara—
Malgrange filtration and we have well-defined holonomic Zx,-modules
d)tﬁ M , for Re 8 € (—1,0]. It is known that 1/1? M are zero except for a
locally finite number of #’s. But it may happen that all of them are
zero. Therefore, they do not give any interesting information on M
along {t = 0}.

We note that wa = 2(t* Lexp —2rip ®M), where Lexp —2rig s the
rank one C{t}[t~!]-module with connection twisted by t~# and t* de-
notes the pull-back of connections by the map ¢ : X — D. In other
words, M = @®pyYd(ttL ® M), where L runs over the C{t}[t™}]-
modules with connection having regular singularity and which are ir-
reducible (i.e., of rank one).
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Definition 2.1.1. Let N be a free C{t}[t~1]-module with connec-
tion. We say that it is formally irreducible if C[t] [t7'] ®cyeye-1) N is
irreducible.

According to a classical result of Turrittin and Levelt, the free
C[t] [t~ !]-module with connection N is irreducible if and only if there
exists an integer ¢ > 1 such that, denoting by pq : t4 — t = tI the
ramification of order g, N is the direct image by pg of a elementary
C[t4] [t; ']-module with connection £~¢ @ L, where L and &% satisfy
the following properties:

(1) L is regular and has rank one,
(2) €7% = (C{ty}[t; '), d — dp) with ¢ € t;'C[t; '], and for any
gth root of unity ¢ # 1, o(Cty) # w(ty).

Definition 2.1.2 (Irregular nearby cycles). If M is left holonomic
P x-module, the irregular nearby cycles 1¥P°' M are defined as

(2.1.2)(%) YPIM = @ (TN M).
W form.

Let us note that ¥P*'M only depends on the localized module M.
In dimension one, the theorem of Levelt—Turrittin for M can be restated
by saying that giving the formalized module M” is equivalent to giving
sz‘ﬂ]\Af , which is a finite dimensional graded vector space (the grading
indices being the formally irreducible N’s) equipped with an automor-
phism.

It will be more convenient to use the following expression for P M.
We say that ¢ € t;'C[t; '] is t-irreducible if it satisfies Condition (2)
above, i.e., if pg &% is irreducible. Then,

(2.1.3) YP'M= @ D Y (tTpETP M)
¢ t-irred. Re 8e(—1,0]

In dimension > 2, the situation can be more complicated than in
dimension one. Let us consider the following examples:

Ezample 2.1.4. Xy = Al is the affine complex line with coordinate
and X is an open set in Xy x C (coordinates x,t). Let M be equal to
Ox[t™1] as a O@x-module, equipped with the connection e™*/*odoe*/t =
d+dz/t —zdt/t?>. We denote by ©*/*” the generator 1 of M. It satisfies
thus both relations

(t26t + fE) 4éw/tn =0 and (taz _ 1) C%Z/tn =0.
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The second relation implies that the V-filtration along ¢ = 0 is constant
equal to M. The same computation can be done after tensoring by
any formally irreducible connection in dimension one. It follows that
¥PeIM = 0, and the irregular nearby cycles along {t = 0} do not seem
to bring any information on M along {t = 0}.

Instead of considering “€*/*” as in the previous example, we consider
@2’/ t  defined in a similar way. Then one can show that ZDPEIM is a
Px,-module supported at x = 0 and having t~-monodromy equal to — Id.

Remark 2.1.5. When the morphism ¢ : Supp M — Al is algebraic,
Deligne [3] proved that the sum in (2.1.2)(x) is finite. One can conjecture
that, in the analytic case we consider here, the same result holds in the
neighbourhood of any compact set. This should be a consequence of the
existence of a good formal structure after blowing-up.

2.2. Strict Deligne specializability for Z 4 [t~!]-modules

We keep notation as in § 2.1. We denote by D (resp. Dy) some open
disc with coordinate t (resp. t;) and by p; : Dy — D, tg — t = tI,
the ramification of order q. As above, we set 2 (resp. ;) for D x £
(resp. Dy x ). We now define £~%/7 as the free rank-one g, t;')-
module with generator denoted by ‘€~%/#” and with the z-connection
zd — dp. Then p, & %/% is a free Op[t~']-module of rank ¢ with 2-
connection.

Let f : X — D be a holomorphic function. The pull-back ftpg +& —w/z
is a free @4 [1/ fl-module with a z-connection, hence is a left Za[1/f]-
module.

Definition 2.2.1. We say that a Za[1/f]-module M is strictly
Deligne specializable along f = 0 if, for any ¢-irreducible ¢ € t7*C[t;!],
f*pq,+o@_“’/z Q62 (1/f] M is strictly specializable along f = 0. We then
set

(222) v A= @ D V(e R4y M).
@ t-irred. Re B€(—1,0]

We say that a morphism p : //?I — /Z/; between strictly Deligne spe-
cializable Z 4 [1/ f]-modules is strictly Deligne specializable along f = 0
if, for any t-irreducible ¢ € t;'C[t; '], the induced morphism

@ : [P 87"* @p iy f) M — ¥ 8™ Qo ppiyg) Mo

is strictly specializable in the sense of [20, Def. 3.3.8(2)], i.e., Ker and
coker of 1/1? (Id ®u) are strict for any 3.



Wild twistor 2-modules 305

This definition extends to Z 4 -modules and Z 4 -linear morphisms:
we ask that such a module or morphism is strictly specializable in the
sense of [20, Def. 3.3.8] and that the localized object satisfies the previous
definition. _

We now define the twist by f*pg +& —#/% on objects of - Triples(X).
We have a natural pairing ¢, _, on &~%/# which takes values in func-
tions with moderate growth on D depending continuously on z € S,

defined, on the generator G/ of £—¢/z by
(2.2.3) Carmp(e™9/77 4= 0/27) = 2P0/2,

Since z € S, we have 1/z = Z, where Z denotes the usual complex conju-
gate of z, so the exponent in the exponential term reads 2 Im(z%) and
the function e*?~%/% has moderate growth, as well as all its derivatives,
along {t; = 0}.

The direct image ¢_,, of &g, by pg is defined as usual: a Ogp[t™!]-
basis of pq’+£’”‘9/z consists of “e‘“"/z”,tq =l ,tg_l %=®/27 and
we set, for any test function x on D which is infinitely flat at ¢t = 0,

~ ¢, — ” - » ; dt dz
(E-plth eme/= t e el ),x(t)#?/\?>
s cdt, dt
=/ t’;tf;ez‘p. ‘p/zx(tg)qzﬁ—t—q A f_q'
D, q q

We note that ¢_,, is nothing but the trace of ¢; _, by pq, and is also a
C® function with moderate growth on D*, depending holomorphically
on z.

~ 1 ——

If C: Ms ®o Ms — Dbxxs/s[l/f] is a sesquilinear pairing,
then one defines in a natural way a pairing 6'_¢ after twisting each term
by ftpe+& /%, using the fact that f*5_¢(t§ “e“"/z”,tﬁ v/ ig a
multiplier on Dbx «g/s[1/f]. This construction defines ftpg+ & 90T
as an object of #Z- Triples(X).

For a strictly Deligne specializable M (or ﬁ/), we can therefore
consider the (i, 8)-irregular nearby cycles defined as

VLM = ([ pg 97 @ M)
or WP T =l (frpg 679" 0 7),

where the functor @b? is the functor used in § 1.3 (that is, 1 o £it)-
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Remark 2.2.4. These definitions and constructions extend in a nat-
ural way to Z g -modules or objects of %Z- Triples(X), as tensoring with
ftpg+& —#/% does not distinguish between .# and M. We denote by
\II?’ﬂ the corresponding functor.

Proposition 2.2.5 (Regularity). Let # be a Z 2 -module which is
strictly specializable along f = 0 and which is reqular along f = 0 (in
the sense of |20, § 3.1.d]). Then .# is strictly Deligne specializable along
f=0and ¥’ M =0 if o #0.

Proof. It is enough to consider the case where f is a projection,
i.e., the situation of an open set X of Xo x D as in §1.3. Let us first
consider the case where ¢ € t7*C[t™!] \. {0}. Let us work near 2, €
and let us consider the canonical V-filtration V('ZO)J//Z By assumption,

V(zo_)lj is Z o yp-coherent. It is then enough to prove that
VO Ra)- (6792 0V M) =640 M,

because this will imply that the constant filtration equal to &~ %/? @ M
is a good V-filtration, hence the Bernstein polynomial exists and is con-
stant.

One proves by induction on k > 0 that, for any local section m of

Vi, 1//( denoting by ‘€"¥/*" the Ogy[t~']-generator of &~ ¥/%,

“ _‘p/z” ®t~*m belongs to VO(Za) - (6797 ® V(jo_)l//?j Let us show
this for k = 1 for instance. One has

13:(‘e=%/%” @m) = €=°/* Q[tB,m — (tdy)m),

so that, if p is the order of the pole of , multiplying both sides by tP~!,
we find ‘€=%/*" @t"Im € VO(Zg) - (£7¢/* @ Vjo 1///) The 1nduct10n
is then easy.

When ¢ > 2, the same argument can be applied after the ramifica-
tion pg, as p;/// remains strictly specializable and regular along t; = 0,
as explained below. Q.E.D.

2.3. Ramification

We keep notation as in §1.2. Let us fix an integer ¢ > 2 and let us
denote by pg : Xo x Dg — Xo x D the ramification t, — t = tJ. We
denote then by X, the inverse image of X by p, (X is smooth) and by
pq : Xg — X the restricted morphism. The functor p(‘; (inverse image
by pg) is well defined from the category of (left) Z g -modules to that of
X z,-modules as follows: if .# is a left Z o-module,
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e asa Og,-module, we set pf M = pi M = O, ®prloy p;t A

o for coordinates x; on Xy, the action of 9., is the natural one,
ie, 0z, (1®@m)=1Q0,,m; A

e the action of 8;, is defined, by a natural extension using Leibniz
rule, from

B¢, (1®m) = gtd™' @ 5ym.

However, given an object J = (A', #",C) of %-Triples(X), the
object p;{ﬂ is not clearly defined: the pull-back by p, of a distribution
on X is not defined, since the trace by p, of a test form on X, can have
singularities.

On the other hand, the pull-back of a Zg4-[t~!]-module is defined
similarly and the pull-back of a moderate distribution along {t = 0} is
well-defined as a moderate distribution along {t; = 0}. Therefore, the

functor pf is well defined from - Triples(X) to %- Triples(X, 7)-

Proposition 2.3.1. Assume that M is strictly specializable along
{t =0}. Then p}.# is so along {t, = 0}.

Proof of Proposition 2.3.1. Near (x,, z,), one shows that any local
section of pj//{ satisfies a Bernstein functional equation, using that

1
thc ® tfitm = a(tqatq — kZ)(t’; &® m)

If we identify p}.# with @7st5 ® 4 (with the suitable g, [t;']-
module structure on the right-hand term), the filtration V('Zo) p;]".//{ de-
fined by the formula

(2.3.2) Ve okl = @(tk Vo),

satisfies all properties required for the Kashiwara—Malgrange filtration
(cf. [20, Lemma 3.3.4]). Q.E.D.

Remark 2.3.3. For any 8 € C, we then have
B+ 7 N (B-K)/a 7
wtqpq '% =~ k@)wt .%,

and, under this identification, the nilpotent endomorphism N; corre-
sponds to the direct sum of the nilpotent endomorphisms gN;. There-
fore, we have a similar relation for the graded modules with respect to
the monodromy filtration and the corresponding primitive submodules.
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Similarly, if T is strictly specializable, we have

py T = eaw“””qﬂ

Indeed, the point is to compute wt p+C’ Let m' (resp. m”) be a local
section of V(b Sy (resp V(b ¥ )/q%”) with k', k" € [0, —1]NN.
Up to translatmg b by an mteger, we can assume that é(m’ ,777 ) takes
values in Dbxxs/s. Let ¢ be a form of maximal degree on X (with
coefficients depending on z € S) and let x be a C* function on D, with
compact support, identically equal to 1 near t; = 0. In the following, it
will not matter to assume that x is a function on D.

Setting @ = —3—1, and denoting by [m] the class of m in the graded
piece of the V-filtration, we have by definition

(Wl pr Ot @ m/,[tF" @ m"]), o)
= ReS;—quz/> <|tq|2qu C’(t’qC ®@m ,t'qC ®@m"), o A x(t)s=dtq A dtg).
Up to a positive constant, the right-hand term is the residue of

~ = o dt  dt
(Clm' ;) 0 A XD e (¢ T T A ).
As k', k" belong to [0, q — 1], the trace tr(t’;/tf;_”) is zero unless k' = k",

giving therefore the desired formula for wf; pc'l'ré.

Let now X be a complex manifold and let f : X — D be a holomor-
phic function. We set X’ = X x D and X§ = X x {0} >~ X. We denote
by iy : X — X' the inclusion z — (z, f(z)) and by t the coordinate on
the factor D. For ¢ > 1, we denote by X, the inverse image of i7(X)
in X by pg : Xg — X'. If we identify X; with X x Dy (coordinate t,
on the factor Dy) so that py(z,t;) = (z,t), then X, is the subset of X
defined by f(x) —t3 = 0. It can be singular.

If A isaRa [1/ f]-module (resp. if T is an object of %- ’I‘riples(X))
which is strictly specializable along {f = 0} (cf. Definition 1.3.2), w
define p;’“x/l (resp. pj 9) as pf (if, +///) (vesp. pg (if, +9)) as in the be—
ginning of this subsectlon This is a Za;lt, 1]-module (resp. an object

of %- Triples(X, 4)) supported on X,.

Corollary 2.3.4. E M (resp. % _is strictly specializable along
{f =0}, then pf (i M) (resp. p}(is,+T)) is so alongt, =0. Q.E.D.
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Corollary 2.3.5. M (resp. 9/) 1s strictly Deligne specializable along
{f = 0} if and only if, for any ¢ > 1 and for any ¢ € t7'Clt;],

&—vlz R0, p(ig 4 M) (resp. £~%/* ®0y, pi(if+T)) is so along
{ty = 0}.

Proof. Let us prove the ‘only if’ part. We can reduce to the case
where f is a coordmate t. We use the projection formula to get that
tt 0487 Q6 4 11 1]/// [ (- WZ@p*’J//) We are thus reduced
to proving that strict specializability is preserved by the direct image
pq,+- This follows from [20, Th. 3.3.15], as the restriction of pg to t; =0
is equal to the identity.

For the ‘if’ part, we apply Proposition 2.3.1 and we use that
p;pq,+éa —#/% decomposes as the direct sum Dea=18 —wouc/z where 1%
is the multiplication by (. Q.E.D.

2.4. Compatibility with proper direct images

Let g : X — Y be a morphism between complex analytic man-
ifolds and let .# be a good Zga-module (i.e., which has good filtra-
tions on compact sets of X, cf. 20, §1.1.c]). Let f : ¥ — C be a
holomorphic function and assume that .# is strictly specializable along
(fog)~1(0). If g is proper on the support of .# then (cf. [20, Th. 3.3.15])
for all j and @ with Reﬂ € (-1,0], there is a natural isomorphism
\Ilﬁjfﬂ g M~ Hig +\Ilfog if we assume that 7 +\Ilfog/// are strict
for all j and B with ReB € (—1,0]. Under the same assumption, we
have an isomorphism for vanishing cycles 1/1;1%” Tgp M ~ T g+1/1f‘olg/// .
Moreover, this isomorphism extends to objects of %Z- Triples(X) (cf. [20
§3.6.c]).

We now wish to extend this result to the objects \IlfDel/// and \Il]j?elﬂ .
Let us first note that we will not be concerned with the corresponding
vanishing cycles (vanishing cycles are used in [20] mainly in §6.3 to
insure the S-decomposability of direct images; we will use them here
in the same way, without any twist). It will therefore be more conve-
nient to work with localized modules and to consider direct images of
R (1/(f o g)]-modules.

Proposition 2.4.1. Let .4 be a good Z4[1/(f o g)]-module which
is strictly Deligne specializable along {fog = 0} and such that g is proper
on the support of # . Then, if %jg+¢8‘ﬂg)./// are strict for any j, we
have

w?elfjg+j/vﬁ’ A G PPy Del .

A similar result holds for objects of Z- Triples(X).
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Sketch of proof. We apply the result recalled above to the module
(fog)tpg+&~ ©/2 @ 4 and we use a projection formula. Q.E.D.

2.5. Integrability

We now consider the behaviour of integrability under Deligne spe-
cialization. The integrability property is defined in [20, Chap. 7], where
it is proved that it is compatible with specialization (cf. Proposition 7.3.1
in loc. cit.). To prove the compatibility with Deligne specialization
it is therefore enough to prove that ftp, &Y @ A
(resp. fTpg+6 ¥/* ® F) remains integrable when .# (resp. ) is so.

Firstly, integrability is preserved by direct image (cf. [20, Prop. 7.1.4]),
so we can replace .# with i¢ . # and assume that f is the coordinate ¢.
Moreover, using the projection formula, we are reduced to showing that

E~¢* pj/Z/v is integrable.

Let us note that £%/# is integrable, either as a %Zg, [t; ']-module
or as an object of 72 Triples(D,). Indeed, one defines the action of 229,
on the generator ‘e~%/2” of £=%/% as 220,(%¢~¥/*") = ¢. On the other
hand, with this definition and using (2.2.3), one has

20.% .Sy, ‘P(“ —<p/z77, c%—ap/zw)

— Eq’_q’(zaz(c%-«(p/zn)’ «e—q:/zw) _ Eq’_(p(ci?—Lp/zw’Zaz(cie——go/zw))7

which gives the desired integrability (cf. [20, (7.1.2)]) of & —#/% and then
of =¥/ @ pr M. QED.

§3. Polarizable wild twistor Z-modules

3.1. Wild and regular (polarizable) twistor 2-modules

Let X be a complex manifold and let w € Z. We will define by
induction on d € N the category MT(Wﬂd) (X,w) of wild twistor 2-
modules of weight w on X, having support of dimension < d. This will
be a full subcategory of the category %- Triples(X).

Definition 3.1.1 (Wild twistor Z-modules). The category
MT(g“;ld) (X, w) is the full subcategory of #- Triples(X), the objects of
which are triples J = (#', . #",C) satisfying:

(HSD) & is holonomic, strictly S-decomposable and has support of di-
mension < d.

(MT(Wlld)) For any open set U C X and any holomorphic function f :
U — C, J is strictly Deligne specializable along {f = 0} and, for any
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integer £ > 0, the triple ,
gt pPel 7

is an object of Mngl_dz (X, w+1).
(MTy) For any zero-dimensional strict component {z,} of .#’ or .#",
we have

(M a3 Cloy) = iga (', ", Co)
where (', 7", C,) is a twistor structure of dimension 0 and weight w.

Qne can define the notion of polarization and the category
' MTgﬁld)(X, w)®) of polarized objects as in [20, Def. 4.2.1]:

Definition 3.1.2 (Polarization). A polarization of an object J of
MTg{;‘ld)(X ,w) is a sesquilinear Hermitian duality .%¥ : J — J*(—w)
of weight w such that:

(MTP(;gld)) for any open set U C X and any holomorphic function
f:U — C, for any o with Re(a) € [—1,0) and any integer £ > 0, the

morphism (P gr)! ¥29.9), induces a polarization of P,¥}%7,

(MTP,y) for any zero-dimensional strict component {x,} of .#’ or A",

we have & = i, 14+ 5%, Where 7, is a polarization of the zero-dimensional
twistor structure (¢, 7", C,).

Remark 3.1.3. According to Proposition 2.2.5, the category
MT(&(X, w) (resp. MTg)d(X, w)®)) of regular (resp. polarized) twistor
2-mod-ules introduced in [20, Def. 4.1.2] (resp. in [20, Def. 4.2.1]) is a
full sub-category of MTg‘;ld)(X ,w) (resp. of MTgEld) (X, w)®).

3.2. Some properties of wild twistor Z-modules

In this paragraph, we list some of the properties of the categories
MT(X,w) or MT(X,w)®), as proved in [20, § § 4.1 and 4.2], which are
also shared by the categories MT(™ (X w) or MTMD (X 1)), The
extension is essentially straightforward.

(1) The category Mngld) (X, w) is a full subcategory of the cate-

gory MT¢4(X, w) defined in [20, Def. 4.1.1].

(2) The category MTg‘gld) (X,w) is local (i.e., checking that an
object belongs to this category can be done locally on X).
Moreover, it is stable by direct summand in Z%- Triples(X).
Each object J in Mngld) (X, w) has a decomposition by the
strict support.
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(3) Kashiwara’s equivalence. If i : X — X' denoted the inclusion
of a closed analytic submanifold of X’, then i, is an equiva-
lence between MT™) (X, w) and MT g?'ﬂd)(X ’,w) (objects of
MT™D (X7 1) supported in X). This follows from Lemma
1.4.5.

(4) If 7 in MT™D (X w) has strict support Z, then there exists
a Zariski open dense smooth set Z’ of Z on which 7 is i, 7,
where 7 is a smooth twistor structure of weight w on Z'.

(5) There is no nonzero morphism in %- Triples(X) from an object
of MT™ID (X ) to an object of MT I (X ') if w > w'.

(6) The category MT(wild) (X, w) is abelian, all morphisms are strict
and strictly Deligne specializable.

(7) If Z1 is a sub-object in the category MT(w“d)(X ,w) of polariz-
able object J in MT(Wild) (X, w)®) with polarization ., then
the polarization induces a polarization # on % and (97, .%)
is a direct summand of (.7, .%) in MT™D (X )®).

(8) The category MT™4) (X 4)(®) is semi-simple.

(9) The conclusion of [20, Prop. 2.1.19 and 2.1.21] hold for graded
Lefschetz polarized wild twistor 2-modules.

(10) The spectral sequence degeneration argument of [20, Cor. 4.2.11]
holds in the wild case.

§4. Local properties of Z 2 -modules in dimension one

In this section, we analyze local properties of % g -modules which
are strictly specializable, when X has dimension one. Therefore, we will
assume that X is a disc with coordinate t. We set X* = X ~ {0}. We
denote by K the field of convergent Laurent series C{t}[t~!] and by K
the field of formal Laurent series C t] [t~!]. For ¢ € N*, we denote by

K, (resp. IA{q) the extension of K (resp. K) obtained by taking a ¢-th
root t4 of t.

4.1. Meromorphic bundles with connection

We recall here some classical results on meromorphic connections
(cf. e.g., [11]). Let M be a finite dimensional K-vector space with a con-
nection V. There exists ¢ € N* such that the pull-back Mq = K,®xk M
has a formal decomposition

(4.1.1) M} =K, 0k, M, = @](ew ® R)),
Jje
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where J is a finite set, the ¢; are pairwise distinct elements of tq“l(C[tq_l],
and the R; are meromorphic bundles with a regular connection. A coarser

decomposition descends to M=K O M to give a decomposition
MAN = MA® & MAGR) :

4.2. Meromorphic Higgs bundles

Before analyzing wild twistor Z-modules in dimension one, we need
to adapt the well-known results on the formal structure of meromorphic
connections in dimension one to Higgs objects.

Let (M, 0) be a finite dimensional K-vector space equipped with an
endomorphism 6. To keep the analogy with connections, we also regard 6
as a Higgs field, i.e., a morphism M — M ® dt.

By a lattice E of M, we mean C{t}-submodule of finite type of M
such that M = E[t71]. It is equivalent to saying that E is free of
finite rank over C{t} and that M = E[t"!]. By a V,-lattice, we mean
a C{t}[td]-submodule U of M which is of finite type and such that
Ut~ = M.

Lemma 4.2.1. IfU is any Vy-lattice, then U/tU is a finite dimen-
sional C-vector space with an endomorphism induced by t0.

Proof. Let us fix a K-basis of M and let A be the matrix of t0 in
this basis. Denote by x 4 its characteristic polynomial. Then x 4(t8) = 0.
This can be written as b(t0) = tQ(t, tf), for some nonzero polynomial b.
If U is any Vp-lattice, then U/tU is a C[tf]-module of finite type, on
which b(t6) vanishes. Hence it is finite dimensional. Q.E.D.

We say that (M ,0) is regular if there exists a K-basis of M in which
the matrix of § has at most a simple pole; in other words, if there exists
a lattice E of M on which 6 has a simple pole at 0. We then say that
(E,0) is a logarithmic Higgs bundle. Clearly, this is equivalent to saying
that any Vp-lattice is a lattice.

Giving (M, 6) is equivalent to giving a square matrix of size d with
entries in K, up to linear equivalence, i.e., up to conjugation by an
element of GLg(K).

The tensor product and the direct sum are well-defined and pre-
serve regular objects (the tensor product of two Higgs fields 6 and 6’ is
(0 ®1d) @ (Id ®8")).

4.2.a. Classification in rank one. Giving a meromorphic Higgs bun-
dle of rank one is equivalent to giving a meromorphic differential form
w = a(t)dt (the equivalence by GL; is reduced to identity). We will
write a(t) = 8;(¢)+a—1 /t for some meromorphic function ¢(t) = tFu(t),
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where k € Z and u is a unit. Notice that, if a_; = 0, the meromorphic
Higgs bundle is the restriction to z = 0 of the Zg [t~']-module &¥/7
introduced in §2.2. . s

4.2.b. Classification in arbitrary rank. My = K, ®x M, equipped
with the pull-back 6, of 8 as a differential form. If A(t) is the matrix

of t# in some K-basis of M, then A,(t,) := qA(t?) is that of t,0, in the
corresponding K g-basis of Mq. For a suitable g, the eigenvalues of A4(t,)
exist in K, and A,(t,) can be reduced to the Jordan normal form, so

(M, t,0,) decomposes as a finite direct sum & f(é"lfi * ® N,), where the

matrix of {40, in some basis of ]%, is a constant matrix and ¢ varies in a
finite set of distinct meromorphic (but possibly holomorphic) functions.
In particular, (Mq, tqfy) is an extension of rank-one objects. One can
also consider, in a way analogous to that of meromorphic connections,
a coarser (unique) decomposition

(4.2.2) (M, o) = @(aﬁfiz @ R,),

where ¢ varies in a finite set in t;l(C[tq_l] and Rp is regular.

Going back to (Mv ,8), we find a unique decomposition
(4.2.3) (M, ) = (M,0)® & (M,0)0,
coming from the decomposition of (Mq, 64) into regular terms (p = 0),
and purely irregular terms (¢ # 0). In fact, (M, )™ is regular.

Lemma 4.2.4. Let (M, 8) be a germ of meromorphic Higgs bundle,
and let U be any Vy-lattice. Then dimg U/tU = dimg M®),

Proof.  Given two Vp-lattices U, U "of M , we consider the filtrations
U®* = t°U and U = t"U’ of M. Then, denoting by U’ grf, M the
filiration induced by U’* on gr¥, M, we have

—~ P o~ _ —
gt gt M — grd grg” M ~grpP a1l M

and

dime U/tU = dime grd M = Z dimc gr?, grd M
P
= Z dimg gry? gr¥, M = dime U’ /tU’.
P
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Therefore, to prove the lemma, we can take a Vp-lattice which decom-
poses according to the decomposition (4.2.3).

Assume that M is purely irregular. We want to show that M has
finite type as a C{¢}[tf]-module. It is enough to show this after rami-
fication, and we can reduce to the rank-one situation corresponding to
a form w with a pole of order > 2. Then the polynomial b(tf) intro-
duced in the proof of Lemma 4.2.1 is constant, so U = tU, and therefore

U=U[t"!] =M.
Assume now that M is regular. Then U is a lattice, and the result
is clear. Q.E.D.

4.3. General properties of strict holonomic #Z 4 -modules

Lemma 4.3.1. Let # be a holonomic X4 -module. Then M =
A [t7Y] is coherent over O [t=1]. If moreover .4 is strict, then, for
any z, € S,

(1) Mo, is free of finite rank over Og (o,.,)[t™1],

(2) i, =M., = M,[t7"],

Proof. As .# is holonomic, its characteristic variety is contained
in (T%xX UT;X) x Qo if X is small enough. Locally near (0;z,), there
exists thus an operator with principal symbol /8 (for some j, k) which
annihilates .#. This gives the first assertion. Assume now that .# is
strict.

(1) Away from {t = 0} (assuming X small enough), we know by
[20, Prop. 1.2.8] that .# is &g «-coherent and that it is locally
free on X* x €f; moreover, it has no &g --torsion, because
any torsion section would be killed by some power of z, in
contradiction with strictness. As a consequence, .# has no
O ¢ -torsion.

Let us work locally near (0;z,). Let .# be a coherent
€ 9--submodule of .# such that .4 = A[t7Y. As A has
no Og-torsion, it locally free away from {t = 0} (if X is
small enough), and the kernel and the cokernel of the natu-
ral morphism A — A (where A = Home, (N ,Ox))
are supportedﬁ( on t=0 Let us also set MY =
Home ,1-1)(M,Ox[t™']). Then A~ = A[t"'] and there-
fore the natural morphism M — M is an isomorphism.
Consequently, 4#VV is (isomorphic to) a submodule A4 of .
As AV is reflexive, it is locally free (because 04 (o, is a
regular local ring of dimension 2). We have hence found a
locally free &g -module 4" of .# such that .# = A#"'[t1].
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(2) As A is strict, the sequence

(z — 2,)

0— A M — i, M —0

is exact. It remains exact after tensoring with g [t71].
Q.E.D.

In dimension one, we will mainly work with the localized modules
A . 1t is therefore useful to summarize the correspondence A — Hpin, -

Corollary 4.3.2. Let 4 be a strict holonomic % g -module which
is strictly specializable. Then . is a locally free O g [t™]-module with
a z-connection (i.e., a compatible action of Za ) which is strictly spe-
cializable (cf. §1.3). Conversely, starting from such a M, the mini-
mal extension /Z/:nint across {t = 0} is strict holonomic and strictly
S-decomposable (with only one strict component). Q.E.D.

Remark 4.3.3 (Formal coefficients). Let us denote by & g the sheaf
!i_nf_ln O /t"C g, and by %f the sheaf € 7®¢,, X a . These sheaves are
supported on {¢ = 0}. Then the previous results extend to holonomic
Z z-modules in a natural way.

4.4. The regular case

Proposition 4.4.1. Let .4 be a strictly specializable Ra(t™)-
module which is O [t~']-locally free of finite rank. The following prop-
erties are equivalent:

(1) there exists z, € Qo such that ﬁzo is regular (as a meromorphic
connection if z, # 0, and as a meromorphic Higgs bundle if
2o =0),

(2) for any z, € Qy, MZO is regular,

(3)  for some (or any) z, € Qo, any coherent VoA o (0 ,)-submodule
of /Z/?O 2,) generating /2/\(/0 iz) OvEr Og 0,.)[t71] has finite
type over Og (0,z,)-

(4) M is also strictly specializable with ramification and exponen-
tial twist and, for any ramification pg : tg — t = t9, any
¢ € t7'Clt;'] ~ {0}, denoting My = pr M, we have
djg(é"“"/z ®/Z/;) =0 for any 3 € C.

We say that M is reqular when one of these equivalent properties
is satisfied.
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Remarks 4.4.2.

(1) Property 4.4.1(3) is taken as the definition of regularity in [20,
§3.1. d] Notice that, when applied to the canonical V-filtration
Ve )//l it gives its Og (0;,)-freeness, as each grv( M is
Oq,,z,-free of finite rank, and the sum of the ranks, for b e
(—1,0], is equal to the &g [t~]-rank of .Z.

(2) (Formal coeflicients) Proposition 4.4.1 also applies to modules
defined over Z z[t~1].

Proof. (2)=(1) is clear. For the converse, let us note that the as-
sumption ¢ of strict specializability implies in particular that, for " any Zo,
if V(Z )//{ denotes the Kashiwara—Malgrange filtration of ./// then

V(ZD)/// / V(zo)/// is a locally free O, . -module, whose rank does not
depend on z,. Under Assumption (1), its fibre at a given z, has dimen-
sion equal to the rank of M (this is classical if 2z, # 0, and follows from
Lemma 4.2.4 if z, = 0), hence the same property holds for any z,. This,
in turn, implies regularity of ]T/I;O for any z,.

(3)=(1) is proved in the same way and (4)=>(1) is easy.

Proof of (1)=(3). Letm € /Z/\(/O 2,) and let ,/% .2,) be the Zo [t™1]-
submodule generated by m. It is enough to prove the property for any
such .#. By Lemma 4.3.1(1), we know that JVO,ZO) is Og [t~!]-free, and
we denote by § + 1 its rank.

The family m := (m,..., (t3;)°m) defines a &4 -linear morphism
(Ox[t71])H — j(in some neighbourhood of (0; 2,)). As the rank of
A is §+1 and as ¥ is generated by m over Z o[t ], this morphism is
injective. Let us denote by € its cokernel. This is a coherent &4 [t~!]-
module supported on some curve in (X x o, (0;2,)) not included in
{t = 0}, which is called the apparent singularity. There exists thus
ke Nand f(t,2) € O (0;,,) not divisible by ¢ such that

]
(s=20) £, )8 m = " a,(t, 2) () m, a(t,2) € O 0,00 [t7]
3=0
where f(t,z) = 0 is an (possibly non reduced) equation of the compo-
nents of the curve distinct from {z = 2,}, and we assume that k and f
are chosen so that none of the irreducible components of (z — z,)* f (¢, 2)
divides all the a;.

Reducing mod (z — z,) implies that k = 0, otherwise there would
exist a non-trivial relation with coefficients in &x o[t™!] between the
classes of the elements of the family, and the rank of the submodule it
generates would be < §+1, in contradiction with the freeness of Ao ;.-
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As we assume that the restriction of 4 to any fixed z has a regular
singularity at ¢ = 0, the a; also belong to &4 (g..,) and thus the matrix
of td; in the family m has entries in &4 [1/f].

The next step will consist in eliminating the apparent singularity,
which is clearly an obstruction for proving the &g -coherence of the
Vo 2 [t~} ]-submodule generated by m. .

Let n be any Og (0..,)[t7!]-basis of A(g,,,). We have m =n - S
where the matrix S has entries in @g (9,.,)[t™"] but is invertible only
after inverting f, i.e., S € GLs41(Ca (0:2)[t™", 1)

Lemma 4.4.3 ([13]). For S as above, there exist two matrices
S1 € GLs11(Oa (012t ™)) and Sy € GLs41(Or (0520 [f '])

such that S = 515;. Q.E.D.

Let us thus set g = n - S1. Then p is another &g (o.,.)[t™']-basis
of %;ZO) and the matrix of ¢3; in the basis @ has pole along {t = 0}
at most, as it is so for any Gy (o, [t™!]-basis of ,//V(VO;ZO). On the other
hand, as p = m - S5 1. the matrix of td, in the basis g has poles at
most along {f = 0}. We conclude that the matrix of ¢{3; in the basis p
has entries in g (g.,,). It follows that the VoZ o (0.,)[t~!]-submodule
generated by p is finite over O (o ..), hence so is any finitely generated
Vo 2 (0 ;2,)[t~*]-submodule of %;zo), by a standard argument.

Proof of (3)=(4). Firstly, working with m and %;zo) as above,
we get t; €™¢/*" @u = €~¥/*" @u - (o' (t)Id +A(t, 2)), where A has
entries in Og (g.,,). This can be rewritten as ‘€~#/*” @u = €~%/*” Qu.-
tB(t, z)+(td; ‘e=¢/*” ®u)-tC(t, z), where B, C have entries in Ox (0;20)
It follows that the VoZar (0;z,)-submodule generated by ©mP/2 Qu is
equal to &7%/* ® z/,V(vO;zo). Therefore, there exists a good V-filtration
which is constant and equal to & %/% ® %;zo). It satisfies all the
properties characterizing the Kashiwara—Malgrange filtration, and all
graded pieces are zero. It follows easily that &%/ @ /Zl?o;zo) satisfies
the same properties.

It remains to checking that strict specializability is preserved by

ramification, as regularity will be so, applying for instance Property (1).
This is Proposition 2.3.1. Q.E.D.

In the following, we will set Z°° = X x (Ag ~ {0}).

Proposition 4.4.4 (Regular Z z{t~!]-modules on z # 0). Let Va
be a locally free O z, [t~1]-module with a compatible Z o -action, which
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is strictly specializable and regular (att = 0). Then there exists a strictly
specializable reqular g [t~1]-module % such that .#" is isomorphic to
ﬁgg\o ®0%° R.

In the following proof, we always assume that z, # 0. We will first
consider the local situation (w.r.t. z). We will first recall [20, Remark
5.3.8(3)]:

Lemma 4.4.5. For any strictly specializable regular %Zo;zo) or
///(’(\);ZD), there exists a basis in which the matriz of t0; only depends

(holomorphically) on z and is lower-triangular, with eigenvalues of the
form B x z.

Proof. We give the proof in the convergent setting, but it is also
valid in the formal setting.
Let us fix z, # 0 and let us set®

B., ={8€C|£,,(8) € (~1,0] and ¢ #g..,) # 0}.

For each 8 € B, , let us fix a basis of 1/1? //?/ for which the matrix of
—N is constant. Let us lift this basis modulo V> £=0(8) ///(0 .z,)- Applying

this to any 8 € B,,, we find a basis of ///(o;zo) for which the matrix of
t0; has entries in @4 (o,,,) and its constant part (with respect to t)
R(z) has the following form: it is block lower triangular, each block
corresponding to a value b of £, (3), 8 € B,,; moreover, each diagonal
block, with corresponding value b, is itself block-diagonal, each block
corresponding to one 8 € B, such that £, () = b, and takes the form
(B*2)Id+Y g, where Yg is constant (we can choose the basis such that
Y has the Jordan normal form).

By a constant (with respect to t) base change, we can assume that,
if By x 2, # B2k 2o, then the (61, B2) and the (82, £1) blocks in the matrix
R(z) are zero. Therefore, we can reorder the basis in such a way that
R(z) is block-diagonal, each diagonal block corresponding to a value
of B8xz,, 8 € B,,, and each diagonal block is itself lower triangular
with respect to the £, -order, each diagonal sub-block corresponding to
a given 8 and having the form (8x 2)Id+Yg.

Let us set A = B, +Z and let Sing A be the set of 2 € Qo such that
there exist 31 # (2 € "AUZ with B1 % z = B2 % z. Then, cf. [20, p. 17],
Sing A is contained in ¢R and has 0 as its only limit point.

If z, & Sing A then, for any (1, 02 € B.,, we have 1 xz, — 2% 2, &
2oZ*, hence, for any z € nb(z,), we also have 01 x z — B2 x z & 2Z*.

3Recall that the notation £, (8) is for Re 8 — (Im 8)(Im z,), cf. § 1.3.
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Therefore, the classical arguments of the theory of regular meromorphic
differential equations enable us to find a basis of .#(q.,) in which the
matrix of t3; is R(z).

If z, € SingA (but 2, # 0), there may exist £1,082 € B,, with
b1 % zo — PBox 2o € 2,Z*. We first apply successive partial rescalings by
powers of t to reduce to the case where the constant part R(z) (with
respect to t) of the matrix of ¢t3; is lower-triangular, and has eigenvalues
8%z with § € A and no two eigenvalues differ by an element in zZ*.
Let us recall this classical reduction:

Let us index by I the set of diagonal blocks of R(z), each block
corresponding to a value 7;(z,) of various § % z at z,. We can order the
set I in such a way that, if v, (20) — 745, (%0) € 2,N*, then i1 < is. We
now only retain that the matrix R(z) is lower-triangular. Let ig € I be
such that there exist no ¢ € I with ~v;,(2,) — 7i(25) € 2,N* (that is, if
such a value belongs to z,Z*, it must belong to —z,N*). We apply the
base change with diagonal matrix having diagonal blocks Id; for i # ig
and tId;,. After this change, the constant part R;(z) of the matrix of
t0; remains lower-triangular, with the same eigenvalues, except that Gxz
is changed to (8+ 1) x z if B * 2z, = 4;,(20). By an easy induction, we
get the assertion.

We can now apply the classical arguments of the theory of regular
meromorphic differential equations to find a basis of .#(g,.,) in which
the matrix of t0; is equal to the previous constant part R(z) (with
respect to t). In particular, it is lower triangular and has eigenvalues
of the form 3 x z, so we get the assertion of the lemma in the case
Z, € Sing A. . Q.E.D.

We then have, in the same way, by applying the classical reduction
theory with a parameter z,

Lemma 4.4.6. Near any z, # 0, there exists a polynomial p(z)
which vanishes at most on Sing ANnb(z,) and an invertible matriz with
entries in Oq, . [1/p(2)] such that, after the base change given by this
matriz, the matriz of td; takes the form

®BgeB,, [(B*2)1d+Yg]

where Yg s a lower triangular nilpotent Jordan matriz. In particular,
if we assume that z, € S, then we can choose p(z) = z+ 1/z.

Proof. 1In the previous proof, instead of applying shearing trans-
formations near a point 2z, € Sing A, we can apply the same arguments
as in the case where 2z, ¢ Sing A. In order to do so, we have to invert
near 2, all functions p+ (81 — B2) * z/z, with p € N* and 34,32 € B.,.
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On a fixed neighbourhood nb(z,), only a finite number of such functions
vanish at z,. Q.E.D.

Proof of Proposition 4.4.4. We have proved the local existence of
2 in Lemma 4.4.5. Given two local bases of //l 7 o) in which the matrix
of t0; has entries in &g, .,, any formal base change between both bases
has entries in &9 (9,5, (this is standard, as we work away from z = 0).
Therefore, the Z - (0;2,) [t~1]-submodule generated by such a local basis
is unique, hence can be glued all along Qg ~ {0}. Q.E.D.

4.5. Strict specializability with ramification and exponen-
tial twist in dimension one

Let us fix z, € Qo and let M be a meromorphic connection or
Higgs bundle. Then, there exist q = ¢(2,) € N* and, denoting by
Mq 2, the pull-back of Mza by the ramification t, — ¢ = I, a finite
family (¢;)jes(z,) of elements of ¢;*C[t; '] which satlsfy the following
properties:

(1) for some, or any, V-lattice U, of cg’_"’j/z"@Mq 205 Uz [tU, #0,

(2) for any ramification t., — t, = t, and Lany ¢ € t'l(C[t_ ]
distinct from any ¢;(t7,), then E~¢l% @ qu,za (where qu,zo
is the pull-back of Mq,zo) is a V-lattice of itself.

Let now .# be a strict holonomic Z g -module. Then, according to
Lemma 4.3.1(2), restricting to z = 2, commutes with localizing away
from {t = 0}, so the previous statement applies to the restriction to z,

of A.

Proposition 4.5.1. Let 4 be a 2 o [t~]-module which is € o [t=1]-
locally free and strictly specializable with ramification and erponential
twist on X. Then the (smallest) integer q(z,) and the set J(z,) defined
above do not depend on z,. We denote by q and J their constant value.
Then, denotmg by pq : Xq — X the ramification ty — t = tI, and setting
/// = p, + A,

(1) for any j € J, there exists 3 with Re3 € (—1,0] such that

Y (E73/% @ Mg) #0,

(2)  for any ramification mapping trq — ty = t;, and any p €
tr_gl‘c[tr_ql] ~Awi(t7g) | 5 € J}, for any B with Re§ € (~1,0],
wtrq ((g’_“P/Z ® '//qu) =0.

Proof. Let us set for convenience ¢ = ¢(1) and J = J(1). By

assumption, for any r > 1, wt (cé"_“’/ 2 ® //Zq) is locally free as a fq,-
module. Therefore, its restriction at some z = zo vanishes (resp. does
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not vanish) as soon as its restriction at z = 1 does so. The restriction
toz =2z, of & %/*® ,/Z/:q is & ¥/% @ qu ., for any z,, after Lemma
4.3.1(2). According to (20, Prop.3.3.14], the restriction to z = 2, of
wﬂ (&~%/* ® .///Tq) is a direct summand of a graded piece of £~ %/% ®
qu,zo with respect to a suitable good V-filtration. It is then easily seen
that the nonvanishing of such a graded piece is equivalent to the existence
of a regular part in the formal decomposition of £~%/% ® qu,zo- The
proposition follows. Q.E.D.

Remarks 4.5.2 (Formal coefficients).

(1) The same result applies to Z z-modules satisfying analogous
assumptions.

(2) Notice also that, if M =0 704 M is the associated formal-
ized module, then M satisfies the assumption of the proposi-
tion if and only if M does so. Moreover, for any ramification,
we have (#,)" = (#"), and for any € C and ¢ € t;'Clt; '],
we have

VP(E™ @ My) = 0F (671 @ (M),).

Indeed, “only if” is clear by flatness of & z over &g . For the
“if” part, we note that if U*® /// is a good V-filtration of ///
then U*. 4" := Oz®oq, U *. is a good V-filtration of .Z".
Hence . is specializable (in the sense of [20, Def. 3.3.1]) if 4 7%
is so. By standard manipulation, we can assume that (near z,)
the Bernstein polynomial of the good filtration U * M has roots
in A(z,) (see [20, p. 67]), and therefore so does U*.#", which is
then the canonical V-filtration of .#, by [20, Lemma 3.3.4]. In
particular, the graded pieces are strict by assumption, hence so
are the graded pieces of U *. This implies that M is strictly
specializable, with U*.4 as canonical good V-filtration. The
remaining part of the assertion is then easy.

4.5.a. Submodules. Let .4 be as in Proposition 4.5.1. Let m €
«//?(/o;zo) and let A = S O [t 135m be the Zg [t~!]-submodule gen-
erated by m (in some small neighbourhood of (0;2,)). Arguing as in
Lemma 4.3.1(1), we see that .4 is Oa [t~!]-free in some neighbourhood
of (0;2,). Let § + 1 denote its rank.

Lemma 4.5.3. The Za [t~']-module N is strictly specializable
with ramification and exponential twist and for any ramification t, — t,
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any ¢ € t7'C[t;Y] and any B € C, we have ¢t (&2 @ M) C
CACIRERTA

Proof.  As the ramified twisted module & —¢/2® 4 is a submodule
of &~%/* @ M,, it is enough to show that the good V-filtration of the
latter defined near z, (cf. [20, § 3.4.a]) induces a good V-filtration of the
former near z,. For the sake of simplicity, we will give the proof for

N C //l but it will apply smnlarly to ramified twisted modules.
If we have shown that V( )JV V( Yo MNN s a good V-filtration

of ¥, then each ng JV is strict, as a submodule of a strict module,

and it has a decomp051t10n as @gtﬁt N (cf. [20, Lemma 3.3.4]), shovvlng
that each 1/1? N s itself strict. By construction, we have tkv,b
1/15 oy (as this is true for M in the place of A ), hence the strict
specializability of N along {t = 0}.

It remains to showing that, for any b € R, V(ZO)JZZ NA is Vo(Za)-
coherent. This is standard. Q.E.D.

4.5.b. Formal structure. Let .4 be as in Proposition 4.5.1. We ﬁx
the order of ramification as in the proposition, and consider //{ =py + .

Proposition 4.5.4. With these assumptions, for any j € J, there
exist regular strictly specializable Oz [t;l]-modules with z-connection
q

‘@N”J’\ and an isomorphism of ‘%/5@ [ty ']-modules

(DEC") My = B(E @R,
J
Remark 4.5.5. By uniqueness, the restriction to z = z, of (DEC") is

nothing but the formal decomposition (4.1.1) if z, # 0 or that obtained
from (4.2.2) by tensoring with O , if 2, = 0.

Proof. It will be convenient to change notation and forget the 4
everywhere, so the coordinate is denoted by t, etc. Moreover, we will
only work with & f[t_l]—modules, so we will also forget the exponent .

We first prove the local existence of @ﬁ(o;zo) and of the local de-
composition (DEC"). We then prove that this decomposition is globally
defined along the z-variable. .

Local decomposition. We argue by induction on the rank of ..
Assume moreover that we have proved the existence of a decomposition
(DEC") for any submodule A(q ;) of .#(g ) which is generated by one
section m as in Lemma 4.5.3. Then, as there is no nonzero morphism
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from &#/* ®=Q7$7 ) to Ev/* ®%”\ .(052) LY 7 ¢, and as //?(Jo;zo) is the
sum of a finite number of such submodules M0;z,), the decomposition
(DEC") holds for ///(0 .

Let m € //[(0 :z,) and let ,/VO :z,) be as in Lemma 4.5.3. We are thus
reduced to proving the decomposition (DEC") for o (0520)-

Let us denote by k the maximal order of the pole of the family (¢;);

(associated to JA/(;;ZO) by Proposition 4.5.1). We can assume that there
exist two indices j such that the corresponding ¢; have a pole of order k
but with distinct coefficients of t=* (otherwise, one would first tensor

N with &=¢t7"/7),

We now argue exactly as in the regular case (Prop. 4.4.1, proof of
(1)=>(3)), except that we replace t3; with t*(t3;). We find a ﬁ (i)
basis p of A .., in which the matrix of ¢t*(t3;) has entries in ﬁ%’(o 20)"
The constant (with respect to t) part of this matrix has eigenvalues in C
(the coefficients of ¢~ in the ;) and at least two of them are distinct.

A classical argument gives a splitting of c//’;(;);zo) corresponding to these
eigenvalues. We conclude by the inductive assumption.
Globalization. We will show the existence of a global formal de-

composmon M = //lreg b ///m If jo is such that ¢;, = 0, we will set
%’A = ///reg In order to get the other terms of the decomposition, we
apply the same argument to any & ¥/ ® //1

Given any local good V-filtration U, //{(0 iz0)s W€ set //flrr,(o z) =
Nx Uk//l(o .z,)- Any two such filtrations define the same ///m,(ng),
hence ,///,rr is globally defined. Moreover, using the local decomposi-
tion (DEC"), one easily checks that //Z:.r .(0;2,) corresponds to the sum

indexed by j # jo. Hence ///m is a locally free 6 [t H-module of finite
rank: The globally defined exact sequence

0 — Moy —> M — M| My — 0

has local splittings, according to the local (DEC”"). However, any two
local splittings coincide, as there is no nonzero morphism %’ i0(0320)

&%il7 & ‘%j,(();zo) for 7 # jo. Therefore, there exists a unique global
splitting. Q.E.D.

It will be important to lift this result to convergent isomorphisms.
However, as in the theory of meromorphic differential equations, one
can only expect sectorial (with respect to t) liftings, when z, # 0. We
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will also provide holomorphic liftings when z, = 0. There, a sectorial
partition with respect to z is also needed.

4.5.c. Sectorial structure (z, # 0). Let .# be as in Proposition
4.5.1. We also assume, in order to simplify the notation, that no ramifi-
cation is needed, so that we can apply Proposition 4.5.4 to A" and we
have an isomorphism

(DEC") M B(EY @ RD).
[

Let us first work away from z = 0. Then, by Proposition 4.4.4, ,@Q is
defined over Z 2, and thus we can write the previous decomposition as

(4.5.6) M B(E © R)
7

Let Y denote the real blow-up of the disc X of radius rg, i.e., Y =
[0,79) x S* and let e : Y — X denote the projection (r,e®) — re®.
Let us set # =Y x £y and let us define the sheaves &, %;0 and
€y " as usual: €, """ denotes the sheaf of C°° functions on % which
are holomorphic with respect to z, 2% is the kernel of t9; acting on
€5 " and /" denotes the subsheaf of @3 consisting of germs having
all their derivatives with respect to {9, vanishing on {r = 0}.

It will be convenient to set

///(95,90 i20) T "Z{@”(Oﬂo i20) @€ 2 (0120 ‘///(O;zo)'

We refer to the literature (e.g., [23], [25], [11]) for the results concerning
the Hukuhara—Turrittin theorem with a parameter, as well as for the
inductive process giving the «/-decomposition.

Proposition 4.5.7. With the previous assumptions (and z, # 0),
for any 0, € S*, the decomposition (4.5.6) can be lifted to a decomposi-
tion

(DEC?) A3, ..,) — D [»‘Z@,(o,ao;zo) B0 0.0y (67 ®«%)(o;zo>]-
@

Sketch of proof. As we work near z, # 0, we can regard . as
an analytic family of meromorphic connections parametrized by nb(z,).
The proof is then analogous to that for meromorphic connections (with-
out parameter z), as the exponential factors ¢; are independent of z.
One proceeds exactly as for the theorem of Hukuhara—Turrittin in or-
der to show that the decomposition (DEC") can be locally lifted to

.//?(%’790 20)" At the end of the process, we get a basis of ///(‘3’790 2y) 1D
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which the matrix of t0; is the sum of a matrix R(z) depending only on z
and a matrix having entries in 42{(;(20 0, :z,) (according to Lemma 4.4.5).
Another application of the same kind of existence theorems gives a base
change of the form Id+Q(¢, z) with @ having entries in 4&7{;,0(0700 2)
after which the matrix of t9, is equal to R(z). Q.E.D.

4.5.d. Sectorial structure (z, =0). When z, = 0, the lifting of the
decomposition and the definition of 8; = 20; lead us to solve successive
quasi-linear differential systems like

2t*(t0)u =L -u+ F(u,t,2)

where L is diagonal with constant nonzero eigenvalues and where we
have information on F (existence of asymptotic expansions in sectorial
domains). Here, z plays the role of a small parameter, and taking sectors
with respect to z as well as for ¢ will be needed. In this direction, the
main results have been previously proved by Russell and Sibuya [16, 17]
(k = 0), Sibuya [24] and then by Majima [7] (k > 1). An account of the
results of Majima has been given in [18, Appendix].

We denote by & the space Y x Qq, where Qg = R; x S is the real
blow-up (polar coordinates) of Qy at 0. We will set z = |z| - . We
have a natural map 2° — % =Y x 5. We denote by €5 the sheaf of
C* functions on the manifold with corners %, and by &/ the subsheaf
defined by the Cauchy-Riemann equations with respect to ¢t and 2. In
particular, when restricting to.|z| # 0, we recover the restriction of @
to this open set.

The next result will not be used in this article, but we give it for
the sake of being complete.

Proposition 4.5.8. With the assumptions of §4.5.c, for any
(65,¢) € S x S, the decomposition (DEC™) can be lifted to a de-
composition

(DECY) MG 0,00 — ? (€977 © B (0,6, 10.00))

for some regular e (0.0, 0,c,)[t™*]-free modules @5(0 0,:0,C)7 I such a
way that, modulo z, this isomorphism is equal to the isomorphism (4.2.2)
(hence does neither depend on 0, nor on (,) and in particular

(%:7(,(0,90 ;07Co)/z%z(0yeo §0yCo) = 'Q(Y,(O,eg) ®ﬁx,0 R‘P'

As above, we use the notation

%{gvgo ;OvCo) = ,!2{&;"’(0,90 ;OvCo) ®093,(0 ;0) %(0 ;0) N
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Proof.  Let us denote by oz the formal completion lim, 72/ th ot o
(formal series in ¢ with coefficients in % ). By a result of Majima [7]
(see also [18, Prop.1.1.16, p. 44]), which is a variant of the lemma of
Borel-Ritt, we have an exact sequence

O-ﬂdgfo—edyLﬂé;—AO.

The proof of the proposition is now a variant of a theorem of Majima,
generalizing the theorem of Hukuhara—Turrittin in dimension > 1. We
assume J # &, otherwise there is nothing to prove. Let us denote by
Jmax the set of j € J such that the order of the pole of ¢; is maximal. Let
Jo C Jmax be a subset corresponding to a fixed principal part of ¢;, j €
Jmax- We argue by induction on the rank of /21?5,90 0,6)" The inductive
assumption applies to free &/ (94, 0, CO)[t“ ]-modules equipped with a
compatible action of 3;: we assume that, when tensored with o7z #.(0,0,:0)
the module is isomorphic to some elementary model ///(0 0, .0) 35 in the
RHS of (DEC§) and, when restricted to z = 0, is decomposable.

There exists a basis of ///(0 00:0,C) in which the matrix of t9, takes

the form (;‘Xll z;;‘;;) such that A2 = 0, Ay; = 0 and Ay (resp. Ag)
has diagonal blocs of the kind t’; + Bj (t,z) with j € Jo (resp. j & Jo),

where § has entries in &/ (no pole along t = 0 or z = 0).

In order to dlagonahze this matrix, we have to find matrices Q12
and Q21 with entries in &% (9,0, .0,¢,), Such that le = 0 and Qzl =0,
and satisfying

2t0iQ12 = —2A12 + (A11Q12 — Q12422) + 2Q1242: Q12
ZtatQ21 =—zAn + (A22Q21 - Q21A11) + ZQ21A12Q21-

The existence of such matrices follows from results of Majima [7] (see
e.g., [18, Cor. A.11], with a partial system 3 consisting of only one equa-
tion and no integrability condition). Moreover, applying [18, Th. A.12],
one can choose ng\ = ZPlz,AQ21 = zP51, where Pys, P>; have entries in
5272’1(0’90 10,¢0) and P12 = 0, Py =0. QED

§5. Local properties of twistor Z-modules in dimension one

Using the results of the previous section, we analyze some properties
of twistor Z-modules on a disc X. The main result of this section is:

Theorem 5.0.1. Let 7 = (/ZZ,//ZC*) be an object of %- Triples(X)
which is strictly specializable with ramification and exponential twist at
t =0. Assume that:
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00,an

(1) away from t = 0, T is smooth and C takes values in € Ys
(not only in %%o’?s)

(2) the sesquilinear duality 7 = (Id,1d) is Hermitian of weight 0,
in other words, C* = C’

(3) the twistor properties (with polarization) are satisfied att =0,
i.e., for any q > 1, any ¢ € t“1C[t Y, any B with Ref €
(-=1,0] and any £ € N, P grM f’g +9(€/2) with sesquilinear
duality (Id,1d), is a polarized pure twistor of weight 0.

Then the minimal extension %int (cf. Definition 1.5.4), equipped with
the sesquilinear duality . = (Id,1d), is a polarized pure twistor Z-
module of weight 0 on some neighbourhood of 0 in X.

In particular, in some punctured neighbourhood X* of t = 0, the
restriction J]x~ is a smooth polarized pure twistor structure of weight 0.
This will prove that the twistor property is open. This is an analogue, in
the “easy” direction, of the nilpotent orbit theorem in Hodge theory. A
similar result, in a more specific situation (TERP structures) has been
obtained by Hertling and Sevenheck in [6, Th. 9.3(2)].

In §5.1, we show how to reduce to the case where no ramification
is needed (i.e., we replace J with pfJ for a suitable g). Then, by
assumption, the twistor properties are satisfied at ¢ = 0 and the proof
consists in constructing, starting from bases of the P gr) ® 4 which
are orthonormal for P gr)! T/Jf #C, a global frame of M| x~ which is or-
thonormal with respect to C| x~+. This is obtained in Corollary 5.4.3.
This will prove that the restriction of (i ,575 to X* is a smooth twistor
structure of weight 0, corresponding to a flat bundle with harmonic met-
ric, so that the twistor property is satisfied for (Zmin,, (Id,Id)) in some
neighbourhood of ¢t = 0.

In §5.2, we use the decomposition (DEC") to construct a global
basis of .#) g~ with a controlled behaviour when ¢ — 0. We will assume
that no ramification is needed to get the formal decomposition (this
is not a restriction, as the assumptions in the theorem can be lifted
to the ramified object). On the other hand, we will need neither the
decomposition (DEC#) nor the decomposition (DEC§). The former
will be used in §5.3 to give an asymptotlc expansion (5.3.3)(x) for the
sesquilinear pairing.

5.1. Ramification

Let us assume that Theorem 5.0.1 is proved when no ramification is
needed, that is, when we can set ¢ = 1 in Proposition 4.5.1, and let us
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show how to deduce it in general. Let 7 be an object of %- Triples(X)
satisfying the assumptions in Theorem 5.0.1 and let pg : X; — X be
the ramification ¢; — ¢ = tI. According to the identification made in

Remark 2.3.3, p;’? satisfies the same assumptions. If g is chosen as
in Proposition 4.5.1, we can apply Theorem 5.0.1 to p+9 and deduce
that (o} )mmtq is a polarized twistor Z-module of weight 0 on some
neighbourhood of 0 in X,. In particular, it is so on X, ~ {0} (up to
shrinking X,), and it is then clear that Jin, is so on X ~ {0} (up to
shrinking X'). By assumption, the polarized twistor property is satisfied
at t = 0 for Jmin,, proving thus the assertion of Theorem 5.0.1 for I, -
From now on, we assume that no ramification is needed.

5.2. Construction of local bases

We denote by B the subset of {8 € C | Re 3 € (-1, 0]} consisting of
B’s such that some ;" P # 0. By assumptlon for any ypet” cpety,
any § € B and any £ € N, the Oq,-module P gr}! ¢ 8 4 s free of finite
rank. Moreover, for any ¢ in t”l(C[t_ | and . € B, we can find a global
basis eg, 5, of Pgrit oy B 4 which is orthonormal with respect to the
specialized sesquilinear form P gr)! B C(£/2).

The family (ef;ﬁi)lgeB,gGN generates abasis € 55, o = (—N)*e2 5,
(k € N) of grM ¢#®_#. We will denote by Y., 5 the matrix of —N in this
basis, and by H,, 3 the matrix defined by Hy, 5 = wld on gry ¢ .
Lastly, for any w and any j € Z, we set €, 5., ,., =t/ €, 5.,

For any z, € Q and § € B, we denote by gs,., € Z the inte-
ger such that ¢, (8 + ¢s,.,) € [0,1), and we will also consider the set
B, ={B+4qs: | B € B}. We use the partial order on B,  coming
from the order on £, (8)’s. We denote by e® (%) the basis generated by
(eg,ﬁ,e)ﬁeBzo,feN-

5.2.a. Construction of a formal basis. We say that a & & (0520 [t“l]—

~(z0) _ (A(ZO) )

basis €*) of /Z/Z\) ) 18 admissible with respect to e if e 0B b

with 8 € B,,, £ € N and moreover w € Z N [—¢,£] and:

e for any ¢, € f:glw € (&¥/* ®,%7’\)(0 .2,y and, if z, = 0, its

restriction at z = 0 belongs to (é"f 0 ® R(,,)(O :0)»
. eg‘b)l , induces e;’(g})g on Pgrdyf ﬁ.///(o;zo),
e forany k=0,...,¢, ’éf:"ﬂ)l vop = [0t — Bxz — tp']F '/égfa),e,e-
Let us be more precise on the word “induce”: it means that the class
of el ﬁ 4.0 modulo V>520(ﬂ)///(0;z0) has a component on 1/12‘”@//{(0;%) only
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(and a zero component on any 1/1%7///(0 2) With v # B and £,,(y) =
2,,(5)); moreover this class belongs to Mgy, .///(0 .z,) and is primitive

modulo M,_9f ‘///(0 o)

Below, we will not indicate the index £, which only refers to the

weight of the primitive element eg‘g ¢, COMES from.

-Lemma 5.2.1. The matriz of td; in any admissible formal basis
e takes the following form:

(5.2.1)(x) @[ D ({ﬂ*z—i—tgo’] 1d +Yq,,g) -l-ﬁg,(t,z)],

¢ “BeB.,

where P, satisfies:

e fBF#7,
o if L, () <., (0), thenPg,,,gEtﬁ%(O o)
>f,

. ifl,(7) > £, (B), then Ppy g€ O F(0520)"
o ifB3=r,

. qu/) -2, thenP ﬁwwetﬁgg(o%)

e i <w—3, then Pypurw € Op g,

The notation 13%%3 (resp. P, Bw’,w) is chosen such that

to,el) = el ({ﬂ *z+ '] 1d +Y%g) + Z &) Pys

and

~

(gs(:f) P‘P 8, ﬁ) = f::;i)w' - Py g w

’U)/

Proof. This is a direct consequence of the definition of admissibility.
Q.E.D.

By construction, we also have:

Lemma 5.2.2. Let 8,85 be two local admissible formal bases
(with respect to e°). Then we ha’ue a relation 859 = (%) .(1d +Q(t, 2)),
where Q satisfies
iy # o, 9%#’

v # B, Qoyp(0,2) 0= £, (7) > £:,(6),
Q¢ 5,8(0,2) has weight < —1 with respect to Hy,g,

Q(t 0) has entries in Ox o (with Q, 0y =0 if Y # ).
Q.E.D.



Wild twistor 9-modules 331

5.2.b. Admissible local holomorphic bases. We keep the notation as
above. According to [12, Prop. 2.1], given any basis %) of ///(/S.ZO), the

O (0;2,)-module (ﬁf(o ) -’é(z"))ﬂjl\(/o;zo) is free of finite rank. Given

any holomorphic basis m(#¢) of it, we consider the invertible matrix P

with entries in & 4 T (052 such that m(z) = ) . P We can assume

that, if z, = 0, this ba51s is a lifting of the restriction of e® to » = 0.
If P = Py +tPy + ---, then Py is invertible. Replacing m(*o) with
m(%) Py ! we can assume that Py = Id. Similarly, replacing then m/(z)
with m(%°) . (Id —tP;), we can assume that P; = 0. More generally, given
any fixed integer k, we can assume that P; = 0 for any j < k. Lastly, we
can assume that the restriction at z = 0 is equal to the identity matrix.
We say that a basis e(*) is admissible with respect to e° if

e it comes from an admissible formal basis after a base change
(Id +2t*Q(t, 2)) where k is strictly bigger than the maximal

order of the pole of the ¢;’s and Q has entries in 0 4z (0:20)"

sq 3} ili (20) (20) (20)
We can decompose such a basis into subfamilies e, %', e, ,, €.% , s

and we also assume that
o forany k=0,...,¢, ef:"ﬂ)“ o = [0 — Bx 2z = to']¥ ‘ef:"b),eyz.
(This can be achieved starting from a basis satisfying the first point
only, by replacing ef;%)’e’z_% with [td; — Bx 2z — to']F - f;‘b) ¢.0» Without
breaking the first point, as the formal basis satisfies the same property.)
In any admissible local holomorphic basis e(**), the matrix of td;
takes the form

(5.2.3) QB[ o ([ﬂ*z+t<p’] 1d+YM) + Pt z)} & @ Py,

¥ “BeB., pFEY

with P, (instead of ﬁi,,) satisfying the properties given in Lemma 5.2.1,
with &g (0;z,) instead of & 5 (0:20) and, for ¢ # ¢, P, 4 has entries in

280 o ,(0;2,) for some £ > 1. Moreover, given any such ¢, one can find
an admissible local holomorphic basis such that, for any ¢ # ¢, P,y
has entries in Zteﬁ%’ (0;:20)

Remark 5.2.4. Any element of eg “2) is a Jocal section of V "" (# )//1(0 7o)

and its class in gr (ﬁ ) /// 0;2,) 18 annihilated by a power or t5t 8%z
Moreover, the admlss1b1e local holomorphic basis e(#*¢) can be chosen
such that, for any ¢ # 0, e, z") is contained in V ""(5 )H///zo, where £ is
a given arbitrary integer.
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Proof. By definition, a similar result holds at the formal level for

E((f;), and if ¢ # 0, E‘(;‘b) is a local section of V(ez’:")(ﬁ Hk//?i for any k.

For b € ]0,1), let us denote by Z% the 6 7 (O;zo)—free module generated
by the 85 (p # 0), the el’5 with £,(8) > b, and the te§ with
0:,(8) < b. Then Vi ], = 3, (t8,)* Z".

As indicated at the beginning of § 5.2.b, £* := PPN is O % (0:20)
free of finite rank and it follows that V(l;o)j/:o =Y, (t0:)°.2° (cf. the
argument of Remark 4.5.2(2)). This gives the first point, and the second

one follows because e((fg) and E((ff,) have the same class. The last point

is then clear by chosing a base change (Id+2t*Q(t,z)) with k large
enough. Q.E.D.

5.2.c. Admissible local of -bases. By a variant of Borel-Ritt, for
any 2, € { and any 6, € S, we have a surjective morphism (Taylor
expansion)

dga(oﬁo i%0) - ﬁf,(o;zo) - O’

the kernel of which consists of functions which are infinitely flat along
S x nb(z,) near 6,. Let us set

MG 6, 120) = T (000 120) DO (0,20) H(0:2,)-
For any 6, € S*, we therefore have a surjective morphism

-%Qé’g E— %on) — O

0 3%0)

We say that a &y (0,9, ;-,)-basis “e(20) of //?(;5,60 2 18 admissible (with

respect to e°) if its Taylor expansion e at 6, is a local admissible
formal basis and, if 2z, = 0, _if the restriction of “(0 to z = 0 is the
pull-back of a €x ¢-basis of M.

Lemma 5.2.5. Two admissible local o -bases “e$*), “e{?*) are re-

lated by a base change "’eéz") = ”’e(lz")-(ld +7Q(t, 2)), also written deéiop) =
“’em) + deegf;)“Qw,w(t, z)), where “Q has entries in oy (6, .,,) ond
satisfies

o if Y # @, then “Q .y is infinitely flat when t — 0,

o fY#B, Quy,p(0,2) 0= L, (7) > L,(B),

o “Q,33(0,2) has weight < —1 with respect to Hy, g,

o  “Q(t,0) has entries in Ox o (in particular, “Q(t,0), .y = 0 if
vF#9).
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Proof.  The Taylor expansion at 6, of “Q) must satisfy the properties
of Lemma 5.2.2. Q.E.D.

Lemma 5.2.6. Let €% be an admissible formal basis, “e*) an
admissible local <7 -basis with respect to e®) gt (0,60, ; 2,) and e(*°) be

an admissible holomorphic basis of order k > 1 with respect to el®) gt

(0;2,). Then there exists a matriz “Q with entries in Py (0,0, 2, Such
that “e(%0) = e(%o) . (Id 42t*“Q).

Proof. We have a relation 6*°) = e(%). (1d +2t*Q) by assumption.
Lifting this relation by the Taylor map gives the relation for “e(%e).
Q.E.D.

5.2.d. Untwisted admissible local C*°-bases. For each p and 8 € B,
let us set

(527) A7) = Bpsendps  Apslt,2) = 7 Lo,
with L(t) := |log |t|?|. Given an admissible local &7-basis “e(%), we set
(5.2.8) gzo) = #e(20) . A=1(¢, 2).

We say that £(*) is an untwisted admissible local €, a(r(‘) 0, :2,)-basis. Let
us notice that, as A is diagonal with respect to the (¢, 3) decomposition,
we also have g(*) = ( )‘p geB with e(z") “e (Z") A, ﬂ(t z).

Lemma 5.2.9. For z, € Q and 6, € S, if Egzo,) and sézo) are
two untwisted admissible local €57, 4. ., -bases of M. o4 . ), and

if we set €, (z0) egz") -(Id +R(t, 2)), then, for any 6 € (0,1/2), we have,
uniformly for z in some neighbourhood nb(z,) of z,,

lim L(t)°|R(t, )| = 0.

Moreover, R(t,0)e,4 =0 if 1 # .

Let us emphasize that we index the bases s(z") by 3 € B, as they will
be globalized, so the indexing set should not depend on zo But, up to
a phase factor, we have, for § € B, sf:"ﬂ) = “"eg;,)+qﬂ . A ﬂ+qﬁ . (t 2).

Therefore, in the proof below, we assume that the index set is B,

Proof. Let “Q be as in Lemma 5.2.5. If ¢ # ¢, we find that
ALP“”Q‘I,,,,,,A;1 is infinitely flat along [t| = 0. Therefore, R, 4(t,2) is
infinitely flat when ¢ — 0, uniformly in some neighbourhood of z,, and
Rop(8,0) = 0if ¢ # .
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Let us now consider the case where ¢ = 9. If v # (3, let us re-
mark that, as £, () and £, (8) belong to [0,1) by definition, we have
144, () — £,,(8) > 0 and there exists ¢ > 0 and nb(z,) small enough
so that, for any z € nb(z,), we have 1 + £,(v) — £,(8) > e. It follows
that there exists ¢ > 0 such that, for any z € nb(z,),

[Ap 7 (“Qopy,8 — “Qe,v,8(0, 2))A;1;;| < cftff.

By the second point in Lemma 5.2.5, if “Q., 4,3(0, z) # 0, we also have
such an estimate for |A, - “Qy ~,5(0, 2) - A;1ﬂ|.

When v = 3, we only have to estimate |A, 3-“Q,3,5(0, z)-A;,lﬁ| or,
what amounts to the same, |L(t)%¢8/2 - “Q,, 5 5(0, z) - L(t)"He.s/2|. By
the third point in Lemma 5.2.5, this is smaller than ¢-L(t)~1/2. Q.E.D.

Recall that Ag = {z | |z| < 1}. We will now globalize the construc-
tion above.

Lemma 5.2.10 (Globalization of untwisted local bases). For any
d € (0,1/2), there exists an open neighbourhood nb(Ag) of Ao and a
basis € of ‘f)o(’finb(Ao) B xv wnn(ag) ) X" xnb(no) Salisfying the following
property:
o if %) s any admissible untwisted local basis, then the base
change € = e#o) . (Id +R(*°)(t, 2)) satisfies

lim L(t)°|RE (t,2)| = 0

uniformly for z € nb(z,).

Of course, a basis € constructed starting from some ¢ € (0,1/2) is
convenient for any ¢’ € (0, 4].

Proof. We first use a partition of the unity with respect to § € S* to
globalize with respect to 6 (and constant with respect to z). By Lemma
5.2.9, the base change from the #-global frame to the local frame satisfies
the desired property. The globalization with respect to z is then similar
to that of [20, Lemma 5.4.6]. QED.

5.3. Asymptotic expansion of sesquilinear pairings

In this paragraph, we wish to generalize Lemma 5.3.12 of [20] to ob-
jects of Z- Triples(X ) which are strictly specializable with ramification
and exponential twist. - Although the result will not be strong enough
for our purpose, it gives a first taste of the kind of expansions one can
obtain.
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In the following, we assume that z, € S. Let J = (//?7 , A" ,5’)
be an object of %- Triples(X) which is strictly specializable with rami-
fication and exponential twist. We will assume that no ramification is
needed for .#" and 4" , so that we can apply Proposition 4.5.7.

For any ¢ € t~1C[t™!], denote by “€~%/?” the section 1 of &~¥/2,
For any m € //1(0 20)> We denote by ®(m) C t~ 1(C[t 1] the set of ¢ such
that 1) (&—¢/* ®/)(0 20) # 0 for some ~, where ./VO :z,) 1s the submod-
ule generated by m in ,///(0 ;z,) (Dby assumption and Lemma 4.5.3, ®(m)
does not depend on z,). We then denote by Ly, ~(m) the nilpotency
order of N = —(t8; — y* z) on ;) (£~¥/* ®,/V)(O ;z,)- For any ¢ € ®&(m),
there exists a minimal finite set B,(m) such that, for any j € N there
exists an integer k(j) and an operator P; € Vo(Za (0;2,)) such that

k(4)
(5.3.1) [H H [— (83 — (B+ k) * Z)]L‘p,a(m) — 11 P,
k=0 B€By,(m)

(€™ @m) = 0.

We also define A,(m) ={a |38 € By(m), a =—0—1}.

Ezample 5.3.2. Let e(*>) be an admissible local holomorphic basis
as in §5.2.b. From Remark 5.2.4 we deduce that, for any ¢ and any
8 € B,,, Bw(efpz‘g) consists of B and of complex numbers v such that

2,,(7) > £.,(B). Moreover, if ¢ # ¢, ¥ € By, (eg’%)) implies that £,_(y) >
¢, (B), and, given any positive number k, the basis can be chosen such
that the difference £,,(y) — £,,(8) can be made larger than k.

For m' € //1(0 20) and m” € ///(0 2g) WE define
B, m") = (') 1 D(m”),
By(m',m") = [(By(m') = N) N By(m")] U [B,(m) N (By(m") — V)|
Lyp(m',m") = min{L, g(m"), Ly s(m")}.
Lastly, if f € ‘K;/,O,’(OO .2.)» One can expand f with respect to ¢, t and one
can associate to this expansion a minimal set E(f) C N? such that f =

E(u’,u”)eE(f) t"/f"”f(,,/’,,n) with for ) € %;:?o;zo)' By convention,
E(fy=oif f=0.

Proposition 5.3.3. With these assumptions and notation, let m' e
M.,y and m" € M.,y For any ¢ € ®(m/,m") =: ®, any B €
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B,(m',m") =: By, and any{ =0, ..., L, g(m',m")~1=: Ly, g—1, there
exists fo8,0 € ‘5%0:?0 ) and N € N such that, in @bgyxs/s[t_l](o;zo)
and hence in €>°(U* x (nb(2,)NS)) for U and nb(z2,)NS small enough,

(5.33)(%) (z+1/2)NC(m',m")(0.2.)

L(t)*

=Z Z Z fga,ﬁ,e(t,z)e—f@+w/z |t|2ﬁ*z/z7

Moreover, if f, 0 # 0 and if the point (k', k") € N2 belongs to E(fs,8.0),
then B+ k' € Byo(m') + N and 8+ k" € B,(m”) + N.

Remarks 5.3.4.

(1)

As a consequence of the last part of the proposition, we can
also write (5.3.3)(x) as a finite sum with terms

k/ k// e =177 ’ sl ! sl L(t)e
gUS (8, ) em T Hel= g e

where k' k” € N, 8+ k' runs in B,(m') + N and 8 + k"
in By,(m”) + N, andgvﬁe)(tz)G%WOZ)lssuchthat

g;kﬁlz )(0,2) # 0. (Recall that we denote by 3’ (resp. 5”) the
real part (resp. the imaginary part) of 3.) Let us also notice

that

Re(8 + k' +i8"2) =£.(8+k") (by definition),
Re(8 + k" +iB"/2) =b_(B+K") (asz€8).

We know that, when restricted to X* = {t # 0}, C takes values
in ‘@”;;?s. If we moreover assume that it takes values in %;;T;,
it will be clear from the end of the proof below that the f, s,
also belong to ¥5°ig". Then the functions f, 3¢ (the number
of which is finite) can be regarded as C*° functions from X
into the Banach space H(nb(z,)) of continuous functions on
the closure of a small disc nb(z,) which are holomorphic in its
interior.

Similarly, if C takes values in %;ff?g, it is holomorphic
with respect to z in a set like V(0 z,) N Z™*, where V(0; z,) is
a neighbourhood of (0;2,) in 2. However, the intersection of
V(0; 2,) with {t} x Qg could a priori have a radius tending to 0
when ¢ — 0. But from (5.3.3)(*) and the previous remark, we
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note that this cannot happen, as (z+1/z)NC is then holomor-
phic on X* xnb(z,). Therefore, C is holomorphic with respect
to z on X* x nb(z,).

Proof of Proposition 5.3.3.

5.3.a. Computing the set of indices. Let us first assume that we
have proved the existence of a formula like (5.3.3)(*), without being
precise on the sets of indices. We will now show how to recover the
information on these sets. We will use the Mellin transform to treat
each coefficient of the expansion (5.3.3)(*). Let x(¢) be a C* function
on X with compact support contained in an open set over which m’, m”
are defined, 1dentlcally equal to 1 near 0. We denote in the same way
the form x o= dt A df. Let us denote by p the order of C(m/,m”) on the

support of x (recall that there exists 7 € N such that t"C(m/,m”) is
a distribution which is continuous with respect to z € S, hence has a
well-defined order ¢, and we take p = g 4+ r). We will first consider the
coefficients for which ¢ = 0. Let us set ¥ = (z + 1/z)N6’(m',77) and
v = t"v, which is a local section of Dbxxs/s-

For all k¥',k"” € N, the function s — (v, [¢|25tF ¥ x) is defined
and holomorphic on the half plane 2Res > ¢+ k' + k”. Let Q; be the
operator appearing in (5.3.1) when ¢ = 0. Then Q; - v is supported at
{t = 0}. It follows that, on some half plane Res > 0, if we relate o
and G by a = —3 — 1, the function

k(J) , L
[H [I [2(s =¥ +k) —axz]to )} (v, [t25F EF" )

k=0 a€Ap(m)

coincides with a function which is holomorphic on 2Res > q + k' +
k" — 7. By applying the anti-holomorphic argument we find that, for
any k/,k” € N, the function s — (v, [¢|25t~¥ %" x) extends as a mero-
morphic function on C with poles contained in the sets s = a* z/z with
a € (Ag(m')+k —N)N(Ao(m”)+k"” —N) and the order along s = axz/z
is bounded by Lo «(m’,m"). Moreover, this function only depends on .

Let us now compute the Mellin transform of the expansion (5.3.3)(*)
for v. Let us first remark that, if ¢ # 0, the Mellin transform of
e~ #P+e/2|t|26*2/21,(t)¢ is an entire function: one argues as above, notic-
ing that the term between brackets can be chosen equal to 1.

Let us then consider the terms for which ¢ = 0. It is not restrictive
to assume that two distinct elements of the set of indices By do not differ
by an integer and that any element 3 in By is maximal, that is, the set
U, E(fo,s,¢) is contained in N? and in no (m,m) + N? with m € N*. Let
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8 € Byg. We will use that, for any ¢/, € Z not both negative and any
function g € €, 7?0-.20) such that g(0, z) # 0, the meromorphic function

1= 11

s = {(g(t, 2)|t|?7**/2L(t)%, |t|>*t 7" x) has poles at most along the sets
s=axz/z— N (with @« = —3 — 1), and has a pole along s = a*z/z if
and only if / = 0 and v = 0, this pole having precisely order £+ 1.

For (3 € By, let Eg C N> be minimal such that Eg+ N2 =
U.(E(fo,8.¢) + N?). From the previous argument we can conclude that,
for any (k',k"”) € Ejg, the function s — (7, |t|2¢t=¥F*"x) has a non
trivial pole along s = a x z/z; on the other hand, from the first part of
the proof it follows that @ —k’ € Ap(m') —N and a — k" € Ag(m”) — N,
that is 3+’ € Bo(m')+N and +k"” € Bo(m”)+N. As we assume that
G is maximal, there exists (k', k") € Eg with k' = 0 or ¥” = 0. It follows
that 8 € Bo(m',m”)+N and that the condition given in the proposition
is satisfied by the elements of Ejg. It is then trivially satisfied by the
elements of all the E(fo g,¢).

In order to obtain the result for the f, g ¢, one applies the previous
result to the moderate distribution e*®—¥/#7. Q.E.D.

5.3.b. Proof of the existence of a formula. We now prove the ex-
istence of a formula like (5.3.3)(x), without being precise on the set of
indices.

5.3.b(1). Sectorial formula. We will work on the real blow up Y =
[0,70) x S of the origin in X, with blowing-up map e : ¥ — X, and
on the corresponding space # =Y x g, as in §4.5.c. We consider the
sheaves @, etc. as in §4.5.c.

We can extend in a unique way the pairing C to a pairing c :

M R0 M — Dby ,g/s[t™!] in a way compatible with the Zg
and the Zz-action (one uses the local freeness of .#', .#" given by
Lemma 4.3.1).

We will fix 6, € S* and 2, € S and we work with germs at (0,0, ; 2,).
According to (DEC#) in Proposition 4.5.7 and Lemma 4.4.6, for N >> 0,
(z+1/2)¥m’ (resp. (z + 1/2)Vm”) is a linear combination with coeffi-
cients in %y (9,0, ;2,) Of sections u’ (resp. p”’) which satisfy equations of
the form

{(t—at ~Bxz -ty (B)W =0, {(tét — %z =t (t)) " =0,

toi’ =0 O =0

On (Y*xS)Nnb(0, 6, ; 2,), C= (1, 14”") takes values in €220 (resp. Cyals

if we assume that C takes values in %gs)s)- It follows that, on such a
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set, the C* function of ¢ (with a given branch of log ¢ chosen near 6,)
t—ﬁ*z/ze—go/zt—v*z/ze—w/zarm (ul,/;/?)

is annihilated by (t9;)¢ and 0,", hence is a linear combination,
with coefficients depending on z only (in a C° way, or an
analytic way if C takes values in Co Tg) of terms (logt)?(logt)®.
Hence C“ (W ,;7'-) is a linear combination with such coefficients of
terms e~ 2¥+e/2B*=/241*2/% (Jog t)o(log F). It will be convenient to
write e~ #¥+¢/z = ¢=#¥+¥/2(¢=¥)/* and to note that, when z € S,
le—zt/J-H/J/zl =1.

If ¢ # 1, then, as C¥(y/ ,;7) has moderate growth along |t| = 0
uniformly in (Y* x S) Nnb(0, 6, ; z,), we can assume that nb(0, 6, ; 2,)
is small enough so that

e either Re[(p —1)/2] < 0 all over this neighbourhood and then
c~ (w, u’ ") is infinitely flat along |t| = 0 (locally uniformly with
respect to z € nb(z,)),

e or, whatever the size of nb(0,6,; 2,) is, Re[(¢ — 1)/z] takes
positive values on some nonempty open subset of (Y* x S) N
nb(0,6, 2,) and C(i/,;i”") = 0 on this neighbourhood (the
only possibility in order to extend as a temperate distribution
all over this neighbourhood).

If ¢ = 4, then, as v * z/z is “real”, we have trrEz = prez/z
and one can rewrite e~ZPte/2f*=/57*%/%(Jog t)e (logt)b as an expan-
sion like (5.3.3)(*), with the ¢-terms only, and fL,, Bt € CKYXS (0,0
(vesp. fso 8.0 € Cy |s (0 8 20))"

Taking a partition of unity with respect to 6, we obtain (5.3.3)(x)
on Y* x S for (z + 1/z)NC(m m'), that is, with coefficients f, g, in
€ %;Oxs (0:2) (T€SP. in €%, @|s (o o))

5.3.b(2). Globalizing the sectorial formula. It remains to showing
that the expansion can be rewritten with coefficients f, 5. in €y, >20s (0:20)

o;zo)

(resp. in €5 gms ©; ZO)) We will once more use a Mellin transform argu-
ment, as in § 5.3.a.

Lemma 5.3.5. Let By C C be a finite subset. A function

L
= 303" Faelt, )PP L (1)

ﬁego =0
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with fg4 € e Es (0:20) (TESP- I B 55" 1), can be written as

L
DD et )PP

BEBg £=0

for some finite set By, with fa¢ € ‘K;O;OS,(O;ZO) (resp. in %‘%Ol’gf’(o;zo)) if
and only if there exists a finite set Ag C C such that, for any k', k" € N
with k' + k" € N, the poles of s — (f, |t|*t~*T~%"x) are contained in
the sets s = axz/z, with a € (Ag+ k¥ —N)N (4o + k" = N).

We apply the lemma to the ¢ = 0 part of the expansion obtained
above: arguing as in §5.3.a and using that the Mellin transform of the

sum of terms with ¢ # 0 is an entire function of s, we conclude that the
condition of Lemma 5.3.5 is fulfilled. Q.E.D.

Proof of Lemma 5.3.5. A function g € e*%}’xs (0520 has a Taylor
expansion ) -, Im(e®?)|t|™, where each G, is continuous on S* x S
and C™ with respect to S' and can be developed in Fourier series
>, Gmne™. Then § can be written as holt| ™% + hq|t|~*oF! for some
ko € N and h; € €553 o, if and only if

(5.3.5)(x) Iman Z20=m=*n > —ko.

Indeed, one direction is clear. Now, if (5.3.5)(x) is fulfilled, we have

~ —k ~ PIq —~ko+1 ~ 79
g=t= E Ip+q—ko,p—q—kot 1+ [t] 7 _S_ Ip+a—ko+1p—q—ko+117 1.
p,gqEN p,g€N
p+qzko p+gzko—1

Borel’s lemma gives us two functions hg,h; € %Xxs (0520) such that
G — (holt| =% + hq|t|=%+1) is in e*(ngs (0;2,) and infinitely flat along
[t| = 0, hence belongs to %XXS (0:2,)- We include it in one of the two
terms, to get the assertion.

Condition (5.3.5)(*) can be expressed in terms of Mellin transform:
indeed, one can check that, for any j/,j” € N such that j' + j” € N,
the Mellin transform s — (g, |t|25¢=9'T~7"x), which is holomorphic for
Res > 0, extends as a meromorphic function on C with simple poles
contained in 3Z. Condition (5.3.5)(x) is equivalent to the existence of
ko € N such that for any j/,j” € N with j' + j” € N, the poles are
contained in the intersection of the sets %ko —1+4+j5 —Nand %kg -1+
j" —N. This gives the lemma when By has only one element and L = 0.
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Arguing by decreasing induction on L (hence on the maximal order
of the poles), one then shows the lemma when By is reduced to one
element. The general case is then clear. Q.E.D.

Let us denote by F the block-diagonal matrix, with blocks indexed
by ¢, such that the (-diagonal block is e~*?+#/2Id. Recall that we have
le=##+t%/%| = 1 when z € S. Notice also that, as —z3% + ¢/z is “real”,
we have E* = E. Recall that the matrix A is defined in (5.2.7).

Corollary 5.3.6. Let z, € S, let e(*2°) be a pair of admissible local
holomorphic bases (cf. §5.2.b) and let C) be the matriz of C in these
bases. Then, for N -large enough,

(z4+1/2)N - PATICEIA™ = (2 + 1/2)VE + R®)(1, 2),

where the entries of R) gre O and holomorphic with respect to z on
X* xnb(2,), and lim;_,o L(t)®|RZ)(t, 2)| = 0 for some § > 0, uniformly
on nb(z,) N'S.

Proof. We consider the setting of Example 5.3.2. Then, for any

Y1, P2, any ﬂl S Bzg> ﬂ? € B—zn, any wi, w2 € Z? and any e§ZO) €

€ s €5 € €l s (2 4 1/2)NE(El,ef)) s a sum of
terms as in Remark 5.3.4(1) above, such that, on some neighbourhood
nb(z,) NS, for any ¢, 3,4, k', k" such that gf:ﬁ;,kz )(O, z) #0,
(1) if o1 # @2, then £L,(B 4+ k') + £_.(B + k") > £.(61) + £—.(B2),
(2) if o1 = w9 and B1 — P2 &€ Z, then fz(,@ + kl) + f_z(,B-l- k”) >
£,(B1)+2—,(B2) or ¢ = 1 = s and £,(B+k'")+4—_.(B+K") >
£(61) + £—2(B2),
(3) if o1 = @2, B1 — P2 € Z and wy # wo, then £, (B+Kk")+L_.(B+
K") > £,(B1)+L-.(B2) or p = @1 = o, B+k' = B, B+k" = B2
and £ < ('w1 + ’wg)/2
Indeed, let us consider the second case for instance. If ¢ # @1, we
apply the estimate given in Example 5.3.2 for £, (7). If ¢ = @1 = ¢o

and ggf;;f;"’(o, z) # 0, then [ satisfies both properties:

,8 + K= ,31 or ZZO(IB + kl) > EZO(Bl),
BHE =62 or L. (B+EK")> L ., (Ba)

Recall that £,(y) = Re(y' +iz7"”) and that, if z € S, £_.(v) = £1/.(7).
The assumption implies that we cannot have simultaneously 8+ k' = 3,
and B+ k" = 5. Therefore, in any case,

ezo (/8 + k/) + K—zo(ﬂ + k”) > ezo (/81) + e—zo (/82)
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One can choose nb(z,) and € > 0 such that, for any z € nb(z,),

(B+EK)+b1,(B+K") > L(B1) + £1/,(82) +&.

In conclusion, when one of the assumptions of (1), (2) or (3) is ful-
filled, the [(¢1, 81, w1), (@2, B2, w2)]-block of R(%) satisfies the property
in the corollary (and even much better in the first two cases).

Let us now fix ¢ and f; € B,_, and let 32 be the unique element of

B_,, such that 82 € 31 + Z. Let £ € N and let us consider the families

e(zo) (_zo)
©,81,8,0 €, 82,8,0

According to the definition of Py?*C(£/2) as a residue, and arguing
as above, we conclude that, for z € nb(z,) N S,

lifting primitives elements. Assume first that ¢ = 0.

(z+1/2) N O((18,—Bx2) el h 0.0 €bpmne) = (241/2)N[?%*/*(—2)" 1d
+ terms as in (3).
Also according to the general form of C (eO ,gz 00 e(() Ba % ») given by Propo-
sition 5.3.3, we conclude that

(z+1/2)NC(el%5) 4 e i) ) = (2 + 1/2)N|¢22**/2L(t)* 1d /21
+ terms as in (3).

A similar result holds for (z+ 1/z)NC’(e(()z§1’e 1ok e(() ﬁz% +—op) for any k,

as C is Ba ® Hz--linear (with the convention that L(t)~2* is replaced
by 0 if £ — 2k < 0). This implies that the [(0, 81, w), (0, 82, w)]-block of
R(%) satisfies the property in the corollary for any w € Z.

When ¢ # 0, we argue similarly by tensoring first by £%/#. Q.E.D.

5.4. Construction of an orthonormal basis
We now go back to the situation of § 5.2. Therefore 7 = (A, #,C)

satisfies the twistor properties at ¢ = 0. We also assume that C takes
values in %;*Tg By Remark 5.3.4(2), this means that, for any z, € S,

there exists an open neighbourhood nb(z,) such that C can be extended

to Ey~ ?(r;b(z )
Let € be the frame obtained by Lemma 5.2.10. It can be decomposed

into subfamilies €.

Proposition 5.4.1. If X is small enough, there exists a matric
S(t, z) which is continuous on X* x nb(Aqg) and is holomorphic with
respect to z, such that lim;_,g S(t, 2) = 0 uniformly on any compact set
of the interior of Ao, such that, if we set &’ = e-(Id +S(t, 2)), the matriz
C(e',€) is equal to E.
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In fact, one can be more precise concerning the limit: the L2-norm
of S(t,+) on Ag {or, equivalently, on S), with respect to the standard
Euclidean metric, has a limit equal to 0 when ¢t — 0.

Similarly, the basis €’ can be decomposed into subfamilies €;,. We
define the basis € by a rescaling depending on ¢:

(5.4.2) g, =€, - (e*P1d).

Corollary 5.4.3. The frame € is orthonormal with respect to C.
Q.E.D.

Proof of Theorem 5.0.1. It follows from Corollary 5.4.3 that the
restriction of Z to any small nonzero ¢ is a polarized pure twistor of
weight 0. Therefore, according to [26] (see also [20, Lemma 2.2.2]),
I x~ defines C*° bundle H on X* with a flat connection and a harmonic
metric. Q.E.D.

Proof of Proposition 5.4.1. It relies on the following lemma:

Lemma 5.4.4. Let € be any global basis as constructed in Lemma
5.2.10. Then the matriz of C in this basis satisfies

C(e,&) = (Id+R(t,2)) - E

with
(5.4.4)(x)

R(t, z) continuous on X* x nb(8S) and holomorphic w.r.t. z,
36 > 0, limy_o L(t)°|R(¢, 2)| = 0, uniformly for z € S.

The proof of the proposition then proceeds as follows. Let us denote
by H' ® H" the usual decomposition of L%(S): the functions in H’
(resp. H") extend holomorphically on {|z| < 1 resp. > 1}. Arguing as
in [10, Lemme 4.5], we find that there exist continuous mappings

S : X — Maty(H'), S":X — Matyg(H"), Sp:X — Maty(C),

where d is the size of the matrices we are working with, uniquely deter-
mined by the following properties:

e 5(0,2) =0, S7(0,2) =0, Sp(0) =0,

e S5'(¢,0) =0, S"(t,00) =0,

e Id+R(t,z) = (Id+5'(¢, z))(Id +S0(8))(Id +8"(¢, 2)).
We notice then that S’ (resp. S”) is continuous and holomorphic with
respect to z on X* x nb(Ag) (resp. on X* x nb(A)).

For § = §,80,8", we set T = E"'SE. By assumption, the

sesquilinear pairing C satisfies C* = C. Therefore, (Id+R)E =
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E(Id +R*), as E* = F and, using uniqueness in the previous statement,

we find
TI — S”*, TO — Sak, T// — SI*-

Consequently, we get
C(e,&) = (Id+8")(Id +So) E(Id +5™).

Moreover, as Sy is independent of z, the relation ESy = S3E implies
that Sy is diagonal with respect to the ¢-decomposition and we have
S5 o0 = 50,0, for any . If we set Id +So = (Id +Up)(Id +Ug) with Up
diagonal with respect to the p-decomposition, we then have

(Id+S0)E = (Id +Uo) E(Id +U3).

Now, the proposition is clear, by taking &’ = & - (Id +%5")~1(Id +Up) 1.
QE.D.

Proof of Lemma 5.4.4. Let us first indicate that we could have con-
structed a frame e starting from admissible local holomorphic bases
e(#°) | by the same procedure (similar to that used in [20]). From Corol-
lary 5.3.6 we would only get an expression for (z + 1/2)NC(e,€), for
z € S. In order to get a good expression for C(e, €), we have to use the
maximum principle, and thus work holomorphically in some neighbour-
hood of S, where the expression for (z +1/2)VC(e, ) does not remains
good because of the many terms e~*¥+¥/%. On the other hand, working
with admissible #7-bases will give us a better control of (2+1/2)V C(g, €)
on some neighbourhood of S.

In order to prove Lemma 5.4.4, it is enough to check the property
locally. Let us fix §, € S* and z, € S. Given a pair “e(*?o) of lo-
cal admissible 2/-bases at +z,, we denote by (%) the corresponding
untwisted bases, by “C(%<) the matrix é(ﬂe(z"),"’e(_z")), by “C) the
matrix 6(6("'0),6(_2")), and by “C the matrix 5’((—:,5).

Let us notice that, as the entries of E are continuous on X* x
and holomorphic with respect to z, and have a modulus equal to 1
when z € S, we have, for R(**) satisfying (5.4.4)(x), E + R®)(t,2) =
(Id +R/(%)(t, 2))E with R'(*e) satisfying (5.4.4)(x). We will then show
“C = E+ R locally near z,. Moreover, according to Lemma 5.2.10, it
is enough to show "C(*<) = E+ R(%°) for some R(**) satisfying (5.4.4)(x).
Note also that, by definition, “C'(?e) = tA~14C(e)4~1 where A is de-
fined by (5.2.7).

According to Lemma 5.2.5, we can assume that the &/-bases are
compatible with the decomposition (DEC*). Moreover, according to
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Lemma 5.2.6, we can also assume that Corollary 5.3.6 applies to the
chosen local admissible &7-bases. We will follow the same steps.

Lemma 5.4.5. If ¢ # ), there exists a neighbourhood nb(0, 6, ; z,)

of (0,6, ; z,) such that, for any p>0, lim;_q |t|~P lé(“’efaz") “e 2e(~70) z"))l
uniformly for (t,z) € X* x SNub(0,6,;2,)-

Proof. Arguing as in §5.3.b(1), we find that there exists N such
that the function (z 4 1/z)Ne=¥—%/ ZC~’(“’e<(,,Z°),“’ef/;Z°) ) has moderate
growth, uniformly with respect to (t,z) € nb(0,6,;2,), and is zero if
Re[(¢ — ¥)/20] = 0 on some open subset of nb(0,6,;2,). As

e*V=¢/=C (e = Eb %)y is holomorphic with respect to z on X*
nb(z,) (cf. Re—mark 5.3.4(2)), it also has moderate growth umformly

with respect to z € nb(z,) by the maximum principle. The lemma fol-
lows from the rapid decay, uniformly with respect to z € nb(z,), of

/=% when Re[(p — 1)/ 20) < 0. Q.E.D.

Lemma 5.4.6. Let 81 € B,,, B2 € B_,, be such that 51 — B2 & Z.
Then there exists a neighbourhood nb(z,) of z, and € > 0 such that

(5.4.6)(x) th_% [£| 7€ [¢|~(BatiBy =) ¢~ (Batiby /=) |C~v(w' ((:zb)l £ fpg;) ) =0

uniformly for z € nb(z,) N S.

Proof. It follows from Corollary 5.3.6 applied to the local «/-admis-
sible basis that (5.4.6)(x) holds after multiplication by (z + 1/2)" uni-
formly with respect to z € nb(z,) N'S and, as |e*?~%/?| =1 for z € S, it
also holds after multiplication by (z + 1/2)Ne*®~¢/2,

Arguing now as in §5.3.b(1), (z + 1/z)NeZ¢“P/ZC~’(“’e((;"2,)1,‘“’e((pf;;’))
can be written, for z € nb(z,), as

(Binz/2gBan/ Z dan(t],0; 2)(logt)*(log?)®
a,beN
_ tﬁl*z/zfﬂ2*z/z Z hl(|t|7 0, Z)L(t)e’
¢eN

where the entries of the matrices g, (hence hy) are in %;,O (?]neo,zo)
Condition (5.4.6)(*) translates then as the vanishing of suitable deriva-
tives aﬁlhg of hy with respect to |t| along |t| = 0, for z € nb(z,) N S.
As 8| t|hl(0’0; z) is holomorphic with respect to z, this vanishing holds
for any z € nb(z,), and in turn this implies that (5.4.6)(x) holds (up
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to changing €) for (z + 1/z)Ne=@=¢/2C(* fpz‘;,)l,“efa ;" ) uniformly on
nb(z,).

As ¥/ ZC(“’ f:") ,""’efo ;;’)) is holomorphic with respect to z on
X* x nb(z,) (cf. Remark 5.3.4(2)), we get (5.4.6)(*) for it by the max-

imum principle. If we now restrict to z € nb(z,) NS, we get (5.4.6)(x).
Q.E.D.

In a similar way we get:

Lemma 5.4.7. Let 3 € B and 8, € B,,N(B+Z), f2 € B_,, N
(B+Z). Let wi,ws € Z be such that wy # wo. Then there exists a
neighbourhood nb(z,) of z, and § > 0 such that

(5.4.7)(x) Pn% L(t)° L(t)—(w1+wz)/2|t|~(ﬁi+iﬂ£’Z)|t!—(ﬂé+iﬂé’/Z) .

(20) (=20) _
|C(g¢ €o.61,w1? de¢7ﬂ27w2)l =0

uniformly for z € nb(z,) N S.

Proof. Let us set 81 = 8+ ki1, B2 = B+ k2. The power of |¢] in
(5.4.7)() reads |t|=28**/%|t|=(k1+k2) On the other hand, arguing as in

§5.3.b(1), (z+1/2)Ne?@=¢/2C (% E:Dﬂ)l wy ‘Z’ega 52" w,) can be expanded as
|t[2P*=/ 2tk 852 N " (|1, 6, 2)L(8)°.
£0

We end the proof as for Lemma 5.4.6. Q.E.D.

Lastly, the case w; = ws is treated similarly, concluding the proof
of Lemma 5.4.4, and hence of Proposition 5.4.1. Q.E.D.

5.5. A characterization by growth conditions

Let 9 = (A, #,C) be an object of %- Triples(X) which satisfies
the assumptions in Theorem 5.0.1. If .# is regular at ¢t = 0, then the
matrix E above is equal to identity. Moreover, the estimate for the limit
of L(t)°R(t, z) holds in some neighbourhood of S, not only on S. It
follows that the matrix S(¢, z) is continuous on X x nb(Ag) and holo-
morphic with respect to z on this set. As a consequence, we have a
good estimate on X* x nb(Ag) for the norm of the global basis € with
respect to the harmonic metric defined by the twistor object on X* and,
using the base changes of §§5.2.a, 5.2.b and 5.2.c, we get an estimate
for the norm of any local admissible holomorphic basis. In particular,
we can characterize .# from J//l - as the subsheaf consisting of local
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sections whose norms, with respect to the harmonic metric, have mod-
erate growth near the origin. This was one of the main points in [20,
§5.4]. It was also the basic tool for computing L? cohomology in [20,
§6.2], in a way analogous to that of [27] (see also [14, Chap. 20] for a
slightly different approach).

In the irregular case, we do not.get a good estimate for the norm
of the basis € when z = 1, as Proposition 5.4.1 does not give enough
information on the matrix S when z € S. Moreover, even on the interior
of Ag where we have a good estimate, the exponential terms prevent
us to get a convenient estimate for the norm of any admissible local
holomorphic basis. As a consequence, we ¢ do not get a characterization
of the meromorphic extension .# of .# g~ in terms of growth with
respect to the harmonic metric.

Nevertheless, let us note that Corollary 5.4.3 implies that the re-
striction £y to 2z = 0 of the frame £ is an ~orthonormal frame for the
harmonic metric » on the Higgs bundle (.#/z.#)|x+. Therefore, the
frame €, is also an orthonormal frame and the frame g, which is the
restriction at z = 0 of the frame obtained in Lemma 5.2.10 is asymptot-
ically orthonormal, according to Proposition 5.4.1. Restricting (5.2.8)
to z = 0 and using the definition of an admissible local &/-basis gives
a meromorphic frame of My whose h-norm has moderate growth at the
origin. As a consequence we get:

Corollary 5.5.1. Let 7 = (‘//?,/2[5) be an object of Z- Triples(X)
which satisfies the assumptions in Theorem 5.0.1. Then the meromor-

phic extension .////z./// of the Hzggs bundle (J/Z/ZJ//) x~+ 15 character-

ized as the subsheaf of j*(.////z///)p(* consisting of sections whose h-
norm has moderate growth at the origin. Similarly, the parabolic fil-
tration defined by the metric is identified with the filtration induced by

Vi . Q.E.D.

However, if we accept coefficients which are C*° with respect to z, it
is reasonable to expect that we can recover a characterization by mod-
erate growth for .# (this question has now been completely solved by
T. Mochizuki in [15]). Such a procedure was used in a simpler situation
in [19] that we describe now.

We will denote by 0% the subsheaf of €5 consisting of functions
which are holomorphic with respect to t, but possibly C° with respect
to z. We can then consider Z% = €% (20;). We will also need to
consider the sheaf 69 consisting of functions which are continuous, C*
away from z = 0, and holomorphic with respect to ¢ (the notation is
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therefore not precise enough, but we keep it for simplicity). We define
XY similarly.

Let j : X* — X or Z* — % denote the open inclusion. Let
w: Z — X denote the projection.

A simple ezample. Let us start from a polarized regular twistor
@[t“ J-module T8 = = (%, %, Creg) on X, and let us assume that .7 =
(/// M, C) is obtained from 778 by twisting with &#/# (recall that it
is a O [t~ !]-free module of rank one, with the action of 8; defined on its
generator 1 by 3;1 = z71p-1). In particular, we have C = e~ #P+¢/z(Creg,
Then 778 defines a harmonic bundle H on X*, with harmonic metric
h'®® and, if 7 : & — X denotes the projection, we know that Z is
characterlzed by the moderate growth condition with respect to m*h"°8.
As .4 is isomorphic, as a Oy [t~!]-module, to Z, it is also characterized
by a moderate growth/condltlon but not with respect to the harmonic
metric i defined by 7. Let us notice that, using the isomorphism

Cg; ,an ®%|%* —) Cgoo ,an ®‘%|’9:’*

the object T restricted to X* also defines a polarized smooth twistor
structure of weight 0, with the same associated C*°-bundle H (but
with distinct metric A and distinct flat connection Dy ; in fact, h =
e 2Revpree and Dy = D% + dp, see [19, §2]).

On the other hand, there is no isomorphism §|/ X — 9{;?, as the

flat global section e~%/% . 1 of &%/% only exists on z # 0; as a matter of
fact, h and h™® do differ.

In order to circumvent this difficulty, we extend the coefficients of M
by tensoring with &32[t~!]. Restricting to 2™*, we have an isomorphism
of 6% [t~!]-modules

— Zp ~
(55.2) Ot ®p -1 Mar- ——— 0%t ®py. -1 B2~

where Z denotes the usual conjugate of z. This isomorphism is not com-
patible with the Z%-structure (i.e., the action of 3;), but it is compatible
with C and C™8: indeed, on S, we have Z =1/ 2.

Under this isomorphism, the subsheaf of j.(€0%.[t™!] ®g,.[t-1)
M) %) consisting of sections having moderate growth with respect to
m*h is identified with the subsheaf of j,(05. [t '] ® ¢, .(1-1) |2+ ) of
sections having moderate growth with respect to 7*h**8 (use [19, (2.2)
and (2.3)] with dy instead of —dt).
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A generalization of the construction. We generalize below the pre-
vious construction, although it does not seem to be enough to recover a
characterization by moderate growth. We proceed a little differently, as
we do not have at hand a regular Z4[t~]-module like Z in the previous
example.

(1) In the first step, we construct an auxiliary locally free 69-[t~!]-
module .Z*"* with a compatible action of Z%-. In the simple
example above, we would have .3 = 2% @ 4.

(2) In the second step, we show that there is an isomorphism

(5.5.3) O% . @,y Mae = MP

compatible with the 2%-.-actions. In the simple example above,
it is hidden behind the isomorphism (5.5.2). As a consequence,
we get, by transporting C' through the previous isomorphism,

a %%l s ®eg '%%I g-sesquilinear pairing

6«aux . ‘ﬂ'asux ®<g§o ‘”lasux _ @bxxs/s[t—l]’

and we get an isomorphism of triples

ﬁgg* Q6 gx (jgf*,%*,é) AN (%‘%‘}f"@li(’éaux)‘

Step one: construction of M**. Let us denote by M the
ﬁ’%}[t_l]—module
P(eEH/ei @JA),

J

with the natural %}—structure. We will construct .#2"* equipped with
an isomorphism
(DEcl\aux) '%A?mx/\ et ﬁ\aux.
We first recall the well-known Malgrange—Sibuya Theorem in the present
situation.

We use the notation of §4.5.d for 2 (real blow up of z = 0 and of
t =0in X) and &%, and we denote by p : & — £ the natural map. We
define the sheaf &/ by relaxing the holomorphy condition with respect
to z. If z, # 0, p~%(0;2,) consists of a circle S' with coordinate 6,
while if 2, = 0, then p~1(0;0) = S! x S! with coordinates (6, ). Let us
denote by GL4(275) the sheaf of groups consisting of invertible matrices
of size d with entries in &/g°, and by GL;’?Z::%}} (#/5) the subsheaf of
matrices of the form Id; +M, where the entries of M are infinitely flat
along {t =0} and vanish when restricted to z = 0.
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Theorem 5.5.4 (Malgrange-Sibuya). For any 2, € S, the im-
age of the pointed set H' (p™1(0; z,), GL;?Z.%}} () in the pointed set
H'(p71(0; 20), GLyg =0} (ZF)) is the identity.

Proof. We recall the classical proof (cf. [9, Appendix]) for the sake
of completeness. Let A be an element of H' (p~1(0; 2,), GL; ?2“%}} ().
Denote by &4 the sheaf of C*°-functions on 2. Then one checks that
the previous set, where &g is replaced with £«, reduces to the iden-
tity. If X is defined on a covering (U;) of p=%(0;z,), then there exist

sections u; € F(Ui,GL;g::%}}(o@y)) such that A\;; = ,ui,u]-‘l. Moreover,

0y is well-defined on é";{tzo}, and the p; 18,115 glue together as a section

of M t;?z %}} (z) on p~1(0;2,). This is then also a germ of section v

of Matj?z %}}(£XX§0) at (0;2,) if 2, # 0, or along the circle S* with

coordinate ¢ if z, = 0. According to [8, Chap.IX, Th. 1], we can solve
0yn = —nv with

LIRS GLd((g‘%f’(o;zo)) if 2o # 0,

enc F(SI,GLd(é’XXﬁO)) if z, = 0 and S" is the circle where ¢
varies,

and, in both cases, 7(0,z) = Id. Moreover, as v|,—¢ = 0, the function

n(t,0) is holomorphic and, replacing n with 7(t,0) 17 gives 7, = Idg.

We now replace §; with 8;n, which belongs to F(Ui,GLd,{zzo} (.Q@’S))

QED.

Let us first work at z, # 0. According to the decomposition (DEC“’ )
of Proposition 4.5.7, if we denote by ///(0 .z,) the sum @W((g"p/ ®=@¢ (0320) )
then ///(O;ZD determines a Stokes cocycle A relative to //1(0 20)" If we fix
bases of %, (0;.,) and if d denotes the rank of .#, this cocycle belongs
to H'(p™(0; 2,), GL;{t:O}(ﬁfgg)) (the condition on the restriction to
{# = 0} is now empty).

We now consider ///aux el S (D¢ » sz)(();zo)) equipped
with its connection V2" el and the same Oy (o2, )[t_l] basis as ///(0 20)
(in other words, we only change the connection on ME 02 ,))- If we denote
by 0;°8 the action of 8; on %¢ (0;2,)» then the action of 8; on £9/2 @

Ry, (0:2,) 15 38 +¢’, and that on EEH2 @, (0520) 18 08+ (142 ¢’
Let us note that the argument of Z+1/z is the same as the argument
of 1/z. Let us denote by E, the block-diagonal matrix having diagonal
¢-blocks €*# Idg,. Then, if we denote by A** the cocycle E AE; !, we
see that A" is 5 [t~ !]-linear (i.e., is compatible with the action of J;
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on JZ/\(??)“’;OG)I) and still belongs to H* (p~1(0; 2,), GL;{t:O} (). If for

some suitable covering (U;) of p~1(0; 2,) we set A% = ,ui,uj_l according
to the theorem of Malgrange-Sibuya, we conjugate on U; the matrix of
vauxel by 11, and we get a new connection V2% which does not depend
on U;. It therefore defines a connection V*'* on the €% (O,zo)[t“l]—
module //[f?aou_’;f)l, that we now call //?(%“_’;D). Moreover, we have a fixed

. . . 1A 7.
identification ‘///(":)u,’;’e) = (’a‘?g") .
1“0 1~0

tions (depending on the choice of u; or of the covering (U;)), we get iso-
morphic Z% (0~zo)[t_1]—modules; the isomorphism induces the identity

at the formal level, therefore the isomorphism is unique. This enables

us to glue the various /"7 | when z, varies in Q5.
<0

Last, if we have two such construc-

Let us now work at z, = 0. We consider a covering (U;) of p~1(0;0)
on which the decomposition (DEC§) holds. Let us fix bases of the
Aot~ !]-modules @g"p (the index i refers to the open set U; where ﬁf”w
is defined). We assume that these bases lift the same & Z.(0:0) [t=1)-

basis of @(’;’(0 0) and, when restricted to z = 0, come from a given

basis of R,. We identify then the various #/z[t~!]-modules %7 to
At~ equipped with the connection V8. Twisting ,@fip with &£¢/%
(resp. £ +1/2)%) gives the connection V; (resp. V2",

With respect to these identifications and using the isomorphisms
(DECg), we get a cocycle A € H' (p~*(0;0), GL;?;::%}} (#)). We con-
jugate it as above to get A\*"*., Using the same argument as above, and
as Z vanishes at z = 0, we have A*** € H!(p~1(0;0), GL;EZ%}} (#)).

If we set A2 = pju-" then, conjugating vausel hy p; for each 4, we
get a connection V2™* with matrix (in the fixed bases) having entries
which are continuous on 2" near (0;0), meromorphic with respect to ¢,
and which become C* when expressed in polar coordinates with re-
spect to z (in particular, they are C™ away from z = 0). We thus get
‘/Zl\(‘%‘;’é). By uniqueness, it coincides with M** constructed previously,
when restricted to z # 0.

Step two: the isomorphism (5.5.3). It is now straightforward. We
have a formal isomorphism M — AN induced by E.. For any z,,
this isomorphism exchanges the Stokes cocycles along p~!(z,). There-
fore, it induces a local isomorphism (5.5.3) on X* x nb(z,). These local
isomorphisms glue together as they have the same underlying formal
isomorphism. Q.E.D.
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