ON THE FOURIER-LAPLACE TRANSFORM OF
A VARIATION OF HODGE STRUCTURE

BUDAPEST, MAY 2008

Claude Sabbah

Abstract. Generalizing the notion of (variations of) Hodge structure is needed by various recent mathematical developments (e.g. Mirror symmetry and tt* geometry). Harmonic Higgs bundles with supplementary data are good candidates. In the talk, I will explain how this new structure is stable by the Fourier-Laplace transform, a result related to previous work of S. Szabo on the Nahm transform.

1. Variation of polarized Hodge structure

Let \(P = \{ p_1, \ldots, p_r, p_{r+1} = \infty \} \) be a non empty finite set of points on the Riemann sphere \(\mathbb{P}^1 \). We will denote by \(t \) the coordinate on the affine line \(\mathbb{A}^1 = \mathbb{P}^1 \setminus \{ \infty \} \). The main object of interest in this talk will be a \((\text{complex})\) variation of polarized Hodge structure on \(\mathbb{P}^1 \setminus P \).

Examples.

(1) Let \(\mathcal{V} \) be a unitary local system on \(\mathbb{P}^1 \setminus P \). This defines a complex variation of Hodge structure of type \((0, 0)\). Giving a local system is equivalent to giving a set of matrices (monodromy matrices) \(T_1, \ldots, T_r \in \text{GL}(\mathbb{C}^{\text{rk}V}) \), up to conjugation by the same invertible matrix. The local system is unitary if one can find \(T_1, \ldots, T_r \) in the unitary group.

(2) Let \(f : X \to \mathbb{P}^1 \) be a projective morphism from a smooth complex projective variety \(X \) to the projective line. Away from the critical values \(P \) of \(f \), each cohomology sheaf \(H^k(f^{-1}(t), \mathbb{C})_{t \in \mathbb{P}^1 \setminus P} \) forms a local system and underlies a variation of polarized Hodge structure.

(3) Let \(U \) be a smooth complex quasiprojective variety of dimension \(n \) (e.g. \(\mathbb{C}^n \) or \((\mathbb{C}^*)^n\)). Let \(f : U \to \mathbb{C} \) be a regular function on \(U \) (e.g. a polynomial or a Laurent polynomial). Let us assume that \(f \) is tame, that is, \(f \) has only isolated critical points on \(U \) (and we denote by \(P \) the set of critical values including \(\infty \)) and has no “critical point at infinity with finite critical value”. The local system \(H^n(U, f^{-1}(t), \mathbb{C}) \) underlies a variation of mixed Hodge structure, which contains, as a subquotient, a variation of polarized pure Hodge structure, all other
subquotients having no singular points at \(p_1, \ldots, p_r \). For the purpose of this talk, this will be as good as the pure case.

Definition. A polarized variation of Hodge structure of weight \(w \) on \(\mathbb{P}^1 \setminus P \) consists of a \(C^\infty \) vector bundle \(H \) on \(\mathbb{P}^1 \setminus P \) equipped with a flat connection \(D \), a decomposition \(H = \bigoplus_{p \in \mathbb{Z}} H^p \) (\(H^p \) is usually written as \(H^{p,w-p} \)) and a Hermitian metric \(h \) on \(H \), satisfying the following properties:

- the decomposition is orthogonal with respect to \(h \) and the nondegenerate \((-1)^w\)-Hermitian form \(k = \bigoplus_{p \in \mathbb{Z}} (-1)^p h|_{H^p} \) is \(D \)-flat,
- (Griffiths’ transversality)
 \[
 D'(H^p) \subset (H^p \oplus H^{p-1}) \otimes \mathcal{O}_{\mathbb{P}^1 \setminus P}^1,
 \]
 \[
 D''(H^p) \subset (H^p \oplus H^{p+1}) \otimes \mathcal{O}_{\mathbb{P}^1 \setminus P}^1.
 \]

The Hodge filtration \(F^*H \) is

\[
F^p H = \bigoplus_{q \geq p} H^q,
\]

so that \(D'F^p H \subset F^{p-1} H \otimes \mathcal{O}_{\mathbb{P}^1 \setminus P}^1 \).

Griffiths’ transversality (1) gives a decomposition \(D = D^+ + \theta \), where \(D^+ \) is unitary with respect to \(h \) and \(\theta \) is self-adjoint (Higgs field). Considering types and grading, the Higgs condition \((D^+)^\prime = 0\) is satisfied. Then \((H,(D^+)^\prime,\theta')\) is a holomorphic Higgs bundle.

Let \((V,\nabla)\) be the holomorphic bundle with connection \((\text{Ker } D'', D')\) and \(F^p V = F^p H \cap V \). We have \(\nabla F^p V \subset F^{p-1} V \otimes \mathcal{O}_{\mathbb{P}^1 \setminus P}^1 \). We can identify \((H,(D^+)^\prime,\theta')\) with \((\text{gr}_F V,\text{gr}_{F^{-1}} \nabla)\).

2. The Fourier-Laplace transform

2.1. The twisted \(L^2\)-complex.

On \(H \) we consider the twisted connection \(D - 2dt \). Using a metric on \(\mathbb{P}^1 \setminus P \) which is equivalent to the Poincaré metric on the punctured disc near each puncture \(p_i \in P \) (hence a complete metric), and the Hermitian metric \(h \) on \(H \), we make the \(L^2 \) de Rham complex \(\mathcal{L}^2_2(\mathbb{P}^1 \setminus P, H, (D^+)^\prime + \theta' - dt, h) \).

Theorem 1 (S. Szabo, CS). This complex has cohomology in degree 1 at most, and this cohomology is a finite dimensional vector space, equipped in a natural way with a Hermitian metric. Moreover, it is canonically identified with the cohomology of the \(L^2 \) complex \(\mathcal{L}^2_2(\mathbb{P}^1 \setminus P, H, (D^+)^\prime + \theta' - dt, h) \).

In particular, as the metric on \(\mathbb{P}^1 \setminus P \) is complete, we can apply Hodge theory and compute this cohomology with \(L^2 \) harmonic forms.
2.2. Algebraic interpretation of the L^2 complex. The holomorphic bundle with flat connection (V, ∇) extends in a unique way as an algebraic bundle with flat algebraic connection and, according to results of Schmid, this extensions is obtained by considering holomorphic sections whose h-norm has moderate growth at P. Note that the twist of the de Rham complex is of no consequence at finite distance. The work of Zucker tells us that, near a puncture at finite distance, in order to compare the de Rham complex with the previous L^2 complex, we should replace the algebraic bundle with a D-module called the "intermediate" (or minimal) extension. Taking global sections on A^1 of this D-module gives a $\mathbb{C}[t]\langle \partial_t \rangle$-module M which is holonomic and has regular singularities everywhere.

Theorem 2. The twisted algebraic de Rham complex $M e^{t\nabla e^{-t}} M \otimes dt$ has cohomology in degree 1 at most. This cohomology can be identified with that of the previous L^2 complex.

One can give the following interpretation of the dimension μ of this cohomology: let $\mathcal{V} = \text{Ker} \nabla$ be the local system of horizontal section of (V, ∇) (or equivalently, (H, D)); near each puncture $p_i \neq \infty$, define $\mu_i(\mathcal{V}) = \text{rk} \mathcal{V} - \dim \Gamma(\text{nb}(p_i)^*, \mathcal{V})$; then $\mu = \sum_i \mu_i(\mathcal{V})$.

Examples.

1. Given unitary matrices T_1, \ldots, T_r of size $\text{rk} V$, $\mu = \text{rk} V - \dim(\text{Ker} T_i - \text{Id})$.
2. Let $f : X \to \mathbb{P}^1$ projective, X smooth, p_i the critical values at finite distance. Then $\mu_i^{(k)} = \dim H^k(f^{-1}(p_i), \phi_{f,p_i}(\mathbb{C}))$.
3. Let $f : U \to \mathbb{C}$ be a tame regular function. For any critical value p_i of f, corresponding to critical points $x_i^{(1)}, \ldots, x_i^{(k)}$, the corresponding number μ_i is the sum of the Milnor numbers of f at $x_i^{(j)}$, $j = 1, \ldots, k$, and μ is the total sum of Milnor numbers of f at its critical points.

2.3. Rescaling parameter. We now rescale the variable t with a nonzero complex parameter τ. From the algebraic point of view, this consists in considering the twisted de Rham complex $\mathbb{C}[\tau, \tau^{-1}] \otimes_\mathbb{C} M \overset{\nabla_{\eta^{-\tau}}}{\longrightarrow} \mathbb{C}[\tau, \tau^{-1}] \otimes_\mathbb{C} M$. It has cohomology in degree 1 at most, and this cohomology \hat{V} is a free $\mathbb{C}[\tau, \tau^{-1}]$-module of rank μ. It comes equipped with an algebraic connection $\hat{\nabla}$.

The twisted L^2 de Rham complex also defines a flat C^∞ bundle (\hat{H}, \hat{D}) on \mathbb{C}^*, equipped with a Hermitian metric \hat{h}.

Theorem 3 (S. Szabo, CS). The metric flat bundle $(\hat{H}, \hat{D}, \hat{h})$ is harmonic.

Remark. Up to now, the theory uses less than the variation of Hodge structure: it only uses the harmonicity property of the original Hermitian metric h.
Remark. On the other hand, one cannot expect, in general, that the new metric has a tame behaviour at $\tau = \infty$. In particular, this implies that it does not correspond to a usual variation of polarized Hodge structure.

Question. What kind of a supplementary structure does the flat harmonic bundle $(\hat{H}, \hat{D}, \hat{h})$ underlie?

3. The supersymmetric index

The answer to this question (or a variant of it) has been given in 1991 by two physicists, Cecotti and Vafa. They give us two operators \hat{W} and \hat{D} on \hat{H}, where \hat{D} is selfadjoint with respect to \hat{h}, \hat{W} is $(\hat{D}^+)^\nu$-holomorphic, and which satisfy a series of differential equations:

$$\hat{W} = \hat{D},$$
$$[\theta', \hat{W}] = 0,$$
$$(\hat{D}^+)'(\hat{W}) - [\theta', \hat{D}] + \theta' = 0,$$
$$(\hat{D}^+)'(\hat{D}) + [\theta', \hat{W}] = 0.$$

These differential equations are better interpreted as an integrability condition, by adding a new variable z.

For instance, the operators associated to the variation of Hodge structure are $\hat{W} = 0$ and $\hat{D} = - \bigoplus_p p \mathrm{Id}_{H^p, w-p}$. On the other hand, the eigenvalues of \hat{D} need not be constant.

3.1. The spectrum. At each $p_i \in \mathbb{P}^1$ is associated the spectrum of the variation of Hodge structure. For $p_{r+1} = \infty$, we call it the spectrum at infinity. In Example (3), this spectrum coincides with the Varchenko-Steenbrink spectrum of the critical points of f. In any case, at $p_i \neq \infty$, the corresponding polynomial has degree μ_i.

Let me explain the definition of the spectrum at finite distance. I will set $SP_{p_i}(T) = \prod \gamma (T - \gamma)^{\nu(i)}$. For any $\alpha \in (-1, 0]$, let V^α be the holomorphic bundle on \mathbb{A}^1 with connection having a logarithmic pole at each p_i, extending (V, ∇), and such that the residue of the connection on V^α has eigenvalues in $[\alpha, \alpha + 1]$. If $\alpha \neq 0$ and $p \in \mathbb{Z}$, I set $\nu_{\alpha+p}^{(i)} = \dim(F^p \cap V^\alpha)/(F^{p+1} \cap V^\alpha + F^p \cap V^{>\alpha})$. When $\alpha = 0$, the definition has to be modified a little bit. At infinity, we have a similar definition, and there is also a small change to be done at $\alpha = 0$, but different from that done at finite distance.
Theorem 4. $\lim_{\tau \to \infty} \chi(\hat{\mathcal{D}}(\tau))(T) = \prod_{i=1}^{r} \text{SP}_{p_i}(T)$ and $\lim_{\tau \to 0} \chi(\hat{\mathcal{D}}(\tau))(T) = \text{SP}_{\infty}(T)$.