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A. I. BADULESCU AND D. RENARD

Abstract. In this short note, we remark that the algorithm of Moeglin
and Waldspurger for computing the dual (as defined by Zelevinsky) of
an irreducible representation of GLn still works for the inner forms of
GLn, the proof being basically the same.

1. Segments, multisegments and the involution #

A multiset is a finite set with finite repetitions (a, a, b, c, d, d, d, e, a, ...).
A segment ∆ is the void set or a set of consecutive integers {b, b+ 1, ..., e},
b, e ∈ Z, b ≤ e. We call e the ending of ∆ and the integer e − b + 1
the length of ∆. By convention, the length of the void segment is 0. Let
∆ = {b, b + 1, ..., e} and ∆′ = {b′, b′ + 1, ..., e′} be two segments. We say ∆
precede ∆′ if b < b′, e < e′ and b′ ≤ e + 1. We also write ∆ ≥ ∆′ if b > b′

or b = b′ and e ≥ e′. This is a total order on the set of segments.

A multisegment is a multiset of segments. We identify multisegments
obtained from each other by dropping or adding void segments. The full

extended length of a multisegment is the sum of the lengths of all its ele-
ments and is 0 if the multisegment is void. The support of a multisegment
m is the multiset of integers obtained by taking the union (with repetitions)
of the segments in m. A multisegment (∆1,∆2, ...,∆k) is said to be ordered
if (∆1 ≥ ∆2 ≥ ... ≥ ∆t). The lexicographic order induces a total order on
ordered multisegments : if m = (∆1,∆2, ...,∆t) and m′ = (∆′

1,∆
′
2, ...,∆

′
t′)

are multisegments, then m ≥ m′ if ∆1 > ∆′
1, or ∆1 = ∆′

1 and ∆2 > ∆′
2,

and so on, or t ≥ t′ and ∆i = ∆′
i for all i ∈ {1, 2, ..., t′}.

If ∆ = {b, b + 1, ..., e} is a segment, we set ∆− = {b, b + 1, ..., e − 1} with
the convention that ∆− is void if b = e.

Let m be a multisegment. We associate to m a multisegment m# in the
following way : let d be the biggest ending of a segment in m. Then chose
a segment ∆i0 in m containing d and maximal for this property. Then we
define the integers i1, i2, ..., ir inductively : ∆is is a segment of m preceding
∆is−1

with ending d − s, maximal with these properties, and r is such that
there’s no possibility to find such a ir+1. Set m− = (∆′

1,∆
′
2, ...,∆

′
t), where
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∆′
i = ∆i if i /∈ {i0, i1, ..., ir}, and ∆′

i = ∆−
i if i /∈ {i0, i1, ..., ir}. Then {d −

r, d−r+1, ..., d} is the first segment of m#. Starting from the beginning with
m− what we have done with m, we find the second segment of m#, and so on
(so at the end we have that m# is the multiset union of {d−s, d−s+1, ..., d}
and (m−)#). This multisegment m# is independent of the choices made for
the construction. The map m 7→ m# is an involution of the set of non void
multisegments. It preserves the support.

2. Representations of Gn

2.1. Generalities. Let F be an non-Archimedean local field of any charac-
teristic with norm | |F . For all n ∈ N

∗ let Gn be the group GLn(F ), An be
the set of equivalence classes of smooth finite length representations of Gn

and Rn be the Grothendieck group of smooth finite length representations
of Gn. As usual, we will slightly abuse notation by identifying represen-
tations and their equivalence classes, and sometimes, representations with
their image in the Grothendieck group Rn.

The set Bn of classes of smooth irreducible representations of Gn is a
basis of Rn. If π1 ∈ Bn1

and π2 ∈ Bn2
, then π1 ⊗ π2 is a representation of

Gn1
×Gn2

. This group may be seen as the subgroup L of matrices diagonal
by two blocks of size n1 and n2 of Gn1+n2

. We set

π1 × π2 = ind
Gn1+n2

P (π1 ⊗ π2)

where “ind” is the normalized parabolic induction functor and P is the
parabolic subgroup of Gn1+n2

containing L and the group of upper triangular
matrices. We generalize this notation in an obvious way to any finite number
of elements πi ∈ Bni

, i ∈ {1, 2, ..., k}.

Let Cn be the set of cuspidal representations of Gn and Dn the set of es-
sentially square integrable representations of Gn (we assume irreducibility in
the definition of cuspidal and essentially square integrable representations).

If χ is a smooth character of Gn and π ∈ An, then χπ will denote the
tensor product representation χ⊗ π. Let νn be the character g 7→ |det(g)|F
of Gn. We will drop the index n when no confusion may occur.

2.2. Irreducible representations. Let k ∈ N
∗ and ni, i ∈ {1, 2, ..., k} be

positive integers. For each i let σi ∈ Dni
. The representations σi being

essential square integrable, for all i ∈ {1, 2, ..., k} there exists a unique real
number ai such that νaiσi is unitary. If the σi are ordered such that the
sequence ai is increasing, then S = σ1 × σ2 × ... × σk is called a standard

representation and has a unique irreducible quotient θ(S). The represen-
tation S doesn’t depend on the order of the σi as long as the condition that
the sequence ai is increasing is fullfiled. So S and θ(S) depend only on the
multiset (σ1, σ2, ..., σk). We call this multiset the esi-support of S or of
θ(S) (“esi” : essentially square integrable).

2.3. Standard elements. The image in Rn of a standard representation
is called a standard element of Rn. The set Hn of standard elements of
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Rn is a basis of Rn. The map Wn : S 7→ θ(S) is a bijection from Hn to Bn

(see [DKV]).

2.4. The involution. On Rn, we consider the involution In from [Au],
which transforms irreducible representations to irreducible representations
up to a sign. The involution commutes with induction ([Au]), i.e. if π1 ∈ Bn1

and π2 ∈ Bn2
, then In1+n2

(π1 × π2) = In1
(π1) × In2

(π2). Forgetting signs,
the involution in [Au] gives rise to a permutation |In| of Bn (which is the
involution defined in [Ze]). We will call |In|(π) the dual of π. See [Au] and
[Ze].

The algorithm of Moeglin and Waldspurger ([MW]) computes the esi-
support of the dual of a smooth irreducible representation π from the esi-
support of π.

2.5. Essentially square integrable representations. Following [Ze], if
k is a positive integer such that k|n, if we set p = n/k and chose ρ ∈ Cp, then

ρ× νρ× ν2ρ×, ...,×νk−1ρ has a unique irreducible quotient Z(k, ρ) which is
an essentially square integrable representation of Gn. Any element σ of Dn

is obtained in this way and σ determines k and ρ such that σ = Z(k, ρ). If
ρ ∈ Cp for some p, given a segment ∆ = {b, b + 1, ..., e}, we set

< ∆ >ρ= Z(νbρ, e − b + 1) ∈ Dp(e−b+1).

2.6. Rigid representations. If ρ ∈ Cp for some p we call the set {νkρ}k∈Z

the ρ-line. If π ∈ Bn we say π is ρ-rigid if the cuspidal support of π
is included in the ρ-line (of course, it is the νρ-line too). An irreducible
representation is called rigid if it is ρ-rigid for some ρ. If π1 ∈ Bn1

and
π2 ∈ Bn2

are such that the cuspidal supports of π1 and π2 are disjoint, then
π1 × π2 is irreducible. So any π ∈ Bn is a product of rigid representations
πi. Then we know ([Ze]) that the esi-support of π is the reunion with
multiplicities of the esi-supports of the πi. As In commutes with induction,
to compute the esi-support of duals of irreducible representations, we need
only to compute the esi-support of duals of rigid representations.

2.7. Multisegments and representations. If m = (∆1,∆2, ...,∆k) is an
ordered multisegment of full length q and ρ ∈ Cp, then m and ρ define a
standard element πρ(m) of Rpq, precisely

πρ(m) =< ∆1 >ρ × < ∆2 >ρ ×, ...,× < ∆k >ρ∈ Hpq,

and an irreducible representation

< m >ρ= Wn(πρ(m)) ∈ Bpq.

The map m 7→< m >ρ realizes a bijection between the set of multiseg-
ments of full length q and the set Bn,ρ of ρ-rigid irreducible representations
of Gpq.

2.8. The algorithm for Gn. The result of Moeglin and Waldspurger in
[MW] is : the dual of < m >ρ is < m# >ρ.
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2.9. The proof. We recall here their argument:

Let (p, ρ) be a couple such that p is a positive integer and ρ ∈ Cp. Fix
a multiset s with integer entries, and let S be the (finite) set of all the
multisegments m having support s. They all have the same full length, let’s
call it k. Set n = pk. Let Bρ = {< m >ρ,m ∈ S} and Hρ = {πρ(m),m ∈
S}. Let Rρ be the (finite dimensional) submodule of Rn generated by
Bρ. Then Bρ and Hρ are basis of the space Rρ. On Bρ and Hρ consider
the decreasing order induced by the order on multisegments in S. Then
we know that for this order the matrix M of Hρ in the basis Bρ is upper
triangular and unipotent ([Ze] or [DKV]). The space Rρ is stable under In.

It is important to notice here that the involution (−1)n−kIn of Rρ transforms
every irreducible representation in an irreducible one, since all the elements
here have the same cuspidal support, of full length k (see [Au]). In other
words, the restriction of |In| to Bρ is (−1)n−kIn.

Let T1 (resp. T2) be the matrix of the involution (−1)n−kIn of Rρ in the
basis Bρ (resp. Hρ). Then the matrix T1 doesn’t depend on the couple (p, ρ).
The argument, attributed in [MW] to Oesterlé, is the following:

We have already seen that T1 is a permutation matrix ([Au]). Then as
M is an upper triangular unipotent matrix, the relation T2 = M−1T1M is a
Bruhat decomposition for T2 and this implies that T1 is determined by T2.

Now, T2 itself doesn’t depend on the couple (p, ρ) because:

(c1) if m = (∆1,∆2, ...,∆t) with ∆i of length ni/p, then

In(πρ(m)) = In1
(< ∆1 >ρ) × In2

(< ∆2 >ρ) × ... × Int
(< ∆t >ρ),

(c2) if ∆ = {b, b + 1, ..., e}, then I(e+1−b)p(< ∆ >ρ) = (−1)(e+1−b)(p−1) <
m∆ >ρ, where m∆ = ({b}, {b + 1}, ..., {e}),

(c3) one has < m∆ >ρ=
∑

m′≤m∆
(−1)d(m′)+e−b+1πρ(m

′), where d(m′) is

the cardinality of m′ (as a multiset of segments) ([Ze]).

So it is enough to show that the dual of < m >ρ is < m# >ρ for a
particular ρ. The authors conclude their proof by showing this relation
holds for a clever choice of the cuspidal representation ρ.

3. Representations of G′
n

Let D be a central division algebra of dimension d2 over F (with d ∈ N
∗)

and let G′
n be the group GLn(D). We use the notation for objects relative to

Gn, but with a prime, for objects relative to G′
n : A′

n, C′
n, D′

n, R′
n, B′

n... The
involution I ′n ([Au]) on R′

n, has the same properties as In : it transforms
irreducible representations into irreducible representations, up to a sign, and
commutes with induction.

If g′ ∈ G′
n, one can define the characteristic polynomial Pg′ ∈ F [X] of g′,

and Pg′ is monic of degree nd ([Pi]). If g′ ∈ G′
n, the determinant det(g′) of

g′ is the constant term of its characteristic polynomial. We write ν ′
n for the

character g′ 7→ |det(g′)|F of G′
n, and we drop the index n when no confusion

may occur.
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For a given n, if g ∈ Gnd and g′ ∈ G′
n we write g ↔ g′ if the characteristic

polynomial of g is separable (i.e. has distinct roots in an algebraic closure of
F ) and is equal to the characteristic polynomial of g′. If π ∈ Rnd or π ∈ R′

n,
we denote by χπ the character of π. It is well defined on the set of elements
with separable characteristic polynomial even if the characteristic of F is
not zero. The Jacquet-Langlands correspondence is the following result :

Theorem 3.1. There exists a unique bijection C : Dnd → D′
n such that for

all π ∈ Dnd one has

χπ(g) = (−1)nd−nχC(π)(g
′)

for all g ↔ g′.

This well known result of [DKV] is also true in non-zero characteristic
([Ba1]).

One can extend the Jacquet-Langlands correspondence to a linear map
between Grothendieck groups ([Ba2]) :

Proposition 3.2. a) There exists a unique group morphism LJ : Rnd → R′
n

such that for all π ∈ Rnd one has

χπ(g) = (−1)nd−nχLJ(π)(g
′)

for all g ↔ g′.

The morphism LJ is defined on the basis Hnd : if S = σ1 × σ2 × ...× σk,
with σi ∈ Dni

, then

- if for all i ∈ {1, 2, ..., k}, d|ni,

LJ(S) = C(σ1) × C(σ2) × ... × C(σk),

- if not, LJ(S) = 0.

b) For all π ∈ Rnd, LJ(Ind(π)) = (−1)nd−nI ′n(LJ(π)).

The classification of irreducible representations is similar to the one for
Gn, and we can define the esi-support of an irreducible representation, the
standard elements H ′

n and the bijection W ′
n : H ′

n → B′
n. Knowing the esi-

support of π′ ∈ B′
n, one would like to compute the esi-support of |I ′n|(π

′).

The classification of essentially square integrable representations on G′
n

differs slightly from that on Gn (it is more general, since G′
n = Gn when D =

F ). If ρ′ ∈ D′
n, then C−1(ρ′) ∈ Dnd. Following [Ta], if C−1(ρ′) = Z(k, ρ),

we set s(ρ′) = k, and νρ′ = (ν ′)s(ρ
′). Given a positive integer k such that k|n

and a ρ′ ∈ C′
p where p = n/k, the representation ρ′×νρ′ρ×ν2

ρ′ρ
′× ...×νk−1

ρ′ ρ′

has a unique irreducible quotient σ′ which is an essentially square integrable
representation of G′

n. We set then σ′ = T (k, ρ′). Any σ′ ∈ D′
n is obtained

in this way and σ′ determines k and ρ′ such that σ′ = T (k, ρ′). See [Ta] for
details.

If ρ′ ∈ Cp for some p, given a segment ∆ = {b, b + 1, ..., e}, we set

< ∆ >ρ′= T (νb
ρ′ρ

′, e − b + 1) ∈ D′
p(e−b+1).

A line in this setting is a set of the form {νk
ρ′ρ

′}k∈Z where ρ′ is a cuspidal

representation. The definition of ρ′-rigid and rigid representations and their
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properties are similar to the ones for Gn, and as for Gn, one needs only to
compute of the esi-support of the duals for rigid representations.

If m = (∆1,∆2, ...,∆k) is an ordered multisegment and ρ′ ∈ C′
p, then m

and ρ′ define a standard element of some R′
n, more precisely

π′
ρ′(m) =< ∆1 >ρ′ × < ∆2 >ρ′ ×, ...,× < ∆k >ρ′ ,

and an irreducible representation

< m >ρ′= W ′
n(π′

ρ′(m)).

The map π′
ρ′ realizes a bijection between the set of multisegments of full

length k and the set of ρ′-rigid representations of G′
pk. Now, we claim that

the algorithm for G′
n is the same as for Gn, namely :

Theorem 3.3. The dual of the representation < m >ρ′ is < m# >ρ′.

For the proof, we follow the argument in [MW] :

Let (p, ρ′) be a couple such that p is a positive integer and ρ ∈ C′
p, let

k be a positive integer and set n = pk. Let B′
ρ′ = {< m >ρ′ ,m ∈ S} and

H ′
ρ′ = {π′

ρ′(m),m ∈ S} (S has already been defined in the section 2.9). Let

R′
ρ′ be the finite dimensional submodule of R′

n generated by B′
ρ′ . Then B′

ρ′

and H ′
ρ′ are bases of R′

ρ′ . On B′
ρ′ and H ′

ρ′ consider the decreasing order

induced by the order on multisegments in S. Then the matrix M ′ of H ′
ρ′

in the basis B′
ρ′ is upper triangular and unipotent ([DKV] and [Ta]). The

involution (−1)n−kI ′n induces an involution of R′
ρ′ which carries irreducible

representations to irreducible representations. Let T ′
1 (resp. T ′

2) be the
matrix of this involution in the basis B′

ρ′ (resp. H ′
ρ′).

As for Gn, the matrix T ′
1 doesn’t depend on (p, ρ′), because Oesterlé’s

argument works again. First of all (see [Au]), T ′
1 is a permutation matrix

so the relation T ′
2 = M ′−1T ′

1M
′ is a Bruhat decomposition for T ′

2 and this
implies that T ′

1 is determined by T ′
2.

As for Gn, T ′
2 itself doesn’t depend on (p, ρ′) because, as we will explain

shortly afterwards, we have :

(c’1) If m = (∆1,∆2, ...,∆t) with ∆i of length ni/p, then

I ′n(π′
ρ′(m)) = I ′n1

(< ∆1 >ρ′) × I ′n2
(< ∆2 >ρ′) × ... × I ′nt

(< ∆t >ρ′).

(c’2) If ∆ = {b, b+1, ..., e}, then I ′(e+1−b)p(< ∆ >ρ′) = (−1)(e+1−b)(p−1) <

m∆ >ρ′ , where m∆ = ({b}, {b + 1}, ..., {e}).

(c’3) One has < m∆ >ρ′=
∑

m′≤m∆
(−1)d(m′)+e−b+1π′

ρ′(m
′), where d(m′)

is the cardinality of m′ (as a multiset of segments).

The relation (c’1) is clear since the involution commutes with induction
([Au]).

(c’2) is true too: from the formula for I ′n to be found in [Au], and the
computation in [DKV] of all normalized parabolic restrictions of essentially
square integrable representations of G′

n, one may see I ′(e+1−b)p(< ∆ >ρ′) is

an alternate sum of representations π′
ρ′(mi), where mi runs over the set of

multisegments with same support as ∆. It is obvious that the maximal one
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is π′
ρ′(m∆). It appears in the sum with coefficient (−1)(e+1−b)(p−1), and so

W ′
n(π′

ρ′(m∆)) =< m∆ >ρ′ , has to appear with coefficient (−1)(e+1−b)(p−1)

in the final result. As we know a priori that this result is plus or minus an
irreducible representation, (c’2) follows.

(c’3) is the combinatorial inversion formula ([Ze]), which is still true here
since for all m′ ≤ m∆ one has π′

ρ′(m
′) =

∑
m′′≤m′ < m′′ >ρ′ .

So it is enough to show that the dual of < m >ρ′ is < m# >ρ′ for a
particular ρ′. Or, equivalently, to show that for some ρ′ we have T ′

2 = T2.
Let ρ ∈ Cd and set ρ′ = C(ρ). Then ρ′ ∈ C′

1 and s(ρ′) = 1. The map LJ

induces a bijection from Hρ to H ′
ρ′ commuting with the bijections from S

onto these sets. The point b) of the proposition 3.2 implies then T ′
2 = T2.
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