
KAZHDAN-LUSZTIG ALGORITHMS FOR NONLINEAR GROUPS AND

APPLICATIONS TO KAZHDAN-PATTERSON LIFTING

DAVID A. RENARD AND PETER E. TRAPA

0. Introduction

The purpose of this paper is to establish an algorithm to compute characters of irreducible
Harish-Chandra modules for a large class of nonlinear (that is, nonalgebraic) real reductive
Lie groups. We then apply this theory to study a particular group (the universal cover

G̃L(n,R) of GL(n,R)), and discover a symmetry of the character computations encoded

in a character multiplicity duality for G̃L(n,R) and a nonlinear double cover Ũ(p, q) of
U(p, q). Using this duality theory, we reinterpret a kind of representation-theoretic Shimura

correspondence for G̃L(n,R) geometrically, and find that it is dual to an analogous lifting for

Ũ(p, q). It seems likely that this example is illustrative of a general framework for studying
similar correspondences.

One of the main issues (as we explain below) in computing irreducible characters of
reductive Lie groups centers on finding a natural class groups to study. Certainly the class
of groups obtained as the real points of connected reductive algebraic groups defined overR is extremely natural. (Henceforth we will simply call these groups algebraic.) Yet from
several perspectives, the algebraic condition is unsatisfactorily restrictive. For instance, one
of the only known ways to construct automorphic representations of algebraic groups is by
means of the theta correspondence. This immediately brings the nonalgebraic metaplectic
double cover of the symplectic group into the fold. A different kind of reason for studying
nonalgebraic groups has its origins in the representation-theoretic formulation of the classical
Shimura correspondence of irreducible unitary spherical representations of SL(2,R) and its
metaplectic double cover. Subsequent work of a number of people suggests an intricate
interaction between the unitary duals of algebraic groups and certain nonalgebraic covering
groups.

For these reasons (and in fact many others) one is led to study groups outside the class of
algebraic groups, even if one is ultimately interested only in (say) the automorphic spectrum
in the algebraic case. Abstractly, the structure theory of algebraic groups and their nonalge-
braic coverings is more or less uniform. Yet in practice, the structure theory of nonalgebraic
groups leads to complications that rapidly become unmanageable. For instance, Cartan sub-
groups of connected linear groups are always abelian. Yet in connected nonlinear covers, they
may become nonabelian. Moreover, when one considers coverings of disconnected groups,
the disconnectedness in the covering becomes more intractable. (The main issue amounts
to understanding finite extensions of the component group and how those extensions act as
automorphisms of the identity component.) One needs to restrict the class of groups under
consideration to avoid pathologies, but at the same time one needs to make certain that the
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restrictions do not rule out interesting groups. But what constitutes “interesting”? We seek
external guidance for an answer.

The oracle we consult is the representation-theoretic part of the local Langlands conjec-
ture. This theory provides profound organizing principles for automorphic representations
of algebraic groups (and often suggests hidden structure on the set of all irreducible unitary
representations). Despite the efforts of a number of people, it is difficult to see how to extend
Langlands’ original formulation of his parameters to the nonalgebraic case. If one instead
works within the equivalent framework suggested first in the work of Kazhdan-Lusztig and
Zelevinsky (and sharpened substantially in [V5] and [ABV]), there are natural constructions
to imitate. More precisely, the main result of [ABV] interprets the local Langlands formal-
ism as consequence of a character multiplicity duality theory for algebraic groups. Roughly
speaking such a theory implies that the computation of characters of irreducible represen-
tations of a group is equivalent to the corresponding computation for a “dual” group. (We
offer more details around Equation (0.1) below.) This becomes our main guiding principle:
we seek a class of groups for which there exists a character multiplicity duality theory and
which is closed under the passage from a group to its “dual” group. A remarkable result of
[ABV] implies that the class of algebraic groups satisfies this desideratum, but as discussed
above we seek to enlarge this class to include the kinds of nonlinear covering groups that
might arise in automorphic applications (for instance, the nonlinear double covering of the
split real form of a reductive algebraic group).

It is worth remarking that there are some rather natural groups for which one can prove
that no character multiplicity duality theory holds. (The nonlinear triple cover of the real
symplectic group is one example.) In addition the dual of a connected group is often dis-
connected, so for the class of groups we consider we are forced to confront disconnectedness
and the kinds of structure-theoretic complications alluded to above.

The class of groups we eventually settle on is as follows. Let GR be a linear group in
the class that Vogan considers in [Vgr]; that is, GR is a linear group in Harish-Chandra’s
class with abelian Cartan subgroups. We let our class of groups consist of all two-fold covers
of GR such that when the cover is nontrivial, it is nonlinear in the sense of Definition 6.3.
(We further impose one likely superfluous technical condition; see the discussion around
Hypothesis 6.15.) It turns out that this class of groups meets our desideratum: in future
joint work with Adams, we show it is essentially closed under the character duality theory
mentioned above. For instance, for groups in this class with simply laced Lie algebras, the
extra technical condition is redundant (Proposition 6.16), and the results of Part II of this
paper can be extended to conclude that the class of simply laced groups is closed under
duality.

We now turn to a more detailed description of the computation of irreducible character
and corresponding character duality theories. The computation of characters is extremely
technical and thus it is appropriate to highlight carefully the main subtleties involved in our
setting. For orientation, we must first frame the problem precisely, as well as recall the deep
results of Vogan in the algebraic case.

Suppose GR is a real reductive Lie group in our class. Next let ĜχR denote the set of
irreducible Harish-Chandra modules for GR with fixed infinitesimal character χ. The work
of a number of people (perhaps most notably Miličić) building on Langlands’ classification

for algebraic groups showed that each irreducible π ∈ ĜχR arises as the quotient of a standard
module. More precisely (in the formulation of Speh and Vogan), there is a finite parameter
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set Pχ, and two bases of the Grothendieck group of Harish-Chandra modules for ĜχR: one

consists of the standard modules {X(γ) | γ ∈ Pχ}, the other of the irreducibles {X(γ) | γ ∈
Pχ}. They are related by an integral change of basis matrix

X(γ) =
∑

δ∈Pχ

M(γ, δ)X(δ),

which is, in fact, upper triangular in an appropriate ordering. Roughly speaking the charac-
ters of standard modules are computable in principle, so the determination of the characters
of each X(γ) amounts to computing the integers M(γ, δ).

When GR is a complex, an algorithm for determining the numbers M(γ, δ) was proposed
by Kazhdan-Lusztig [KL] and established by Brylinski-Kashiwara [BK]. In fact, the problem
is equivalent to one for highest weight modules, and the relevant combinatorics is that of the
Bruhat order on the Weyl group W . When GR is linear and has abelian Cartan subgroups
(for instance, if GR is algebraic), the algorithm was proposed and established by Vogan
[V1]–[V3]. He developed the combinatorics of the so-called Bruhat G-order on Pχ. The only
additional case where an algorithm has been established is that of the metaplectic double
cover of the symplectic group [RT1]–[RT2] (where, incidentally, all Cartans are abelian).

The complications associated with nonabelian Cartans and nonlinear groups are serious.
(Clearly Vogan had these kinds of groups in mind during the course of the series [V1]–[V4];
compare the remarks before Definition 0.1.3 in [Vgr].) Most concretely, nonabelian Cartans
can potentially complicate the combinatorics of the set Pχ. To take but one example, a
key combinatorial construction on Pχ is the so-called Cayley transform. In particular cases,
this essentially amounts to computing how an irreducible representation of an index two-
subgroup of a Cartan subgroup H induces to all of H. When H is abelian, all irreducible
representations must be one-dimensional, and hence the two-dimensional induced represen-
tation must be reducible. Obviously this can (and does) fail for nonabelian H, and it is not
obvious that this failure can be controlled. Cayley transforms arise in the Hecht-Schmid
character identities (which are basic ingredients in Vogan’s theory), and so these kinds of
issues are of paramount importance in developing a Kazhdan-Lustzig algorithm. They are
the subject of Section 6 below. A different kind of complication in the nonlinear setting
is the formulation of a parity condition that guarantees vanishing of certain cohomology
groups. In the highest weight setting the condition is that two Verma modules M(w) and
M(y) have no extensions between them if the difference in the length of w and y is odd. The
theory developed in [RT1]–[RT2] points to a more general cohomological parity condition.
We introduce the extended integral length in Definition 6.7 and prove that it exhibits the
right properties for our class of groups in Theorem 8.1 below.

After assembling the technical details of the previous paragraph, we are able to imitate
Vogan’s theory and arrive at an algorithm to compute irreducible characters for groups in
our class. This is the main result of Part I. Next we turn to the issue of character duality.

Let B be a block of Harish-Chandra modules for GR. By a character multiplicity duality
for B, we mean the following: there exists a block B′ of Harish-Chandra modules for a group
G′R and a bijection B → B′ (denoted γ 7→ γ′) such that

(0.1) X(γ) =
∑

δ∈B

M(γ, δ)X(δ)
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if and only if

(0.2) X(δ′) =
∑

γ′∈B′

ǫγδMγδX(γ′);

here ǫγδ is ±1 according to the parity of the difference in the length of γ and δ. In other words,
computing the coefficients M(γ, δ) for B amounts to the inverse transpose of computing the
corresponding coefficients for B′. Such a duality theory is thus encoded in a symmetry of
the algorithm to compute irreducible characters. Vogan’s monumental achievement ([V4])
establishes a character multiplicity duality theory for any block for a linear group in Harish-
Chandra’s class with abelian Cartans. A duality theory for the metaplectic group was
constructed in [RT1] and [RT2].

In Part II, we establish a complete duality theory for the nonlinear double covers G̃L(n,R)

and Ũ(p, q). As a consequence (following the philosophy of Vogan mentioned above), we
obtain a set of Langlands parameters for these groups. We find that there is a natural

injection from the space of parameters for G̃L(n,R) to those for GL(n,R). Using it, we
can form a kind of pullback of representations from the linear group to the nonlinear one.
We prove that this pullback coincides with the lifting defined by Kazhdan and Patterson
in [KP]. Dualizing this picture gives a lifting from the linear group U(p, q) to its nonlinear

double cover Ũ(p, q). This appears to be new, and subsequent work of Adams and Herb have
suggested a character-theoretic interpretation of it. The results of Part II are a paradigm
for all groups with simply-laced Lie algebras. This will be explained in future work with
Adams.

Finally, in Part III, we apply our theory to give a counterexample to a conjecture of
Kazhdan and Flicker: we find an irreducible Harish-Chandra module for GL(n,R) (in fact
with n = 4) whose Kazhdan-Patterson lift is reducible.

Acknowledgments. We would like to thank David Vogan and Jeffrey Adams for many
helpful conversations.

Part 1. Kazhdan-Lusztig algorithm for nonlinear groups

1. Notation and preliminaries

We begin by recalling some notation and material from [RT1]. Most of it was taken from
[V1], [V2] and [Vgr]. Let GR be real a reductive group in Harish-Chandra class. Let gR be
the Lie algebra of GR and let g be its complexification. We fix a maximal compact subgroup
KR of GR with corresponding Cartan involution θ and we denote by K its complexification.
We also fix a maximally split θ-stable Cartan subgroup HaR of GR with Cartan subalgebrahaR (with complexification ha), and we fix a positive root system ∆+

a of ∆a := ∆(g, ha). We
let Wa denote the Weyl group of the root system ∆a.

In [RT1], GR was assumed to be connected with abelian Cartan subgroups, and satisfying
rk(GR) = rk(KR). In [V1], [V2], the group GR was only assumed to be connected, and in
[Vgr], it was assumed to be linear. The definitions and results taken from these references
we use here are still valid in our more general context, sometimes with obvious and minor
modifications.
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If h is a Cartan subalgebra of g, and λ is a regular element in h∗, we will write ∆+(λ) for
the positive root system of ∆(g, h) making λ dominant i.e. for all α ∈ ∆+(λ),

Re〈α, λ〉 ≥ 0 and if Re〈α, λ〉 = 0 then Im〈α, λ〉 ≥ 0

We also need

R(λ) =

{
α ∈ ∆(g, h)| 2 〈α, λ〉

〈α,α〉
∈ Z}

,

the integral roots for λ, and

R+(λ) = R(λ) ∩ ∆+(λ) and W (λ) = W (R(λ)),

the positive integral roots and the integral Weyl group.

Let h be a Cartan subalgebra of g. Through Harish-Chandra’s isomorphism, an element
λ ∈ h∗ determines an infinitesimal character for g. Fix λa ∈ (ha)∗ regular and ∆+

a -dominant.
Let h be any Cartan subalgebra of g, and suppose that λ ∈ h∗ defines the same infinitesimal
character as λa; i.e. suppose that there exists an inner automorphism iλa,λ of g, sending
(λa, (ha)∗) onto (λ, h∗). If λi ∈ (hi)∗, i = 1, 2 define the same infinitesimal character as λa,
we set iλ1,λ2 := iλa,λ2 ◦ (iλa,λ1)−1. The restriction of iλa,λ to (ha)∗ is unique.

Let HC(g,K) denote the category of (finite-length) Harish-Chandra modules for GR. For
any infinitesimal character λa ∈ (ha)∗, HC(g,K)λa is the full subcategory of modules having
infinitesimal character λa, The Grothendieck groups of these categories are denoted respec-
tively by K (g,K) and K (g,K)λa . We will write [X] for the image of a module X ∈ HC(g,K).

We recall (from [Vgr], e.g., or [RT1, Section 1.2]) the definition of a pseudocharacter
(HR, γ) of GR: HR is a θ-stable Cartan subgroup of GR with Cartan decomposition HR =
TRAR, and γ = (Γ, γ), consists of an irreducible representation Γ of HR and an element

γ ∈ h∗, with certain compatibility conditions that we don’t recall here. We write (ĤR)′ for
the set of pseudocharacters having HR as their first component.

We are interested in irreducible admissible Harish-Chandra modules of GR with regular

infinitesimal character λa ∈ (ha)∗. We write (ĤR)′λa
for the subset of (ĤR)′ of pseudocharac-

ters γ such that γ and λa define the same infinitesimal character; in this case, we say that γ is
a λa-pseudocharacter. Recall that a pseudocharacter (HR, γ) specifies a standard represen-
tation X(γ), containing a unique irreducible submodule X(γ). The Langlands classification
parametrizes irreducible modules in HC(g,K)λa by the set Pλa of KR-conjugacy classes of
λa-pseudocharacters. Furthermore, the following two sets are bases of the Grothendieck
group K (g,K)λa :

(1.1) { [X(γ)] }γ∈Pλa
and { [X(γ)] }γ∈Pλa

Hence we can define the change of basis matrix

(1.2) [X(δ)] =
∑

γ∈Pλa

M(γ, δ)[X(γ)],

and the inverse matrix

(1.3) [X(δ)] =
∑

γ∈Pλa

m(γ, δ)[X(γ)].

The main result of Section 9 is an algorithm to compute M(γ, δ) in the setting of Section 6.

Remark 1.1. We slightly abuse notation by writing γ for the pseudocharacter (HR, γ), and
often γ for its KR-conjugacy class. For more details, see [RT1], Section 1.
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Definition 1.2. Let (HR, γ) be a pseudocharacter of GR. The length of γ is

l(γ) =
1

2
|{α ∈ ∆+(γ) | θ(α) /∈ ∆+(γ)}| +

1

2
dim aR.

The integral length of γ is

lI(γ) =
1

2
|{α ∈ R+(γ) | θ(α) /∈ R+(γ)}| +

1

2
dim aR.

For linear groups, the root system R(γ) is θ-stable ([Vgr], Lemma 8.2.5). This need

not be the case for nonlinear groups. In Section 6, we will introduce a root system R̃(γ),
the extended integral root system, containing R(γ), which is θ-stable. The corresponding

“extended integral length” l̃I will give us the correct notion needed for the induction in our
Kazhdan-Lusztig algorithm.

2. Translation functors

To get a nice theory of translation functors, coherent continuation and cross-action, we
need a reasonably large supply of finite-dimensional representations of our group GR. More
precisely, we would like every irreducible finite-dimensional representation of g to exponenti-
ate to a representation of GR. Of course, this might not be the case, and we will replace the
group GR by a finite central covering ḠR (i.e. the kernel of the projection p : ḠR → GR is
central in ḠR), which satisfies the property we want. The category HC(g,K) is then equiv-
alent to the full subcategory of HC(g, K̄) (K̄ := p−1(K) is a maximal compact subgroup
of ḠR) consisting of modules with trivial action of the kernel of the projection p. Thus, to
study the representation theory of GR, we can replace it by ḠR. Let us recall the classical
construction of ḠR. Let us denote by Gad the adjoint group of g, and by Gsc its simply-
connected cover, with projection q : Gsc → Gad. Since GR is the Harish-Chandra class, the
adjoint action of GR on g defines a morphism Ad : GR → Gad. Define ḠR to be the fibered
product GR ×Gad Gsc with respect to the maps q and Ad, i.e.

ḠR = {(g, h) ∈ GR × Gsc | Ad(g) = q(h)}.

The natural projection p1 and p2 on the first and second factors fit into a commutative
diagram :

ḠR p2
−−−−→ Gsc

yp1

yq

GR Ad
−−−−→ Gad

Since every irreducible finite-dimensional representation of g lifts to a representation of Gsc,
it also becomes a representation of ḠR via p2. The kernel of the projection p1 is central in
ḠR and isomorphic to the kernel of q, which is the center of Gsc.

Let hR be Cartan subalgebra of gR, and let µ be an integral weight in h∗. There is a unique
irreducible finite-dimensional representation Fµ of g with extremal weight µ. As explained
above, Fµ is also representation ḠR, which is easily seen to remain irreducible. Notice also
that the weights of a Cartan subgroup H̄R in Fµ (i.e. irreducible subrepresentations of
H̄R in Fµ) are one-dimensional, even if H̄R is not abelian, because the action of H̄R on Fµ

factors through a Cartan subgroup in Gsc. Furthermore, these weights are in one-to-one
correspondence with the weights of h in Fµ. We won’t distinguish in the notation between a
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weight of h in a finite-dimensional representation of g, and the corresponding weight of H̄R
in the corresponding representation of GR.

Since we can replace GR by ḠR if needed, in order to simplify notation, we will assume
from now on that GR satisfies the required property, i.e. every irreducible finite-dimensional
representation of g to exponentiate to a representation of GR, and that weights of Cartan
subgroups of GR are one-dimensional.

The theory of translation functors we recall briefly here is taken from [V1]. Let HR be a
Cartan subgroup of GR, λ ∈ h∗ be regular and let Fµ be the finite-dimensional irreducible
representation of g with highest weight µ in h∗, with respect to the positive root system
∆+(λ).

Since, by assumption, Fµ exponentiate to a representation of GR, we have then a trans-

lation functor ψλ+µ
λ : HC(g,K)λ −→ HC(g,K)λ+µ (see [V1] for details). From this, we can

define functors ψα and φα that push-to and push-off walls with respect to integral roots α
which are simple for ∆+

a . The functors ψα and φα are adjoint (e.g. [V1], Lemma 3.4).

Let us remark that for linear groups, one usually uses more general translations functors
ψα and φα, namely one allows α to be a simple root for R+(λa). This is because transla-
tion across a non-integral simple wall is essentially trivial. In our context, some nontrivial
phenomenon occurs when we cross non-integral walls. So we will need to recall properties
of wall-crossing functors with respect to a non-integral simple root in detail.

In the same setting as above, we have the follow.

Theorem 2.1 ([Vgr], Proposition 7.3.3). Let α ∈ ∆+(λ) be a simple non-integral root, and
fix an integral weight µα in h∗ such that λ+ µα is dominant and regular for sα · ∆+(λ). If
X ∈ HC(g,K)λ define

ψα(X) := ψλ+µα

λ (X), φα(X) := ψλ
λ+µα

(X).

The functor ψα realizes an equivalence of categories between HC(g,K)λ and HC(g,K)λ+µα ;
its inverse is φα.

The notation ψα across a nonintegral wall depends (in an inessential way) on the choice
of µα, but we find it convenient to adhere to the following convention.

Convention 2.2. If sα · λ− λ = −2 〈α,λ〉
〈α,α〉α in the theorem above is an integral weight, then

we choose µα = −2 〈α,λ〉
〈α,α〉α.

Recall that we have fixed a maximally split θ-stable Cartan subgroup HaR of GR and a
regular dominant element λa ∈ ha. The τ -invariant τa(X) of X ∈ HC(g,K) is a subset of
the simple roots in R+(λa) defined in [Vgr], Definition 7.3.8. Sometimes it will be convenient
to transport this to another Cartan subalgebra h of g. Suppose we have fixed λ ∈ h∗ such
that λ is inner conjugate to λa in g. The τ -invariant of X with respect to (h, λ) is the
subset τ(X) = iλ(τa(X)) of simple roots in R+(λ). Although not explicit in the notation,
the choice of (h, λ) is usually clear from the context.

Theorem 2.3. Let X ∈ HC(g,K)λa be an irreducible module, and let α be a simple integral
root in ∆+

a not in τa(X). Then φαψα(X) has X has its unique irreducible submodule and
irreducible quotient, and the following sequence

0 → X → φαψα(X) → X → 0,



8 DAVID A. RENARD AND PETER E. TRAPA

defined by the adjointness of the two functors ψα and φα, is a chain complex. Define
Uα(X) to be its cohomology. Then the module Uα(X) has finite composition series, and
α ∈ τ(Uα(X)).

Proof. See Section 7.3 of [Vgr].

3. A family of infinitesimal characters

The Kazhdan-Lusztig algorithm (at regular infinitesimal character λa) for linear groups
keeps λa fixed. Fixing the infinitesimal character can be interpreted as choosing a repre-
sentative of the single coset of W (λa) · λa + P modulo P, where P is the integral weight
lattice in (ha)∗. This is not sufficient for the purposes of computing characters for nonlinear
groups. Instead one must fix a set of coset representatives for

(Wa · λa + P)/P.

We define a family of infinitesimal characters containing λa to be any set of coset represen-
tatives that consists of ∆+

a -dominant weights (and which contains λa).

Fix λa dominant and regular, and fix a family F(λa) containing λa. It will be convenient
to introduce a labeling of the elements of a family. Since λa ∈ F(λa), the members of
F(λa) are clearly indexed by Wa/WP(λa), where WP(λa) consists of those elements which
are weight-integral in the sense that wλa − λa ∈ P: if νa ∈ F(λa), then νa = yλa modulo
P, for some y ∈ Wa which is unique modulo WP(λa). In this case, we write νa = νy; for
example νx = λa for any x ∈WP(λa).

Because the elements of F(λa) are indexed by cosets in Wa, there is an obvious action of
Wa on F(λa). It will be important implement this action on the level of Harish-Chandra
module using translation functors, and we need to introduce some weights to define the
relevant functors. Define elements µ(y,w) ∈ P by the requirement

w−1(νy + µ(y,w)) ∈ F(λa)

For instance, if w ∈WP(νy), then µ(y,w) = wνy − νy, and

w−1(νy + µ(y,w)) = νy.

In general, we have w−1(νy + µ(y,w)) = νyw.

We fix once and for all integral weights µ(y,w) ∈ h∗ satisfying the above conditions,
and use them to define a translation functor as follows. Fix νy ∈ F(λa) and a simple root
α ∈ ∆+

a . Let s denote the corresponding reflection. If s is integral for λa, we have defined the
pushing-to and pushing-off translation functors φα and ψα in Section 2. If s is not integral,
we use µ(y, s) to define (nonintegral) wall crossing functor across the α wall,

ψα = ψ
νys
νy : HC(g,K)νy → HC(g,K)νys

as discussed in Section 2. Note that when s ∈WP(νy), we recover Convention 2.2.

4. Cross-action

Let us make some remarks in connection with translation functors. Suppose that µa is
an integral weight in (ha)∗, and that F is the finite-dimensional representation of g with
extremal weight µa. Let HR be an arbitrary Cartan subgroup of GR and let i be one of the
inner automorphism of g carrying ha to h of Section 1. Set µ = i(µa) . Suppose that µa

was the integral weight used to define the translation functor ψβ = ψνa+µa
νa with respect to a
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simple root β in ∆+
a . We get an integral weight i(µβ) in h∗. Let α be the transport of β by

i and ν := i(νa). Then µ can be used to define translation functors ψα = ψν+µ
ν , φα = ψν

ν+µ

and obviously we have ψα = ψβ, φα = φβ. This will be used without further comment.

We will define the action of Wa on pseudocharacters, thereby extending the definitions of
[Vgr, Definition 8.3.1] for the cross-action of W (λa).

Definition 4.1. (i) Let νa = νy ∈ F(λa), and let (HR, γ) be a νa-pseudocharacter. Let w
be W (g, h) and let wa in Wa be its image through the isomorphism i := iνa,γ . We define the
pseudocharacter (HR, w × γ) by w × γ = (w × Γ, w × γ) with

w × γ = γ + i(µ(y,wa)) and w × Γ = Γ ⊗ i(µ(y,wa)) ⊗ ∂ρ(w)

where ρI (resp. ρc) denotes the half-sum of positive imaginary (resp. compact) roots in
∆+(γ), ∂ρ(w) := w · (ρI − 2ρc) − (ρI − 2ρc) is a sum of root, and thus is well-defined as a
one-dimensional representation of HR, and the weight µ(y,wa) is fixed as in Section 3. The
weight i(µ(y,wa)) is an integral weight in h∗, and as we have seen in Section 2, it determines
uniquely a one-dimensional representation of HR, that we still denote by i(µ(y,wa)).

(ii) Suppose we are in the same setting as in (i), but we start with wa ∈ Wa instead of
w ∈W (g, h). We define the “abstract cross-action” of Wa on pseudocharacters by

wa ×
a γ := w−1 × γ.

For the reason of the appearance of the power −1 in (ii), we refer to [V4], Equation (2.8)
and Definition 4.2. (The cross action is a right action.) Notice that the domain of the action
of W (g, h) or Wa is the set of νa-pseudocharacter of HR for all νa in F(λa).

We refer to [RT1], Section 1.2 for the role that ρI and ρc play in the compatibility condi-
tions defining pseudocharacters. What follows easily from the definitions and the choices of
the µ(y,wa) is that (HR, w × γ) is indeed a νyw = νy + µ(y,wa)-pseudocharacter. If γ is a
νa-pseudocharacter and w is integral for νa, then because of Convention 2.2, (HR, w × γ) is
again a νa-pseudocharacter, and the definition coincides with Vogan’s.

Remark 4.2. This definition of the cross-action depends on the choice of the weights µ(y,w)
fixed in Section 3.

5. Cayley transforms

In this section, we recall basic facts about Cayley and inverse Cayley transforms. The
results will be complemented in Section 6 for the more restrictive class of groups defined
there.

Cayley transforms. Fix a Borel b = h ⊕ n, with h defined over R and θ-stable and
assume that α is a noncompact imaginary root for n. Choose a root vector Xα in g such
that [Xα,Xα] = hα, where hα ∈ h is the coroot of α. Let cα = Ad(ξα), where ξα =
exp(π

4 (Xα − Xα)) is an element of the adjoint group of g. Then hα := cα(h) is called the
Cayley transform of h. Note that hα is a θ-stable Cartan subalgebra of g defined over R,
and β = (trcα)−1(α) (say β = cα(α) for short) is a real root in ∆(g, hα), called the Cayley
transform of α.

Let (HR, γ) be a νa-pseudocharacter of GR, and suppose α is a noncompact imaginary root
for γ. Let HαR be the centralizer in GR of hα. The type (I or II) of α and the Cayley transform
cα(γ) of γ by α are defined in Section 4 of [V1], with cα(γ) = {γα} or cα(γ) = {γα

+, γ
α
−}.

If α is type I, or type II nonintegral then cα(γ) = {γα}. If α is type II integral, and GR
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has abelian Cartan subgroups, then cα(γ) = {γα
+, γ

α
−}. Without the assumption of abelian

Cartan subgroup, if α is type II integral cα(γ) could be single valued, with γα of twice the
dimension of γ, or could be two pseudocharacters γα

+, γ
α
− of the same dimension as γ.

Inverse Cayley transforms. Fix a Borel b = h⊕n with h defined over R and θ-stable, and
assume that α is a real root for n. Choose a root vector Xα in gR such that [Xα, θ(Xα)] = hα,
where hα ∈ hR is the coroot of α. Let cα = Ad(ξα), where ξα = exp( iπ

4 (θ(Xα) −Xα)) is an
element of the adjoint group of g. Define hα := cα(h), the inverse Cayley transforms of h.
Then hα is θ-stable and defined over R, and β = trc−1

α (α) is a noncompact imaginary root
in ∆(g, hα), called the inverse Cayley transform of α.

Let γ = (Γ, γ) be a νa-pseudocharacter for HR, let α be a real root ∆(h, g), and let (Hα)R
be the centralizer of hα in GR. Define mα = expGR(iπhβ) ∈ GR; here hβ is the coroot of
the inverse Cayley transform β of α. One can check that mα is an element of HR ∩ (Hα)R,
which depends on the choices only up to a replacement of mα by m−1

α .

Definition 5.1. In the setting above, let ǫα = ±1 be the sign defined in [Vgr, Definition
8.3.11]. We say that α satisfies the parity condition with respect to γ if and only if the

eigenvalues of Γ(mα) are of the form ǫα exp
(
±iπ2 〈α,γ〉

〈α,α〉

)
.

Let (HR, γ) be a νa-pseudocharacter of GR, and let α be a real root for γ satisfying that
parity condition. Let (Hα)R be the centralizer in GR of hα. Then γ occurs in the right-
hand side of Hecht-Schmid characters identity, and the left-hand side is a sum of two terms:
one is a standard representation X(γ′), the other is a coherent continuation of a standard
representation X(γ′′) (the role of γ′ and γ′′ can be exchanged). Then the inverse Cayley
transform cα(γ) is {γα} = {γ′} if γ′ = γ′′ or cα(γ) = {γ+

α , γ
−
α } = {γ′, γ′′} if γ′ 6= γ′′. If

α is nonintegral, cα(γ) = {γα}. If α is type I integral, cα(γ) = {γ+
α , γ

−
α }. If α is type II

integral, cα(γ) can be either single or double valued. We refer to [Vgr, Section 8.3] or [V1]
for omitted details.

Possible eigenvalues of Γ(mα). Since the Cartan subgroups of GR may not be abelian, the
element mα is not necessarily central in HR. But for all h ∈ HR, we have hmαh

−1 = m±1
α .

Thus, Γ(mα) has at most two distinct eigenvalues. When this happens, they are inverse to
each other, with the same multiplicity. If the eigenvalues of Γ(mα) are all in {±1}, then
Γ(mα) is ± Id on the representation space of Γ: indeed if the eigenvalue −1 (or 1) occurs,
then the corresponding eigenspace is easily seen to be stable under Γ. Since Γ is irreducible,
this proves the claim. If GR is linear and has abelian Cartan subgroups, then m2

α = 1 and
it follows that Γ(mα) = ±1 (in this case Γ is a one-dimensional representation).

Assume that the root system ∆ = ∆(g, ha) is simple and fix a pseudocharacter (HR, γ) as
above. Retain the notation above. According to [V2], proof of Lemma 6.18, we are in one
of the following cases:

Case I. Γ(mα) ∈ {± Id} for all real roots α in ∆(g, h). (This is always the case if GR is
linear.)

Case II. Γ(m2
α) ∈ {± Id} for all real roots α in ∆(g, h) but Γ(mα) is not always in {± Id}.

Then Γ(mα) ∈ {± Id} if α is short in type Bn, Cn, F4, and the eigenvalues of Γ(mα) are
±i otherwise (each with the same multiplicity if both appear, and Γ(mα) = ±i Id if there is
only one eigenvalue).

Case III. Γ(m2
α) is not always in {± Id}.
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Convention 5.2. It will be convenient to refer to all roots in type An, Dn, En and G2 as
long roots. (This convention is unusual for G2.)

Nonintegral wall-crosses. We need a result of Vogan describing translation functors
across a nonintegral wall.

Theorem 5.3 ([V1], Corollary 4.8 and Lemma 4.9). Let γ be a genuine νa-pseudocharacter
of GR. Suppose α is a nonintegral simple root in ∆+(γ). Then, with the translation functor
ψα defined by the weight µα fixed in Section 3, we have

ψα(X(γ)) =





X((γ + µα)α) = X((sα × γ)α) if α is noncompact imaginary,

X((γ + µα)α) = X((sα × γ)α) if α is real satisfying the parity condition

X(γ + µα) = X(sα × γ) otherwise.

Note that in the first case, γ+µα = (Γ⊗µα, γ̄+µα) is not a pseudocharacter. Nevertheless,
its Cayley transform is well defined ([V1], Section 4), and it is a pseudocharacter (namely
(sα × γ)α).

6. Nonlinear double covers

We will now change our notation slightly and consider the following situation: G̃R will be
a double cover of a real reductive linear group GR in the class defined in [Vgr], i.e. we have
a central extension

1 −→ {e, z} −→ G̃R pr
−→ GR −→ 1

where {e, z} is a two-elements central subgroup of G̃R; here e is the trivial element in G̃R.
(The trivial element in GR will be simply denoted by 1.)

As a set, G̃R ≃ GR × {e, z} and the multiplication law on the right hand side is given by

(g, ǫ)(g′, ǫ′) = (gg′, ǫǫ′c(g, g′)),

c being a cocycle with values in {e, z}.

If MR is a subgroup of GR, we let M̃R denote its inverse image in G̃R. It is clear that if

KR is a maximal compact subgroup of GR, then K̃R is a maximal compact subgroup of G̃R.

Since the adjoint action of G̃R on gR factors through GR, the inverse image H̃R of a Cartan

subgroup HR of GR is again a Cartan subgroup of G̃R. Suppose some choices of a maximal
compact subgroup KR and a maximally θ-split Cartan subgroup HaR have been made for GR
as in Section 1. Then we get corresponding choices K̃R and H̃aR for G̃R.

In Section 2 we showed how to replace the group we are interested in by a finite central
covering with the property that every finite-dimensional representation of g exponentiates.
We used a well-known fibered product construction to construct this cover. Let us see

briefly how this applies to our situation. The projection G̃R pr
→ GR, the inclusion GR i

→ GC ,

the adjoint morphism GC Ad
−→ Gad, and the projection Gsc q

→ Gad fit into a commutative
diagram :

G̃R −−−−→ ḠR −−−−→ ḠC −−−−→ Gsc

y
y

y
yq

G̃R pr
−−−−→ GR i

−−−−→ GC Ad
−−−−→ Gad
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If finite-dimensional representations of g don’t exponentiate to G̃R, we replace the triplet

(G̃R, GR, GC ) by the triplet (G̃R, ḠR, GC ). This new triplet satisfies the same hypotheses

as the old one, every finite-dimensional representation of g exponentiates to G̃R, with one-
dimensional weights spaces with respect to Cartan subgroups, and the representation theory

of G̃R can be deduced from the representation theory of G̃R.

Genuine modules. Let X be a module in HC(g, K̃), i.e. a Harish-Chandra module for G̃R.

Suppose that X admits a central character χX : Z(G̃R) → C ∗ . Since z ∈ Z(G̃R) has order
two, we have χX(z) = ±1 and χX(z) = 1 if and only if X is the lift of a Harish-Chandra

module for GR. If χX(z) = −1, we call X genuine. We denote by HC(g, K̃)gen the full

subcategory of HC(g, K̃) generated by irreducible genuine modules.

Now let H̃R be a θ-stable Cartan subgroup of G̃R, and let γ = (Γ, γ) be a νa-pseudocharacter

for H̃R. We say that γ is genuine if Γ(z) = −1. The following result is immediate.

Proposition 6.1. a) The standard and irreducible modules X(γ) and X(γ) are genuine if

and only if γ is. The K̃R-conjugacy classes of genuine νa-pseudocharacters parameterize the

irreducible objects in HC(g, K̃)genνa .

b) If G̃R is a trivial cover of GR, i.e. G̃R ≃ Z/2Z× GR, there is an obvious one-to-one

correspondence between genuine objects for G̃R and objects for the linear group GR. Thus

the genuine representation theory of G̃R reduces to the representation theory of the linear
group GR.

Metaplectic roots. Suppose that hR is a Cartan subalgebra of gR and that α is a real
root in ∆(g, h). Choose an sl2-triple Xα,X−α, hα in gR as in Section 5. Thus we get an
embedding φ : sl(2,R) → gR. Since GR is linear, φ lifts to a homomorphism denoted
again φ from SL(2,R) to GR. The element mα in GR defined in Section 5 is the image

of

(
0 1

−1 0

)
∈ SL(2,R). On the other hand, since G̃R is not linear, φ doesn’t neces-

sarily lift to an homomorphism from SL(2,R) to G̃R: one has to consider the metaplectic

cover S̃L(2,R) instead. Then φ lifts to a homomorphism φ̃ : S̃L(2,R) → G̃R. We have a
commutative diagram:

S̃L(2,R)
pr

−−−−→ SL(2,R)
yφ̃

yφ

G̃R pr
−−−−→ GR

Definition 6.2. In case φ̃ doesn’t factor through SL(2,R), we will call the real root α
metaplectic. We will apply also this terminology to noncompact imaginary roots: if β is
such a root, we call it metaplectic if and only if its Cayley transform is metaplectic.

Definition 6.3. We say that the covering G̃R is genuine if, in the setting above, a real or
imaginary noncompact root is metaplectic if and only if it is a long root (with Convention
(5.2)).

In the rest of the paper, we assume that the covering G̃R is genuine. Together with the

assumptions we made on G̃R at the beginning of this section and the technical assumption
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made in 6.15 define the class of groups for which we shall establish a Kazhdan-Lusztig
algorithm. This class is far from being empty; some examples are given at the end of this
section.

Let m̃α to be the element constructed in Section 5, but for G̃R instead of GR. Recall that
the construction of mα and m̃α depends on the choice of a Cayley transform cα. (A different
choice would lead at worst to a replacement of mα (resp. m̃α) by m−1

α (resp. m̃−1
α ).) Using

the same Cayley transform to construct both mα and m̃α, we get mα = pr(m̃α). Note that
we always have m2

α = 1 and thus m̃2
α = e or z.

Since φ : sl(2,R) → gR is injective, the image of φ : SL(2,R) → GR is either isomorphic
to SL(2,R), and mα 6= 1, or to SL(2,R)/{± Id} and mα = 1. Analogously, the image of

φ̃ : S̃L(2,R) → G̃R is isomorphic to S̃L(2,R), and m̃2
α = z, or to SL(2,R) and m̃2

α = e,
m̃α 6= e, or to SL(2,R)/{± Id} and m̃α = e. It is clear that m̃α has order four exactly when

the image of φ̃ : S̃L(2,R) → G̃R is isomorphic to S̃L(2,R), i.e. when α is metaplectic.

Non-metaplectic roots. In the setting of the previous paragraph, we get the following
result about non-metaplectic noncompact imaginary or real roots :

Lemma 6.4. let us consider the situation where α is a short real root (and thus non-

metaplectic). Then the cover G̃R splits over φ(SL(2,R)) ⊂ GR.

Proof. Let us consider a root subsystem of ∆(g, h) of type B2 containing α. Using standard
notation {±ǫ1±ǫ2,±2ǫ1,±2ǫ2} for a root system of type B2, we may assume that α = ǫ1+ǫ2.
Since α is real θ(ǫ1 + ǫ2) = −ǫ1 − ǫ2, which gives θ(ǫi) = −ǫi or θ(ǫi) = −ǫ3−i for i = 1, 2.
In the first case, all the roots in our B2 subsystem are real, in the second case, ǫ1 − ǫ2 is
imaginary, and the two long roots are complex, and exchanged by θ. In any case, the Lie
subalgebra of g of type B2 we consider is defined over R. Let S be the corresponding analytic

subgroup of G̃R. Listing the real connected groups with Lie algebra of type B2, we see that
the only one satisfying the property that long real roots are metaplectic is Mp(4,R) (Sp(1, 1)
has no nonlinear double cover). Now, in Mp(4,R), the property we want to establish holds,

namely, the cover splits over φ(SL(2,R)) ⊂ Sp(4,R), and thus it holds in G̃R . �
Extended integral root system and extended integral length. We introduce the
following definition.

Definition 6.5. Let hR be a θ-stable Cartan subalgebra of gR, and let λ ∈ h∗ be a regular

element. Let R̃(λ) be the set of roots in ∆(g, h) which are short integral or long and half-
integral. (Short and long roots are defined as in Section 5.2 and a root α is half-integral if
α is integral for 2λ.)

We also set

R̃(λ)+ := R̃(λ) ∩ ∆(λ)+, W̃ (λ) := W (R̃(λ)).

It is easily seen that R̃(λ) is a root system, which we shall call the extended integral root

system for λ. We call respectively R̃(λ)+ and W̃ (λ) the set of positive extended integral
roots and the extended integral Weyl group.

Lemma 6.6. Let (H̃R, γ) be a genuine pseudocharacter of G̃R. Then R̃(γ) is θ-stable.

It is important to note that R(γ) need not be θ-stable in general for nonlinear groups.
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Proof. Suppose that α is a root in R̃(γ). If α is imaginary or real, obviously θα belongs to

R̃(γ). Thus, suppose that α is complex and let Hα denotes the corresponding coroot. First,
assume that α is a long root (Convention 5.2). Since γ(Hα) ∈ Z/2, we have γ(Hθα) ∈ Z/2
iff γ(Hα +Hθα) ∈ Z/2. The Cartan decomposition of H̃R can be written H̃R = T̃R exp aR.

Recall that γ = (Γ, γ) is a pseudocharacter of G̃R, and dΓ = γ−ρI +2ρc. Since 2ρc is a sum
of roots, 2ρc(Hα) and 2ρc(Hθα) are in Z. Furthermore ρI(Hθα) = θ(ρI)(Hα) = ρI(Hα), and

thus γ(Hα +Hθα) ∈ Z/2 iff dΓ(Hα +Hθα) ∈ Z/2. Let (TR)0 (resp. (T̃R)0) be the connected

component of the identity in TR(resp. T̃R), and T (resp. T̃ ) its complexification. Now Γ

is an irreducible representation of H̃R, and its restriction to (T̃R)0 splits into a direct sum
of one-dimensional representations, which, by differentiation, give all the same element of

X∗(T̃ ), namely dΓ. Notice that Hα +Hθα ∈ it∗ ∩Q ,̌ where Qˇis the coroot lattice of h ing. Thus we have

Hα +Hθ(α) ∈ t∗ ∩Qˇ⊂ t∗ ∩X∗(H) = X∗(T ).

Since T̃ is at most a double cover of T , we have [X∗(T ) : X∗(T̃ )] = 1 or 2, and we see that if

Λ ∈ X∗(T̃ ) andX ∈ X∗(T ), we have Λ(X) ∈ Z/2, and we get the desired conclusion. Assume
now that α is short. By a similar argument, it is enough to show that dΓ(Hα +Hθα) ∈ Z.
Since α and θα have the same length,

Nα := θα(Hα) = α(θ(Hα)) = α(Hθα)

takes values in {0,−1,+1}. Let Rα be the root subsystem of ∆(g, h) generated by α and
θα: it’s a rank 2 root system, and thus it is of type A1 ×A1 or B2 if Nα = 0, or of type A2 if
Nα = ±1 (type G2 is excluded because, according to our convention, there are no short roots
in type G2). Suppose Rα is of type A1 ×A1. Let Xα and X−α be root vectors in g such that
{Xα,Hα,X−α} is an sl2-triple, and take root vectors Xθα = θ(Xα) and X−θα = θ(X−α) as
root vectors for θα and −θα. A straightforward computation, using the fact that Nα = 0
and that α − θα is not a root, shows that Hβ := Hα + Hθα ∈ t, Xβ := Xα + Xθα and

X−β := X−α + X−θα forms an sl2-triple in k. This lifts to a map from SU(2) to K̃R. It
is well-known this implies that dΓ(Hβ) ∈ Z. Suppose now that Rα is of type B2. Then
α + θα is a long root imaginary root β, and thus Hα +Hθα = 2Hβ. Since dΓ(Hβ) ∈ Z/2,
we get the result. Suppose now that Rα is of type A2. If Nα = −1, then β := α + θα is a
short imaginary root, Hα +Hθα = Hβ and dΓ(Hβ) ∈ Z. If Nα = 1, notice that Rα is in an
irreducible component of ∆(g, h) of type Cn or F4, because all short roots are orthogonal in
type Bn. Take the standard roots in type Cn. We may assume without lost of generality
that α = ǫ1 − ǫ2, θα = ǫ1 − ǫ3, which implies that θ(ǫ1) = ǫ1, θ(ǫ2) = ǫ3. Thus the roots 2ǫ1
and ǫ2 + ǫ3 are imaginary, and Hǫ1−ǫ2 + Hǫ1−ǫ3 = 2H2ǫ1 − Hǫ2+ǫ3. We can conclude from
here as above. Since no new ideas are required, we we omit the computation in type F4. �

The following is the key definition needed for the inductive computation of Kazhdan-
Lusztig polynomials.

Definition 6.7. Let (H̃R, γ) be a genuine pseudocharacter of G̃R, where hR has Cartan
decomposition hR = tR + aR. The extended integral length of γ is

l̃I(γ) =
1

2
|{α ∈ R̃+(γ) | θ(α) /∈ R̃+(γ)}| +

1

2
dim aR.
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Some key lemmas. We will now state and prove the key structural results we need for the
Kazhdan-Lusztig algorithm.

Lemma 6.8. Let (H̃R, γ) be a genuine pseudocharacter of G̃R, and let α be a real root in
∆(g, h). Then we are always in Case II of Section 5, i.e. we have Γ(m̃α) ∈ {± Id} if α is
short and the eigenvalues of Γ(m̃α) are ±i if α is long. (Recall Convention 5.2: all roots in
type An, Dn, En and G2 are long.)

Proof. Suppose α is long, and hence metaplectic. Then m̃α has order 4, with m̃2
α = z.

Since γ is genuine, Γ(z) = − Id and thus the eigenvalues of Γ(m̃α) are ±i. �
Corollary 6.9. Let (H̃R, γ) be a genuine pseudocharacter of G̃R, and let α be a real root in
∆+(γ).

(1) If α is not an element of the extended integral roots system R̃(νa) (Definition 6.5),
then α does not satisfy the parity condition with respect to γ.

(2) If we assume that α is long and in R̃(νa), then α satisfies the parity condition if and
only if α is half-integral but not actually integral.

In particular, all long half-integral (but not integral) real roots satisfy the parity condition.
If α is short and integral, it may or may not satisfy the parity conditions.

Proof. Suppose first that α ∈ R̃(νa) is long and real. By Lemma 6.8, the eigenvalues of

Γ(m̃α) are ±i. Moreover exp
(
±2iπ 〈α,γ〉

〈α,α〉

)
= ±i if and only if α is half-integral (but not

integral). This proves (2). The first assertion is clear.

We have a corresponding dual result for imaginary roots.

Corollary 6.10. Retain the hypothesis of Corollary 6.9, but now let α be an imaginary root

in ∆+(γ). Then α always belongs to the extended integral roots system R̃(γ). Moreover,

(1) If α is compact, then α is integral.
(2) If α is noncompact, then α is half-integral (but possibly integral).
(3) If we further assume that α is long, then α is compact if and only if α is integral.

In particular, all long half-integral (but not integral) imaginary roots are noncompact.

Proof. The first assertion is a consequence of (1)–(2), and (1)–(2) follow exactly in the same
way as the corresponding integrality conditions for linear groups; see, for instance, [V1],
Section 4. To prove the final assertion, we must show that if α is noncompact imaginary
and long, α cannot be integral. Suppose it were. We would then obtain a contradiction with
Corollary 6.9(2) by taking the Cayley transform with respect to α. �
Remark 6.11. The previous corollaries fail for higher covers than double covers. Since
they are essential in the proof of Theorem 8.1, we see that the extended integral length is
not the right thing to consider in the case of these higher covers. We do not know at the
present time how to modify the definitions of extended integral length, extended integral
root system, etc, to recover the vanishing result of Theorem 8.1.
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Cayley transforms and cross-action. In Section 5, we saw that for groups having non-
abelian Cartan subgroups, the nature (single or double valued) of the Cayley transform
of a genuine pseudocharacter with respect to a short integral type II real or imaginary
noncompact root is not determined. We give more details on this. This will lead us to slightly
change the terminology : sometimes short integral type II real or imaginary noncompact
root behave like type I roots, so it will be notationally easier to simply redefine them as type
I roots. (See the paragraph immediately before Lemma 6.14 below.)

Let (γ, H̃R) be a genuine pseudocharacter of G̃R, and let α be a short (and thus integral)
noncompact imaginary root for γ. Consider the Cayley transform cα with respect to α,

denote by H̃αR the corresponding Cartan subgroup. Write H̃R = T̃R exp aR and H̃αR =

T̃αR exp aαR for the Cartan decompositions of H̃R and H̃αR . Let us write T 1 = T̃R ∩ T̃αR . Notice

that T 1 has the same Lie algebra as T̃αR . Denote by α1 the Cayley transform of α by cα.
Thus α1 is a real root in ∆(g, hα).

Recall that α is type II if one of the following equivalent condition is satisfied :

- the reflection sα with respect to the root α is realized in W (G̃R, h)
- T 1 is of index two in T̃αR .

- there exists an element t ∈ T̃αR such that α1(t) = −1.

Proposition 6.12. Suppose α is type II. Then the Cayley transform cα(γ) is single valued

if and only if sα × γ is not equivalent to γ (i.e. not conjugate under K̃R).

Proof. Letm ∈ T̃αR \T 1. Then cα(γ) is single valued if and only if Γm
|T 1 is not equivalent to Γ|T 1

(this is a simple application of Mackey theory). Suppose that sα×γ is K̃R-conjugate to m ·γ.

(Notice that we cannot write sα · γ since the action of sα is not well-defined on H̃R; indeed,

since H̃R is not abelian, the conjugation action of a representative in K̃R of sα on H̃R will
depend on the choice of this representative. Of course the two pseudocharacters obtained by
different choices of representative are equivalent, so we may denote by sα ·γ their equivalence
class. Anyway, here we choose a representative m.) Since these two pseudocharacters have

the same infinitesimal component sα · γ̄, which is a regular element in h, if they are K̃R-

conjugate it must be by an element h of H̃R. For all t ∈ H̃R, (sα ×Γ)(t) = Γ(t)α(t)n+1, and
(m · Γ)(t) = Γ(mtm−1). For t ∈ T 1, we have α(t) = 1 and thus we get

Γ(hth−1) = Γ(mtm−1), (t ∈ T 1).

Since (H̃R)0 is central in H̃R, we can multiply the element h in the left hand side of the

above equation by an element h0 ∈ (H̃R)0 to get an element h1 = hh0 in T 1 still satisfying
the above equation. Thus, we see that Γm

|T 1 is equivalent to Γ|T 1, so cα(γ) is double valued.

Let us prove the other implication. Suppose now that cα(γ) is double valued. Take m as
above. Our assumption is that there exists an intertwining operator B such that

BΓ(t) = Γ(mtm−1)B, (t ∈ T 1).

If t and m commute, then B and Γ(t) commute; if they don’t, then mtm−1 = zt, so
Γ(mtm−1) = Γ(zt) = −Γ(t), and Γ(t) anticommute with B. Then m fixes pointwise the
center of T 1. Indeed Γ|T 1 is irreducible, so elements of the center acts by scalars, and they
commute with B. We need the following result, which was indicated to us by J. Adams.
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Lemma 6.13. Suppose A is an abelian group, and

1 → Z/2Z→ Ã→ A→ 1

is a central extension of A. Denote by Z̃ the center of Ã. Then, for every genuine irreducible

representation χ of Ã there is a unique genuine representation π(χ) of Ã for which π(χ)
|Z̃

is a multiple of χ. The map χ 7→ π(χ) is a bijection between the set of classes of genuine

irreducible representations of Z̃ and the set of classes of genuine irreducible representations

of Ã. The dimension of π(χ) is n = |Ã/Z̃|1/2 and IndÃ
Z̃
χ = nπ(χ).

This is elementary representation theory, and the proof is left to the reader. Let us now
finish the proof of the proposition. Since Γ|T 1 and Γm

|T 1 have the same central character, say

χ, we see that both are embedded in IndT 1

Z̃(T 1)
χ. Thus they must be equal up to conjugacy

by an element t1 of T 1. It is then clear than sα × Γ and m · Γ are conjugate by t1. �
Each Cayley transform of a pseudocharacter γ gives rise to a corresponding Hecht-Schmid

identity. From the point of view of the Kazhdan-Lusztig algorithm, it is the form of this
identity which matters. In the setting above, the Hecht-Schmid identity reads

[X(γ)] + [φα(sα × γ)] = [X(γα)] or [X(γα
+)] + [X(γα

−)]

depending on cα(γ) = {γα} or cα(γ) = {γα
+, γ

α
−}.

Thus, with respect to the Kazhdan-Lusztig algorithm, single valued Cayley transforms
with respect to a short integral noncompact imaginary type II root really behave exactly as a
type I root. So, from now on, we will call these roots type I. The same change in terminology
will apply to their Cayley transforms. With this convention, we get the following analog of
Proposition 8.3.18 in [Vgr].

Lemma 6.14. Recall the revised terminology for type I roots explained in the paragraph

preceding the lemma. Let (H̃R, γ) be a genuine pseudocharacter of G̃R, and let α be a root

in R̃(γ̄).

a) If α is compact imaginary (and thus integral), then

sα × γ = sα · γ.

b) If α is type I noncompact imaginary integral short, then sα × γ is not conjugate to γ.
Then the Cayley transform is single valued, cα(γ) = {γα}, and if we denote by α1 the Cayley
transform of α, then, up to equivalence,

cα1
(γα) = {γ, sα × γ}, (sα × γ)α = sα1

× γα = sα1
· γα.

c) If α is type II noncompact imaginary integral short, then

sα × γ = sα · γ.

The Cayley transform is double valued, cα(γ) = {γα
±},

cα1
(γα

±) = {γ}, sα1
× γα

+ = γα
−.

d) If α is real type I satisfying the parity condition and short , then

sα × γ = sα · γ.

The Cayley transform is double valued, cα(γ) = {γ±α } and if we denote by α1 the Cayley
transform of α, then, up to equivalence,

cα1(γ±α ) = {γ}, sα1
× γ+

α = γ−α .
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e) If α is real type II satisfying the parity condition and short , then sα×γ is not conjugate
to γ. Then the Cayley transform is single valued, cα(γ) = {γα} and up to equivalence,

cα1(γα) = {γ, sα × γ}, (sα × γ)α = sα1
× γα = sα1

· γα.

f) If α is real and does not satisfy the parity condition then

sα × γ = sα · γ.

g) If α is noncompact imaginary long (metaplectic), then α is not integral, the Cayley
transform is single valued, cα(γ) = {γα}, and if we denote by α1 the Cayley transform of α,
then, up to equivalence,

cα1
(γα) = {γ}, sα1

× γα = (sα × γ)α.

and (sα × γ)α is not equivalent to γα.

h) If α is real satisfying the parity condition and long (metaplectic), then α is not integral,
the Cayley transform is single valued, cα(γ) = {γα}, and if we denote by α1 the Cayley
transform of α, then, up to equivalence,

cα1(γα) = {γ}, sα1
× γα = (sα × γ)α.

and (sα × γ)α is not equivalent to γα.

We can picture the different possibilities as follows : α is an imaginary noncompact root,

γα γα
+

oo

×sα1
// γα

− γα oo

×sα1
// (sα × γ)α

γ

??��������
oo

×sα
// sα × γ

ccFFFFFFFFF

γ

??��������

__????????

γ

OO

oo
×sα

// sα × γ

OO

α short, Type I α short, Type II α metaplectic

Proof. Parts (b), (c), (d) and (e) have been proved above. For (a), we notice that the

computation can be reduced to the compact group generated by T̃R and the SU(2) associated
to the compact root α. The arguments given in [Vgr] then still apply. The proof of (f) is
the same as in [Vgr]. Everything but the last assertions of (g) and (h) have also already
been established. Notice that the infinitesimal parts of (sα × γ)α and γα in (g) are not
necessarily equal. In the case they are equal, according to Convention 2.2, we have µα = nα.
Following the proofs in [Vgr] we see that the two pseudocharacters could be equivalent only
if Γ(mα) = ±1, but since α is metaplectic, Γ(mα) = ±i, and we get the conclusion. The
proof for (h) is the same. �
Lowest K-types. To be able to use some the material of [Vgr] in our context, we need to
restrict a little bit the class of groups we consider. Indeed for the groups we have defined so
far, the lowest K-types of an irreducible (genuine) Harish-Chandra module might not have
multiplicity one. We thank J. Adams for bringing to our attention the following example :

GR is GSp(4,R)×GSp(4,R), and the inverse images in G̃R of the two factors don’t commute.
There, an irreducible subrepresentation of an ordinary genuine principal series representation

admits lowest (fine) K̃R-types with multiplicity two. The multiplicity one result is used in
[Vgr] to obtain the classification of irreducible Harish-Chandra modules using cohomological
induction (Vogan-Zuckerman classification), and part of [Vgr] and subsequent works on
Kazhdan-Lusztig algorithm rely on computations in cohomology based on this classification.
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Of course, other classifications of irreducible Harish-Chandra modules (Langlands, Beilinson-
Bernstein) are established for the whole Harish-Chandra class, but it is not clear to us
how the computations in cohomology alluded above can be rephrased in terms of these
classifications. There are two subclasses of groups for which multiplicity one of lowest K-
types holds however. The first one is connected groups ([VLKT]). The second is groups
with only one root length (still with the convention that roots in G2 are long). We will give
a short argument for this last claim below.

If we give a closer look at the example given above, we see that if we require the inverse

images in G̃R of the two GSp(4,R) factors to commute, then we get multiplicity one. In
general, it seems that sufficient conditions for multiplicity one can be obtained by requiring
certain elements in different connected components of the group to commute. Unfortunately,
we were unable to turn this into a simple statement. Thus instead of stating complicated
conditions and giving complicated proofs that they imply multiplicity one, we prefer simply
to assume the result.

Hypothesis 6.15. Genuine irreducible Harish-Chandra modules of the group G̃R have
lowest K-types occurring with multiplicity one.

The groups appearing in Part II of this paper satisfy this hypothesis, because of the
following result.

Proposition 6.16. Assume that there is only one root length in g. Then lowest K-types of

genuine irreducible Harish-Chandra modules of G̃R occur with multiplicity one.

Proof. We give only a quick sketch. We consider first the case of principal series in quasisplit
group (here we follow [VLKT], Section 6, without assuming that the group is connected).

Suppose that, with the notation of this paper δ ∈ M̂ is fine and genuine. Let S be the
set of root defined just before Lemma 6.19 (loc. cit.). This lemma asserts that if α ∈ S,
then δ(mα) = − Id. Suppose that α is long. Since δ is genuine, δ(mα)2 = δ(z) = − Id,
and we get a contradiction. Thus S consists only of short roots. If we assume that there
are no short roots, then S is empty. This proves that the R-group Rδ is trivial. Therefore,
the other results in Section 6 of loc. cit. hold trivially. Dually, we now want to prove
that another R-group is trivial, namely the group Rµ in Section 5.1 of [Vgr]. Suppose that

µ is a highest weight of a genuine irreducible representation of K̃R, and that α is a long
noncompact imaginary root. Again, we use that fact that m2

α = z, so for an highest weight
vector v, m2

α · v = −v. But mα · v = exp iπHα · v = eiπµ(Hα)v. Thus we get µ(Hα) ∈ Z+ 1
2 ,

and so 〈α, µ〉 is not zero. This proves again that Rµ is trivial if there is no short roots.
These two facts easily implies the proposition. In fact, when there is only one root length,

it is possible to show that the genuine representation theory of G̃R essentially reduces to the
genuine representation theory of its identity connected component. �
Examples. Suppose that G is a simple, simply connected complex group, and that GR is a
split real form of G. The fundamental group of GR is isomorphic to Z if GR/KR is hermitian
symmetric and Z/2Z otherwise (see [Sek]). Thus GR always admits a nonlinear covering.
For a determination of the cocycle of this double cover, see [BD]. For classical groups, we
get double covers of SL(n,R) (type An), Spin(n, n+ 1) (type Bn), Sp(2n,R) (type Cn) and
Spin(n, n) (type Dn).
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If we assume that GR is a real form of a simple, simply connected group G, but not
necessarily a split one, then in some (but not all) cases, GR admits a nontrivial double cover
(see [Sek]); for example SU(p, q), (p > 0, q > 0), Spin(p, q), (p > 1, q > 1).

In part II of this paper, the examples of double covers of GL(n,R) and U(p, q) (with
pq 6= 0) are studied in detail.

7. Reducibility of standard modules and blocks.

Reducibility. When X(γ) is irreducible, we say that γ is minimal. For linear groups,
[Vgr, Theorem 8.6.4] gives a necessary and sufficient condition for a pseudocharacter γ to
be minimal. For nonlinear groups the following generalization of this result can be found in
[Mi1, Theorem 2.1].

Theorem 7.1. The standard module X(γ) is irreducible if and only if

i) for all complex integral root α in ∆+(γ), either θ(α) ∈ ∆+(γ) or θ(α) /∈ ∆+(γ) and α
is not minimal in {α,−θ(α)},

ii) for all real root α in ∆+(γ), α does not satisfy the parity condition with respect to γ.

In i), “α not minimal in {α,−θ(α)}” is with respect to the standard ordering of Σ+
α ,

where Σα is the smallest θ-stable root system containing α,−θ(α) and Σ+
α = Σα ∩ ∆+(γ).

We deduce immediately from this a simple necessary condition for X(γ) to be reducible.

Corollary 7.2. The standard module X(γ) is reducible only if there exists a root α ∈ ∆+(γ)
such that either:

(1) α is complex and θ(α) /∈ ∆+(γ) or,
(2) α is real, and α satisfies the parity condition with respect to γ.

Let us now recall three lemmas of Vogan ([Vgr, Lemmas 8.6.1–3]).

Lemma 7.3. There exists a complex root α ∈ ∆+(γ) such that θ(α) /∈ ∆+(γ) if and only if
there exists a simple complex root α ∈ ∆+(γ) such that θ(α) /∈ ∆+(γ).

Lemma 7.4. Suppose that no complex root α ∈ ∆+(γ) satisfies θ(α) /∈ ∆+(γ). Then the
real roots in ∆(γ) are spanned by simple real roots.

Lemma 7.5. Suppose that no complex root α ∈ ∆+(γ) satisfies θ(α) /∈ ∆+(γ). Then there
exists a real root α ∈ ∆+(γ) satisfying the parity condition with respect to γ if and only if
there exists a simple real root α ∈ ∆+(γ) satisfying the parity condition with respect to γ.

From these lemmas we now deduce the following result.

Proposition 7.6. The standard module X(γ) is reducible only if there exists a simple root
α ∈ ∆+(γ) such that either:

(1) α is complex and θ(α) /∈ ∆+(γ); or
(2) α is real, and α satisfies the parity condition with respect to γ.

The point of this result is that it is stated only in terms of simple roots, and this will be
crucial for arguments based on induction on the length of pseudocharacters.

Remark 7.7. A real root α satisfying the parity condition with respect to γ is necessarily

in R̃(γ). Furthermore in Theorem 7.1, the condition on complex roots involves only integral
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complex root. Thus we could apply the previous lemmas to the root system R̃(γ) instead of
∆(γ) and get:

- X(γ) is reducible only if there exists a simple root α ∈ R̃+(γ) such that either:

(1) α is complex and θ(α) /∈ R̃+(γ); or
(2) α is real, and α satisfies the parity condition with respect to γ.

Blocks. For applications in Part II, we will need some results about blocks. These are also
of independent interest. Let us recall that block equivalence on irreducible Harish-Chandra

modules (in our setting, genuine modules for G̃R) is the equivalence relation generated by

X ∼ Y iff Ext1g,K̃(X,Y ) 6= 0.

A necessary condition for this to hold is that X and Y have same infinitesimal characters.
Recall also the standard fact (for instance, [Vgr], Lemma 9.2.2) that Ext1g,K̃(X,Y ) 6= 0 if

and only if there is a Harish-Chandra module Z, not equivalent to X⊕Y , and a short exact
sequence

(7.1) 0 → Y → Z → X → 0

We note that the nonintegral wall-crossing functors φα and ψα of Section 2 preserve block
equivalence: if T is such a functor, then X ∼ Y if and only if T (X) ∼ T (Y ). This follows
easily from the interpretation of the block equivalence given in Equation (7.1), and the fact
that T is exact and maps irreducibles to irreducibles.

From the Kazhdan-Lusztig algorithm perspective, the key result (see [Vgr], Proposition
9.2.10) is that block equivalence of Harish-Chandra modules with nonsingular infinitesimal
character is generated by

X ∼ Y iff X and Y occur in a common standard representation

Thus, if we fix a nonsingular infinitesimal character λa, block equivalence induces a equiva-
lence relation (and we will call the equivalence classes also “blocks”) on Pλa , such that the
change-of-bases matrices between

{ [X(γ)] }γ∈Pλa
and { [X(γ)] }γ∈Pλa

of the Grothendieck group K (g,K)λa are block-diagonal.

What we aim for now is a characterization of blocks in terms of Cayley transforms and
cross-action. The result is the following (compare [Vgr], Theorem 9.2.11).

Theorem 7.8. Consider the equivalence relation X ↔ Y on genuine irreducible Harish-

Chandra modules for G̃R with nonsingular infinitesimal character generated by

(1) Cayley transforms with respect to noncompact imaginary roots, i.e. X(γ) ↔ X(δ) if

there exists a noncompact imaginary root α in R̃(γ) such that δ ∈ cα(γ).
(2) Cross-action with respect to integral complex roots, i.e. X(γ) ↔ X(δ) if there exists

a complex integral root α in R(γ) such that δ = sα × γ.

Then ↔ coincides with block equivalence.

The proof is easily adapted from the one of [Vgr], Theorem 9.2.11, by induction on l̃I

but we need to consider all irreducible modules with infinitesimal character in the family
F(λa), because of the use of nonintegral wall-crossing functors. For the induction step, we
use Theorem 7.6, and we reduce the length by using integral roots, in which case we apply
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arguments given in [Vgr], or using nonintegral wall-crossing functors, in which case we use
the fact, noted above, that nonintegral wall crosses preserve block equivalence.

8. Representation theoretic algorithm

Our aim is now to establish an analog of the algorithm for Harish-Chandra modules
described for linear groups in [V2] or [Vgr]. For the metaplectic group at half-integral
infinitesimal character, the result is [RT1], Theorem 1.13 and Section 5. It proceeds by

induction on the length, l(γ), of a genuine pseudocharacter (H̃R, γ) of G̃R and computes:

(a) The composition series of X(γ);

(b) The cohomology groups H i(u,X(γ)) as a (l, L̃∩K̃)-module, for each θ-stable parabolic
subalgebra q = l + u of g; and

(c) For each simple integral root α ∈ ∆+(γ) such that α /∈ τ(X(γ)), the composition
series of Uα(X(γ)).

All the pseudocharacters we consider in the sequel are νa-pseudocharacters for some νa ∈
F(λa).

For a minimal pseudocharacter γ, step (a) in the algorithm is trivial by definition. Part
(b) is Theorem 6.13 of [V2] which computes the cohomology of standard irreducible modules.
Part (c) is obtained by observing that the only constituents of Uα(X(γ)) are the ‘special
constituents’ of [V1, Theorem 4.12]. For nonminimal γ, it is possible to find a pseudocharac-
ter γ′ of length l(γ′) = l(γ)− 1 obtained from γ either by Cayley transform with respect to
a simple real root satisfying the parity conditions, or coherent continuation across a simple
complex wall. As we will see below, steps (a), (b), and (c) for γ are computable from the
data corresponding to γ′ and other pseudocharacters of smaller length.

A vanishing result. We need an important result, namely a vanishing theorem in coho-
mology. The main difference here with Vogan’s treatment is the replacement of the integral
length by the extended integral length in the statement. For the metaplectic group at half-
infinitesimal character, the extended integral length coincide with the length (see [RT1]).
To state the result, we need notation and results related to cohomology of Harish-Chandra
modules. For this, we refer to Section 1.3 of [RT1] or [Vgr].

Theorem 8.1 (see [V2], Theorem 7.2, [RT1], Theorem 1.13). Let νa ∈ F(λa) and let

(γi, H̃ iR), i = 1, 2 be two genuine νa-pseudocharacters of G̃R. Let q = l + u be a θ-stable
parabolic subalgebra of g containing h2. Then

(a) H i(u,X(γ1)) contains X
L̃
(γ2q ) as a composition factor only if (l̃I(γ1) − l̃I(γ2)) −

(lq(γ2) − i) is even.

(b) If X(γ1) and X(γ2) are distinct, l(γ1) ≥ l(γ2), and

Ext1(g,K)(X(γ1),X(γ2)) 6= 0,

then (l̃I(γ1) − l̃I(γ2)) is odd.

(c) H i(u,X(γ1)) is completely reducible as an l-module.

(d) Suppose that α ∈ ∆+(γ2) is a simple integral root not in τ(X(γ1)), with m = 2 〈α,γ2〉
〈α,α〉 .

(d1) If α ∈ ∆(h2, u) then the multiplicity of X
L̃
(γ2q ) in H i(u, Uα(X(γ1)) is its multiplicity

in H i+1(u,X(γ1)) plus the multiplicity of X
L̃
(γ2q −mα) in H i(u,X(γ1)).
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(d2) If α ∈ ∆(h2, l) then the multiplicity of X
L̃
(γ2q ) in H i(u, Uα(X(γ1)) is zero unless

ψl
α(X

L̃
(γ2q )) = 0 (i.e. α lies in the τ -invariant with respect to l) and in that case it is the

multiplicity of X
L̃
(γ2q ) in

φl
αψ

l
α(H i(u,X(γ1)) ⊕H i−1(u,X(γ1)) ⊕H i+1(u,X(γ1)).

(d3) If −α ∈ ∆(h2, u) then the multiplicity of X
L̃
(γ2q ) in H i(u, Uα(X(γ1)) is its multiplicity

in H i−1(u,X(γ1)) plus the multiplicity of X
L̃
(γ2q −mα) in H i(u,X(γ1)).

(e) In the setting of (d), X(γ3) occurs in Uα(X(γ1)) only if (l̃I(γ1) − l̃I(γ3)) is odd.

The proof is similar to the one of Proposition 7.2 in [V2], with adjustments coming from
our more general setting. The main ideas for these modifications are already in [RT1], the
novelty here is the introduction of the extended integral length, which makes things work in
general.

The proof proceeds by induction on the dimension of g, and then by induction on pseu-
docharacter length. The inductive step reducing the dimension of g is passing from g to l,
where q = l+ u, where q is a θ-stable parabolic subalgebra. The group L̃R = Norm(G̃R, l) is

a double cover of the linear reductive group LR, but notice that the covering pr : L̃R → LR
can be trivial, i.e. L̃R ≃ LR × {e, z}. We illustrate this last remark by studying the case
where dim l is minimal, which is the starting point of our induction.

Lemma 8.2. Suppose l is of the formg = ha ⊕ gα ⊕ g−α,

where α is a root in ∆a. If α is a short root, the length function l̃ (in L̃R) coincide with the

integral length lI . Then Theorem 8.1 holds for L̃R. If α is long, LR ≃ SL(2,R) modulo the

center, and the cover over SL(2,R) is isomorphic to S̃L(2,R). Then Theorem 8.1 holds for

L̃R.

Proof. Using Lemma 6.4, the first case is a special case of [V2, Proposition 7.2] and in
the second case, the 2-fold cover of SL(2,R) is studied in Section 4 of [RT1] and in [Mi1].
Theorem 8.1 for this cover follows easily from the material in these references. �

We remark that the induction step reducing the length of a pseudocharacter in the proof
differs from the one in [V2] because the root α that reduces the length of a nonminimal
pseudocharacter need not be integral. In that case, the induction makes use of nonintegral
wall-crossing translation functors. The key point that we have to check is these functors pre-
serve (in a suitable sense) the parity conditions in the statement of the theorem (in contrast,
when α is in fact integral, it doesn’t affect the arguments in [V2] for purely formal reasons).
This is done in [RT1] for the metaplectic group at half-integral infinitesimal character in
Section 5, after Lemma 5.1. The proof goes without change in our setting (with length
replaced by extended integral length), except that in the discussion of cases p.269 of [RT1],
we must add:

Case 4: α2 is real not satisfying the parity condition. Then α2 /∈ R̃(γ2) because of

Corollary 6.9 (recall that α is not integral). Since l̃I(γ2 − µα2) = l̃I(γ2) and lq(γ2 − µα2) =
lq(γ2), we get (a) from the inductive hypothesis.
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This vanishing result allows one to argue as in [Vgr, Chapter 9] and [RT1] to inductively
reduce the length in each of the steps (a)–(c) above.

Corollary 8.3. There is an effective algorithm for computing composition series of genuine

standard Harish-Chandra modules for G̃R with infinitesimal character in F(λa).

9. Kazhdan-Lusztig algorithm for G̃R
Let us start with λa ∈ (ha)∗ regular and dominant as in Section 3. We will now use

translation functors across walls with respect to simple roots in R̃(λa), not necessarily simple
in ∆+

a . Such a translation functor is naturally obtained as a composition of functors of the
previous type. Note that in this process, we cross at most one wall with respect to a non-
complex root, and thus the results of Theorem 5.3 still holds with α nonintegral simple in

R̃(λa). Notice also that cross-action defines an action of W̃a on PF . We can restrict the
family of infinitesimal characters introduced in Section 3 to the ones obtained only by wall

crossing with respect to simple roots in R̃(λa). This change of perspective is harmless by

the above remarks. We denote again by F(λa) this family. Notice now that R̃(νa) = R̃(λa)

for all νa ∈ F(λa). Let us denote PF :=
∐

νa∈F(λa) Pνa and let S̃ be the set of reflections

with respect to simple roots in R̃(λa).

Bruhat G-order. Due to the presence of nonintegral noncompact imaginary roots, the
definition of the Bruhat G-order is more natural on the set of PF than on individual Pνa ,
even if two comparable elements are in the same Pνa . Recall that we do not distinguish in
the notation a pseudocharacter γ and its KR conjugacy class in Pνa .

Definition 9.1. Let γ and γ′ be two elements of PF , and let s ∈ S̃. We write γ′
s
→ γ in

the following cases:

(a) The simple root α in R̃+(γ) corresponding to s ∈ S̃, s is noncompact imaginary and
integral, and γ′ ∈ cα(γ)

(b) The simple root α in R̃+(γ) corresponding to s ∈ S̃ is noncompact imaginary and
nonintegral, and γ′ = (s× γ)α.

(c) The simple root α in R̃+(γ) corresponding to s ∈ S̃ is complex such that θ(α) ∈ R̃+(γ)
and γ′ = s× γ.

Definition 9.2. The Bruhat G-order is the smallest order relation on PF having the follow-
ing properties:

(o) If γ and γ′ are comparable, they are in the same Pνa .

(i) If γ ∈ PF , and α is a noncompact imaginary simple root in R̃+(γ), then for all γ′ ∈ cα(γ),
we have γ < γ′.

(ii) If γ ∈ PF , and α is a complex simple integral root in R̃+(γ), such that θ(α) ∈ R̃+(γ),
then γ < s× γ.

(iii)(exchange condition) If γ′ ≤ δ′, γ
s
→ γ′ and δ

s
→ δ′, then γ ≤ δ.

If s is a reflection with respect a nonintegral root, γ′ ≤ δ′, δ
s
→ δ′, and γ′

s
→ γ, then γ ≤ δ.

This last line was not correctly typed in [RT1], Definition 7.2, were we wrote γ
s
→ γ′

instead of γ′
s
→ γ.
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As a motivation for this complicated definition we state the following result.

Theorem 9.3. Consider γ, δ ∈ PF .

(1) If γ < δ in the Bruhat G-order, then l(γ) < l(δ) and l̃I(γ) < l̃I(γ′). Moreover,
if (Qγ ,Lγ) and (Qδ ,Lδ) are the Beilinson-Bernstein parameters corresponding to γ

and δ, then Qγ ⊂ Qδ.

(2) Suppose γ, δ in PF and X(γ) occurs as a composition factor in X(δ). Then γ ≤ δ.

The proof is similar to the one of Theorem 7.3 of [RT1].

Ts operators. Let B be an abelian group containing an element u of infinite order. Let M
(respectively M′) be the free Z[u, u−1]-module (respectively B-module) with basis PF . By
analogy with [V3, Definition 6.4], we now define operators Ts, on the basis elements γ. (In

the definition below, we denote by α the simple root in R̃+(γ) corresponding to s.) Note
that if α is an integral root, the formulas below are the ones given in [V3], and that if α is
not integral, the formulas are essentially the ones given in [RT1], Definition 7.4.

Definition 9.4. (a1) If α is compact imaginary, then α is integral and Tsγ = uγ.

(a2) If α is real not satisfying the parity condition, then Tsγ = −γ.

(b1) If α is complex and θ(α) ∈ R̃+(γ), then Tsγ = s× γ.

(b2 integral) If α is integral, complex and θ(α) /∈ R̃+(γ), then

Tsγ = u(s × γ) + (u− 1)γ.

(b2 nonintegral) If α is nonintegral, complex and θ(α) /∈ R̃+(γ), then

Tsγ = u(s× γ).

(c1 integral) If α is type II noncompact imaginary integral, then

Tsγ = γ + γα
+ + γα

−.

(c1 nonintegral) If α is type II noncompact imaginary nonintegral, then

Tsγ = (s× γ)α + (s× γ).

(c2 integral) If α is integral and real type II satisfying the parity condition, then

Tsγ = (u− 1)γ − (s× γ) + (u− 1)γα.

(c2 nonintegral ) If α is nonintegral and real type II satisfying the parity condition, then

Tsγ = −(s× γ) + (u− 1)(s × γ)α.

(d1 integral) If α is type I noncompact imaginary integral, then

Tsγ = s× γ + γα.

(d1 nonintegral) If α is type I noncompact imaginary nonintegral, then

Tsγ = (s× γ)α + (s× γ).

(d2 integral) If α is integral and real type I, satisfying the parity condition, then

Tsγ = (u− 2)γ + (u− 1)(γ+
α + γ−α ).

(d2 nonintegral) If α is nonintegral and real type I, satisfying the parity condition, then

Tsγ = −(s× γ) + (u− 1)(s × γ)α.
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Notice that in case (c1 integral), the Cayley transform is indeed double valued be-
cause of our shift in terminology for Type I short roots discussed in the paragraph before
Lemma 6.14). (This case doesn’t occur for long roots because of Lemma 6.10.)

By analogy with the linear case, one might expect that the Z[u, u−1] algebra H generated

by 〈Ts | s ∈ S̃〉 is isomorphic to H(W̃ ), the Hecke algebra of the extended Weyl group. This
isn’t quite true. What is true, however, is that H contains the Hecke algebra of the integral
Weyl group. More precisely, we have the following result.

Proposition 9.5. Extend the definitions of the various Ts (in Definition 9.4) to Z[u, u−1]-
linear endomorphisms of M, and write H for the algebra that they generate. We have the
following conclusions: with h defined over R and θ-stable.

(1) If s ∈ S̃ is integral, then operator Ts satisfies

(Ts + 1)(Ts − u) = 0

with h defined over R and θ-stable.
(2) If s ∈ S̃ is nonintegral, the operator Ts satisfies

T 2
s = u Id .

In particular H is not isomorphic to the Hecke algebra of the complex Weyl group

W̃ := W (R̃(λa)).

Proof. To prove the proposition, one need only appeal to the definitions and check the
relevant relations. For (a) and (b), this is quite easy. The final assertion involves a more
complicated check, but it is also elementary. �
Verdier duality. We need now the result giving the unicity of a Verdier duality D on M′

satisfying certain properties. This is obtained as in [V3] and [RT1], Proposition 7.7. The
reader is invited to consult this last reference for a statement.

Kazhdan-Lusztig polynomials. We now give the definition of Kazhdan-Lusztig polyno-
mials in our context.

Corollary 9.6. Suppose D exists, and suppose that for some δ ∈ PF there is an element

Cδ =
∑

γ≤δ

Pγ,δ(u)γ

with the following properties.

(a) D (Cδ ) = u−l̃I(δ)Cδ

(b) Pδ,δ = 1

(c) If γ 6= δ, then Pγ,δ is a polynomial in u of degree at most 1
2 (l̃I(δ) − l̃I(γ) − 1).

Then Pγ,δ is computable. (In particular, Cδ is unique).

The proof, which we omit, is similar to the one in [V3].

We see that from a combinatorial point of view, the presence of nonintegral simple roots
is not a bad thing, as the formulas tend to be simpler. Furthermore, we have the following
result.
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Lemma 9.7. Suppose that δ ∈ PF , let s ∈ S̃ be a reflection with respect to a nonintegral

root and α ∈ R̃+(δ) the corresponding simple root. Suppose the elements Cδ, Cs×δ, etc., of
the previous corollary exist.

(a) If α is complex, θ(α) ∈ R̃+(δ) then TsCδ = Cs×δ

(b) If α is complex, θ(α) /∈ R̃+(δ) then TsCδ = uCs×δ

(c) If α is imaginary, then TsCδ = C(s×δ)α

(c) If α is real, then TsCδ = uC(s×δ)α

The proof is similar to the one of Lemma 7.9 in [RT1]

The Kazhdan-Lusztig polynomials are characterized recursively by certain identities. The
results we need are Proposition 7.10 and Corollary 7.11 of [RT1]. The proofs extend easily
to our setting. We summarize this by

Proposition 9.8. If Pγ′,δ′ is known when l̃I(δ′) < l̃I(δ), or l̃I(δ′) = l̃I(δ) and l̃I(γ′) > l̃I(γ),
then the formulas in Proposition 7.10 and Corollary 7.11 of [RT1] determine Pγ,δ.

To interpret the polynomials Pγδ just defined, we will use some results of [ABV], Section
17. The Langlands parameters there are not the one we consider here, unfortunately. They
are what the authors call equivalence classes of final limit characters, and we will refer
to them as ABV-parameters. Of course, the two parameterizations are equivalent, and a
procedure to obtain a pseudocharacter from a final limit character, or conversely, is described
in section 11 of [ABV]. If γ ∈ Pνa , we will denote by γ̃ the corresponding ABV-parameter.

Let γ, δ in Pνa , b = h+n a representative of the K-orbit on the flag manifold associated to
γ, with h defined over R and θ-stable. Write d for the codimension of the orbit corresponding
to δ in the flag manifold. Define

(9.1) Qγ,δ(u) =
∑

q∈Zu 1

2
(q−d)mult[γ̃ ⊗ ρ(n);Hq(n,X(δ))]

Let q = l + u be a θ-stable parabolic subalgebra of g, chosen for γ as in [V3], (A.2). Set

r = l̃I(δ) − l̃I(γ) − dim u ∩ p
Then, by Corollary A.10 and Proposition 4.3 of [V3]

Qγ,δ(u) =
∑

q∈Zu 1

2
(q+r)mult[X

L
(γq),Hq(u,X(δ))]

Theorem 9.9. The polynomials Qγ,δ defined above are the Kazhdan-Lusztig polynomials
Pγ,δ of the previous section.

The proof is the same as the corresponding result in [RT1], namely, Theorem 7.12.

Finally, we can state the main result of this section.

Theorem 9.10. The value at 1 of the Kazhdan-Lusztig polynomials Pγ,δ gives the multi-

plicity of X(γ) in X(δ). More precisely, with the notation of Equation 1.2,

M(γ, δ) = (−1)l(δ)−l(γ)Pγ,δ(1).

Proof. We will only sketch the proof, since all the necessary arguments are already in
[ABV], Section 17, and in [RT1].
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First of all, recall that Beilinson-Bernstein localization theory gives an equivalence of

category between HC(g, K̃)νa and Dνa(X, K̃), the category of K̃-equivariant Dνa-modules
on X (the flag manifold of g), where Dνa denotes the twisted sheaf of differential operators
on X with twist given by νa ∈ (ha)∗. In order to apply Riemann-Hilbert correspondence,
we need to introduce another category of D-modules. The theory of intertwining operators
shows that the multiplicity matrix M(γ, δ)γ,δ is unchanged by a small modification of the
infinitesimal character that does not affect the set of integral roots. Thus, we may assume
that νa is rational, i.e. there exist an integer n ∈ N∗ and a weight µ ∈ X∗(Ha) such that

n(νa − ρ) = µa. The weight µa defines a line bundle L on X, and H := C ∗ × K̃ acts on L∗

with C ∗ acting on the fibers of L∗ → X by

z · ξ = znξ (z ∈ C ∗ , ξ ∈ L∗).

This action of C ∗ on L∗ allows to define “genuine” C ∗ -equivariant object on L∗, i.e. objects
with the required monodromy, and we have (cf. [ABV], Proposition 17.5) an equivalence

of category between Dνa(X, K̃) and Dgen(L∗,H) of H-equivariant genuine DL∗-modules on
L∗. Notice that now DL∗ is a sheaf of differential operators on OL∗ . We can now take the
Riemann-Hilbert functor RHomDL∗

( . ,OL∗) from Dgen(L∗,H) to A(L∗,H), the category
of H-equivariant genuine perverse sheaves on L∗. To summarize, what we have obtained so

far is an equivalence of category between HC(g, K̃)νa and A(L∗,H). Recall that irreducible

objects in HC(g, K̃)νa are parameterized by the set Pνa , which, in the Beilinson-Bernstein

picture, can be viewed as the set of irreducible K̃-equivariant local systems on K̃-orbit
on X. Lemma 17.9 of [ABV] gives a bijection between Pνa and the set of irreducible H-
equivariant genuine local systems on H-orbit on L∗ (which parameterizes irreducible objects
in A(L∗,H)).

Let V be an object in HC(g, K̃)λa and let P ∈ A(L∗,H) the corresponding perverse sheaf
on L∗. The Lie algebra homology of V can be computed from the decomposition of various
H iP|S in terms of irreducible H-equivariant genuine local systems on H-orbits S on L∗.

We are thus reduced to a geometric problem, which is roughly speaking, computing the
intersection cohomology sheaf on closure of H-orbits on L∗. We are to prove that it is exactly
what the KL-polynomials introduced in Corollary 9.6 do. Notice first that the uniqueness
assertions about Verdier duality and in Proposition 9.6 are purely combinatorial statements.
By a general argument (see [BBD], Section 6), the study of intersection complexes is reduced
to the same algebro-geometric problem for varieties defined over the algebraic closure of a
finite field. In this context, the modules M and M′ have a geometric interpretation, where
the variable u keeps track of eigenvalues of Frobenius action. Existence of Verdier duality
and KL polynomials follows. Recall that the computation of Lie algebra homology groups
is carried out in Theorem 8.1, under the semi-simplicity hypothesis of the Uα functors (see
[RT1], Section 1). The idea is more or less to prove simultaneously this semi-simplicity hy-
pothesis and the equality of the KL-polynomials with their representation theoretic analogs
([RT1], Section 7.3). The argument are given in [ABV], proof of Theorem 17.12 and [RT1],
section 7.3. The fundamental difference between our algorithm and the one described in [V3]
or [ABV] for linear groups is the use of Hecke operators corresponding to simple nonintegral

roots in R̃νa .
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Part 2. Geometric theory of Kazhdan-Patterson lifting over R
Let GR = GL(n,R), let G̃R denote its nonlinear double cover, and write pr for the

projection. The square of any section s : GR → G̃R defines a map from the conjugacy classes

of GR to those of G̃R; this map is independent of the choice of s. It is natural to introduce
a slight twist t(g) = s2(g)η(g), where η : G → ker(pr); see [KP]. Following [KP], define a

lifting of characters for GR to characters of G̃R as follows. For a virtual representation π
with global character Θ, the lifting T is defined on a semisimple element g in the image of t
as

[T(Θ)](g) = 2[n/2]−n
∑

{h∈G | t(h)=g}

∆(h)

∆(g)
Θ(h),

where ∆ is the Weyl denominator. Let Z̃0 denote the central subgroup of G̃R defined in

Remark 10.5, and fix a character χ of Z̃0; there are at most two such choices. For g ∈ t(G)

and z ∈ Z̃0 define

[T(Θ)](gz) = [T(Θ)](g)χ(z),

and finally, to complete the definition of the lifting, set [T(Θ)](g) = 0 if g /∈ t(G)Z̃0.

The purpose of this part is to give a geometric definition of this lifting and, using the
geometry, define an analog of this lifting for the indefinite unitary groups on the level of
virtual representations.

10. A standard form for blocks

The main results of this section are Theorems 10.4 and 10.8 detailing a simple form for

blocks (Section 7) of Harish-Chandra modules for G̃L(n,R) and Ũ(p, q).

We recall some ideas from [V4, Section 5] adapted to our context. For an arbitrary group
GR and λ-pseudocharacter γ, an ordered set {α1, . . . , αk} of noncompact imaginary roots is
called admissible if the iterated Cayley transform

cαk ◦ · · · ◦ cα1(γ)

is well-defined. Similarly we say a sequence of real roots is admissible if the corresponding it-
erated inverse Cayley transform is well-defined. The next proposition is a simple complement
to [V4, Corollary 5.9].

Proposition 10.1. Let G̃R be a nonlinear double cover as in Section 6, and fix a genuine
λ-pseudocharacter γ. Assume that g is simple and admits only one root length in the sense
of Convention 5.2; so g is simply laced or of type G2. Let S = {α1, . . . , αk} and S′ =
{α′

1, . . . , α
′
k} be admissible sequences of noncompact imaginary roots for γ such that each αi

and α′
i is half-integral but not integral. Suppose the span of S coincides with that of S′, and

write s for the common span. Then

cαk ◦ · · · ◦ cα1(γ) = cα
′

k ◦ · · · ◦ cα
′
1(γ).

As a matter of notation, we write cs(γ) for this pseudocharacter. (Recall that Cayley trans-
forms in half-integral roots are single-valued.)

Proof. Exactly as in the proof of [V4, Corollary 5.9], the current proposition reduces to the
assertion that there exists an element w ∈W (λ) such that

(10.1) w{±α1, . . . ,±αk} = {±α′
1, . . . ,±α

′
k},
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as an equality of unordered sets. Since admissible sequences are always orthogonal and
since the sum of two element α, β ∈ R(2λ) \ R(λ) can never be in R(2λ) \ R(λ), it follows
that both sets {αi} and {α′

i} are automatically strongly orthogonal. Thus the assertion of
Equation (10.1) follows from applying [V4, Proposition 5.8] to the system of imaginary roots
integral for 2λ (with the grading supplied, of course, by compact and noncompact roots).
The proposition follows. �

Clearly one immediately obtains a version of Proposition 10.1 for real roots.

Proposition 10.2. Retain the notation and hypotheses of Proposition 10.1, but instead
suppose that S and S′ are admissible sequences of real roots which again are half-integral but
not integral. Suppose the span of S coincides with that of S′, and write s for the common
span. Then

cαk
◦ · · · ◦ cα1

(γ) = cα′

k
◦ · · · ◦ cα′

1
(γ).

As a matter of notation we write cs(γ) for this pseudocharacter. (Recall that inverse Cayley
transforms in half-integral roots are single-valued.)

Remark 10.3. As mentioned in the proof of Proposition 10.1, any orthogonal sequence of
half-integral (but not integral) compact imaginary roots is strongly orthogonal, and hence
admissible (as is clear, for instance, from the discussion following Definition 5.2 in [V4]).
Conversely, any admissible sequence is orthogonal. Thus a set of half-integral (but not
integral) noncompact imaginary roots is orthogonal if and only if it is admissible (with
respect to any ordering). The same conclusion holds for real roots.

Now we turn to our two groups of interest.

Theorem 10.4. Let G̃R = G̃L(n,R), and fix arbitrary infinitesimal character λ. If n is even,

there is a unique block of genuine representations of G̃R at fixed infinitesimal character λ;
if n is odd, there are two such blocks. Each such block B contains a unique principal series,
say γps, and the representations in B are parameterized by subspaces of the span of the real
roots for γps in R(2λ) \ R(λ) which are spanned by admissible subsets. More precisely, fix
such a subspace s. Then the assignments 7→ cs(γps)

is bijective.

In particular, the two blocks in the case when n is odd are isomorphic. They are dis-
tinguished by the central character of the unique principal series in each of them. (See
Remark 10.5.)

Proof. We begin by recalling some elementary facts about the preimage, say M̃ , of the

diagonal (Z/2)n in the Pin double cover of O(n). When n is even, M̃ has two genuine rep-

resentations, each of dimension 2n−1; when n is odd M̃ has a unique genuine representation
of dimension 2n. In the even case, the two representations are distinguished by the action

of the nontrivial element in M̃ projecting to the identity. Consequently, we conclude that

if n is odd, G̃L(n,R) has a unique principal series at fixed infinitesimal character, while
if n is even there are two such principal series and they are distinguished by their central
characters.

Now fix a genuine block B as in the theorem and fix γ ∈ B. Let S denote the set of
half-integral (but not integral) noncompact imaginary roots for γ. The set S clearly consists
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of orthogonal roots, and hence (by Remark 10.3, S (with any ordering) is admissible. Let s
denote the span of S. Proposition 10.1 and the unicity of genuine principal series (with a fixed
central and infinitesimal character) reduce the proof of the current theorem to establishing
that γ′ := cs(γ) is indeed a principal series. To see this, note that by the definition of S,
there are no half-integral (but not integral) noncompact imaginary roots for γ′. Since γ′ is
genuine, Lemma 6.10 implies that there are no noncompact imaginary integral roots for γ′.
It follows that there are no noncompact imaginary roots for γ′. For representations of a split
group, this implies γ′ is a principal series. The theorem follows. �
Remark 10.5. We will need to make the discussion of central character a little more precise
for applications below. Define a subgroup Z0 of GL(n,R) as follows:

Z0 =

{
Id if n is even;

±Id if n is odd,

and set let Z̃0 denote the preimage of Z0 in G̃L(n,R). For each representation in a fixed

block B for G̃L(n,R), Z̃0 acts by a genuine character. There exists a unique such character
if n is even, but if n is odd there are two. In the latter case, the two blocks of genuine
representations at fixed infinitesimal character are completely distinguished by the action of

Z̃0.

Let U(p, q) denote the isometry group of an indefinite Hermitian on C p+q of signature
(p, q). Its maximal compact subgroup is isomorphic to U(p) × U(q). Let U(p̃, q) denote the

double cover of U(p, q) which restricts to the det1/2 ⊗11 cover of U(p)×U(q). G̃R is nonlinear.

Proposition 10.6. Fix regular infinitesimal character λ for gl(n). Write p (resp. q) for the

number of integer (resp. half-integer) coordinates of λ. Fix p′+q′ = n. Then U(p̃′, q′) has
no genuine discrete series representations with infinitesimal character λ unless

(p′, q′) =

{
(p, q) if n is odd;

(q, p) if n is even.

In this case, U(p̃′, q′) has a unique discrete series.

Proof. This follows from Harish-Chandra’s classification of the discrete series. �
The proposition motivates the following notation.

Notation 10.7. Fix p+q = n. Define

Ũ(p, q) =

{
U(p̃, q) if n is even;

U(q̃, p) if n is odd.

Theorem 10.8. Fix an infinitesimal character λ for gl(n) consisting of p distinct integers

and q distinct half-integers with n = p+q. Define G̃R = Ũ(p, q) as in Notation 10.7. Let

γds denote the unique discrete series in the unique block B of representation of G̃R at λ
(Proposition 10.6). Then the representations in B are parameterized by subspaces of the
span of the noncompact imaginary roots for γds in R(2λ) \ R(λ) which are spanned by
admissible subsets. More precisely, fix such a subspace s. Then the assignments 7→ cs(γds)

is bijective.
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Proof. Fix λ as in the theorem, and let B denote a block of genuine representations. Fix
γ ∈ B, and let S denote the set of real half-integral (but not integral) roots for γ. S consists
of orthogonal roots and hence (with any ordering) is admissible by Remark 10.3. Write s
for the span of S, and set γ′ = cs(γ). The theorem reduces to establishing that γ′ = γds. By
definition there are no real roots for γ′. But for genuine representations of U(p̃, q) at λ, this
means that γ′ is a discrete series, and hence the theorem follows from Proposition 10.6. �

11. Duality for G̃L(n,R)

Let GR = G̃L(n,R) and fix regular infinitesimal character λ ∈ h∗. Let g∨ denote the
Langlands dual of g; so h∗ is a Cartan in g∨, and we can consider the centralizer, say g′,
of 2λ in g∨. Then g′ ≃ g′1 ⊕ · · · ⊕ g′k with each g′i ≃ gl(ni) for integers ni with

∑
i ni = n.

Let λi denote the restriction of λ to an infinitesimal character for gl(ni, C ). Up to a central
shift by a power of the determinant, λi consists of pi distinct half-integers and qi distinct
integers. Let (λ′)i denote the shift consisting of pi integers and qi half-integers. Let k′i
denote the centralizer of λi in g′i; so k′i ≃ gl(pi, C )×gl(qi , C ). Let (g′i)R ≃ u(pi, qi) denote the
real form of gi with Cartan involution θi and complexified θi-fixed points equal to ki. Let

(G̃′
i)R ≃ Ũ(pi, qi) (Notation 10.7) denote the corresponding double cover, and let zi denote

the nontrivial element projecting to the identity. Set

HR = (G̃′
1)R × · · · × (G̃′

k)R.
This is a 2k-fold covering of a linear group whose genuine representation theory clearly

coincides with that of the two-fold cover G̃′R obtained by quotienting HR by all products∏
j∈S zj with S a proper subset of {1, . . . , k}. Finally let λ′ denote the concatenation of the

λ′i; this is an infinitesimal character for G̃′R
Now fix a block B of genuine representations of G̃R at infinitesimal character λ. According

to the discussion in Section 3, B is unique if n is even and depends only on a choice of central
character if n is odd. Let γps = γps(λ) denote the unique principal series in B. According to

Theorem 10.8, let B′ denote the unique block of genuine representations of G̃′R at infinitesimal
character λ′, and let γ′ds = γ′ds(λ

′) denote the unique discrete series in B′. Note that by
construction, there α is a half-integral (but not integral) and real for γps if and only if α is
half-integral (but not integral) and noncompact imaginary for γ′ps. Thus Remark 10.3 implies
that S is an admissible sequence of half-integral (but not integral) noncompact imaginary
roots for γ′ds if and only if S is an admissible sequence of half-integral (but not integral) real
roots for γps. By Theorems 10.4 and 10.8, we obtain a bijection

B −→ B′(11.1)

cs(γps) −→ cs(γ′ds);(11.2)

here s is a subspace spanned by an admissible sequence of half-integral (but not integral) real
roots for γps(λ); or, equivalently an admissible sequence of half-integral (but not integral)
noncompact imaginary roots for γ′ds(λ

′).

Theorem 11.1. Retain the notation of the previous paragraph. The bijection γ 7→ γ′ is a
character multiplicity duality.
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Proof. Like the proof of the main result in [V4], the current results is essentially a purely
formal consequence of the standard form of blocks provided by Theorems 10.4 and 10.8. We
briefly sketch the details.

We of course need to work within the formalism developed in Part 1. Let F and F ′ be
choices of families containing λ and λ′ (Section 3). According to Section 3, F is a system of
representatives for (Wa · λ+P)/P, and likewise for F ′. Hence we obtain a bijection from F
to F ′ which we shall denote ν 7→ ν ′ by requiring that ν +P belong to wλ+P if and only if
ν ′ + P belongs to wλ′ + P.

To apply the machinery of Part 1, we need to extend the bijection of Theorem 11.1 to
the family of infinitesimal characters F . For ν ∈ F , let γps(ν) denote a principal series

representation of G̃R at infinitesimal character ν whose central character coincides with
that of γps = γps(λ) fixed above. Let Pν denote the set of genuine ν-pseudocharacters
corresponding to the block containing γps(ν). Similarly, let P ′

ν′ denote the set of genuine

ν ′-pseudocharacters for G̃′R. Let P := PF (G̃R) denote the disjoint union of the sets Pν for
each ν ∈ F (and similarly for P ′). In Equation (11.1) we defined a bijection from Pλ to P ′

λ′ .
We claim that the same definition gives a bijection between Pν and P ′

ν′ . To see this, first

note that since each ν ′ ∈ F ′ differs from a W conjugate of λ′ by a weight, G̃′R has a (unique)
discrete series, say γ′ds(ν

′) at each ν ′ ∈ F ′; and second note that according to the definition
of the bijection ν 7→ ν ′, α is half-integral (but not integral) for ν if and only if α is half-
integral (but not integral) for ν ′. Remark 10.3 allows us to identify the relevant admissible
subspaces of real roots for γps(ν) with the relevant admissible subspaces for γ′ds(ν

′), which
allows us to define a bijection between Pν and P ′

ν′ exactly as in Equation (11.1). We thus
obtain a bijection P → P ′ which we denote, as above, by γ 7→ γ′.

Let M and M′ denote the free Z[u, u−1] module with basis indexed by P and P ′. Recall
the algebra H defined in Proposition 9.5 and its Z[u, u−1]-linear action on M and M′. Define
the dual Z[u, u−1] module

M∗ = HomZ[u,u−1](M,Z[u, u−1]).

The transposed action of H on M defines an action of Hop on M∗; choosing an antiauto-
morphism of H (identifying H with Hop) makes M an H module. Concretely, for µ ∈ M∗

and for a simple reflection s we define

(11.3) Ts · µ = [−u(Ts)
−1]tr · µ;

here the invertibility of Ts follows directly from Proposition 9.5.

Write {µγ | γ ∈ P} for the basis of M∗ dual to the basis P of M, and recall the bijection

P −→ P ′

γ −→ γ′.

defined above. Then combining the formalism of Part 1 with the formalism of [V4, Section
12], the current theorem follows from the following claim: the Z[u, u−1] linear isomorphism

ϕ : M∗ −→ M′

µγ −→ (−1)l̃
I (γ)γ′

is an isomorphism of H modules; here l̃I is the extended integral length function of Section 6.

As in [V4], this assertion must be verified from the formulas defining the H action. As
example, we perform the check for one case of an operator Ts corresponding to a nonintegral
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simple root. This is one of the most interesting cases and once again reveals the importance
of the interaction (which was crucial in Part 1) between the parity of l̃I and the nonintegral
wall crossing functors.

We are to establish the equivariance of ϕ. Suppose s corresponds to a root α which is
half-integral but not integral for γ. From Proposition 9.5(2), and the definition of the H
action on M∗, the equivariance amounts to the following. Write

−µγ ◦ Ts =
∑

δ∈P

aδµδ,

and

Tsγ
′ =

∑

φ∈P ′

bφφ.

then checking the equivariance ϕ(Tsγ) = Tsϕ(γ) amounts to

aδ = (−1)l̃
I (δ)+l̃I (γ)bδ′ ,

where δ 7→ δ′ is the bijection defined above. In other words, one must check that the co-

efficient of γ in −Tsδ is (−1)l̃
I (δ)+l̃I (γ) times the coefficient of δ′ in Tsγ

′. We perform one
instance of this check. Suppose α is noncompact imaginary for γ′ and δ. By construc-
tion of the bijection φ 7→ φ′, s is real (and necessarily satisfying the parity condition by
Corollary 6.9(3)) for γ and δ′. Using Definition 9.4 (d1 nonintegral), we get

(11.4) −Tsδ = −(s× δ)α − (s× δ),

and

(11.5) Tsγ
′ = (s× γ′)α + (s× γ′).

We are interested in the coefficient of γ in −Tsδ, and since s is real satisfying the parity
condition for γ, examining the right-hand side of Equation (11.4) shows that this coefficient
is zero unless

(11.6) γ = (s× δ)α,

in which case it is −1. On the other hand, consider the coefficient of δ′ in Tsγ
′. Again since

α is real satisfying the parity condition for δ′, examining the right-hand side of Equation
(11.5) shows that this coefficient is zero unless

(11.7) δ′ = (s× γ′)α,

in which case it is 1.

We claim (11.6) holds if and only if (11.7) holds. This will prove ϕ(Tsγ) = Tsϕ(γ) up to
sign. (We treat the sign in a moment.) If γ = (s× δ)α, then

γ′ = [(s× δ)α]′ since γ 7→ γ′ is a bijection

= [(s× δ)′]α] by Equation (11.1)

= s× (δ′)α again by Equation (11.1).

Taking the cross action of s with both sides we conclude s × γ′ = (δ′)α, and then taking a
Cayley transform in α, we obtain (s×γ′)α = δ′. Finally taking ′ of both sides and arguing as
above, we conclude δ = (s×γ)α, which is (11.7). These steps are all reversible and establish
the equivalence of (11.6) with (11.7).
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Finally note that since α is noncompact imaginary for δ, the extended integral length of

δ differs from that of (s × δ)α by 1, (−1)l̃
I [(s×γ)α]−l̃I(δ) = −1. (This is an instance of the

general fact that nonintegral wall crosses always change the parity of integral length.) Hence
the verification of the equivariance in this case is complete.

We leave the remaining verifications to the reader. �
Retain the notation of the above proof. Given γ and δ in B, let Pγδ denote the polynomial

defined in Section 9.6 for the H submodule M spanned by basis elements corresponding to
B. For γ and δ in B′, let Qγδ denote the corresponding polynomial. Section 9.6 and the
proof of Theorem 11.1 immediately give the following corollary.

Corollary 11.2. The inverse of the matrix

(Pγδ)γ,δ∈B

is the matrix
(ηγδQδ′γ′)γ,δ∈B,

where ηγδ = (−1)l̃
I (γ)−l̃I (δ), the sign of the parity of the difference between the extended

integral length of γ and δ.

We briefly discuss the choices involved in the duality map γ 7→ γ′. We may assume that
λ is half-integral, i.e. 2λ is integral. (As is clear from the definitions, the duality map at
general infinitesimal character is a product of duality maps for the half-integral case.) The
main issue is that the central shift λ′ of λ could consist of either p integers and q half-
integers or (by shifting by all half-integers) q integers and p half-integers. There is no way
to make this choice canonically. This ambiguity manifests itself in the appearance of the
outer automorphism in Theorem 12.2.

12. Functorial description of Kazhdan-Patterson lifting

Recall the central subgroup Z̃0 of G̃L(n,R) defined in Remark 10.5, and fix a genuine

character χ+ of Z̃0. (If n is even, this choice is unique; if n is odd, there are two such choices.)

Let KHCgen (G̃L(n,R))+ denote the Grothendieck group of genuine virtual representation of

G̃L(n,R) on which Z̃0 acts by χ+. (This the full Grothendieck if n is even, but only half
of the full Grothendieck group in the odd case.) Given a choice of χ0, recall the Kazhdan-
Patterson lifting T defined above. On the level of virtual representations, it amounts to a
map

T : K (GL(n,R)) −→ K gen(G̃L(n,R))+,

It has a simple effect on infinitesimal characters and factors to a map

Tλ : K (GL(n,R))λ −→ K gen(G̃L(n,R))+λ/2.

The purpose of this section is to reinterpret this map in terms of the duality defined in
Section 11.

Fix a regular infinitesimal character λ/2; the singular case is discussed below. Write (as
in the beginning of Section 11 with λ/2 instead of λ) λ/2 as the concatenation of regular
integral infinitesimal characters λi for gl(ni) where n1+· · ·+nk = n. Fix χ+, and fix a choice

of the the duality of the previous section at λ/2; this gives a bijection P+
λ/2(G̃L(n)) →֒

∐k
i=1 Pλi

(Ũ(pi, qi)) for some integers pi and qi such that pi+qi = ni. (The precise values
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of pi, qi, and λi depend on the choice of duality.) If we follow this bijection by taking the
support of the appropriate D-module localization, we obtain a map

Φ̃λ/2 : P+
λ/2

(G̃L(n,R)) −→
k∐

i=1

(GL(pi, C ) × GL(qi, C ))\Bi ,

where Bi denotes the flag variety for g = gl(ni, C ). Since every orbit of GL(pi, C )×GL(qi, C )

on Bi admits at most one equivariant local system (since Cartan subgroups for Ũ(pi, qi) are

connected), Φ̃λ/2 is injective. The definition of Φ̃λ/2 depends on a choice of the duality of
Section 11.

We can make the same construction for the linear group GL(n,R). Once we fix of a
choice of the duality of [V4] for GL(n,R) at λ, we obtain a bijection Pλ(GL(n,R)) →∐

i

∐
ri+si=ni

Pρ(U(ri, si)). After taking supports we obtain a bijection

Φλ : Pλ(GL(n,R)) −→
k∐

i=1

∐

ri+si=ni

(GL(ri, C ) × GL(si, C ))\Bi .

(Here it is important to note that image is the coproduct over all ri+si = n. For instance,
the unique orbits of GL(ni, C ) × GL(0, C ) and GL(0, C ) × GL(ni, C ) on Bi clearly coincide

as sets, but they are distinct in the image of Φλ.) Like the definition Φ̃, Φ depends on a
choice of the duality of [V4] for GL(n,R).

Define a map

Sλ : Pλ(GL(n,R)) −→ P+
λ/2(G̃L(n,R)) ∪ {0},

as follows. (Here 0 is to be considered as a formal symbol.) Set

Sλ(γ) = (Φ̃λ/2)
−1 ◦ Φλ(γ),

if Φ(γ) ∈ Image(Φ̃λ/2); otherwise set S(γ) = 0. Write S for the resulting map from

P(GL(n,R)) to P(G̃L(n,R)) ∪ {0}.

DefineX
G̃L

(0) to be the zero element in the Grothendieck group of genuine representations

of G̃L(n,R). Then Sλ induces a map (which we also call Sλ) of Grothendieck groups,

Sλ : K (GL(n,R))λ −→ K gen(G̃L(n,R))+λ/2

XGL(γ) −→ X
G̃L

(S(γ)).

Note that the lifting Sλ depends a choice of the duality of Section 11 for G̃L at infinitesimal
character λ/2, and a choice of the duality of [V4] for GL(n,R) at λ.

Example 12.1. Here we compute Sλ for GL(n,R) when n = 1 or n = 2. Fix χ+ as always.
When n = 1, there are two representations of R× with fixed infinitesimal character: the
one which is trivial on the component group of R+ (which, to be consistent with notation
introduced below, we denote X(γ0)); and the one which is nontrivial (denoted X(γ1)). There

is only one only genuine representation (which we denote X(γ̃)) of R̃× with the prescribed

action of Z̃0. Depending on the choices of duality defining Sλ, either Sλ(X(γ0)) = X(γ̃) and
Sλ(X(γ1)) = 0, or vice versa.

Now consider the n = 2 case. If λ is not integral, there are only the four principal series
for GL(2,R) (all of which are irreducible), and there is only the unique genuine (irreducible)

principal series, say X(γ̃) of G̃L(2,R) at λ/2. Then it is easy to check that Sλ will map
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three of the four principal series to 0, and one to the unique genuine principal series. Exactly
which principal series has nonzero image depends on the choices of dualities. (For different
choices, each principal series may have nonzero image.)

The case of λ integral is more interesting. Set l = 〈λ, α〉 ∈ Z. Recall that a representation
is called spherical if its lowest K-type is trivial. There is a unique discrete series representa-
tion, say X(δ), of GL(2,R) at λ; and there are again four principal series X(γ0), . . . ,X(γ3).
Arrange the notation so that X(γ0) is spherical , and X(γ1) is the outer automorphism con-
jugate of γ0; i.e. X(γ1) has a one-dimensional nontrivial lowest K type. There is a unique

genuine relative discrete series , say X(δ̃), of G̃L(2,R) at λ/2, if l is odd; and there are no
such discrete series if l is even. On the other hand, there is always a unique genuine principal

series, again say X(γ̃), for G̃L(2,R) at λ/2.

Suppose first that l is odd. Independent of any choices the support of the duals of X(δ)

and X(δ̃) is the open orbit of GL(1, C ) × GL(1, C ) on B, the flag variety for gl(2). Thus

Sλ(XGL(2)(δ)) = X
G̃L(2)

(δ̃). Depending on the choices of the duality of Section 11, the

support of the dual of X(γ̃) is one of the two closed orbits, say Q+ or Q−, of GL(1, C ) ×
GL(1, C ) on B. On the other hand, since l is odd, the principal series X(γ2) and X(γ3) are
irreducible and have duals which necessarily are supported on the orbits, say Q′

+ and Q′
−, of

GL(2, C ) ×GL(0, C ) or GL(0, C ) ×GL(2, C ) on B. Meanwhile the reducible principal series
X(γ0) and X(γ1) have irreducible quotients whose duals are supported on Q+ and Q−, and
exactly which one depends on the choices. Hence we conclude that

Sλ(X(γ2)) = Sλ(X(γ3)) = 0; and either

Sλ(X(γ0)) = X(γ̃) and Sλ(X(γ1)) = 0; or

Sλ(X(γ1)) = X(γ̃) and Sλ(X(γ0)) = 0.

If, on other hand, l is even, then X(γ̃) is irreducible, and its dual is supported on either Q′
+

or Q′
−. This time, it is X(γ0) and X(γ1) which are irreducible and necessarily have duals

supported on Q′
+ and Q′

−. Thus the conclusions of the previous displayed possibilities hold
without change. Since an outer automorphism of GL(2,R) switches X(γ0) and X(γ1) (and
also switches X(γ2) and X(γ3)), we see that the two possibilities displayed above differ by
twisting by an outer automorphism.

Thus we conclude that while there are a number of possible choices for the dualities for

GL(2,R) and G̃L(2,R), these choices lead to only two distinct maps Sλ. The two maps are
distinguished by their value on the spherical principal series X(γ0): one maps X(γ0) to zero,
the other does not. Suppose we fix choices so that we are in the latter case. For n = 1, this
requirement implies Sλ(X(γ0)) = X(γ̃); for n = 2, Sλ maps the spherical principal series
to X(γ̃), and takes all other principal series to 0. When relative discrete series of GL(2,R)
exist at λ, they are unique, and are mapped to the unique genuine relative discrete series

of G̃L(2,R). It is straightforward to work directly from the definition of Tλ in [KP], to see
that with these choices Sλ = Tλ for n = 1 and 2.

In fact, since the character formulas (of expressing standard modules in terms of irre-

ducibles) are easy and well-known for GL(2,R) and G̃L(2,R), at λ = ρ it is easy to see that
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these choices give

Sλ(X(δ)) = X(δ̃);

Sλ(triv) = −X(γ̃);

Sλ(X(γi)) = 0, for i ≥ 1;

here of course triv = X(γ0).
1

This example shows, at least for GL(2,R), that the different choices involved in the
definition of Sλ, amount to (at most) a twist of Tλ by an outer automorphism. In fact, this
is true in general.

Theorem 12.2. Fix regular infinitesimal character λ, and let A denote an outer automor-

phism of GL(n,R). Fix choices of the duality for GL(n,R) at λ and G̃L(n,R) at λ/2, and
use these choices to define Sλ. Then either

Sλ = Tλ or Sλ ◦A = Tλ.

Both possibilities are distinct and each can occur for appropriate choices of the dualities
involved.

Proof. It is clear from the definition of Sλ that it suffices to treat the case when λ is regular
and integral. (The general case is simply a kind of direct product of integral cases.)

Let γ0 parametrize the spherical principal series of GL(n) at λ, and let γ1 denote its outer
automorphism conjugate. (So X(γ1) has nontrivial one-dimensional lowest K type.) Let γ̃

parametrize the unique principal series of G̃L(n) at λ with prescribed central character χ+.
We begin by showing that independent of any choices of the dualities defining Sλ, either

(12.1) Sλ(X(γ0)) = X(γ̃) while Sλ(X(γ1)) = 0;

or

(12.2) Sλ(X(γ0)) = 0 while Sλ(X(γ1)) = X(γ̃).

First observe that a (real) root α for γi satisfies the parity condition and gives reducibility if
and only if 〈λ, α〉 ∈ 2Z+ 1. Fix an arbitrary choice of the duality for GL(n,R) at λ, and let
γ′i parametrize the dual of X(γi); so X(γ′0) is a representation of some U(p, q), while X(γ′1)
is a representation of U(q, p) (for the same integers p and q). To distinguish these cases set
(p0, q0) = (p, q) and (p1, q1) = (q, p). Let Q′

i denote the support of γi. Each Q′
i is an orbit

of GL(pi, C ) × GL(qi, C ) on B. From the general properties of [V4], it follows that Q′
i is

a closed orbit (since X(γ′i) must be a discrete series) and, moreover, α is noncompact for
Q′

i if and only if 〈λ, α〉 ∈ 2Z+ 1. It follows that each Q′
i supports a genuine discrete series

representation, say X(δ̃i) for Ũ(pi, qi). The infinitesimal character of X(δ̃i) either consists
of pi integers and qi half-integers, or vice-versa. The exact details do not concern us here,

except for the fact that we may uniquely specify the duality for G̃L(n,R) at λ/2 by requiring

that the image of X(γ̃) be X(δ̃0). In this case, the tracing through the definitions shows
that Equation (12.1) holds. On the other hand, we may uniquely specify the duality for

1Note that the minus sign in the second displayed equation contradicts the main proposition in the
introduction of [AH]. In fact, that proposition is stated incorrectly; in part (1), the right-hand side needs a

factor of (−1)n/2.
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G̃L(n,R) at λ/2 by requiring that the image of X(γ̃) be X(δ̃1). In this case Equation (12.2)
holds. These are the only two possibilities that can occur.

For future reference, we refer to choices of the dualities which lead to Equation (12.1) as
spherical choices). Likewise, we call those that lead to Equation 12.2 antispherical choices.

We now give an alternative description of Sλ. In discussion that follows, let i = 0 if the
choices of the dualities defining Sλ are spherical and let i = 1 if they are antispherical. As
we saw above, α satisfies the parity condition for γi if and only if α is half-integral (but not
integral) for λ/2. It is easy to see that a subspace s of the span of the half-integral roots for
Sλ(γi) is admissible if and only if s is an admissible subspace of the span of the real roots
satisfying the parity condition for γi. From the properties of the duality of [V4] together
with the definition of the duality in Section 11, we conclude:

(12.3) cs(Sλ(γi)
)

= Sλ

(
cs(γi)

)
.

Moreover, if γ ∈ Pλ(GL(n)),

(12.4) Sλ(X(γi)) 6= 0 iff there exists s such that cs(γ0) = γ.

Now suppose for definiteness that we are in the spherical case. Equation (12.1) shows
that different spherical choices of the dualities do not affect the value of Sλ(X(γ0)). Hence
Equations (12.3) and (12.4) show that different spherical choices of the dualities do not
change any values of the map Sλ. The same argument shows that different antispherical
choices of the dualities do not affect the map Sλ. So, indeed, as we vary all of the choices
of the dualities defining Sλ, we obtain just two different maps; they are distinguished by
whether Equation (12.1) or (12.2) holds. Henceforth we will write Ss

λ for the map for which
Equation (12.1) holds, and Sa

λ for the map for which Equation (12.2) holds.

Notice that since the iterated Cayley transform cs commutes with A and since A(X(γ0)) =
X(γ1), Equation (12.3) implies that Sa

λ ◦ A = Ss
λ. Thus all the assertions of the present

theorem will follow if we can show Ss
λ = Tλ.

To continue, we need to recall the notion of induction product for G̃L(n,R). For GL(n,R),
recall that parabolic induction defines an associative unitary-preserving “induction product”
which takes representations of GL(n1,R)×GL(n2,R) to those of GL(n1+n2,R). The analog

for G̃L(n,R), which we now discuss, is a little subtle since G̃L(n1,R) × G̃L(n2,R) is not the

Levi factor of a parabolic subgroup of G̃L(n,R).

Let PR = MRNR be a parabolic subgroup of GR = GL(n,R) with Levi factor MR =

GL(n1,R) × GL(n2,R). Write P̃R for the preimage of PR in G̃R = G̃L(n,R). Since the

cover is obviously split over NR, we may write P̃R = M̃RNR. Fix a genuine character

χ of Z̃o as in Remark 10.5. Let τi be a genuine representation of M̃ iR = G̃L(ni,R). The

restriction to the preimage, say M̃ i+R , of the connected component of the identity in GL(ni,R)
is irreducible (if n is odd) and breaks into two inequivalent representations (if n is even).
Choose irreducible constituents σi of the restriction. The representation σ1 ⊗ σ2 ⊗ χ factors

to a representation, say τ , of M̃+R Z̃o; here M̃+R is the preimage in G̃L(n,R) of the identify
component of GL(n1,R) × GL(n2,R). Define the induction product of τ1 and τ2, denoted

IndG̃R̃
MRNR(τ1 ⊗ τ2), as

IndG̃R̃
MRNR(τ1 ⊗ τ2) = 2−[q/2]IndG̃R̃

M+RZ̃oN
(τ),
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where q = #{ni | ni is odd}. This depends only on the choice of χ (in the odd case) and
not on the choice of the σi. It requires a little checking of the definitions to see that the
induction product is associative, and the obvious induction in stages statement holds.

We now return to the proof of Theorem 12.2, and prove that Ss
λ commutes with induction

product. More precisely, fix a partition n1+n2 = n, let λi be regular integral infinitesimal
characters for gl(ni), and fix γi ∈ Pλi

(GL(ni,R)). Let Ss
λi

denote the map defined with

respect to spherical choices of the duality (and the same fixed central character χ+) for
GL(ni,R). To conserve notation we write Ss for Ss

λi
; the context will allow for no confusion.

Let PR be a parabolic subgroup of GL(n,R) with Levi factor GL(n1,R) ×GL(n2,R). Write

P̃R for the preimage of PR in G̃R = G̃L(n,R). To conserve notation, write Ind for Ind
GL(n)
PR

and Ind˜ for Ind
G̃L(n)

P̃R . We claim that

(12.5) Ss
λ

(
Ind(X(γ1) ⊗X(γ2))

)
= Ind˜

(
X(Ss(γ1)) ⊗X(Ss(γ2))

)
.

Let γi
0 parametrize the unique spherical principal series at λi for each GL(ni,R), and similarly

let γ0 denote this element for GL(n,R) as above. Suppose first that there does not exist
admissible subspace of real roots si for γi

0 such that cs(γi
0) = γi. Then it is easy to see that

there exists no admissible sequence s for γ0 such that X(cs(γ0)) = Ind(X(γ1)⊗X(γ2)). By
(12.4) both sides of (12.5) are zero, and the claim holds.

Thus to establish (12.5), we may assume that there are admissible subspaces si of the real
roots for γi

0 such that csi(γ
i
0) = γi. Let s denote the span of s1 and s2. It is easy to see that

Ind
(
X(cs1(γ1

0)) ⊗X(cs2(γ2
0))

)
= X(cs(γ0)).

Given this and the definition of the si, we can rewrite the claim of (12.5) as

(12.6) Ss
λ(X(cs(γ0))) = Ind˜

(
X(Ss(cs1(γ1

0))) ⊗X(Ss(cs2(γ2
0)))

)
.

Using (12.3) on the right-hand side, the claim becomes

(12.7) Ss
λ(X(cs(γ0))) = Ind˜

(
X(cs1(Ss(γ1

0))) ⊗X(cs2(Ss(γ2
0)))

)
.

According the choices made defining Ss, each Ss(γi
0)) is the unique genuine principal series

of G̃L(ni,R) at infinitesimal character λi/2 (with prescribed central character χ+). So by
induction in stages,

Ind˜
(
X(Ss(γ1

0)) ⊗X(Ss(γ2
0))

)
= X

(
Ss

λ(γ0)
)
,

the unique genuine principal series of G̃L(n,R) at infinitesimal character λ/2 (again with
prescribed central character χ+). Hence we conclude that the right-hand side of (12.7) is
just X(cs(Ss

λ(γ0))), and so (12.7) becomes

Ss
λ(X(cs(γ0))) = X(cs(Ss

λ(γ0))).

But this is just (12.3). This establishes (12.5).

In [KP, Proposition 26.2], the analog of (12.5) is established for the lifting Tλ. The
Langlands classification for GL(n,R) at regular integral λ implies that the Grothendieck
group K (GL(n,R))λ is spanned by representations obtained as an induction product of
representations (with regular integral infinitesimal character) for GL(1) and GL(2). Since
Ss

λ and Tλ both satisfy (12.5), the current theorem reduces to establishing Ss
λ = Tλ for

GL(1,R) and GL(2,R) at regular integral infinitesimal character. This is the content of
Example 12.1. The theorem follows. �



KAZHDAN-LUSZTIG ALGORITHMS AND KAZHDAN-PATTERSON LIFTING 41

Singular infinitesimal character. Since the above discussion was confined entirely to
the case that λ was regular, we need to discuss singular infinitesimal character. We offer
two equivalent approaches. Fix λ regular and let ν be an element of the weight lattice
such that λ + 2ν is dominant and regular. Consider the translation functors ψ = ψλ+2ν

λ

and ψ′ = ψ
λ/2+ν
λ/2 . Since ψ maps spherical principal series to spherical principal series and

commutes with the action of A, it is clear that

(12.8) ψ′ ◦ Sλ = Sλ+2ν ◦ ψ.

Now suppose λ is regular and that λ+2ν is dominant but potentially singular. (Of course ev-
ery singular infinitesimal character arises in this way.) Since each irreducible representation
at λ + 2ν is of the form ψ(X) for an irreducible representation at the regular infinitesimal
character λ (by the translation principle), we can we may simply define S at the singular
infinitesimal λs = λ+ 2ν by requiring that Equation (12.8) hold. It easy to establish that T
also satisfies Equation (12.8) (see [AH, Proposition 4.3]), so our definition of S at singular
infinitesimal character coincides with T (up to, of course, possibly twisting by A).

The discussion of the previous paragraph may seem a little unsatisfactory: S was defined
geometrically for λ regular, but we resorted to an algebraic definition for λs singular. In
fact it essentially a formal exercise to translate the above description into a geometric one
for λs singular. We briefly sketch the details. The crucial point is to define an analog
of Φλs when λs is singular. Fix γs ∈ Pλs . Using the translation principle as above, we
may write X(γs) = ψ(X(γ)) where ψ is a dominance-preserving translation functor (a
“push to multiple walls”) from a regular infinitesimal character, say λ, to λs. The fact that
ψ(X(γ)) 6= 0 implies that the dual module X(γ′) may be obtained by localization on the
partial flag variety, say Bs, defined by the roots for which λs is singular. We define the
support of this localization to be Φλs(λ). As long as the translation λ−λs is twice a weight,

we may make the analogous definition for Φ̃λs/2 using a translation functor from λs/2 to
λ/2, and we may proceed to define the lifting as in the case of λ regular. This lifting then
coincides with Tλs (up to A).

13. duality for U(p̃, q)

Theorem 11.1 provides a character multiplicity duality theory for U(p̃, q) when the in-
finitesimal character coincides with that of a discrete series. The purpose of this section
is to establish a complete duality theory for U(p̃, q). We begin with the case of integral
infinitesimal character which essentially reduces to the linear group SU(p, p).

Proposition 13.1. Let G̃R = Ũ(p, q) (Notation 10.7), assume pq 6= 0 and fix regular integral

infinitesimal character λ = (λ1, . . . , λn). Then G̃R has no genuine representations at λ
unless: p =q; 4λi ∈ Z; and, finally, there is a fixed choices of sign ǫ so that 4λi = ǫ mod 4
for all i. In this case there is a unique block, say B of representations and it is isomorphic
to the unique block, say B1, of representations of SU(p, p) at trivial infinitesimal character
not containing the trivial representation. More precisely, there is an isomorphism of posets
(in the relevant Bruhat G-orders),

B ≃ B1

γ 7→ γ1
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Consequently this bijection preserves composition series in the sense that

X
Ũ(p,p)

(δ) =
∑

γ∈B

m(γ, δ)X
Ũ(p,p)

(γ) ⇐⇒ XSU(p,q)(δ1) =
∑

γ1∈B1

m(γ, δ)XSU(p,p)(γ1).

Proof. Consider the first statement about the existence of genuine representations and,
without loss of generality, assume p ≥ q. It suffices to consider the existence of genuine
principal series. Since pq 6= 0 by hypothesis, there exists at least one C × factor in the

maximally split Cartan of U(p, q). This is covered nontrivially in Ũ(p, q), and consequently
there must be a pair of coordinates in λ which sum to a half-integer and whose difference (by
the integrality assumption) must be an integer. Thus there must be a pair of coordinates
of the form (a1, a1 + n1) where 4a and n are integers and 4ai = ±1 mod 4. The same
analysis applies to other q−1 C × factors of the Cartan. We conclude that there are q pairs
of coordinates of λ of the form (ai, ai +ni) with 4ai, ni ∈ Z and, moreover, by the integrality
assumption there is a choice of sign ǫ such that 4ai = ǫ mod 4 for all i. If p > q, there is at
least one S1 factor of the maximally split Cartan in U(p, q). It may or may not be covered
nontrivially, but in each respective case to accommodate a genuine principal series, there
must be an half-integer or integer coordinate of λ. This violates the integrality hypothesis
on λ, and hence p = q, and the first assertion is proved.

The above discussion implies that when p = q and λ satisfies the conditions of the propo-
sition, there is a principal series, say γps, supported on the open orbit of the flag variety.
Moreover, it follows that each root is complex for γps except the roots ei − e2p+1−i which are
real but which do not give reducibility. It follows that there is a unique block B of represen-
tations at λ; it is obtained as a W = W (λ) ≃ S2n orbit of γps under the cross-action. The
stabilizer of γps is isomorphic to W (Cn) embedded symmetrically in W . The same discus-
sion applies without change to the unique block B1 of representations of SU(p, p) at trivial
infinitesimal character which does not contain the trivial representation. Write (γps)1 for the
maximal principal series in this block. The bijection of the theorem is obtained by sending
γps to (γps)1 and requiring that the map intertwine the cross action. It is easy to check that
this is an isomorphism in the Bruhat G-order. The final assertion of the proposition is thus
purely formal. �
Corollary 13.2. Let G̃R = Ũ(p, q) (Notation 10.7) and fix regular infinitesimal character
λ = (λ1, . . . , λn). Let r (resp. s) denote the number of half-integral (resp. integral) coordi-
nates of λ. Set

l+ = #{i | 4λi = 1 mod 4}

l− = #{i | 4λi = −1 mod 4}.

Then U(p̃, q) has no genuine representations at infinitesimal character λ unless

(1) Both l+ and l− are even; and
(2) (r, s) = (p− (l+ + l−)/2, q − (l+ + l−)/2).

In this case, there is a unique block, say B, of genuine representations.

Moreover, write the centralizer of 2λ in g∨ asgl(l+ + l−) ⊕ gl(r + s),

and let λ◦ denote the infinitesimal character for gl(r + s) obtained by restriction of λ. Let

B+ denote the (unique) block of representations for SU( l+
2 ,

l+
2 ) at ρ which does not contain

the trivial representation; similarly define B−; and finally let B◦ denote the unique block of
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genuine representations for Ũ(r, s) (Notation 10.7) at the infinitesimal character λ◦ of a
discrete series. Then

B ≃ B+ × B− × B◦

as posets equipped with the relevant Bruhat G-orders.

Proof. This follows from a similar (and only slightly more detailed) analysis as found in
the proof of Proposition 13.1. We omit the details �

Now [V4] provides a character multiplicity duality for B+ with the unique block of
GL(l+/2, H ) at infinitesimal character ρ (and likewise for B−), and combined with the duality

theory of Theorem 11.1 for B◦, we obtain a full duality theory for Ũ(p, q).

Corollary 13.3. Retain the notation and hypothesis of Corollary 13.2. Let

G̃′R = GL(l+/2, H ) × GL(l−/2, H ) × G̃L(r + s,R),

and let λ′ denote the infinitesimal character obtained by concatenating ρ(gl(l+)), ρ(gl(l−)),

and λ◦. Fix a block B′ of representations for G̃′R at λ′. (If r+s is even, this block is unique;
if r+s is odd, there are two such blocks which are isomorphic.) Then there is a bijection
between B and B′ which is a character multiplicity duality.

14. Functorial lifting for U(p, q)

With the full duality theory in hand, we may now pursue a geometric lifting theory for
U(p, q) by analogy with the discussion of Kazhdan-Patterson lifting in Section 12. This is
more delicate mostly because of the nontrivial role of stable conjugacy, but also because of
certain central shifts in the infinitesimal character. We only sketch the essential details.

Fix a regular infinitesimal character λ for gl(n), and fix integers p+ q = n. If n is
even (resp. odd), the linear group U(p, q) has no representations at λ unless there are an
even number, say l, of integer (resp. half-integer) coordinates, while the remaining, say m,
coordinates are all half-integers (resp. integers). In this case, [V4] gives a duality between
the unique block of representations for U(p, q) at λ and a block of representations for G′R =
GL(l/2, H ) × GL(m,R). Consequently, following [ABV], super L-packets of representations
for inner forms of U(p, q) at infinitesimal character λ are parameterized by the orbits of
K ′ := Sp(l, C ) × O(m, C ) (the complexified maximal compact for G′R) on the product of
flag varieties B′ := Bl ×Bm. Let K (U(n))stλ denote the space of superstable (in the sense
of [ABV]) virtual representations of the inner forms of U(p, q) with infinitesimal character λ,
and let P(U(n))stλ denote the basis of this space parametrized by super L-packets (obtained
by summing the standard representations in the super L-packet; see again [ABV]). Because
super L-packets are parametrized by K ′\B′, we thus obtain an injection

Ψλ : Pλ(U(n))st →֒ K ′\B′.

This is the analog of Φλ defined in Section 12.

On the other hand, suppose λ is of the form specified in the previous paragraph, and set

λ̃ =

{
λ/2 if n is odd; and

λ/2 + (1
4 , . . . ,

1
4 ) if n is even.

Then, in the notation of Corollary 13.2, l+l− = 0. So the dual group of Corollary 13.3

is G̃′R = GL(l/2, H ) × G̃L(m,R), a double cover of the dual group GR above. (This is

the reason why the shift was introduced in the even case: without it G̃′R need not be a
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related in a simple way to GR.) The complexified maximal compact subgroup of G̃R is

K̃ ′ = Sp(l, C ) × Pin(m, C ), and the orbits of K̃ ′ and K ′ on B′ coincide. Set

Pλ̃(Ũ(n)) =
∐

p+q=n

Pλ̃(Ũ(p, q)).

Now using the duality of Corollary 13.3 and then passing to supports, we obtain an injection

Ψ̃λ̃ : Pλ̃(U(n)) →֒ K ′\B′.

(Here the role of stability (even superstability) is empty because at any given infinitesimal
character, there is at most one inner form U(p̃, q) with a discrete series and, moreover, each

form has at most one discrete series.) This is the analog of Φ̃λ/2 defined in Section 12.

It is important to notice that the correspondence of infinitesimal characters λ 7→ λ̃ is more
complicated than simply dividing by 2. In particular, there are some infinitesimal characters
for which U(p̃, q) has genuine representation but are not of the form λ̃ for a λ for which some
U(p, q) has representations. (More precisely, this happens whenever l+l− 6= 0 in the notation
of Corollary 13.2.)

In any event, we now may simply copy the discussion of Section 12 (with the obvious
modifications needed to take into account the role of stability) to obtain a map

Sλ : P(U(n))stλ −→ P(Ũ(n))λ̃ ∪ {0},

defined by

Sλ(γ) = (Ψ̃λ̃)−1 ◦ Ψλ(γ),

if Ψλ(γ) ∈ Image(Φ̃λ̃); otherwise set Sλ(γ) = 0. As before, we may then linearize to obtain
a lifting

(14.1) Sλ : KHC(U(n))stλ −→ KHC(Ũ(n))λ̃

of superstable virtual representations of inner forms of U(p, q). This is the geometric analog
of Kazhdan-Patterson lifting for the indefinite unitary group.

Adams and Herb have defined a lifting as in Equation (14.1) on the level of formulas for
global characters. Joint work with Adams suggests that it is likely that their lifting coincides
with ours. We will return to this elsewhere (and in greater generality).

Part 3. A counterexample to the Kazhdan-Flicker conjecture

The purpose of this part is to compute character formulas for GL(4,R) and G̃L(4,R) and,
using them, produce an example of an irreducible admissible representation of GL(4,R)
whose image under T is a reducible virtual representation. This disproves [A2, Conjecture
5.3] (attributed there to Kazhdan and Flicker).

15. Representations of U(2, 2)

Let GR = U(2, 2); so KR ≃ U(2) × U(2), and we may take K = GL(2, C ) × GL(2, C )
embedded block diagonally in G = GL(4, C ). Since all Cartans in U(2, 2) are connected,
the Harish-Chandra modules for U(2, 2) at infinitesimal character ρ are parametrized by K
orbits on B. There are six closed orbits, corresponding to discrete series representations,
and in total, twenty-one orbits. The graph of the Bruhat order is represented in Figure
15, where dashed edges indicate cross action with respect to simple complex roots, and
full edges indicate Cayley transforms with respect to simple noncompact imaginary roots.
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The simple root ei − ei+1, i = 1, 2, 3 is indicated by the label i i + 1. For convenience,
we will denote the corresponding irreducible characters by letters T1, . . . T6 (discrete series),
S1, . . . , S6, R1, . . . , R4, C,B1, B2,D and A, while the corresponding standard characters
will be denoted by t1, . . . , t6, s1, . . . , s6, r1, . . . , r4, c, b1, b2, d, a. Applying the KL-algorithm
of [V3] gives:

Ti = ti, i = 1, . . . , 6,

S1 = s1 − t1 − t2, S2 = s2 − t2 − t3, S3 = s3 − t2 − t4,

S4 = s4 − t4 − t5, S5 = s5 − t3 − t5, S6 = s6 − t5 − t6,

R1 = r1 − s1 − s2 + t1 + t2 + t3, R2 = r2 − s1 − s3 + t1 + t2 + t4,

R3 = r3 − s4 − s6 + t4 + t5 + t6, R4 = r4 − s5 − s6 + t3 + t5 + t6,

C = c− s2 − s3 − s4 − s5 + t2 + t3 + t4 + t5,

B1 = b1 − r1 − r2 − c+ s1 + s2 + s3 + s4 + s5 + 2t1 + t2 + t3 + t4 + t5,

B2 = b2 − r3 − r4 − c+ s2 + s3 + s4 + s5 + s6 + t2 + t3 + t4 + t5 + 2t6,

D = d− r1 − r2 − r3 − r4 − c+ s1 + s2 + s3 + s4 + s5 + s6 − t1 − t2 − 2t3 − 2t4 − t5 − t6,

A = a− b1 − b2 − d+ c+ r1 + r2 + r3 + r4 − s1 − s2 − s3 − s4 − s5 − s6

+ t1 + t2 + t3 + t4 + t5 + t6.

and inverting this matrix gives:

ti = Ti, i = 1, . . . , 6,

s1 = S1 + T1 + T2, s2 = S2 + T2 + T3, s3 = S3 + T2 + T4,

s4 = S4 + T4 + T5, s5 = S5 + T3 + T5, s6 = S6 + T5 + T6,

r1 = R1 + S1 + S2 + T2, r2 = R2 + S1 + S3 + T2,

r3 = R3 + S4 + S6 + T5, r4 = R4 + S5 + S6 + T5,

c = C + S2 + S3 + S4 + S5 + T2 + T3 + T4 + T5,

b1 = B1 +R1 +R2 + C + S1 + S2 + S3 + T1 + T2,

b2 = B2 +R3 +R4 + C + S4 + S5 + S6 + T5 + T6,

d = D +R1 +R2 +R3 +R4 + C + S1 + S2 + S3 + S4 + S5 + S6 + T2 + T3 + T4 + T5,

a = A+B1 +B2 +D + 2C +R1 +R2 +R3 + R4 + S1 + S2 + S3 + S4 + S5 + S6

+ T1 + T2 + T3 + T4 + T5 + T6.

16. Representations of GL(4,R)

There block containing the trivial representation of GL(4,R) is dual to block for U(2, 2)
described in the previous section The graph of the Bruhat order for this block is the graph
of Figure 15 turned upside-down. We will denote the corresponding characters of GL(4,R)
by the same letters we used in the previous section to denote their duals. From duality, we
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Figure 15.1. Representations of U(2, 2) at infinitesimal character ρ.

obtain the following character identities:

A = a, B1 = b1 − a, B2 = b2 − a, D = d− a,

C = c− b1 − b2 − d+ 2a

R1 = r1 − b1 − d+ a, R2 = r2 − b1 − d+ a, R3 = r3 − b2 − d+ a, R4 = r4 − b2 − d+ a,

S1 = s1 − r1 − r2 + b1 + d− a, S2 = s2 − r2 − c+ b1 + d− a,

S3 = s3 − r2 − c+ b1 + d− a, S4 = s4 − r3 − c+ b2 + d− a,

S5 = s5 − r4 − c+ b2 + d− a, S6 = s6 − r3 − r4 + b2 + d− a,

T1 = t1 − s1 − b1 + a

T2 = t2 − s1 − s2 − s3 + r1 + r2 + c− b1 − d+ a

T3 = t3 − s2 − s5 + c− d+ a

T4 = t4 − s3 − s4 + c− d+ a

T5 = t5 − s3 − s4 − s5 + r3 + r4 + c− b2 − d+ a

T6 = t6 − s6 − b6 + a
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17. Representations of G̃L(4,R)

We now describe genuine representations of G̃L(4,R) at infinitesimal character 1
2ρ =

(3/4, 1/4,−1/4,−3/4) (in usual coordinates). To perform the KL-algorithm we need some
nonintegral translation functors which will change the infinitesimal character. Let us de-
note F12 the translation functor with respect to the integral weight (1, 2, 0, 0) (resp. F23

w.r.t (1, 0, 1, 0) and F34 w.r.t. (0, 0,−2,−1)). These are nonintegral wall-crossing func-
tors with respect to the simple walls, and the infinitesimal character obtained are repre-
sented respectively by dominant weights (9/4, 7/4,−1/4,−3/4), (7/4, 3/4, 1/4,−1/4) and

(3/4, 1/4 − 7/4,−9/4). There are seven genuine irreducible representations of G̃L(4,R) for
each of these infinitesimal characters. The graph of the Bruhat order is shown in Figure 17.
Conventions for Cayley transforms and integral cross-actions are the same as in Figure 15
and nonintegral wallcrossing functors are represented in dotted lines.

We will denote these irreducible characters by capital letters, and the corresponding
standard characters by minuscule letters (see Figure 17). At infinitesimal character 1

2ρ =
(3/4, 1/4,−1/4,−3/4), the characters are

Ã, B̃2, C̃, S̃1, S̃2, S̃3, T̃2

At infinitesimal character (9/4, 7/4,−1/4,−3/4) the characters are

D̃l, C̃ l, R̃l
1, R̃

l
4, S̃

l
2, S̃

l
5, T̃

l
3

At infinitesimal character (7/4, 3/4, 1/4,−1/4) the characters are

D̃r, C̃r, R̃r
2, R̃

r
3, S̃

r
3 , S̃

r
4 , T̃

l
4

At infinitesimal character (3/4, 1/4 − 7/4,−9/4) the characters are

Ãb, B̃b
1, D̃

b, R̃b
1, R̃

b
2, S̃

b
1, T̃

b
1

We will also use these letters to denote the corresponding Langlands parameters. Thus, in
the KL-algorithm, we will consider the free Z[u, u−1]-module with free basis {ã, ãb, b̃b1, b̃2, . . .}.

From the Kazhdan-Lusztig algorithm developed in Part I, we get the following character
formulas:

Ã = ã, B̃2 = b̃2 − ã, C̃ = c̃− b̃2 + ã

S̃1 = s̃1 − ã, S̃2 = s̃2 − c̃+ ã

S̃3 = s̃3 − c̃+ ã, T̃2 = t̃2 − s̃1 − s̃2 − s̃3 + c̃+ ã

From the formulation of T given in Section 12, we easily calculate:

T(a) = ã, T(b1) = 0̃, T(b2) = b̃2, T(d) = 0

T(c) = c̃, T(r1) = T(r2) = T(r3) = T(r4) = 0

T(s1) = s̃1, T(s2) = s̃2, T(s3) = s̃3

T(s4) = T(s5) = T(s6) = 0

T(t1) = T(t3) = T(t4) = T(t5) = T(t6) = 0

T(t2) = t̃2

Thus, using character formulas for GL(n,R) at infinitesimal character ρ and and for

G̃L(n,R) at infinitesimal character 1
2ρ, we obtain
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Figure 17.1. Representations of G̃L(4,R) at infinitesimal character 1
2ρ

T(A) = Ã, T(D) = −Ã, T(B1) = −Ã, T(B2) = −B̃2

T(C) = T(c− b1 − b2 − d+ 2a) = c̃− b̃2 − d̃+ 2ã = C̃ + Ã

T(S1) = S̃1, T(S2) = S̃2, T(S3) = S̃3

T(S4) = −C̃, T(S5) = −C̃,T(S6) = B̃2

T(T1) = S̃1, T(T2) = T̃2, T(T3) = S̃2

T(T4) = S̃3, T(T5) = C̃, T(T6) = −B̃2
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This shows that the image of irreducible character under the lifting T is, up to sign, an
irreducible character, except in one instance: we have T(C) = C̃ + Ã.
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