Dirac operators in representation theory

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

25/04/2014

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Notes available at :

http://www.math.polytechnique.fr/~renard

Introduction

Dirac operators in representation theory : Parthasarathy (1972), Atiyah-Schmid (1977) construction of discrete series representations of real semisimple groups.

Parthasarathy (1980) : criterion for unitarizability of representations (Parthasarathy Dirac-inequality).

Vogan (1990's) : introduce Dirac cohomology for Harish-Chandra modules + conjecture for the infinitesimal character of a module having non vanishing Dirac cohomology.

Proved by Huang-Pandzic (2002)

Kostant "cubic Dirac operator" (2000), more general setting, Huang-Pandzic result still holds.

Since then, vast literature on the subject...

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Clifford algebras

(V, B): finite dimensional complex vector space with a non-degenerate symmetric bilinear form.

Cl(V; B) : Clifford algebra, with relations

 $v \otimes w + w \otimes v + 2B(v, w) 1, \quad (v, w \in V).$

- filtered algebra
- \mathbb{Z}_2 -graded algebra (*i.e.* a super algebra):

$$\operatorname{Cl}(V; B) = \operatorname{Cl}^{\overline{0}}(V; B) \oplus \operatorname{Cl}^{\overline{1}}(V; B).$$

Chevalley isomorphism (graded symmetrization)

$$q: \bigwedge V \simeq \operatorname{Cl}(V; B)$$

Clifford algebras

q(x), $x \in \bigwedge^2 V$ span a Lie subalgebra of $\operatorname{Cl}(V, B)$.

$$x\mapsto A_x, \quad A_x(v)=[q(x),v]_{\mathrm{Cl}}, \quad (v\in V)$$

defines A_x in $\mathfrak{so}(V; B)$, and

$$\bigwedge^2 V \longrightarrow \mathfrak{so}(V; B), \quad x \mapsto A_x \tag{1}$$

Dirac operators in representation the

is a Lie algebra isomorphism, with inverse

$$\lambda : \mathfrak{so}(V; B) \longrightarrow \bigwedge^2 V$$

 $\lambda(A) = \frac{1}{4} \sum_i A(e_i) \wedge e^i \in \bigwedge^2 V, \qquad (A \in \mathfrak{o}(V; B)).$

 $(e_i)_i$ basis of V with dual basis $(e^i)_i$.

Renard, Ecole Polytechnique renard@math.polytechnique.fr

Clifford algebras

Theorem

(i) Suppose that $n = \dim_{\mathbb{C}}(V)$ is even. Then there are :

- two isomorphism classes of irreducible \mathbb{Z}_2 -graded Cl(V, B)-modules,
- one isomorphism class of irreducible ungraded Cl(V, B)-modules,
- two isomorphism classes of irreducible $\operatorname{Cl}^{\overline{0}}(V, B)$ -modules.

(ii) Suppose that $n = \dim_{\mathbb{C}}(V)$ is odd. Then there are

- one isomorphism class of irreducible \mathbb{Z}_2 -graded $\operatorname{Cl}(V, B)$ -modules,
- two isomorphism classes of irreducible ungraded Cl(V, B)-modules,
- one isomorphism class of irreducible $\operatorname{Cl}^{\overline{0}}(V,B)$ -modules,

fix S : irreducible \mathbb{Z}_2 -graded $\operatorname{Cl}(V, B)$ -module. **Spin**(V, B) : central extension of **SO**(V, B) realized in $\operatorname{Cl}(V; B)^{\times}$.

Dirac operator and (\mathfrak{g}, K) -modules

G: connected real reductive Lie group with Cartan involution θ $K = G^{\theta}$: maximal compact subgroup of G. \mathfrak{g}_0 : Lie algebra of G, $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C}$

$$\mathfrak{g}_0 = \mathfrak{k}_0 \stackrel{ heta}{\oplus} \mathfrak{p}_0, \qquad \mathfrak{g} = \mathfrak{k} \stackrel{ heta}{\oplus} \mathfrak{p}$$

Cartan decompositions

B: invariant nondegenerate symmetric bilinear form B on \mathfrak{g}_0 , $B_{|\mathfrak{p}_0}$: definite positive, $B_{|\mathfrak{k}_0}$ definite negative.

 $Cl(\mathfrak{p}) = Cl(\mathfrak{p}; B)$: Clifford algebra of \mathfrak{p} with respect to B.

Dirac operator and (\mathfrak{g}, K) -modules

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

Also Lie algebra morphism

 $\mathrm{ad}_{|\mathfrak{p}}: \mathfrak{k} \to \mathfrak{so}(\mathfrak{p}), \quad X \mapsto \mathrm{ad}(X)_{|\mathfrak{p}}$

Recall $\lambda : \mathfrak{so}(\mathfrak{p}) \simeq \bigwedge^2 \mathfrak{p}$ (1) and inclusion $q : \bigwedge^2 \mathfrak{p} \hookrightarrow \operatorname{Cl}(\mathfrak{p})$.

$$\alpha: \mathfrak{k} \xrightarrow{\mathrm{Ad}_{|\mathfrak{p}_0}} \mathfrak{so}(\mathfrak{p}) \xrightarrow{\lambda} \bigwedge^2 \mathfrak{p} \xrightarrow{q} \mathrm{Cl}(\mathfrak{p})$$
(2)

Dirac operators in representation theor

Dirac operator and (\mathfrak{g}, K) -modules

if $(Y_i)_i$ is a basis of \mathfrak{p} with dual basis $(Z_i)_i$, then for any $X \in \mathfrak{k}$,

$$\alpha(X) = \frac{1}{4} \sum_{i,j} B([Z_i, Z_j], X) Y_i Y_j.$$
(3)

Main object : $\mathcal{A} = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p})$: $U(\mathfrak{g})$: envelopping algebra of \mathfrak{g} .

- \mathcal{A} associative \mathbb{Z}_2 -graded superalgebra (elements in $U(\mathfrak{g}) \otimes 1$ are even)).
- Linear action of K on A = U(𝔅) ⊗ Cl(𝔅), gives Lie algebra representation of 𝔅 in U(𝔅) ⊗ Cl(𝔅).

Dirac operator and (\mathfrak{g}, K) -modules

The map (17) is used to define

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

$$\Delta: \mathfrak{k} \longrightarrow \mathcal{A} = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}), \quad \Delta(X) = X \otimes 1 + 1 \otimes \alpha(X)$$

Lie algebra morphism.

Extends to an algebra morphism

$$\Delta: U(\mathfrak{k}) \longrightarrow \mathcal{A} = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}). \tag{4}$$

 $X \in \mathfrak{k}$ acts on \mathcal{A} by adjoint action of $\Delta(X)$, *i.e.* $a \in \mathcal{A} \mapsto [\Delta(X), a]$.

 \mathcal{A}^{K} the subalgebra of K-invariant in \mathcal{A} .

We can now introduce the Dirac operator D:

Definition

if $(Y_i)_i$ is a basis of \mathfrak{p} and $(Z_i)_i$ is the dual basis with respect to B, then

$$D = \sum_i Y_i \otimes Z_i \in U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p})$$

is independent of the choice of basis $(Y_i)_i$ and K-invariant for the adjoint action on both factors :

 $D \in \mathcal{A}^{K}$.

Categories of representations

 $\mathcal{M}(\mathfrak{g}, K)$, the category of Harish-Chandra modules (*i.e.* (\mathfrak{g}, K) -modules).

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Main idea : study $X \in \mathcal{M}(\mathfrak{g}, K)$ by considering the natural action of D on $X \otimes S$,

S : a module of spinors for $C(\mathfrak{p})$.

Modules in $\mathcal{M}(\mathfrak{g}, K)$ are complex vector spaces with action of $U(\mathfrak{g})$, action of K + compatibility conditions.

Formalized in the notion of **Harish-Chandra pair** (\mathscr{A} , K) and Harish-Chandra modules for (\mathscr{A} , K) (category $\mathcal{M}(\mathscr{A}, K)$).

Examples : $(\mathscr{A},\mathsf{K}) = (U(\mathfrak{g}),\mathsf{K}), \ (\mathscr{A},\mathsf{K}) = (U(\mathfrak{g})\otimes\mathrm{Cl}(\mathfrak{p}),\widetilde{\mathsf{K}}),$

Categories of representations

If X (\mathfrak{g} , K)-module, then $X \otimes S$ is a (\mathcal{A} , \widetilde{K})-module : This defines a functor :

$$X \mapsto X \otimes S, \qquad \mathcal{M}(\mathfrak{g}, K) \to \mathcal{M}(\mathcal{A}, K).$$

which is an equivalence of categories.

Inverse $M \mapsto \operatorname{Hom}_{\operatorname{Cl}(\mathfrak{p})}(S, M)$ (resp. $M \mapsto \operatorname{Hom}_{\operatorname{Cl}^{\bar{0}}(\mathfrak{p})}(S, M)$) if dim \mathfrak{p} is even (resp. odd).

Let us now put this principle into perspective by discussing a theorem of Harish-Chandra.

On a theorem of Harish-Chandra

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

Harish-Chandra : an irreducible (\mathfrak{g}, K) -module is characterized by the action of $U(\mathfrak{g})^K$ on any non-trivial K-isotypic component. (simplified algebraic proof by Lepowsky-McCollum, alternative proof below)

Dirac operators in representation theor

Idea : use this to study and classify irreducible (\mathfrak{g}, K) -modules.

success : HC subquotient theorem, spherical representations, Vogan's classification by lowest *K*-types.

Problem : $U(\mathfrak{g})^{\kappa}$ highly non commutative and very little is known about its structure and representation theory.

Harish-Chandra result still holds in $\mathcal{M}(\mathcal{A}, \widetilde{K})$.

 $\mathcal{A}^{K} = (U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}))^{K}$ is slightly better $U(\mathfrak{g})^{K}$:

- It contains a non-trivial interesting elements : the Dirac operator D.
- \mathcal{A}^{K} : differential superalgebra, $d = \operatorname{ad} D$.

On a theorem of Harish-Chandra

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

Harish-Chandra thm is in fact a consequence of a general result about algebras with idempotents.

Dirac operators in representation theorem

 $(\mathscr{A}, \mathsf{K})$: generalized Harish-Chandra pair

 $\mathcal{M}(\mathscr{A},\mathsf{K})$ category of Harish-Chandra modules

equivalent to the category of non-degenerate modules over the Hecke algebra $R(\mathscr{A}, \mathsf{K})$, an algebra with idempotents (or algebra with an approximate identity)

As vector spaces

$$R(\mathscr{A},\mathsf{K})\simeq \mathscr{A}\otimes_{U(\mathfrak{k})}R(\mathsf{K}),$$

R(K) is the convolution algebra of K-finite distributions on K

J. Bernstein (theory of reductive *p*-adic groups) proved the following

A: algebra with idempotents

 $\mathcal{M}(A)$: category of non-degenerate left A-modules

 $e \in A$ idempotent.

$$M \in \mathcal{M}(A), \qquad M = e \cdot M \oplus (1 - e) \cdot M$$
 (5)

eAe : algebra with unit e, $e \cdot M$: unital eAe-module.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

On a theorem of Harish-Chandra

$$j_e: \mathcal{M}(A)
ightarrow \mathcal{M}(eAe), \quad M \mapsto e \cdot M.$$

The functor j_e is exact.

Induction functor *i*:

$$i: \mathcal{M}(eAe) \to \mathcal{M}(A), \qquad Z \mapsto A \otimes_{eAe} Z.$$

Proposition

 $M \mapsto e \cdot M$ bijection from irreducible modules M in $\mathcal{M}(A)$ such that $e \cdot M \neq 0$ and irreducible modules in $\mathcal{M}(eAe)$

 $\mathcal{A} = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}), \ \mathcal{M}(\mathcal{A}, \widetilde{K}) \simeq \mathcal{M}(R(\mathcal{A}, \widetilde{K}))$

 (γ, F_{γ}) : irreducible finite-dimensional representation of \widetilde{K} , χ_{γ} : character of the contragredient.

 $1 \otimes \chi_{\gamma}$: idempotent of $R(\mathcal{A}, \widetilde{K})$.

Theorem	
The algebra	$(1\otimes\chi_\gamma)\cdot R(\mathcal{A},\widetilde{K})\cdot(1\otimes\chi_\gamma)$
is isomorphic to	$\mathcal{A}^{\mathcal{K}}\otimes_{\mathcal{U}(\mathfrak{k})^{\mathcal{K}}}\mathrm{End}(\mathcal{F}_{\gamma}).$

On a theorem of Harish-Chandra

Ecole Polytechnique renard@math.polytechnique.fr

Bernstein result in this case gives : $V \in \mathcal{M}(\mathcal{A}, \widetilde{K})$ -module V,

$$(1\otimes\chi_\gamma)\cdot V=V(\gamma)$$

Dirac operators in representation theo

 \widetilde{K} -isotypic component in V.

If V is irreducible, and $V(\gamma) \neq 0$, it is characterized by the action of $\mathcal{A}^{K} \otimes_{U(\mathfrak{k})^{K}} \operatorname{End}(V_{\gamma})$ on $V(\gamma)$.

To study an (\mathfrak{g}, K) -module X, one would like to study the action of $U(\mathfrak{g})^K$ on a (non-zero) K-isotypic component of X,

but since a little is known about $U(\mathfrak{g})^K$, we will instead study the action of $(U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}))^{\widetilde{K}}$ a (non-zero) K-isotypic component of $X \otimes S$.

The structure of $(U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}))^{\widetilde{K}}$ is better (but not ompletely) understood than the he structure of $U(\mathfrak{g})^{K}$.

We will now see what can be said from that fact that it contains the Dirac operator D.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theor

The square of the Dirac operator

$$D^{2} = -\operatorname{Cas}_{\mathfrak{g}} \otimes 1 + \Delta(\operatorname{Cas}_{\mathfrak{k}}) + (\|\rho_{\mathfrak{k}}\|^{2} - \|\rho_{\mathfrak{g}}\|^{2}) 1 \otimes 1$$
 (6)

 $\operatorname{Cas}_{\mathfrak{g}}$: Casimir element of $U(\mathfrak{g})$ $\operatorname{Cas}_{\mathfrak{k}}$: Casimir element of $U(\mathfrak{k})$.

$$\Delta: U(\mathfrak{k}) \longrightarrow \mathcal{A} = U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{p}).$$

$$D^2$$
 is in the center of the algebra \mathcal{A}^K . (7)

The square of the Dirac operator

 \mathcal{T} imaximal torus n K, $\mathfrak{t}_0 = \operatorname{Lie}(\mathcal{T})$, $\mathfrak{t} = \mathfrak{t}_0 \otimes_{\mathbb{R}} \mathbb{C}$. $\mathfrak{a} = \mathfrak{p}^{\mathfrak{t}}$, $\mathfrak{h} := \mathfrak{t} \oplus \mathfrak{a}$: fundamental Cartan subalgebra of \mathfrak{g} ,

 $R = R(\mathfrak{g}, \mathfrak{h})$: root system of \mathfrak{h} in \mathfrak{g} , $W = W(\mathfrak{g}, \mathfrak{h})$: Weyl group. Let us also choose a positive root system $R^+ \subset R$: positive root system, $\rho = \frac{1}{2} \sum_{R^+} \alpha \in \mathfrak{h}^*$

 $R_{\mathfrak{k}} = R(\mathfrak{k}, \mathfrak{t}), W_{\mathfrak{k}}, R_{\mathfrak{k}}^+ \subset R_{\mathfrak{k}}$ compatible with R^+ , $ho_{\mathfrak{k}}$.

The bilinear form B on \mathfrak{g} restricts to a positive definite form on $i\mathfrak{t}_0 \oplus \mathfrak{a}$.

 $\langle ., . \rangle$: induced form on $i\mathfrak{t}_0^* \oplus \mathfrak{a}$ and \mathfrak{h}^* . The norm appearing in (6) is defined for any $\lambda \in \mathfrak{h}^*$ by $\|\lambda\|^2 = \langle \lambda, \lambda \rangle$.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation the

The square of the Dirac operator

Harish-Chandra algebra isomorphism

$$\gamma_{\mathfrak{g}}: \mathfrak{Z}(\mathfrak{g}) \simeq S(\mathfrak{h})^{W} \tag{8}$$

 $\lambda \in \mathfrak{h}^*$, χ_{λ} : character of $\mathfrak{Z}(\mathfrak{g})$.

 $X \in \mathcal{M}(\mathfrak{g}, K)$ with infinitesimal character $\Lambda \in \mathfrak{h}^*$.

 (γ, F_{γ}) : irreducible representation of \widetilde{K} with highest weight $\tau = \tau_{\gamma} \in \mathfrak{t}^*$.

Then D^2 acts on $(X \otimes S)(\gamma)$ by the scalar

$$- \|\Lambda\|^2 + \|\tau + \rho_{\mathfrak{k}}\|^2.$$
(9)

ker(D^2) on $X \otimes S$: direct sum of full \widetilde{K} -isotypic components of $X \otimes S$: these are exactly those $(X \otimes S)(\gamma)$ for which

$$\|\tau + \rho_{\mathfrak{k}}\|^2 = \|\Lambda\|^2.$$
 (10)

Dirac operator and unitarizable of (\mathfrak{g}, K) -modules

 $X \in \mathcal{M}(\mathfrak{g}, K)$ unitarizable :

definite positive invariant Hermitian product $\langle ., . \rangle_X$ on X.

 $X \in \mathfrak{g}_0$ act as skew-symmetric operator on X, *i.e.*

$$\langle X.v,w\rangle_X = -\langle v,X\cdot w\rangle_X, \qquad (v,w\in X), (X\in\mathfrak{g}_0).$$

Also definite positive Hermitian product $\langle ., . \rangle_S$ on S so that the elements of $\mathfrak{p}_0 \subset \operatorname{Cl}(\mathfrak{p})$ act as skew-symmetric operators

 $X \otimes S$ definite positive Hermitian product tensor product of $\langle ., . \rangle_X$ and $\langle ., . \rangle_S$, denoted by $\langle ., . \rangle_{X \otimes S}$.

Dirac operators in representation th

Dirac operator and unitarizable of (\mathfrak{g}, K) -modules

D is symmetric with respect to $\langle ., . \rangle_{X \otimes S}$. *D*² is a positive symmetric operator on $X \otimes S$. From (9) we get :

Proposition (Parthasarathy-Dirac inequality)

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

Assume that the unitarizable (\mathfrak{g}, K) -module X has infinitesimal character $\Lambda \in \mathfrak{h}^*$. Let (γ, F_{γ}) be an irreducible representation of \widetilde{K} with highest weight $\tau = \tau_{\gamma} \in \mathfrak{t}^*$ such that $(X \otimes S)(\tau) \neq 0$. Then

 $\|\tau + \rho_{\mathfrak{k}}\|^2 \ge \|\Lambda\|^2.$

Dirac operator and unitarizable of (\mathfrak{g}, K) -modules

Rmk : If the (\mathfrak{g}, K) -module X is unitarizable and has an infinitesimal character, D acts semisimply on $X \otimes S$. In particular

$$\ker D^2 = \ker D. \tag{11}$$

Dirac operators in representation the

If X is finite-dimensional, inner product on $X \otimes S$ such that D is skew-symmetric with respect to this inner product : D acts semisimply on $X \otimes S$ and ker $D^2 = \text{ker } D$.

Spherical principal series of $SL(2,\mathbb{R}) imes SL(2,\mathbb{R})$

Example

Spherical principal series of $SL(2, \mathbb{R})$ Spherical principal series of $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

Definition

Let $X \in \mathcal{M}(\mathfrak{g}, K)$. The Dirac operator D acts on $X \otimes S$. Vogan's Dirac cohomology of X is the quotient

 $H^D_{\mathcal{V}}(X) = \ker D/(\ker D \cap \operatorname{Im} D).$

Since $D \in \mathcal{A}^{K}$, \widetilde{K} acts on ker D, ImD and $H^{D}_{V}(X)$.

If X is unitary, D acts semisimply on $X \otimes S$

$$\ker D^2 = \ker D = H^D_V(X). \tag{12}$$

In this case, the Dirac cohomology of X is a sum the full isotypic components $X \otimes S(\gamma)$ such that (10) holds.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac cohomology of (\mathfrak{g}, K) -modules

For general X, this does not hold, but note that D is always a differential on ker D^2 , and $H^D_V(X)$ is the usual cohomology of this differential.

The theorem of Huang-Pandzic gives a strong condition on the infinitesimal character of a (\mathfrak{g}, K) -module X with non zero Dirac cohomology.

Proposition

Let $X \in \mathcal{M}(\mathfrak{g}, K)$ be a Harish-Chandra module with infinitesimal character $\Lambda \in \mathfrak{h}^*$. Assume that (γ, F_{γ}) is an irreducible representation of \widetilde{K} with highest weight $\tau = \tau_{\gamma} \in \mathfrak{t}^*$ such that $(X \otimes S)(\gamma)$ contibutes to $H^D_V(X)$. Then

 $\Lambda = \tau + \rho_{\mathfrak{k}}$ up to conjugacy by the Weyl group W. (13)

Thus for unitary X, (10) is equivalent to the stronger condition (13), provided that γ appears in $X \otimes S$.

Why is Dirac cohomology an interesting invariant

Many interesting modules have non-vanishing Dirac cohomology :

- Finite dimensional representations (Kostant).
- Discrete series, and more generally Vogan-Zuckerman $A_q(\lambda)$ -modules
- Highest weight modules
- Unipotent representations

Dirac cohomology is related to other kinds of cohomological invariants :

- n-cohomology for highest weight-modules
- (\mathfrak{g}, K) -cohomology for $A_{\mathfrak{q}}(\lambda)$ -modules

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac cohomology and (\mathfrak{g}, K) -cohomology

An important problem in the theory of automorphic forms is to compute cohomology of locally symmetric spaces. Matsushima's formula relates this to computation of (\mathfrak{g}, K) -cohomology of irreducible unitary Harish-Chandra modules for the corresponding semisimplegroup G.

Vogan and Zuckerman : classification of irreducible unitary Harish-Chandra modules X such that $H^*(\mathfrak{g}, K, X \otimes F^*) \neq 0$ where F is a finite-dimensional representation of G.

Cohomologically induced modules $A_q(\lambda)$ with the same infinitesimal character as F. VZ have explicitly computed the cohomology.

Dirac cohomology and (\mathfrak{g}, K) -cohomology

 $X \in \mathcal{M}(\mathfrak{g}, K)$: irreducible unitary Harish-Chandra module with infinitesimal character as finite dimensional representation F (this is an obvious necessary condition for $H^*(\mathfrak{g}, K, X \otimes F^*)$ to be non zero). If dim \mathfrak{p} is even :

$$H^*(\mathfrak{g}, K; X \otimes F^*) = \operatorname{Hom}_{\widetilde{K}}(H_D(F), H_D(X)),$$

and if dim p is odd :

 $H^*(\mathfrak{g}, K; X \otimes F^*) = \operatorname{Hom}_{\widetilde{K}}(H_D(F), H_D(X)) \oplus \operatorname{Hom}_{\widetilde{K}}(H_D(F), H_D(X)).$

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theor

Dirac cohomology of some (\mathfrak{g}, K) -modules

- Finite dimensional representations (K, HKP)
- $A_{\mathfrak{q}}(\lambda)$ (HKP)
- Unipotent representations of $Sp(n\mathbb{R})$, U(p,q)
- Wallach's representations (HPP)
- Complex groups (C-P Dong)

Kostant's cubic Dirac operator

 (\mathfrak{g},B) as before $\mathfrak{r}\subset\mathfrak{g}$ s.t. $B_\mathfrak{r}$ non-degenerate.

$$\mathfrak{g} = \mathfrak{r} \stackrel{\perp}{\oplus} \mathfrak{s}.$$

 $B_{\mathfrak{s}}$ non degenerate

 $Cl(\mathfrak{s})$: Clifford algebra of \mathfrak{s} .

Chevalley isomorphism $q : \bigwedge \mathfrak{s} \simeq \operatorname{Cl}(\mathfrak{s})$

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theorem

Kostant's cubic Dirac operator

The restriction of the fundamental 3-form of $\mathfrak g$ gives an element $\nu\in \bigwedge^3\mathfrak s$ characterized by the identity

$$B(\nu, X \wedge Y \wedge Z) = \frac{1}{2}B(X, [Y, Z]), \qquad (X, Y, Z \in \mathfrak{s})$$
 (14)

(If $\mathfrak{r} = \mathfrak{k}$ as before, $\nu = 0$ because $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$.)

Let $(X_i)_i$ be an orthonormal basis of \mathfrak{s} .

$$D(\mathfrak{g},\mathfrak{r})=\sum_{i}X_{i}\otimes X_{i}+1\otimes\nu$$
(15)

of $U(\mathfrak{g})\otimes \mathrm{Cl}(\mathfrak{s})$.

Kostant's cubic Dirac operator

$$\nu = \frac{1}{2} \sum_{i < j < k} B([X_i, X_j], X_k) X_i X_j X_k$$
(16)

As before

$$\alpha: \mathfrak{r} \xrightarrow{\mathrm{Ad}_{|\mathfrak{s}}} \mathfrak{so}(\mathfrak{s}) \xrightarrow{\lambda} \bigwedge^2 \mathfrak{s} \xrightarrow{q} \mathrm{Cl}(\mathfrak{s})$$
(17)

$$\Delta: \mathfrak{r} \longrightarrow U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}), \qquad X \longmapsto X \otimes 1 + 1 \otimes \alpha(X)$$

$$\Delta: U(\mathfrak{r}) \to U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}).$$
(18)

Kostant's cubic Dirac operator

Lemma

The cubic Dirac operator $D(\mathfrak{g},\mathfrak{r})$ is \mathfrak{r} -invariant, i.e. it (super)commutes with the image of $U(\mathfrak{r})$ by Δ . We write $D(\mathfrak{g},\mathfrak{r}) \in (U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}))^{\mathfrak{r}}$.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theor

Theorem

$$D(\mathfrak{g},\mathfrak{r})^2=-\Omega_\mathfrak{g}\otimes 1+\Delta(\Omega_\mathfrak{r})+(||
ho_\mathfrak{r}||^2-||
ho||^2)1\otimes 1,$$

where $\Omega_{\mathfrak{g}}$ (resp. $\Omega_{\mathfrak{r}}$) denotes the Casimir element in $\mathfrak{Z}(\mathfrak{g})$ (resp. $\mathfrak{Z}(\mathfrak{r})$).

Kostant's cubic Dirac operator

Simplified proof due to N. Prudhon : two subalgebras \mathfrak{r} and \mathfrak{l} of \mathfrak{g} with

 $\mathfrak{g} \supset \mathfrak{r} \supset \mathfrak{l}$

 $B_{\mathfrak{r}}$ and $B_{\mathfrak{l}}$ non degenerate.

 $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{s}, \quad \mathfrak{g} = \mathfrak{r} \oplus \mathfrak{m}, \quad \mathfrak{m} = \mathfrak{s} \oplus \mathfrak{m}_{\mathfrak{r}}, \quad \mathfrak{r} = \mathfrak{l} \oplus \mathfrak{m}_{\mathfrak{r}}.$

 $\operatorname{Cl}(\mathfrak{m}) = \operatorname{Cl}(\mathfrak{s}) \bar{\otimes} \operatorname{Cl}(\mathfrak{m}_{\mathfrak{r}})$ gradedtensorproduct

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Kostant's cubic Dirac operator

$$D(\mathfrak{g},\mathfrak{l})\in U(\mathfrak{g})\otimes\mathrm{Cl}(\mathfrak{m}), \quad D(\mathfrak{g},\mathfrak{r})\in U(\mathfrak{g})\otimes\mathrm{Cl}(\mathfrak{s}), \quad D(\mathfrak{r},\mathfrak{l})\in U(\mathfrak{r})\otimes\mathrm{Cl}(\mathfrak{m}_{\mathfrak{r}}).$$

$$\Delta: U(\mathfrak{r}) \otimes \operatorname{Cl}(\mathfrak{m}_{\mathfrak{r}}) \to U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}) \bar{\otimes} \operatorname{Cl}(\mathfrak{m}_{\mathfrak{r}}) \simeq U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{m}).$$
(19)

Proposition

(i) $D(\mathfrak{g}, \mathfrak{l}) = D(\mathfrak{g}, \mathfrak{r}) + \Delta(D(\mathfrak{r}, \mathfrak{l}))$ (ii) The components $D(\mathfrak{g}, \mathfrak{r})$ et $\Delta(D(\mathfrak{r}, \mathfrak{l}))$ (super)commute.

Use the formula with l = 0 to compute $D(\mathfrak{g}, \mathfrak{r})^2$ Computation of the square of $D(\mathfrak{g}, 0)$ and $D(\mathfrak{r}, 0)$ is easier.

Huang-Pandzic theorem

Consider

$$d = \mathrm{ad}D : a \mapsto [D, a]$$

on the superalgebra $(U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}))^{\mathfrak{r}}$ (superbracket). Super-Jacobi identity gives $d^2 = (\operatorname{ad} D)^2 = \operatorname{ad}(D^2) = 0$ on $(U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}))^{\mathfrak{r}}$

Cohomology of d: ker $d/\mathrm{Im}d$ on $(U(\mathfrak{g})\otimes \mathrm{Cl}(\mathfrak{s}))^{\mathfrak{r}}$.

The theorem of Huang and Pandzic computes this cohomology. Remark that $\Delta(\mathfrak{Z}(\mathfrak{r}))$ is in the kernel of D.

Huang-Pandzic theorem

David Renard, Ecole Polytechnique renard@math.polytechnique.fr

Theorem

(Huang-Pandzic) On $(U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}))^{\mathfrak{r}}$, we have

 $\ker d = \Delta(\mathfrak{Z}(\mathfrak{r})) \oplus \mathrm{Im} d.$

Dirac operators in representation theor

Proof : filtration on $U(\mathfrak{g})$,

$$\mathsf{Gr}(U(\mathfrak{g})\otimes\mathrm{Cl}(\mathfrak{s}))\simeq S(\mathfrak{g})\otimes\bigwedge\mathfrak{s}\simeq S(\mathfrak{r})\otimes S(\mathfrak{s})\otimes\bigwedge\mathfrak{s}.$$

Exactness of Koszul complex.

Corollary

 $z \in \mathfrak{Z}(\mathfrak{g}), \ z \otimes 1 \in \ker d \subset (U(\mathfrak{g}) \otimes C(\mathfrak{s}))^{\mathfrak{r}}, \ z \otimes 1 \ can \ be \ written \ as$

 $z\otimes 1=\Delta(z_1)+Da+aD$

for some $a \in (U(\mathfrak{g}) \otimes C(\mathfrak{s}))^{\mathfrak{r}}$ (in the odd part of the superalgebra), and some $z_1 \in \mathfrak{Z}(\mathfrak{r})$.

Let us now identify z_1 explicitely. $\mathfrak{h}_{\mathfrak{r}} \subset \mathfrak{h}$: Cartan subalgebras of \mathfrak{r} and \mathfrak{g} . $R_{\mathfrak{r}} = R(\mathfrak{r}, \mathfrak{h}_{\mathfrak{r}}), R = R(\mathfrak{g}, \mathfrak{h})$: root systems $W_{\mathfrak{r}} = W(\mathfrak{r}, \mathfrak{h}_{\mathfrak{r}}), W = W(\mathfrak{g}, \mathfrak{h})$: Weyl groups.

 $\mathfrak{Z}(\mathfrak{g}) \xrightarrow{\gamma_{\mathfrak{g}}} S(\mathfrak{h})^{W_{\mathfrak{g}}}, \quad \mathfrak{Z}(\mathfrak{r}) \xrightarrow{\gamma_{\mathfrak{r}}} S(\mathfrak{h}_{\mathfrak{r}})^{W_{\mathfrak{r}}}.$

Harish-Chandra isomorphisms

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Huang-Pandzic theorem

Restriction of functions from \mathfrak{h}^* to $\mathfrak{h}_\mathfrak{r}$ induces a morphism

 $\mathrm{res}: S(\mathfrak{h})^{W_{\mathfrak{g}}} \to S(\mathfrak{h}_{\mathfrak{r}})^{W_{\mathfrak{r}}}$

Proposition

There is a unique algebra morphism $\eta_{\mathfrak{r}}:\mathfrak{Z}(\mathfrak{g})\to\mathfrak{Z}(\mathfrak{r})$ such that

$$\begin{array}{c|c} \mathfrak{Z}(\mathfrak{g}) & \xrightarrow{\eta_{\mathfrak{r}}} \mathfrak{Z}(\mathfrak{r}) \\ \gamma_{\mathfrak{g}} & & \gamma_{\mathfrak{r}} \\ & & & \gamma_{\mathfrak{r}} \\ S(\mathfrak{h})^{W_{\mathfrak{g}}} & \xrightarrow{\mathrm{res}} S(\mathfrak{h}_{\mathfrak{r}})^{W_{\mathfrak{r}}} \end{array}$$

commutes.

 $(\forall z \in \mathfrak{Z}(\mathfrak{g})), \qquad z \otimes 1 = \Delta(\eta_{\mathfrak{r}}(z)) + Da + aD$ for some $a \in (U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}))^{\mathfrak{r}}$

Huang-Pandzic theorem

V: \mathfrak{g} -module, *S* : Spinors for $Cl(\mathfrak{s})$.

Definition

The Dirac cohomology $H_D(\mathfrak{g}, \mathfrak{r}; V) = \ker D / \ker D \cap \operatorname{Im} D$ on $V \otimes S$. Since D is \mathfrak{r} -invariant, $H_D(\mathfrak{g}, \mathfrak{r}; V)$ is naturally a \mathfrak{r} -modules.

Proposition

The action of an element $z \otimes 1$ in $\mathfrak{Z}(\mathfrak{g}) \otimes 1$ on $H_D(\mathfrak{g}, \mathfrak{r}; V)$ coincide with the action of $\eta_{\mathfrak{r}}(z) \in U(\mathfrak{r})$ (ie. with the action of $\Delta(\eta_{\mathfrak{r}}(z))$). If V has infinitesimal character $\Lambda \in \mathfrak{h}^*$, and if (γ, F_{γ}) is a finite dimensional \mathfrak{r} -module with highest weight $\tau_{\gamma} \in \mathfrak{h}^*_{\mathfrak{r}}$ in $H_D(\mathfrak{g}, \mathfrak{r}; V)$, then $\Lambda \in W \cdot (\tau_{\gamma} + \rho_{\mathfrak{r}})$.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theorem

Cubic Dirac operators for Levi subalgebras

 $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$: parabolic subalgebra of \mathfrak{g} $\mathfrak{q}^- = \mathfrak{l} \oplus \mathfrak{u}^-$ opposite parabolic subalgebra $\mathfrak{s} = \mathfrak{u} \oplus \mathfrak{u}^-$.

$$\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{s}.$$
 (20)

 $D = D(\mathfrak{g}, \mathfrak{l}) \in (U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s}))^{\mathfrak{l}}$ as above.

Cubic Dirac operators for Levi subalgebras

Convenient basis of \mathfrak{s} to express this operator. \mathfrak{u} and \mathfrak{u}^- : isotropic subspaces in perfect duality under B, $\mathfrak{u}^* \simeq \mathfrak{u}^-$. (u_1, \ldots, u_n) : basis of \mathfrak{u} , u_1^-, \ldots, u_n^- dual basis in \mathfrak{u}^- .

$$D = A + A^- + 1 \otimes a + 1 \otimes a^- = C + C^-$$

$$A = \sum_{i=1}^{n} u_i^- \otimes u_i, \quad A^- \sum_{i=1}^{n} u_i \otimes u_i^-$$
$$a = -\frac{1}{2} \sum_{i < j} \sum_k B([u_i^-, u_j^-], u_k) u_i \wedge u_j \wedge u_k^-,$$
$$a^- = -\frac{1}{2} \sum_{i < j} \sum_k B([u_i, u_j], u_k^-) u_i^- \wedge u_j^- \wedge u_k$$

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theorem

Cubic Dirac operators for Levi subalgebras

We are interested in the action of these elements on the $U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s})$ - module $V \otimes S$, $V : \mathfrak{g}$ -module, S : spin module for $\operatorname{Cl}(\mathfrak{s})$. identification $S \simeq \bigwedge^{\cdot} \mathfrak{u}$

 $\cdots \to V \otimes \bigwedge^{p-1} \stackrel{\delta}{\longrightarrow} V \otimes \bigwedge^{p} \stackrel{\delta}{\longrightarrow} V \otimes \bigwedge^{p+1} \stackrel{\delta}{\longrightarrow} \cdots$

Complex for *u*-homology

action of C^- on $V \otimes S \simeq V \otimes \bigwedge \mathfrak{u}$ is 2δ .

Cubic Dirac operators for Levi subalgebras

Make the following identifications:

$$V \otimes \bigwedge^{p} \mathfrak{u} \cong \operatorname{Hom}((\bigwedge^{p} \mathfrak{u})^{*}, V) \cong \operatorname{Hom}(\bigwedge^{p} (\mathfrak{u}^{*}), V) \cong \operatorname{Hom}(\bigwedge^{p} \mathfrak{u}^{-}, V).$$

The last space is the space of *p*-cochains for the u^- -cohomology complex differential with *d*,

Through the above identifications, C acts on $V \otimes S \simeq V \otimes \bigwedge \mathfrak{u} \simeq \operatorname{Hom}(\bigwedge^{p} \mathfrak{u}^{-}, V)$ as d.

Thus $D = C + C^-$ acts on $V \otimes S$ as $2\delta + d$

Goal : Relate Dirac cohomology $H_D(\mathfrak{g}, \mathfrak{l}; V)$ with Lie algebra homology $H_{\bullet}(\mathfrak{u}; V)$ and cohomology $H^{\bullet}(\mathfrak{u}^-; V)$ Need some "Hodge decomposition" for some invariant hermitian product.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Hodge decomposition for p^- -cohomology (Hermitian symmetric case)

Back to (\mathfrak{g}, K) -modules of the first lecture, with $(\mathfrak{g}, \mathfrak{k})$ hermitian symmetric.

 $\label{eq:stability} \begin{array}{l} \mathfrak{k}: \mbox{ Levi subalgebra of } \mathfrak{g}, \ \mathfrak{p} = \mathfrak{p}^+ \oplus \mathfrak{p}^- \\ \mbox{ previous setting with } \mathfrak{l} = \mathfrak{k}, \ \mathfrak{u} = \mathfrak{p}^+ \mbox{ and } \mathfrak{u}^- = \mathfrak{p}^-. \end{array}$

V: unitary (\mathfrak{g}, K) -module. Then d and 2δ are minus adjoints of each other with respect to a positive definite form $\langle ., . \rangle_{pos}$ on $V \otimes S$

Corollary

With respect to the form $\langle ., . \rangle_{pos}$ on $V \otimes S$, the adjoint of C is C^- . Therefore D is self-adjoint on $V \otimes S$.

Hodge decomposition for p^- -cohomology (Hermitian symmetric case)

Variant of the usual Hodge decomposition.

Lemma

- (a) ker $D = \ker d \cap \ker \delta$;
- (b) Im δ is orthogonal to ker d and Imd is orthogonal to ker δ .

Combining this and the fact ker $D = \ker D^2 = H_V^D(V)$, we get

Theorem

- (a) $V \otimes S = \ker D \oplus \operatorname{Im} d \oplus \operatorname{Im} \delta$;
- (b) ker $d = \ker D \oplus \operatorname{Im} d$;
- (c) ker $\delta = \ker D \oplus \operatorname{Im} \delta$.

$$\ker D \cong H^D_V(V) \cong H^{\cdot}(\mathfrak{p}^-, V) \otimes Z_{\rho(\mathfrak{p}^-)} \cong H_{\cdot}(\mathfrak{p}^+, V) \otimes Z_{\rho(\mathfrak{p}^-)}.$$

(up to modular twists) the Dirac cohomology ker D is the space of "harmonic representatives" for \mathfrak{p}^- -cohomology and \mathfrak{p}^+ -homology.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac cohomology of finite dimensional modules

 \mathfrak{h} : Cartan subalgebra of \mathfrak{g} ,

 $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$: Borel subalgebra

 $\mathfrak{b}^- = \mathfrak{h} \oplus \mathfrak{n}^-$ the opposite Borel subalgebra.

 $\mathfrak{s} = \mathfrak{n} \oplus \mathfrak{n}^-$, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{s}$.

 \mathfrak{u} : compact form of \mathfrak{g} , U : compact adjoint group.

 $X \mapsto \overline{X}$ the complex conjugation in \mathfrak{g} with respect to the real form \mathfrak{u} . Then

$$\langle X,Y
angle = -2B(X,ar{Y}), \quad (X,Y\in\mathfrak{g})$$

positive definite U-invariant hermitian form on g. This hermitian form restricts to n, and can be extended to $S \simeq \bigwedge n$.

V: finite dimensional g-module.

 $\langle .,. \rangle_V$: U-invariant positive definite hermitian form on V

 $\langle ., . \rangle_{V \otimes S}$: positive definite hermitian form on $V \otimes S$.

Dirac cohomology of finite dimensional modules

 $D = C + C^-$ as before. The adjoint of C acting on $V \otimes S$ is $-C^-$, thus D is anti-self-adjoint with respect to $\langle ., . \rangle_{V \otimes S}$. The operator $D = D(\mathfrak{g}, \mathfrak{h})$ acting on $V \otimes S$ is semi-simple,

$$H_D(\mathfrak{g},\mathfrak{h};V) = \ker D = \ker D^2 = H^{\cdot}(\mathfrak{n}-,V) \otimes Z_{\rho(\mathfrak{n}^-)} \cong H_{\cdot}(\mathfrak{n},V) \otimes Z_{\rho(\mathfrak{n})}.$$

Theorem

Let V be the irreducible finite dimensional representation of V with highest weight μ . Then, as a \mathfrak{h} -module

$$H_D(\mathfrak{g},\mathfrak{h};V)=igoplus_{w\in W}\mathbb{C}_{w\cdot(\mu+
ho)}$$

Proof : the weights $\mathbb{C}_{w \cdot (\mu+\rho)}$ occur in $V \otimes S$ with multiplicity one and the corresponding weight spaces are in the kernel of D^2 (this can be checked directly from the formula for D^2). No other weights can occur in the Dirac cohomology (HP thm).

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac cohomology of finite dimensional modules

$$S = S^+ \oplus S^-$$

 $S\simeq \bigwedge \mathfrak{n},\ S^+$ (resp. $S^-)$ corresponds to the even (resp. odd) part in $\bigwedge \mathfrak{n}.$

$$V \otimes S^+$$
 leftrightarrow $V \otimes S^-$

The index of the Dirac operator acting on $V \otimes S$ is the virtual representation

$$V\otimes S^+-V\otimes S^-$$

of h.

Theorem

Let V be the irreducible finite dimensional representation of V with highest weight μ . Then, as virtual representations of \mathfrak{h}

$$V\otimes S^+-V\otimes S^-=\sum_{w\in W}(-1)^{l(w)}\mathbb{C}_{w\cdot(\mu+
ho)}.$$

Corollary

(Weyl character formula) The character of the finite dimensional representation of V with highest weight μ is given by

$$\operatorname{ch}(V) = rac{\sum_{w \in W} (-1)^{\prime(w)} \mathbb{C}_{w \cdot (\mu + \rho)}}{\operatorname{ch}(S^+ - S^-)}.$$

The character $ch(S^+ - S^-) = \sum_{w \in W} (-1)^{l(w)} \mathbb{C}_{w \cdot \rho}$ is the usual Weyl denominator.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac cohomology of finite dimensional modules

Kostant proves this in the general situation

 $\mathfrak{g}=\mathfrak{r}\oplus\mathfrak{s}.$

Realization of finite dimensional modules

 \mathfrak{u} : compact real form of \mathfrak{g}

U : connected, simply-connected compact semi-simple group with Lie algebra $\mathfrak{u}.$

T : maximal torus of U

 \mathfrak{h} : complexification of $\mathfrak{t} = \operatorname{Lie}(T)$.

representation \mathbb{C}_{λ} : one dimensional representation of T, $\lambda \in i\mathfrak{t}^*$ integral weight.

 \mathcal{L}_{λ} : line bundle on U/T with fiber the representation $\mathbb{C}_{\lambda} \otimes S$ of T $\Gamma_{L^2}(U/T, \mathcal{L}_{\lambda})$: space of L^2 sections of this vector bundle.

 $\Gamma_{L^2}(U/T,\mathcal{L}_{\lambda})\simeq L^2(U)\otimes_{\mathcal{T}}(\mathbb{C}_{\lambda}\otimes S)$

 \mathfrak{g} -module, $X \in \mathfrak{g}$ acting by (right) differentiation on the $L^2(U)$ factor.

 $\Gamma_{L^2}(U/T, \mathcal{L}_{\lambda})$ is a $U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{s})$ -module. In particular, the Dirac operator $D = D(\mathfrak{g}, \mathfrak{h})$ acts on this space.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Realization of finite dimensional modules

$$\Gamma_{L^2}(U/T, \mathcal{L}_{\lambda}) \simeq L^2(U) \otimes_T (\mathbb{C}_{\lambda} \otimes S) \simeq \operatorname{Hom}_T(\mathbb{C}_{-\lambda}, L^2(U) \otimes S).$$

By Peter-Weyl theorem, one has

$$L^2(U) = \bigoplus_{
u \in \mathcal{P}^+} V_{
u} \otimes V_{
u}^*$$

D is self-adjoint, so

$$\ker D = \bigoplus_{\nu \in \mathcal{P}^+} V_{\nu} \otimes \ker \{ D \text{ on } \operatorname{Hom}_{\mathcal{T}}(\mathbb{C}_{-\lambda}, V_{\nu}^* \otimes S). \}$$

Realization of finite dimensional modules

The contragredient representation V_{ν}^* has lowest weight $-\nu$. Thus HP theorem implies that ker $D \neq 0$ iff $-\nu - \rho$ is conjugate to $-\lambda$, *ie.* $\nu + \rho$ is conjugate to λ . In fact, :

Theorem

(Landweber) One has ker $D = V_{w \cdot \lambda + \rho}$ if there exists $w \in W$ such that $w \cdot \lambda - \rho$ is dominant, and ker D = 0 otherwise. One has $\operatorname{Index}(D) = (-1)^{l(w)} V_{w \cdot \lambda - \rho}$ if there exists $w \in W$ such that $w \cdot \lambda + \rho$ is dominant, and $\operatorname{Index}(D) = 0$ otherwise.

This realization of irreducible finite dimensional representation is essentially equivalent to the Borel-Weil-Bott theorem, Dirac operators and Dirac cohomology playing the role of n-cohomology.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory