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Introduction

Dirac operators in representation theory : Parthasarathy (1972), Atiyah-
Schmid (1977) construction of discrete series representations of real
semisimple groups.

Parthasarathy (1980) : criterion for unitarizability of representations
(Parthasarathy Dirac-inequality).

Vogan (1990’s) : introduce Dirac cohomology for Harish-Chandra
modules + conjecture for the infinitesimal character of a module hav-
ing non vanishing Dirac cohomology.

Proved by Huang-Pandzic (2002)

Kostant ”cubic Dirac operator” (2000), more general setting, Huang-
Pandzic result still holds.

Since then, vast literature on the subject...
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Clifford algebras

(V ,B) : finite dimensional complex vector space with a non-degenerate
symmetric bilinear form.

Cl(V ; B) : Clifford algebra, with relations

v ⊗ w + w ⊗ v + 2B(v ,w) 1, (v ,w ∈ V ).

• filtered algebra

• Z2-graded algebra (i.e. a super algebra):

Cl(V ; B) = Cl0̄(V ; B)⊕ Cl1̄(V ; B).

Chevalley isomorphism (graded symmetrization)

q :
∧

V ' Cl(V ; B)
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Clifford algebras

q(x), x ∈
∧2 V span a Lie subalgebra of Cl(V ,B).

x 7→ Ax , Ax(v) = [q(x), v ]Cl, (v ∈ V )

defines Ax in so(V ; B), and∧2 V −→ so(V ; B), x 7→ Ax (1)

is a Lie algebra isomorphism, with inverse

λ : so(V ; B) −→
∧2 V

λ(A) =
1

4

∑
i

A(ei ) ∧ e i ∈
∧2 V , (A ∈ o(V ; B)).

(ei )i basis of V with dual basis (e i )i .
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Clifford algebras

Theorem

(i) Suppose that n = dimC(V ) is even. Then there are :

• two isomorphism classes of irreducible Z2-graded Cl(V ,B)-modules,
• one isomorphism class of irreducible ungraded Cl(V ,B)-modules,

• two isomorphism classes of irreducible Cl0̄(V ,B)-modules.

(ii) Suppose that n = dimC(V ) is odd. Then there are

• one isomorphism class of irreducible Z2-graded Cl(V ,B)-modules,
• two isomorphism classes of irreducible ungraded Cl(V ,B)-modules,

• one isomorphism class of irreducible Cl0̄(V ,B)-modules,

fix S : irreducible Z2-graded Cl(V ,B)-module.

Spin(V ,B) : central extension of SO(V ,B) realized in Cl(V ; B)×.
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Dirac operator and (g,K )-modules

G : connected real reductive Lie group with Cartan involution θ

K = G θ : maximal compact subgroup of G .

g0 : Lie algebra of G , g = g0 ⊗R C

g0 = k0

θ
⊕ p0, g = k

θ
⊕ p

Cartan decompositions

B : invariant nondegenerate symmetric bilinear form B on g0,
B|p0

: definite positive, B|k0
definite negative.

Cl(p) = Cl(p; B) : Clifford algebra of p with respect to B.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac operator and (g,K )-modules

K̃ //

��

Spin(p0) � � //

��

Spin(p) � � //

��

Cl0̄(p)×

K
Ad|p0// SO(p0) � � // SO(p)

Also Lie algebra morphism

ad|p : k→ so(p), X 7→ ad(X )|p

Recall λ : so(p) '
∧2

p (1) and inclusion q :
∧2

p ↪→ Cl(p).

α : k
Ad|p0−→ so(p)

λ−→
∧2

p
q
↪→ Cl(p) (2)
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Dirac operator and (g,K )-modules

if (Yi )i is a basis of p with dual basis (Zi )i , then for any X ∈ k,

α(X ) =
1

4

∑
i,j

B([Zi ,Zj ],X ) YiYj . (3)

Main object : A = U(g)⊗ Cl(p) :
U(g) : envelopping algebra of g.

• A associative Z2-graded superalgebra (elements in U(g)⊗1 are even)).

• Linear action of K on A = U(g)⊗ Cl(p), gives Lie algebra represen-
tation of k in U(g)⊗ Cl(p).
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Dirac operator and (g,K )-modules

The map (17) is used to define

∆ : k −→ A = U(g)⊗ Cl(p), ∆(X ) = X ⊗ 1 + 1⊗ α(X )

Lie algebra morphism.

Extends to an algebra morphism

∆ : U(k) −→ A = U(g)⊗ Cl(p). (4)

X ∈ k acts on A by adjoint action of ∆(X ), i.e. a ∈ A 7→ [∆(X ), a].

AK the subalgebra of K -invariant in A.
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Dirac operator and (g,K )-modules

We can now introduce the Dirac operator D :

Definition

if (Yi )i is a basis of p and (Zi )i is the dual basis with respect to B, then

D =
∑
i

Yi ⊗ Zi ∈ U(g)⊗ Cl(p)

is independent of the choice of basis (Yi )i and K -invariant for the adjoint
action on both factors :

D ∈ AK .
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Categories of representations

M(g,K ), the category of Harish-Chandra modules (i.e.
(g,K )-modules).

Main idea : study X ∈M(g,K ) by considering the natural action of
D on X ⊗ S ,
S : a module of spinors for C (p).

Modules in M(g,K ) are complex vector spaces with action of U(g),
action of K + compatibility conditions.

Formalized in the notion of Harish-Chandra pair (A ,K) and
Harish-Chandra modules for (A ,K) (category M(A ,K).

Examples : (A ,K) = (U(g),K ), (A ,K) = (U(g)⊗ Cl(p), K̃ ),
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Categories of representations

If X (g,K )-module, then X ⊗ S is a (A, K̃ )-module :

This defines a functor :

X 7→ X ⊗ S , M(g,K )→M(A, K̃ ).

which is an equivalence of categories.

Inverse M 7→ HomCl(p)(S ,M) (resp. M 7→ HomCl0̄(p)(S ,M)) if

dim p is even (resp. odd).

Let us now put this principle into perspective by discussing a
theorem of Harish-Chandra.
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On a theorem of Harish-Chandra

Harish-Chandra : an irreducible (g,K )-module is characterized by
the action of U(g)K on any non-trivial K -isotypic component.
(simplified algebraic proof by Lepowsky-McCollum, alternative proof
below)

Idea : use this to study and classify irreducible (g,K )-modules.

success : HC subquotient theorem, spherical representations,
Vogan’s classification by lowest K -types.

Problem : U(g)K highly non commutative and very little is known
about its structure and representation theory.
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On a theorem of Harish-Chandra

Harish-Chandra result still holds in M(A, K̃ ).

AK = (U(g)⊗ Cl(p))K is slightly better U(g)K :

• It contains a non-trivial interesting elements : the Dirac operator D.

• AK : differential superalgebra, d = adD.
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On a theorem of Harish-Chandra

Harish-Chandra thm is in fact a consequence of a general result
about algebras with idempotents.

(A ,K) : generalized Harish-Chandra pair

M(A ,K) category of Harish-Chandra modules

equivalent to the category of non-degenerate modules over the
Hecke algebra R(A ,K), an algebra with idempotents (or algebra
with an approximate identity)

As vector spaces

R(A ,K) ' A ⊗U(k) R(K),

R(K) is the convolution algebra of K-finite distributions on K
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On a theorem of Harish-Chandra

J. Bernstein (theory of reductive p-adic groups) proved the following

A : algebra with idempotents

M(A) : category of non-degenerate left A-modules

e ∈ A idempotent.

M ∈M(A), M = e ·M ⊕ (1− e) ·M (5)

eAe : algebra with unit e,
e ·M : unital eAe-module.

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

On a theorem of Harish-Chandra

je : M(A)→M(eAe), M 7→ e ·M.

The functor je is exact.

Induction functor i :

i : M(eAe)→M(A), Z 7→ A⊗eAe Z .

Proposition

M 7→ e ·M bijection from irreducible modules M in M(A) such that
e ·M 6= 0 and irreducible modules in M(eAe)
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On a theorem of Harish-Chandra

A = U(g)⊗ Cl(p), M(A, K̃ ) 'M(R(A, K̃ ))

(γ,Fγ) : irreducible finite-dimensional representation of K̃ , χγ :
character of the contragredient.

1⊗ χγ : idempotent of R(A, K̃ ).

Theorem

The algebra
(1⊗ χγ) · R(A, K̃ ) · (1⊗ χγ)

is isomorphic to
AK ⊗U(k)K End(Fγ).
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On a theorem of Harish-Chandra

Bernstein result in this case gives :

V ∈M(A, K̃ )-module V ,

(1⊗ χγ) · V = V (γ)

K̃ -isotypic component in V .

If V is irreducible, and V (γ) 6= 0, it is characterized by the action of
AK ⊗U(k)K End(Vγ) on V (γ).
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On a theorem of Harish-Chandra

To study an (g,K )-module X , one would like to study the action of
U(g)K on a (non-zero) K -isotypic component of X ,

but since a little is known about U(g)K , we will instead study the action

of (U(g)⊗ Cl(p))K̃ a (non-zero) K -isotypic component of X ⊗ S .

The structure of (U(g)⊗ Cl(p))K̃ is better (but not ompletely)
understood than the he structure of U(g)K .

We will now see what can be said from that fact that it contains the
Dirac operator D.
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The square of the Dirac operator

D2 = −Casg ⊗ 1 + ∆(Cask) + (‖ρk‖2 − ‖ρg‖2)1⊗ 1 (6)

Casg : Casimir element of U(g)
Cask : Casimir element of U(k).

∆ : U(k) −→ A = U(g)⊗ Cl(p).

D2 is in the center of the algebra AK . (7)
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The square of the Dirac operator

T imaximal torus n K , t0 = Lie(T ), t = t0 ⊗R C.

a = pt, h := t⊕ a: fundamental Cartan subalgebra of g,

R = R(g, h) : root system of h in g, W = W (g, h): Weyl group. Let
us also choose a positive root system
R+ ⊂ R : positive root system, ρ = 1

2

∑
R+ α ∈ h∗

Rk = R(k, t), Wk, R+
k ⊂ Rk compatible with R+, ρk.

The bilinear form B on g restricts to a positive definite form on
it0 ⊕ a.

〈. , .〉 : induced form on it∗0 ⊕ a and h∗. The norm appearing in (6) is
defined for any λ ∈ h∗ by ‖λ‖2 = 〈λ, λ〉.
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The square of the Dirac operator

Harish-Chandra algebra isomorphism

γg : Z(g) ' S(h)W (8)

λ ∈ h∗, χλ : character of Z(g).

X ∈M(g,K ) with infinitesimal character Λ ∈ h∗.

(γ,Fγ) : irreducible representation of K̃ with highest weight
τ = τγ ∈ t∗.

Then D2 acts on (X ⊗ S)(γ) by the scalar

− ‖Λ‖2 + ‖τ + ρk‖2. (9)

ker(D2) on X ⊗ S : direct sum of full K̃ -isotypic components of
X ⊗ S : these are exactly those (X ⊗ S)(γ) for which

‖τ + ρk‖2 = ‖Λ‖2. (10)
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Dirac operator and unitarizable of (g,K )-modules

X ∈M(g,K ) unitarizable :
definite positive invariant Hermitian product 〈. , .〉X on X .

X ∈ g0 act as skew-symmetric operator on X , i.e.

〈X .v ,w〉X = −〈v ,X · w〉X , (v ,w ∈ X ), (X ∈ g0).

Also definite positive Hermitian product 〈. , .〉S on S so that the
elements of p0 ⊂ Cl(p) act as skew-symmetric operators

X ⊗ S definite positive Hermitian product tensor product of 〈. , .〉X
and 〈. , .〉S , denoted by 〈. , .〉X⊗S .
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Dirac operator and unitarizable of (g,K )-modules

D is symmetric with respect to 〈. , .〉X⊗S .

D2 is a positive symmetric operator on X ⊗ S .

From (9) we get :

Proposition (Parthasarathy-Dirac inequality)

Assume that the unitarizable (g,K )-module X has infinitesimal character

Λ ∈ h∗. Let (γ,Fγ) be an irreducible representation of K̃ with highest
weight τ = τγ ∈ t∗ such that (X ⊗ S)(τ) 6= 0. Then

‖τ + ρk‖2 ≥ ‖Λ‖2.
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Dirac operator and unitarizable of (g,K )-modules

Rmk : If the (g,K )-module X is unitarizable and has an
infinitesimal character, D acts semisimply on X ⊗ S . In particular

ker D2 = ker D. (11)

If X is finite-dimensional, inner product on X ⊗ S such that D is
skew-symmetric with respect to this inner product : D acts
semisimply on X ⊗ S and ker D2 = ker D.
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Spherical principal series of SL(2,R)× SL(2,R)

Example

Spherical principal series of SL(2,R)
Spherical principal series of SL(2,R)× SL(2,R)
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Dirac cohomology of (g,K )-modules

Definition

Let X ∈M(g,K ). The Dirac operator D acts on X ⊗ S. Vogan’s Dirac
cohomology of X is the quotient

HD
V (X ) = ker D/(ker D ∩ ImD).

Since D ∈ AK , K̃ acts on ker D, ImD and HD
V (X ).

If X is unitary, D acts semisimply on X ⊗ S

ker D2 = ker D = HD
V (X ). (12)

In this case, the Dirac cohomology of X is a sum the full isotypic
components X ⊗ S(γ) such that (10) holds.
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Dirac cohomology of (g,K )-modules

For general X ,this does not hold, but note that D is always a
differential on ker D2, and HD

V (X ) is the usual cohomology of this
differential.

The theorem of Huang-Pandzic gives a strong condition on the
infinitesimal character of a (g,K )-module X with non zero Dirac
cohomology.

Proposition

Let X ∈M(g,K ) be a Harish-Chandra module with infinitesimal
character Λ ∈ h∗. Assume that (γ,Fγ) is an irreducible representation of

K̃ with highest weight τ = τγ ∈ t∗ such that (X ⊗ S)(γ) contibutes to
HD

V (X ). Then

Λ = τ + ρk up to conjugacy by the Weyl group W . (13)

Thus for unitary X , (10) is equivalent to the stronger condition (13),
provided that γ appears in X ⊗ S .
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Why is Dirac cohomology an interesting invariant

Many interesting modules have non-vanishing Dirac cohomology :

• Finite dimensional representations (Kostant).

• Discrete series, and more generally Vogan-Zuckerman Aq(λ)-modules

• Highest weight modules

• Unipotent representations

Dirac cohomology is related to other kinds of cohomological
invariants :

• n-cohomology for highest weight-modules

• (g,K )-cohomology for Aq(λ)-modules

David Renard, Ecole Polytechnique renard@math.polytechnique.fr Dirac operators in representation theory

Dirac cohomology and (g,K )-cohomology

An important problem in the theory of automorphic forms is to
compute cohomology of locally symmetric spaces. Matsushima’s
formula relates this to computation of (g,K )-cohomology of
irreducible unitary Harish-Chandra modules for the corresponding
semisimplegroup G .

Vogan and Zuckerman : classification of irreducible unitary
Harish-Chandra modules X such that H∗(g,K ,X ⊗ F ∗) 6= 0 where
F is a finite-dimensional representation of G .

Cohomologically induced modules Aq(λ) with the same infinitesimal
character as F . VZ have explicitely computed the cohomology.
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Dirac cohomology and (g,K )-cohomology

X ∈M(g,K ) : irreducible unitary Harish-Chandra module with
infinitesimal character as finite dimensional representation F (this is
an obvious necessary condition for H∗(g,K ,X ⊗F ∗) to be non zero).

If dim p is even :

H∗(g,K ; X ⊗ F ∗) = HomK̃ (HD(F ),HD(X )),

and if dim p is odd :

H∗(g,K ; X⊗F ∗) = HomK̃ (HD(F ),HD(X ))⊕HomK̃ (HD(F ),HD(X )).
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Dirac cohomology of some (g,K )-modules

• Finite dimensional representations (K, HKP)

• Aq(λ) (HKP)

• Unipotent representations of Sp(nR), U(p, q)

• Wallach’s representations (HPP)

• Complex groups (C-P Dong)
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Kostant’s cubic Dirac operator

(g,B) as before

r ⊂ g s.t. Br non-degenerate.

g = r
⊥
⊕ s.

Bs non degenerate

Cl(s) : Clifford algebra of s.

Chevalley isomorphism q :
∧

s ' Cl(s)
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Kostant’s cubic Dirac operator

The restriction of the fundamental 3-form of g gives an element
ν ∈

∧3
s characterized by the identity

B(ν,X ∧ Y ∧ Z ) =
1

2
B(X , [Y ,Z ]), (X ,Y ,Z ∈ s) (14)

(If r = k as before, ν = 0 because [p, p] ⊂ k.)

Let (Xi )i be an orthonormal basis of s.

D(g, r) =
∑
i

Xi ⊗ Xi + 1⊗ ν (15)

of U(g)⊗ Cl(s).
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Kostant’s cubic Dirac operator

ν =
1

2

∑
i<j<k

B([Xi ,Xj ],Xk) XiXjXk (16)

As before

α : r
Ad|s−→ so(s)

λ−→
∧2

s
q
↪→ Cl(s) (17)

∆ : r −→ U(g)⊗ Cl(s), X 7−→ X ⊗ 1 + 1⊗ α(X )

∆ : U(r)→ U(g)⊗ Cl(s). (18)
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Kostant’s cubic Dirac operator

Lemma

The cubic Dirac operator D(g, r) is r-invariant, i.e. it (super)commutes
with the image of U(r) by ∆. We write D(g, r) ∈ (U(g)⊗ Cl(s))r.

Theorem

D(g, r)2 = −Ωg ⊗ 1 + ∆(Ωr) + (||ρr||2 − ||ρ||2)1⊗ 1,

where Ωg (resp. Ωr) denotes the Casimir element in Z(g) (resp. Z(r)).
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Kostant’s cubic Dirac operator

Simplified proof due to N. Prudhon :

two subalgebras r and l of g with

g ⊃ r ⊃ l

Br and Bl non degenerate.

g = r⊕ s, g = r⊕m, m = s⊕mr, r = l⊕mr.

Cl(m) = Cl(s)⊗̄Cl(mr) gradedtensorproduct
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Kostant’s cubic Dirac operator

D(g, l) ∈ U(g)⊗Cl(m), D(g, r) ∈ U(g)⊗Cl(s), D(r, l) ∈ U(r)⊗Cl(mr).

∆ : U(r)⊗Cl(mr)→ U(g)⊗Cl(s)⊗̄Cl(mr) ' U(g)⊗Cl(m). (19)

Proposition

(i) D(g, l) = D(g, r) + ∆(D(r, l)
(ii) The components D(g, r) et ∆(D(r, l)) (super)commute.

Use the formula with l = 0 to compute D(g, r)2 Computation of the
square of D(g, 0) and D(r, 0) is easier.
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Huang-Pandzic theorem

Consider
d = adD : a 7→ [D, a]

on the superalgebra (U(g)⊗ Cl(s))r (superbracket).
Super-Jacobi identity gives d2 = (adD)2 = ad(D2) = 0 on
(U(g)⊗ Cl(s))r

Cohomology of d : ker d/Imd on (U(g)⊗ Cl(s))r.

The theorem of Huang and Pandzic computes this cohomology.
Remark that ∆(Z(r)) is in the kernel of D.
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Huang-Pandzic theorem

Theorem

(Huang-Pandzic) On (U(g)⊗ Cl(s))r, we have

ker d = ∆(Z(r))⊕ Imd .

Proof : filtration on U(g),

Gr(U(g)⊗ Cl(s)) ' S(g)⊗
∧

s ' S(r)⊗ S(s)⊗
∧

s.

Exactness of Koszul complex.
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Huang-Pandzic theorem

Corollary

z ∈ Z(g), z ⊗ 1 ∈ ker d ⊂ (U(g)⊗ C (s))r,
z ⊗ 1 can be written as

z ⊗ 1 = ∆(z1) + Da + aD

for some a ∈ (U(g)⊗ C (s))r (in the odd part of the superalgebra), and
some z1 ∈ Z(r).

Let us now identify z1 explicitely.

hr ⊂ h : Cartan subalgebras of r and g.
Rr = R(r, hr), R = R(g, h) : root systems
Wr = W (r, hr), W = W (g, h) : Weyl groups.

Z(g)
γg−→ S(h)Wg , Z(r)

γr−→ S(hr)
Wr .

Harish-Chandra isomorphisms
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Huang-Pandzic theorem

Restriction of functions from h∗ to hr induces a morphism

res : S(h)Wg → S(hr)
Wr

Proposition

There is a unique algebra morphism ηr : Z(g)→ Z(r) such that

Z(g)
ηr //

γg

��

Z(r)

γr

��
S(h)Wg

res // S(hr)
Wr

commutes.

(∀z ∈ Z(g)), z ⊗ 1 = ∆(ηr(z)) + Da + aD

for some a ∈ (U(g)⊗ Cl(s))r
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Huang-Pandzic theorem

V : g-module, S : Spinors for Cl(s).

Definition

The Dirac cohomology HD(g, r; V ) = ker D/ ker D ∩ ImD on V ⊗ S.
Since D is r-invariant,HD(g, r; V ) is naturally a r-modules.

Proposition

The action of an element z ⊗ 1 in Z(g)⊗ 1 on HD(g, r; V ) coincide with
the action of ηr(z) ∈ U(r) (ie. with the action of ∆(ηr(z))).
If V has infinitesimal character Λ ∈ h∗, and if (γ,Fγ) is a finite
dimensional r-module with highest weight τγ ∈ h∗r in HD(g, r; V ), then
Λ ∈W · (τγ + ρr).
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Cubic Dirac operators for Levi subalgebras

q = l⊕ u : parabolic subalgebra of g
q− = l⊕ u− opposite parabolic subalgebra
s = u⊕ u−.

g = l⊕ s. (20)

D = D(g, l) ∈ (U(g)⊗ Cl(s))l as above.
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Cubic Dirac operators for Levi subalgebras

Convenient basis of s to express this operator.
u and u− : isotropic subspaces in perfect duality under B, u∗ ' u−.

(u1, . . . , un) : basis of u,
u−1 , . . . , u

−
n dual basis in u−.

D = A + A− + 1⊗ a + 1⊗ a− = C + C−

A =
n∑

i=1

u−i ⊗ ui , A−
n∑

i=1

ui ⊗ u−i

a = −1

2

∑
i<j

∑
k

B([u−i , u
−
j ], uk) ui ∧ uj ∧ u−k ,

a− = −1

2

∑
i<j

∑
k

B([ui , uj ], u
−
k ) u−i ∧ u−j ∧ uk
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Cubic Dirac operators for Levi subalgebras

We are interested in the action of these elements on the
U(g)⊗ Cl(s) - module V ⊗ S ,
V : g-module,
S : spin module for Cl(s).

identification S '
∧·

u

· · · → V ⊗
∧p−1 δ−→ V ⊗

∧p δ−→ V ⊗
∧p+1 δ−→ · · ·

Complex for u-homology

action of C− on V ⊗ S ' V ⊗
∧

u is 2δ.
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Cubic Dirac operators for Levi subalgebras

Make the following identifications:

V⊗
∧p

u ∼= Hom((
∧p

u)∗,V ) ∼= Hom(
∧p(u∗),V ) ∼= Hom(

∧p
u−,V ).

The last space is the space of p-cochains for the u−-cohomology
complex differential with d ,

Through the above identifications, C acts on
V ⊗ S ' V ⊗

∧
u ' Hom(

∧p
u−,V ) as d .

Thus D = C + C− acts on V ⊗ S as 2δ + d

Goal : Relate Dirac cohomology HD(g, l; V ) with Lie algebra
homology H•(u; V ) and cohomology H•(u−; V )
Need some ”Hodge decomposition” for some invariant hermitian
product.
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Hodge decomposition for p−-cohomology (Hermitian
symmetric case)

Back to (g,K )-modules of the first lecture, with (g, k) hermitian
symmetric.

k : Levi subalgebra of g, p = p+ ⊕ p−

previous setting with l = k, u = p+ and u− = p−.

V : unitary (g,K )-module.
Then d and 2δ are minus adjoints of each other with respect to a
positive definite form 〈., .〉pos on V ⊗ S

Corollary

With respect to the form 〈., .〉pos on V ⊗ S, the adjoint of C is C−.
Therefore D is self-adjoint on V ⊗ S.
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Hodge decomposition for p−-cohomology (Hermitian
symmetric case)

Variant of the usual Hodge decomposition.

Lemma

(a) ker D = ker d ∩ ker δ;
(b) Imδ is orthogonal to ker d and Imd is orthogonal to ker δ.

Combining this and the fact ker D = ker D2 = HD
V (V ), we get

Theorem

(a) V ⊗ S = ker D ⊕ Imd ⊕ Imδ;
(b) ker d = ker D ⊕ Imd;
(c) ker δ = ker D ⊕ Imδ.

ker D ∼= HD
V (V ) ∼= H ·(p−,V )⊗ Zρ(p−)

∼= H·(p
+,V )⊗ Zρ(p−).

(up to modular twists) the Dirac cohomology ker D is the space of
”harmonic representatives” for p−-cohomology and p+-homology.
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Dirac cohomology of finite dimensional modules

h : Cartan subalgebra of g,
b = h⊕ n : Borel subalgebra
b− = h⊕ n− the opposite Borel subalgebra.

s = n⊕ n−, g = h⊕ s.

u : compact form of g, U : compact adjoint group.
X 7→ X̄ the complex conjugation in g with respect to the real form u.

Then
〈X ,Y 〉 = −2B(X , Ȳ ), (X ,Y ∈ g)

positive definite U-invariant hermitian form on g. This hermitian
form restricts to n, and can be extended to S '

∧
n.

V : finite dimensional g-module.
〈. , .〉V : U-invariant positive definite hermitian form on V
〈. , .〉V⊗S : positive definite hermitian form on V ⊗ S .
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Dirac cohomology of finite dimensional modules

D = C + C− as before. The adjoint of C acting on V ⊗ S is −C−,
thus D is anti-self-adjoint with respect to 〈. , .〉V⊗S .

The operator D = D(g, h) acting on V ⊗ S is semi-simple,

HD(g, h; V ) = ker D = ker D2 = H ·(n−,V )⊗Zρ(n−)
∼= H·(n,V )⊗Zρ(n).

Theorem

Let V be the irreducible finite dimensional representation of V with
highest weight µ. Then, as a h-module

HD(g, h; V ) =
⊕
w∈W

Cw ·(µ+ρ)

Proof : the weights Cw ·(µ+ρ) occur in V ⊗ S with multiplicity one
and the corresponding weight spaces are in the kernel of D2 (this
can be checked directly from the formula for D2). No other weights
can occur in the Dirac cohomology (HP thm).
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Dirac cohomology of finite dimensional modules

S = S+ ⊕ S−

S '
∧

n, S+ (resp. S−) corresponds to the even (resp. odd) part in∧
n.

V ⊗ S+
D

leftrightarrowV ⊗ S−

The index of the Dirac operator acting on V ⊗ S is the virtual
representation

V ⊗ S+ − V ⊗ S−

of h.
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Dirac cohomology of finite dimensional modules

Theorem

Let V be the irreducible finite dimensional representation of V with
highest weight µ. Then, as virtual representations of h

V ⊗ S+ − V ⊗ S− =
∑
w∈W

(−1)l(w)Cw ·(µ+ρ).

Corollary

(Weyl character formula) The character of the finite dimensional
representation of V with highest weight µ is given by

ch(V ) =

∑
w∈W (−1)l(w)Cw ·(µ+ρ)

ch(S+ − S−)
.

The character ch(S+ − S−) =
∑

w∈W (−1)l(w)Cw ·ρ is the usual Weyl
denominator.
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Dirac cohomology of finite dimensional modules

Kostant proves this in the general situation

g = r⊕ s.
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Realization of finite dimensional modules

u : compact real form of g
U : connected, simply-connected compact semi-simple group with
Lie algebra u.
T : maximal torus of U
h : complexification of t = Lie(T ).

representation Cλ : one dimensional representation of T , λ ∈ it∗

integral weight.

Lλ : line bundle on U/T with fiber the representation Cλ ⊗ S of T

ΓL2 (U/T ,Lλ) : space of L2 sections of this vector bundle.

ΓL2 (U/T ,Lλ) ' L2(U)⊗T (Cλ ⊗ S)

g-module, X ∈ g acting by (right) differentiation on the L2(U)
factor.

ΓL2 (U/T ,Lλ) is a U(g)⊗ Cl(s)-module. In particular, the Dirac
operator D = D(g, h) acts on this space.
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Realization of finite dimensional modules

ΓL2 (U/T ,Lλ) ' L2(U)⊗T (Cλ ⊗ S) ' HomT (C−λ, L2(U)⊗ S).

By Peter-Weyl theorem, one has

L2(U) =
⊕
ν∈P+

Vν ⊗ V ∗ν

D is self-adjoint, so

ker D =
⊕
ν∈P+

Vν ⊗ ker{D on HomT (C−λ,V ∗ν ⊗ S).}
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Realization of finite dimensional modules

The contragredient representation V ∗ν has lowest weight −ν. Thus
HP theorem implies that ker D 6= 0 iff −ν − ρ is conjugate to −λ,
ie. ν + ρ is conjugate to λ. In fact, :

Theorem

(Landweber) One has ker D = Vw ·λ+ρ if there exists w ∈W such that
w · λ− ρ is dominant, and ker D = 0 otherwise.
One has Index(D) = (−1)l(w)Vw ·λ−ρ if there exists w ∈W such that
w · λ+ ρ is dominant, and Index(D) = 0 otherwise.

This realization of irreducible finite dimensional representation is
essentially equivalent to the Borel-Weil-Bott theorem, Dirac
operators and Dirac cohomology playing the role of n-cohomology.
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