Endoscopy for real groups

CIRM, June 2007

David Renard, Centre de mathématiques Laurent Schwartz, Ecole Polytechnique

"Endoscopy for real groups" "Twisted endoscopy for real groups" http://www.math.polytechnique.fr/~renard/

I. Introduction.

Endodscopy is a major theme in the framework of Langlands functoriality conjectures. This is a vast and technical subject, with both local and global aspect. My goal today is very limited : i want to show how the theory emerged in the real case in the work of Diana Shelstad in the 80's, from natural consideration in harmonic analysis of real reductive groups. I particular, i would like to present the transfer factors of Langlands-Shelstad (Kottwitz Shelstad for the twisted case), as they appeared in Shelstad's papers. I hope this *a posteriori* survey of Shelstad's work will help to understand these rather subtle and difficult objects (the transfer factors).

II. Conjucacy classes / Stable conjugacy classes

$$\mathbb{G}$$
: connected algebraic reductive group / \mathbb{R}
 $G = \mathbb{G}(\mathbb{R})$: real points
 $\mathfrak{g} = \operatorname{Lie}(G), \quad \mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}.$
 $\Gamma = \operatorname{Gal}(\mathbb{C}/\mathbb{R}) = <\sigma >$

Let $\gamma \in G$ regular (semisimple), $T_{\gamma} = \mathbb{T}_{\gamma}(\mathbb{R})$: unique Cartan subgroup of G containing γ .

Def : $\gamma, \gamma' \in G_{reg}$ are stably conjugate if there exists $g \in \mathbb{G} = \mathbb{G}(\mathbb{C})$ s.t.

 $\gamma' = g \gamma g^{-1}$ and $\sigma(g) g^{-1} \in \mathbb{T}_\gamma$

Rmk : If γ , γ' are conjugate in G, they are stably conjugate. So stable conjugacy classes are unions of usual conjugacy classes.

T : Cartan subgroup of G.

 $T = T_I T_R = T_I \exp \mathfrak{a}, \quad \mathfrak{a} = \operatorname{Lie}(T_R)$: compact/ split decomposition of T.

 $\mathbb{M}=Z(\mathbb{G},\mathfrak{a})$, $M=\mathbb{M}(\mathbb{R})=Z(G,\mathfrak{a})$.

R : root system of $\mathfrak{t}_{\mathbb{C}}$ in \mathfrak{g}

W: Weyl group

 $lpha \in R$ is real if $\sigma(lpha) = lpha$, imaginary if $\sigma(lpha) = -lpha$, complex if $\sigma(lpha) \neq \pm lpha$. $R_I \subset R$: system of imaginary roots $\simeq R(\mathfrak{m}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$. W_I : Weyl group of R_I , $W(M,T) = N_M(T)/T$: real Weyl group $W(M,T) \subset W_I \subset W^{\Gamma}$.

So the action of W_I on \mathbb{T} preserves T.

 $\begin{array}{l} \mathsf{Prop:} \ \gamma \in G_{reg}, \ T = T_{\gamma}. \\ \mathsf{If} \ \gamma \ \mathsf{is \ strongly \ regular,} \end{array}$

$$\{w\cdot\gamma\}_{ar w\in W_I/W(M,T)}$$

is a system of representatives of conjugacy classes in the stable conjugacy class of γ . In general, we get all classes, but not uniquely.

III. Orbital integrals

G acts on itself by conjugation. One would like to define a functional space of test functions on "the quotient variety".

Problem : the quotient is not a variety....

 $\mathcal{C}^{\infty}_{c}(G) \stackrel{dual}{\leftrightarrow} \operatorname{Dist}(G)$

test functions / distributions

 $\operatorname{Dist}(G)^G \hookrightarrow \operatorname{Dist}(G)$

Problem Find functional space I(G) with surjective map

 $\mathcal{C}^{\infty}_{c}(G) \to I(G)$

and $I(G)' \simeq \operatorname{Dist}(G)^G$

Answer : I(G) : space of orbital integrals : $f\in \mathcal{C}^\infty_c(G)$, $\gamma\in G_{reg}$

$$J_G(f)(\gamma) = |D_G(\gamma)|^{1/2} \int_{G/T_\gamma} f(g\gamma g^{-1}) \ d\dot{g}$$

 $d\dot{g}$: invariant measure, normalized in a coherent way for all Cartan subgroups

 $J_G(f) \in \mathcal{C}^\infty(G_{reg})$ has certain properties (Harish-Chandra) :

- all derivatives locally bounded
- compact support on Cartan subgroups
- smooth extention on some parts of T_{sing}

- when no smooth extention on a wall, jump is explicitly given.

Thm (A. Bouaziz) These properties characterize orbital integrals.

I(G) : LF space

Stable orbital integrals

 $J^{st}_G(f)(\gamma) = \sum_{ar w \in W_I/W(M,T)} J_G(f)(w \cdot \gamma)$

Image of J_G^{st} is characterized by same kind of properties.

 $I^{st}(G)$: space of stable orbital integrals.

 $\gamma \in G_{reg}$, set $I(\gamma, .) \in \operatorname{Dist}(G)^G, \quad I(\gamma, f) = J_G(f)(\gamma).$ $I^{st}(\gamma, .) \in \text{Dist}(G)^G, \quad I(\gamma, f) = J^{st}_G(f)(\gamma).$ Bouaziz thm implies that $< I(\gamma,.), \gamma \in G_{reg} >$ is weakly dense in $\operatorname{Dist}(G)^G$ Def: Dist $(G)^{st} = \overline{\langle I^{st}(\gamma, .), \gamma \in G_{reg} \rangle}$ So $Dist(G)^{st} \hookrightarrow Dist(G)^G \hookrightarrow Dist(G)$ and $\mathcal{C}^{\infty}_{c}(G) \to I(G) \to I^{st}(G)$ Prop If $\Theta \in \text{Dist}(G)^G$ is given by a locally L^1 function F_{Θ} (for instance a character), then $\Theta \in \operatorname{Dist}(G)^{st}$ iff F_{Θ} is constant on stable conjugacy classes.

IV. Characters

So far, i've talked about invariant distribution on *G* defined geometrically (orbital integrals). They appear in the geometric side of the trace formula. Let us consider now distributions appearing in the spectral side, i.e. characters of representations.

 $\mathcal{M}(G)$: category of Harish-Chandra modules $\Pi(G)$: (classes of) irreducible objects If $(\pi, V) \in \mathcal{M}(G)$, $\Theta_{\pi} \in \operatorname{Distr}(G)^{G}$ is the distribution character of π . It is given by a locally L^{1} function $F_{\Theta_{\pi}}$, analytic on G_{reg} .

 $\Pi_{temp}(G)$: (classes of) irreducible tempered representations.

Thm (Arthur) $< \Theta_{\pi}, \pi \in \Pi_{temp}(G) >$ is weakly dense in $\operatorname{Distr}(G)^{G}$.

also follows easily from Bouaziz thm.

V. *L*-packets

Grouping orbital integrals in a given stable conjugacy class, we obtain stable distributions. So there must be a way to group together distribution characters Θ_{π} to get stable distributions.

Thm (Langlands) There is a partition of $\Pi(G)$ in "L-packets"

$\Pi(G) = \coprod_{\phi} \Pi_{\phi}$

satisfying many properties, among them :

- Π_{ϕ} are finite

- if one π in Π_ϕ is tempered, all of them are

- if $\pi_1, \pi_2 \in \Pi_\phi$ have same central and infinitesimal characters

. . . .

- For $G = GL(n, \mathbb{R})$, all *L*-packets are singletons.

Example Discrete series for $SL(2, \mathbb{R})$: π_n , $n \in \mathbb{Z}^*$. Then $\{\pi_n, \pi_{-n}\}$ is a *L*-packet. Also $\{\pi_0^-, \pi_0^+\}$: limits of discrete series Thm (Shelstad) If $\Pi_{\phi} \subset \Pi_{temp}(G)$, then $\Theta_{\phi} = \sum_{\pi \in \Pi_{\phi}} \Theta_{\pi}$ is a stable distribution.

Rmk It works only with tempered packets. For non-tempered, one has to consider instead more complicated Arthur packets to get stable distributions (see Adams-Barbasch-Vogan).

Parameters:

 $W_{\mathbb{R}}$ Weil group of \mathbb{C}/\mathbb{R} . $1 \to \mathbb{C}^{\times} \to W_{\mathbb{R}} \to \Gamma \to 1$ non split exact sequence. ${}^{L}G = \hat{G} \ltimes W_{\mathbb{R}}$: Langlands *L*-group

 $\Phi(G) = \{ \phi: W_{\mathbb{R}} o {}^L G ext{ s.t.... } \} / \sim \hat{G}$

VI. Endoscopic group

Take \mathbb{H} , \mathbb{G} as before, and suppose there is map

 $\xi: {}^{L}H \rightarrow {}^{L}G$ (satisfying some properties...)

so that one can defined geometric correspondences between stable conjugacy classes in H and G (Hand G "share" some Cartan subgroups).

>From a Langlands parameter $\phi_H : W_{\mathbb{R}} \to {}^L H$ one get a Langlands parameter $\xi \circ \phi_H := \phi_G : W_{\mathbb{R}} \to {}^L G$.

We want a "character identity" :

$$\Theta_{\phi_H} \longleftrightarrow \sum_{\pi \in \Pi_{\phi_G}} a_{\pi} \; \Theta_{\pi} \quad (*)$$

If we can find enough different H to invert (*), we would write each Θ_{π} as a linear combination of stable distributions : useful for applications of the trace formula.

So, we want

$Trans: \operatorname{Distr}(H)^{st} \to \operatorname{Distr}(G)^G$

We can get such a map as the transpose of a map

$trans: I(G) \to I^{st}(H)$

Basic idea : $W_I/W(M,T)$ which parametrizes conjugacy classes inside a stable conjugacy class, can be viewed as a subset of a subgroup of $H^1(\Gamma, \mathbb{T})$. One can use Tate-Nakayama's pairing

$$H^1(\Gamma,\mathbb{T}) imes \pi_0(\hat{T}^\Gamma) o\mathbb{Z}$$

to put weights on each conjugacy class inside the stable one.

Shelstad found out what H to consider, giving geometric correspondence between stable conjugacy classes in H and G

 $\gamma_H \longleftrightarrow \gamma_G$

and defined a map

$$trans: I(G) \to I^{st}(H)$$

defined on γ_H in H_{reg} such that $\gamma_G \in G_{reg}$ by :

$$trans(\psi)(\gamma_H) = \sum_{\delta \in \Sigma_G} \Delta(\delta, \gamma_H) \psi(\delta) \quad (**)$$

 Σ_G : system of representatives of conjugacy classes in the stable conjugacy class of γ_G .

(**) should have smooth extension to regular γ_H such that γ_G is not regular in G.

 $\Delta(\delta,\gamma_H)$: transfer factors

 $\Delta = \Delta_I \Delta_{II} \Delta_{III_1} \Delta_{III_2}$

Rmk : In LS or KS, there is also a Δ_{IV} . We have included it in our definition of orbital integrals $|D_G(\delta)|^{1/2}/D_H(\gamma_H)|^{1/2}$

 Δ_{III_1} : correspond to the basic idea of endoscopic groups : it is a sign $\{\pm 1\}$ put on each conjugacy classes in the stable conjugacy class of γ_G (depends on the choice of the base point γ_G).

 $\Delta_{II}: \delta \mapsto \psi$ can be made more regular by multiplying by a factor

$$b_{R_I^+}(\delta) = \prod_{lpha \in R_I^+} (lpha(\delta) - 1) / |(lpha(\delta) - 1)|$$

Choose positive system of imaginary roots R_{I}^{+} , $R_{I,H}^{+}$, then

$$\Delta_{II}(\delta,\gamma_H) = b_{R_I^+}(\delta)/b_{R_{I,H}^+}(\gamma_H).$$

 Δ_{III_2} : $\gamma_H \in T_H$, $\delta \in T$, $\mathbb{T}_H \simeq T$ over \mathbb{R} . ${}^LT_H \simeq {}^LT$ and some choices of positive root systems give

 ${}^{L}T_{H} \rightarrow {}^{L}H, \qquad {}^{L}T \rightarrow {}^{L}G$

But the diagram is not commutative : defect given by $a \in H^1(W_{\mathbb{R}}, \mathbb{T})$

By Langlands correspondance for tori, this gives a character χ_a of T,

 $\Delta_{III_1}(\delta,\gamma_H)=\chi_a(\delta)$

"correction character" in Shelstad terminology.

 Δ_I : maybe the most subtle : it is a sign $\{\pm 1\}$ depending on the pair (T_H, T) , given also by Tate-Nakayama duality, which does two things (miracle!)

- Δ becomes independent of all choices

- jump formula are satisfied for $trans(\psi)$.

Thm (Shelstad) For tempered *L*-packets, we get what we want :

 $Trans: \operatorname{Distr}(H)^{st} \to \operatorname{Distr}(G)^G$

 $\Theta_{\phi_H}\mapsto \sum_{\pi\in\Pi_{\phi_G}}(\pm 1)\Theta_{\pi}$

 ± 1 interpreted as a pairing between Π_{ϕ_G} viewed as a subset of the character group of S_{ϕ_G} and

$$egin{aligned} S_{\phi_G} = \ Z(\phi_G(W_R),\hat{G})/Z(\phi_G(W_R),\hat{G})_0 Z(\hat{G})^\Gamma \end{aligned}$$

There are enough endoscopic groups to invert the system.