Endoscopy for real groups

CIRM, June 2007

David Renard, Centre de mathématiques Laurent Schwartz, Ecole Polytechnique

"Endoscopy for real groups"
"Twisted endoscopy for real groups"
http://www.math.polytechnique.fr/~renard/

l. Introduction.

Endodscopy is a major theme in the framework of Langlands functoriality conjectures. This is a vast and technical subject, with both local and global aspect. My goal today is very limited: i want to show how the theory emerged in the real case in the work of Diana Shelstad in the 80's, from natural consideration in harmonic analysis of real reductive groups. I particular, i would like to present the transfer factors of Langlands-Shelstad (Kottwitz Shelstad for the twisted case), as they appeared in Shelstad's papers. I hope this a posteriori survey of Shelstad's work will help to understand these rather subtle and difficult objects (the transfer factors).

II. Conjucacy classes / Stable conjugacy classes

\mathbb{G} : connected algebraic reductive group / \mathbb{R}.
$G=\mathbb{G}(\mathbb{R})$: real points
$\mathfrak{g}=\operatorname{Lie}(G), \quad \mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$.
$\Gamma=\operatorname{Gal}(\mathbb{C} / \mathbb{R})=<\sigma>$

Let $\gamma \in \boldsymbol{G}$ regular (semisimple), $\boldsymbol{T}_{\gamma}=\mathbb{T}_{\gamma}(\mathbb{R})$: unique Cartan subgroup of G containing γ.

Def : $\gamma, \gamma^{\prime} \in \boldsymbol{G}_{\boldsymbol{r e g}}$ are stably conjugate if there exists $g \in \mathbb{G}=\mathbb{G}(\mathbb{C})$ s.t.
$\gamma^{\prime}=\boldsymbol{g} \gamma \boldsymbol{g}^{-1}$ and $\sigma(\boldsymbol{g}) \boldsymbol{g}^{-1} \in \mathbb{T}_{\gamma}$

Rmk: If γ, γ^{\prime} are conjugate in \boldsymbol{G}, they are stably conjugate. So stable conjugacy classes are unions of usual conjugacy classes.
\boldsymbol{T} : Cartan subgroup of \boldsymbol{G}.
$T=T_{I} T_{R}=T_{I} \exp \mathfrak{a}, \quad \mathfrak{a}=\operatorname{Lie}\left(T_{R}\right):$
compact/ split decomposition of \boldsymbol{T}.
$\mathbb{M}=Z(\mathbb{G}, \mathfrak{a}), M=\mathbb{M}(\mathbb{R})=Z(G, \mathfrak{a})$.
\boldsymbol{R} : root system of $\mathfrak{t}_{\mathbb{C}}$ in \mathfrak{g}
\boldsymbol{W} : Weyl group
$\boldsymbol{\alpha} \in \boldsymbol{R}$ is real if $\boldsymbol{\sigma}(\boldsymbol{\alpha})=\boldsymbol{\alpha}$, imaginary if $\sigma(\alpha)=-\alpha$, complex if $\sigma(\alpha) \neq \pm \boldsymbol{\alpha}$.
$\boldsymbol{R}_{\boldsymbol{I}} \subset \boldsymbol{R}:$ system of imaginary roots $\simeq \boldsymbol{R}\left(\mathfrak{m}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}}\right)$.
$\boldsymbol{W}_{\boldsymbol{I}}$: Weyl group of $\boldsymbol{R}_{\boldsymbol{I}}$,
$W(M, T)=N_{M}(T) / T$: real Weyl group
$W(M, T) \subset W_{I} \subset W^{\Gamma}$.
So the action of W_{I} on \mathbb{T} preserves \boldsymbol{T}.

Prop: $\gamma \in \boldsymbol{G}_{\boldsymbol{r e g}}, \boldsymbol{T}=\boldsymbol{T}_{\boldsymbol{\gamma}}$.
If γ is strongly regular,

$$
\{w \cdot \gamma\}_{\bar{w} \in W_{I} / W(M, T)}
$$

is a system of representatives of conjugacy classes in the stable conjugacy class of γ. In general, we get all classes, but not uniquely.

III. Orbital integrals

G acts on itself by conjugation. One would like to define a functional space of test functions on "the quotient variety".

Problem : the quotient is not a variety....
$\mathcal{C}_{c}^{\infty}(G) \stackrel{\text { dual }}{\longleftrightarrow} \operatorname{Dist}(G)$
test functions / distributions
$\operatorname{Dist}(G)^{G} \hookrightarrow \operatorname{Dist}(G)$
Problem Find functional space $I(G)$ with surjective map
$\mathcal{C}_{c}^{\infty}(G) \rightarrow I(G)$
and $I(G)^{\prime} \simeq \operatorname{Dist}(G)^{G}$

Answer : $\boldsymbol{I}(\boldsymbol{G})$: space of orbital integrals:
$f \in \mathcal{C}_{c}^{\infty}(G), \gamma \in G_{r e g}$

$$
J_{G}(f)(\gamma)=\left|D_{G}(\gamma)\right|^{1 / 2} \int_{G / T_{\gamma}} f\left(g \gamma g^{-1}\right) d \dot{g}
$$

$\boldsymbol{d} \dot{\boldsymbol{g}}$: invariant measure, normalized in a coherent way for all Cartan subgroups
$J_{G}(f) \in \mathcal{C}^{\infty}\left(\boldsymbol{G}_{r e g}\right)$ has certain properties (Harish-Chandra) :

- all derivatives locally bounded
- compact support on Cartan subgroups
- smooth extention on some parts of $\boldsymbol{T}_{\text {sing }}$
- when no smooth extention on a wall, jump is explicitly given.

Thm (A. Bouaziz) These properties characterize orbital integrals.
$I(G)$: LF space

Stable orbital integrals
$J_{G}^{s t}(f)(\gamma)=\sum_{\bar{w} \in W_{I} / W(M, T)} J_{G}(f)(w \cdot \gamma)$
Image of $J_{G}^{s t}$ is characterized by same kind of properties.
$I^{s t}(G)$: space of stable orbital integrals.
$\gamma \in \boldsymbol{G}_{\boldsymbol{r e g} \boldsymbol{g}}$, set
$I(\gamma,.) \in \operatorname{Dist}(G)^{G}, \quad I(\gamma, f)=J_{G}(f)(\gamma)$.
$I^{s t}(\gamma,.) \in \operatorname{Dist}(G)^{G}, \quad I(\gamma, f)=J_{G}^{s t}(f)(\gamma)$.
Bouaziz thm implies that
$<\boldsymbol{I}(\gamma,),. \gamma \in \boldsymbol{G}_{r e g}>$ is weakly dense in
$\operatorname{Dist}(G)^{G}$
Def: $\operatorname{Dist}(G)^{s t}=\overline{<I^{s t}(\gamma, .), \gamma \in G_{r e g}>}$
So $\operatorname{Dist}(G)^{s t} \hookrightarrow \operatorname{Dist}(G)^{G} \hookrightarrow \operatorname{Dist}(G)$ and $\mathcal{C}_{c}^{\infty}(G) \rightarrow I(G) \rightarrow I^{s t}(G)$
Prop If $\Theta \in \operatorname{Dist}(G)^{G}$ is given by a locally $L^{\mathbf{1}}$ function $\boldsymbol{F}_{\boldsymbol{\Theta}}$ (for instance a character), then $\Theta \in \operatorname{Dist}(G)^{s t}$ iff $\boldsymbol{F}_{\boldsymbol{\Theta}}$ is constant on stable conjugacy classes.

IV. Characters

So far, i've talked about invariant distribution on G defined geometrically (orbital integrals). They appear in the geometric side of the trace formula. Let us consider now distributions appearing in the spectral side, i.e. characters of representations.
$\mathcal{M}(\boldsymbol{G})$: category of Harish-Chandra modules
$\Pi(G)$: (classes of) irreducible objects
If $(\pi, V) \in \mathcal{M}(G), \Theta_{\pi} \in \operatorname{Distr}(G)^{G}$ is the distribution character of $\boldsymbol{\pi}$. It is given by a locally $\boldsymbol{L}^{\mathbf{1}}$ function $\boldsymbol{F}_{\boldsymbol{\Theta}_{\boldsymbol{\pi}}}$, analytic on $\boldsymbol{G}_{\boldsymbol{r e g}}$.
$\Pi_{t e m p}(G):($ classes of) irreducible tempered representations.

Thm (Arthur) $<\Theta_{\pi}, \boldsymbol{\pi} \in \Pi_{\text {temp }}(G)>$ is weakly dense in $\operatorname{Distr}(G)^{G}$.
also follows easily from Bouaziz thm.

V. L-packets

Grouping orbital integrals in a given stable conjugacy class, we obtain stable distributions. So there must be a way to group together distribution characters $\Theta_{\boldsymbol{\pi}}$ to get stable distributions.

Thm (Langlands) There is a partition of $\boldsymbol{\Pi}(\boldsymbol{G})$ in "L-packets"

$\Pi(G)=\coprod_{\phi} \Pi_{\phi}$

satisfying many properties, among them :

- Π_{ϕ} are finite
- if one $\boldsymbol{\pi}$ in $\boldsymbol{\Pi}_{\phi}$ is tempered, all of them are
- if $\pi_{1}, \pi_{2} \in \Pi_{\phi}$ have same central and infinitesimal characters
- For $\boldsymbol{G}=\boldsymbol{G} \boldsymbol{L}(\boldsymbol{n}, \mathbb{R})$, all \boldsymbol{L}-packets are singletons.

Example Discrete series for $\boldsymbol{S L}(\mathbf{2}, \mathbb{R})$: $\boldsymbol{\pi}_{\boldsymbol{n}}$, $\boldsymbol{n} \in \mathbb{Z}^{*}$. Then $\left\{\pi_{n}, \pi_{-n}\right\}$ is a \boldsymbol{L}-packet.

Also $\left\{\pi_{0}^{-}, \pi_{0}^{+}\right\}$: limits of discrete series

Thm (Shelstad) If $\Pi_{\phi} \subset \Pi_{\text {temp }}(\boldsymbol{G})$, then $\Theta_{\phi}=\sum_{\pi \in \Pi_{\phi}} \Theta_{\pi}$
is a stable distribution.

Rmk It works only with tempered packets. For non-tempered, one has to consider instead more complicated Arthur packets to get stable distributions (see Adams-Barbasch-Vogan).

Parameters:
$\boldsymbol{W}_{\mathbb{R}}$ Weil group of \mathbb{C} / \mathbb{R}.
$\mathbf{1} \rightarrow \mathbb{C}^{\times} \rightarrow \boldsymbol{W}_{\mathbb{R}} \rightarrow \boldsymbol{\Gamma} \rightarrow \mathbf{1}$
non split exact sequence.
${ }^{L} \boldsymbol{G}=\hat{\boldsymbol{G}} \ltimes \boldsymbol{W}_{\mathbb{R}}$: Langlands L-group
$\Phi(G)=\left\{\phi: W_{\mathbb{R}} \rightarrow{ }^{L} G\right.$ s.t..... $\} / \sim \hat{G}$

VI. Endoscopic group

Take \mathbb{H}, \mathbb{G} as before, and suppose there is map
$\boldsymbol{\xi}:{ }^{\boldsymbol{L}} \boldsymbol{H} \rightarrow{ }^{\boldsymbol{L}} \boldsymbol{G}$ (satisfying some properties...)
so that one can defined geometric correspondences between stable conjugacy classes in \boldsymbol{H} and $\boldsymbol{G}(\boldsymbol{H}$ and G "share" some Cartan subgroups).
$>$ From a Langlands parameter $\boldsymbol{\phi}_{\boldsymbol{H}}: \boldsymbol{W}_{\mathbb{R}} \rightarrow{ }^{\boldsymbol{L}} \boldsymbol{H}$ one get a Langlands parameter $\xi \circ \phi_{H}:=\phi_{G}: W_{\mathbb{R}} \rightarrow{ }^{L} G$.

We want a "character identity" :

If we can find enough different \boldsymbol{H} to invert (*), we would write each $\Theta_{\boldsymbol{\pi}}$ as a linear combination of stable distributions: useful for applications of the trace formula.

So, we want

$$
\text { Trans }: \operatorname{Distr}(H)^{s t} \rightarrow \operatorname{Distr}(G)^{G}
$$

We can get such a map as the transpose of a map

$$
\text { trans }: I(G) \rightarrow I^{s t}(H)
$$

Basic idea: $\boldsymbol{W}_{I} / \boldsymbol{W}(\boldsymbol{M}, \boldsymbol{T})$ which parametrizes conjugacy classes inside a stable conjugacy class, can be viewed as a subset of a subgroup of $\boldsymbol{H}^{\mathbf{1}}(\boldsymbol{\Gamma}, \mathbb{T})$. One can use Tate-Nakayama's pairing

$$
H^{1}(\Gamma, \mathbb{T}) \times \pi_{0}\left(\hat{T}^{\Gamma}\right) \rightarrow \mathbb{Z}
$$

to put weights on each conjugacy class inside the stable one.

Shelstad found out what \boldsymbol{H} to consider, giving geometric correspondence between stable conjugacy classes in \boldsymbol{H} and \boldsymbol{G}
$\gamma_{H} \longleftrightarrow \gamma_{G}$
and defined a map

$$
\text { trans }: I(G) \rightarrow I^{s t}(H)
$$

defined on $\gamma_{\boldsymbol{H}}$ in $\boldsymbol{H}_{\boldsymbol{r e g}}$ such that $\gamma_{\boldsymbol{G}} \in \boldsymbol{G}_{\boldsymbol{r e g}}$ by :

$$
\operatorname{trans}(\psi)\left(\gamma_{H}\right)=\sum_{\delta \in \Sigma_{G}} \Delta\left(\delta, \gamma_{H}\right) \psi(\delta) \quad(* *)
$$

Σ_{G} : system of representatives of conjugacy classes in the stable conjugacy class of γ_{G}.
$(* *)$ should have smooth extension to regular $\gamma_{\boldsymbol{H}}$ such that γ_{G} is not regular in \boldsymbol{G}.
$\boldsymbol{\Delta}\left(\boldsymbol{\delta}, \gamma_{H}\right)$: transfer factors
$\Delta=\Delta_{I} \Delta_{I I} \Delta_{I I I_{1}} \Delta_{I I I_{2}}$

Rmk: In LS or KS, there is also a $\boldsymbol{\Delta}_{\boldsymbol{I V}}$. We have included it in our definition of orbital integrals $\left|D_{G}(\delta)\right|^{1 / 2} /\left.D_{H}\left(\gamma_{H}\right)\right|^{1 / 2}$
$\boldsymbol{\Delta}_{\boldsymbol{I I I} I_{1}}$: correspond to the basic idea of endoscopic groups : it is a sign $\{ \pm \mathbf{1}\}$ put on each conjugacy classes in the stable conjugacy class of γ_{G} (depends on the choice of the base point γ_{G}).
$\boldsymbol{\Delta}_{\boldsymbol{I I}}: \boldsymbol{\delta} \mapsto \boldsymbol{\psi}$ can be made more regular by multiplying by a factor

$$
b_{R_{I}^{+}}(\delta)=\prod_{\alpha \in R_{I}^{+}}(\alpha(\delta)-1) / \mid(\alpha(\delta)-1 \mid
$$

Choose positive system of imaginary roots $\boldsymbol{R}_{\boldsymbol{I}}^{+}, \boldsymbol{R}_{\boldsymbol{I}, \boldsymbol{H}}^{+}$, then

$$
\Delta_{I I}\left(\delta, \gamma_{H}\right)=b_{R_{I}^{+}}(\delta) / b_{R_{I, H}^{+}}\left(\gamma_{H}\right)
$$

$\Delta_{I I I_{2}}: \gamma_{H} \in T_{H}, \delta \in T, \mathbb{T}_{\boldsymbol{H}} \simeq T$ over \mathbb{R}. ${ }^{L^{L}} \boldsymbol{T}_{\boldsymbol{H}} \simeq{ }^{\boldsymbol{L}} \boldsymbol{T}$ and some choices of positive root systems give

$$
{ }^{L} \boldsymbol{T}_{\boldsymbol{H}} \rightarrow{ }^{L} \boldsymbol{H}, \quad{ }^{L} \boldsymbol{T} \rightarrow{ }^{L} G
$$

But the diagram is not commutative : defect given by $a \in \boldsymbol{H}^{1}\left(\boldsymbol{W}_{\mathbb{R}}, \mathbb{T}\right)$

By Langlands correspondance for tori, this gives a character χ_{a} of T,
$\Delta_{I I I_{1}}\left(\delta, \gamma_{H}\right)=\chi_{a}(\delta)$
"correction character" in Shelstad terminology.
Δ_{I} : maybe the most subtle : it is a sign $\{ \pm \mathbf{1}\}$ depending on the pair $\left(\boldsymbol{T}_{\boldsymbol{H}}, \boldsymbol{T}\right)$, given also by Tate-Nakayama duality, which does two things (miracle!)

- $\boldsymbol{\Delta}$ becomes independent of all choices
- jump formula are satisfied for $\operatorname{trans}(\psi)$.

Thm (Shelstad) For tempered L-packets, we get what we want :

Trans $: \operatorname{Distr}(H)^{s t} \rightarrow \operatorname{Distr}(G)^{G}$
$\Theta_{\phi_{H}} \mapsto \sum_{\pi \in \Pi_{\phi_{G}}}(\pm 1) \Theta_{\pi}$
$\pm \mathbf{1}$ interpreted as a pairing between $\Pi_{\phi_{G}}$ viewed as a subset of the character group of $\boldsymbol{S}_{\phi_{G}}$ and
$S_{\phi_{G}}=$
$Z\left(\phi_{G}\left(W_{R}\right), \hat{G}\right) / Z\left(\phi_{G}\left(W_{R}\right), \hat{G}\right)_{0} Z(\hat{G})^{\Gamma}$
There are enough endoscopic groups to invert the system.

