
DIRAC INDUCTION FOR HARISH-CHANDRA MODULES

PAVLE PANDŽIĆ AND DAVID RENARD

Abstract. We introduce new notions of Dirac cohomology and homology of a Harish-
Chandra module X. If X is unitary or finite-dimensional then these new notions both
coincide with the previously studied version of Dirac cohomology from [V] and [HP1].
The new notions have certain advantages. Notably, if X is irreducible and has nonzero
Dirac cohomology (respectively homology), then X is uniquely determined by its Dirac
cohomology (respectively homology). Furthermore, one can define adjoint functors that
we call Dirac induction functors. We study basic properties of these functors and we
calculate their result explicitly in some examples.

1. Introduction

Dirac operators were first used in representation theory of reductive Lie groups by
Parthasarathy [P]. More recently, a related concept of Dirac cohomology was introduced
by Vogan [V] and further developed in [HP1], [HLZ], [HPR], [HP2], [ZL], [MP], [HKP].
The notion has also been generalized to various other settings; see [K3], [Ku], [AM], [HP3],
[KMP].

Let G be a connected real reductive Lie group with Cartan involution Θ such that
K = GΘ is a maximal compact subgroup of G. Let g = k⊕p be the Cartan decomposition
of the complexified Lie algebra of G corresponding to Θ. The Dirac operator D is a K-
invariant element of the algebra U(g)⊗C(p), where U(g) denotes the universal enveloping
algebra of g and C(p) denotes the Clifford algebra of p with respect to the Killing form.

If X is a (g,K)-module, then D acts on X ⊗ S, where S is the spin module for C(p).
Vogan defines Dirac cohomology of X as

HD
V (X) = Ker D/Ker D ∩ Im D.

This is easily seen to be a module for the spin double cover K̃ of K, which is finite-
dimensional if X is of finite length.

The main goal of this paper is to describe certain constructions in the opposite direction,
which we call Dirac induction. For example, if W is a (finite-dimensional or irreducible)
K̃-module, we would like to construct a (g,K)-module X whose Dirac cohomology is (or
contains) W . One would further like such a construction to be functorial, and adjoint to
the functor HD

V .
The first obstacle we encounter is the fact that in general the functor HD

V has no
exactness properties, and therefore can not admit adjoints. We solve this by introducing
two functors similar to HD

V . We call them Dirac cohomology and homology and denote
by HD and HD. They both coincide with HD

V in the most interesting cases, when X is
either unitary or finite-dimensional. They have all the good properties of HD

V , and also
some good properties that HD

V does not have. For example, HD is left exact and admits
a right adjoint, while HD is right exact and admits a left adjoint. These adjoints are the
first versions of our Dirac induction functors. We show that they take finite-dimensional
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2 PAVLE PANDŽIĆ AND DAVID RENARD

K̃-modules to (g,K)-modules of finite length. However, we show that for G = SL(2, R),
the modules we obtain are never irreducible.

We therefore want to find a “smaller” version of the Dirac induction functors. To do
this, one has to think of HD(X) and HD(X) not just as K̃-modules, but also as modules
for the algebra (U(g) ⊗ C(p))K . We show that if this structure is taken into account,
then HD(X), if nonzero, determines X. The same is true for HD(X). Moreover, one can
define “reduced” Dirac induction using this extra structure.

Since the algebra (U(g)⊗C(p))K is complicated and its modules are hard to describe,
we also study an “intermediate” version of induction using only the action of the algebra
C(p)K , which is very easy to describe. We show that in this way one can construct all
holomorphic discrete series representations via Dirac induction.

In future we hope to be able to understand other, more complicated examples. This will
probably require understanding a bigger part of the mysterious (U(g)⊗ C(p))K-action.

Finally, let us mention that there is a well developed functional-analytic version of Dirac
induction, centered around the well known Baum-Connes conjecture about K-theory. For
example, see [Ch] and references cited there. Our algebraic version of Dirac induction
does not appear to be directly related to that theory.

2. Dirac cohomology and homology

In this section we first review the definition and some of the main properties of Dirac
cohomology as defined in [V] and [HP1]. Then we propose two slightly different notions
with better homological properties that are more suitable in the context of this paper.
Notably, they will admit adjoint functors, the Dirac induction functors. There is how-
ever no difference between the three definitions in the most important case, i.e., for an
irreducible unitary Harish-Chandra module. Furthermore, the main result of [HP1] relat-
ing the infinitesimal character of a Harish-Chandra module to the K-types in its Dirac
cohomology still holds.

Let us first fix some notation and make some assumptions.

2.1. Notation and assumptions. G : a connected real reductive Lie group with Cartan
involution Θ such that K = GΘ is a maximal compact subgroup of G.

g0 : the Lie algebra of G with Cartan involution θ = dΘ.
B : invariant nondegenerate symmetric bilinear form on g0.
g0 = k0 ⊕ p0 : Cartan decomposition corresponding to θ.
g = k⊕ p : complexified Cartan decomposition.
Throughout the paper we will be assuming that g and k have equal rank, although a lot

of what we will do does not require this assumption to hold. In particular, the dimension
of p is even. We will denote by h a common Cartan subalgebra of g and k.

C(p) : the Clifford algebra of p with respect to B.
S : the module of spinors for C(p). Since dim p is even, S is the only simple C(p)-

module. It is constructed as follows. Choose a decomposition p = U ⊕ U∗ into dual
isotropic subspaces. Set S =

∧
U . Let U act on S by wedging and U∗ by contracting.

For more details about Clifford algebras and spinors, see [C], Kostant’s papers (notably
[K1]), or [HP2], Chapter 2. The last reference has exactly the same conventions as the
ones we are using in this paper.

K̃ : the spin double cover of K, i.e., the pull-back of the covering map Spin(p) → SO(p)
by the adjoint action map K → SO(p).
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D : Dirac operator. If bi is a basis of p and di is the dual basis with respect to B, then

D =
∑

i

bi ⊗ di ∈ U(g)⊗ C(p).

D is independent of the choice of basis bi and K-invariant for the adjoint action on both
factors.

∆ : U(k) ↪→ U(g)⊗ C(p) : diagonal embedding defined on X ∈ k by ∆(X) = X ⊗ 1 +
1⊗ α(X), where α is the the action map k → so(p) followed by the usual identifications

so(p) ∼=
∧2p ↪→ C(p).

A = U(g)⊗C(p). The pair (A, K̃) is a generalized Harish-Chandra pair in the sense of
[KV], with the Lie algebra k0 of K̃ embedded into A via ∆. We will usually denote ∆(k)
by k∆.
M(g,K), M(A, K̃), etc. : categories of Harish-Chandra modules for the pairs (g,K),

(A, K̃), etc.

2.2. An equivalence of categories. In the following we will study (g,K)-modules X

by considering the corresponding (A, K̃)-modules X ⊗ S. Here A = U(g) ⊗ C(p) acts
on X ⊗ S in the obvious way, while K̃ acts both on X (through K) and on S (through
Spin(p0) ⊂ C(p)).

In fact, the functor of passing from X to X ⊗ S is an equivalence of categories. To see
this, we consider the functor from M(A, K̃) to M(g,K) given by

M 7→ HomC(p)(S, M).

Here the g-action on HomC(p)(S, M) is on M only, while the K action descends from the
K̃-action given by

(k · f)(s) = k(f(k−1 · s)), k ∈ K̃, f ∈ HomC(p)(S, M), s ∈ S.

We claim that this is the inverse of X 7→ X ⊗ S. In fact, since S is the only simple C(p)-
module and since the category of C(p)-modules is semisimple, for every C(p)-module M
there is an isomorphism of C(p)-modules

M ∼= HomC(p)(S, M)⊗ S,

given from right to left by the evaluation map. This isomorphism is easily seen to respect
the (A, K̃)-action.

Likewise, since HomC(p)(S, S) ∼= C by Schur’s Lemma, we have a (g,K)-isomorphism

HomC(p)(S, X ⊗ S) ∼= HomC(p)(S, S)⊗X ∼= X

for any (g,K)-module X. We have proved

Proposition 2.2.1. The functor X 7→ X⊗S from M(g,K) to M(A, K̃) is an equivalence
of categories. Its inverse is the functor M 7→ HomC(p)(S, M).

In the following we will be passing freely from X to X ⊗ S and back.

2.3. Vogan’s definition of Dirac cohomology.

Definition. Let X ∈ M(g,K). The Dirac operator D acts on X ⊗ S. Vogan’s Dirac
cohomology of X is the quotient

HD
V (X) = Ker D/(KerD ∩ Im D).
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Since D ∈ AK̃ , K̃ acts on Ker D, Im D and HD
V (X).

The most important property of D is the formula

(2.3.1) D2 = −(Casg⊗1 + ‖ρg‖2) + (Cask∆ +‖ρk‖2)

due to Parthasarathy [P] (see also [HP2]). Here Casg (respectively Cask∆) denotes the
Casimir element of U(g) (respectively U(k∆)).

This has several important consequences. First of all, assume that X has infinitesimal
character Λ ∈ h∗. Let (τ, Fτ ) be an irreducible representation of K̃ with highest weight
τ ∈ h∗. We denote the corresponding K̃-isotypic component of X ⊗ S by (X ⊗ S)(τ).
Then D2 acts on (X ⊗ S)(τ) by the scalar

(2.3.2) −‖Λ‖2 + ‖τ + ρk‖2.

In particular, we see that the kernel of D2 on X ⊗ S is a direct sum of full K̃-isotypic
components of X ⊗ S - these are exactly those (X ⊗ S)(τ) for which

(2.3.3) ‖τ + ρk‖2 = ‖Λ‖2.

This is particularly helpful if X is unitary, in which case there is a natural inner product
on X ⊗ S such that D is symmetric with respect to this inner product. It follows that

(2.3.4) Ker D2 = KerD = HD
V (X).

Thus a K̃-submodule Fτ ⊂ X ⊗ S is in HD
V (X) if and only if (2.3.3) holds. Moreover,

since D is symmetric, it follows that D2 ≥ 0, i.e., the expression (2.3.2) is ≥ 0 for every
τ ⊂ X ⊗ S. This is the famous Dirac inequality of Parthasarathy, which is a useful
necessary condition for unitarity.

Similarly, if X is finite-dimensional, then there is a natural inner product on X ⊗ S
such that D is skew-symmetric with respect to this inner product. So (2.3.4) holds also
for finite-dimensional X (but now D2 ≤ 0).

For general X, (2.3.4) does not hold, but note that D is always a differential on Ker D2,
and HD

V (X) is the usual cohomology of this differential.
Another useful consequence of (2.3.1) is

(2.3.5) D2 is in the center of the algebra AK .

Finally, let us mention the main result of [HP1]. As before, let Λ ∈ h∗ be the infinites-
imal character of X. Denote by Wg the Weyl group of g with respect to h.

Proposition 2.3.1. Assume that Fτ is a K̃-submodule of HD
V (X). Then

(2.3.6) Λ = τ + ρk up to conjugacy by Wg.

Thus for unitary X, (2.3.3) is equivalent to the stronger condition (2.3.6), provided
that τ appears in X ⊗ S.

2.4. A new definition of Dirac cohomology and homology. It turns out that in
general the functor HD

V from M(g,K) or M(A,K) to M(k, K̃) has no exactness proper-
ties, and therefore cannot admit either a left or a right adjoint. Therefore we propose the
following alternative definitions.

Let I be the two-sided ideal in AK generated by D.

Definition. Let X ∈ M(g, K̃). The Dirac cohomology of X, denoted HD(X), is the
subspace of I-invariants in X ⊗ S. In other words,

HD(X) = {v ∈ X ⊗ S | av = 0, ∀a ∈ I}.
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The Dirac homology of X, denoted HD(X), is the space of I-coinvariants of X ⊗ S. In
other words,

HD(X) = X ⊗ S / I(X ⊗ S).

Since I is K-invariant, HD(X) and HD(X) are K̃-modules.

Proposition 2.4.1. Assume X is either unitary or finite-dimensional. Then HD(X),
HD(X) and HD

V (X) all coincide, and are equal to Ker D = KerD2.

Proof. We already explained that (2.3.4) holds for X.
Since D2 ∈ I, it is clear that I-invariants in X⊗S are contained in KerD2. Conversely,

if v ∈ X⊗S is in KerD2 = KerD, then Dav = 0 for any a ∈ AK , since D2av = aD2v = 0.
(Here we use (2.3.5).) It follows that v is I-invariant. So

HD(X) = Ker D2.

If we take orthogonals of KerD = Ker D2, we get Im D = Im D2. It follows that I(X ⊗
S) = D2(X ⊗ S). Hence

HD(X) = CokerD2 ∼= Ker D2.

�

Another good feature of the definitions we have made is the fact that analogues of the
main result of [HP1], Proposition 2.3.1, hold both for HD(X) and for HD(X).

Proposition 2.4.2. Assume that τ is a K̃-submodule of either HD(X) or HD(X). Then
(2.3.6) holds.

Proof. Recall that the proof in [HP1] consisted of showing that there is an explicitly
described homomorphism ζ : Z(g) → Z(k∆) with the following property: for any z ∈ Z(g),
there is some a ∈ AK such that

z ⊗ 1 = ζ(z) + Da + aD.

Then the result followed from the fact that Da + aD must act as zero on Fτ ⊂ HD
V (X).

In our present situation, we have Da+aD ∈ I, so we can again conclude that Da+aD
acts as zero on Fτ . So the same proof as in [HP1] implies also the present statement. �

There is one more nice property of modules HD(X) and HD(X) which does not seem to
be true for HD

V (X). Namely, they always consist of full K̃-isotypic components of X ⊗S.
We will prove this fact in Proposition 5.1.1 below. The reason for postponing this proof
is the use of the action of AK , which we study in Section 4.

3. Dirac induction

In this section we will consider the functors HD and HD from M(A, K̃) into the
category M(k∆, K̃) and show that HD has a left adjoint while HD has a right adjoint.
These adjoints will be the first version of the Dirac induction functors.

3.1. Decomposing HD and HD. The first step is to write HD and HD as compositions.
Namely, we can consider the K-invariant subalgebra B of A with unit, generated by k∆
and I. Since k∆ commutes with I, we can write

B = U(k∆)Ī ⊂ A,

where Ī = C1⊕ I. Now HD and HD may be defined by taking the forgetful functor

For : M(A, K̃) →M(B, K̃),

and then continue with taking I invariants or coinvariants to land in M(k∆, K̃)
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3.2. Adjoints to the forgetful functor. We now recall a well known fact that the
above forgetful functor has a left adjoint given by

(3.2.1) W 7→ A ⊗B W

and a right adjoint given by

(3.2.2) W 7→ HomB(A,W )K̃−finite

Here the subscript “K̃-finite” refers to taking the K̃-finite vectors of the Hom-space. The
actions are given in the usual way: A acts on A ⊗B W by left multiplication in the first
factor, and on HomB(A,W )K̃−finite by right multiplication in the first variable. K̃ acts by
adjoint action on A and the given action on W in both cases. Note that these functors
are just the usual “change of rings” functors, with group actions taken into consideration.

3.3. Adjoints to invariants and coinvariants. Let us consider the functor :

(3.3.1) M(U(k∆), K̃) →M(B, K̃), W 7→ W,

where the B-action on W is defined by letting I act by 0.
This functor has a right adjoint – taking I-invariants, and a left adjoint – taking I-

coinvariants. This is another well known and easy-to-prove fact.

3.4. Adjoints to HD and HD. Combining the adjunctions of (3.2) and (3.3), we get

Theorem 3.4.1. The functor of Dirac cohomology HD : M(A, K̃) → M(k∆, K̃) has a
left adjoint, the functor

IndD : W 7→ A ⊗B W.

The functor of Dirac homology HD : M(A, K̃) → M(k∆, K̃) has a right adjoint, the
functor

IndD : W 7→ HomB(A,W )K̃−finite.

3.5. The (g,K)-version. Using the equivalence of categories from Proposition 2.2.1, we
can reinterpret HD, HD, IndD and IndD as functors between categories M(g,K) and
M(k, K̃). The induction functors then become

IndD(W ) = HomC(p)(S,A⊗B W );

IndD(W ) = HomC(p)(S, HomB(A,W )K̃−finite).

Let us rewrite these formulas. First, let us write IndD(W ) as

(3.5.1) IndD(W ) = HomC(p)(S, U(g)⊗ C(p)⊗W )U(k∆)Ī .

Here the C(p)-action in the subscript of Hom refers to the action by left multiplication
on C(p) in the second factor, while the coinvariants with respect to U(k∆)Ī refer to the
action by right multiplication on U(g)⊗ C(p) and the given action on W . Moreover, the
coinvariants do not mean quotient by all of the image of U(k∆)Ī, as that would be zero;
rather, the quotient is taken by the image of the ideal of U(k∆)Ī generated by k∆ and I.

Viewing C(p) as a module over itself under left multiplication, we can write

C(p) = S∗ ⊗ S,

where we denoted HomC(p)(S, C(p)) by S∗ (see 2.2.1). Here all the action is on the factor
S, but S∗ carries the other action of C(p) on itself, the one given by right multiplication.
This is a right action, but we can easily pass between left and right actions of C(p) by
using the principal antiautomorphism equal to the identity on p (see e.g. [HP2], 2.1.12).
So we can view S∗ also as a left C(p)-module. If dim p = 2k, then dim C(p) = 22k and



DIRAC INDUCTION FOR HARISH-CHANDRA MODULES 7

dim S = 2k, so dim S∗ = 2k. It follows that S∗ is in fact isomorphic to S, so we can also
write

C(p) = S ⊗ S

as a C(p)×C(p) module, with the action on the first factor S corresponding to the right
multiplication and the action on the second factor S corresponding to the left multiplica-
tion. Plugging this into (3.5.1), and taking into account the fact HomC(p)(S, S) = C, we
get

IndD(W ) = (U(g)⊗ S ⊗W )U(k∆)Ī .

Tracing the k-actions, we can rewrite this as

IndD(W ) = (U(g)⊗U(k) (W ⊗ S))I .

Here the k-action in the subscript of ⊗ is the right multiplication in the first factor and the
tensor product action in the second factor, and the coinvariants are taken with respect to
the action of I defined as follows. We can make A = U(g)⊗C(p) act on U(g)⊗(W⊗S) by
letting U(g) act by right multiplication on itself, and C(p) on S as usual. The restriction
of this action to AK makes sense on U(g)⊗U(k) (W ⊗ S), and this restricts to the action
of I we announced.

Using the standard functor ind from M(k,K) to M(g,K) given by

ind(Z) = U(g)⊗U(k) Z,

and using the notation HD for I-coinvariants (as before, but now with additional actions),
one can finally write

IndD(W ) = HD(ind(W ⊗ S)).

In an analogous way, we can write IndD(W ) as

IndD(W ) = HD(pro(W ⊗ S)),

with pro denoting the usual functor Z 7→ HomU(k)(U(g), Z)K−finite and HD denoting the
I-invariants with additional actions.

3.6. Properties of the induced modules. By adjunction, for any (g,K)-module X,
and for any K̃-module W we have

Hom(g,K)(IndD(W ), X) = HomK̃(W,HD(X));

Hom(g,K)(X, IndD(W )) = HomK̃(HD(X),W ).

This immediately implies

Corollary 3.6.1. Let X be an irreducible (g,K)-module, and let W be an irreducible
K̃-module.

Then W is contained in HD(X) if and only if X is a quotient of IndD(W ). In partic-
ular, W is contained in the Dirac cohomology of IndD(W ).

Analogously, W is contained in HD(X) if and only if X is a submodule of IndD(W ).
In particular, W is contained in the Dirac homology of IndD(W ).

It is therefore natural to study the composition series of IndD(W ) and IndD(W ). At
least, we know that the length of these modules is finite:

Proposition 3.6.2. Let W be an irreducible K̃-module. Then the (g,K)-modules IndD(W )
and IndD(W ) are of finite length. All their composition factors have the same infinitesimal
character, equal to the k-infinitesimal character of W .
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Proof. These modules are obviously finitely generated over U(g). Furthermore, by Propo-
sition 2.3.1, they have infinitesimal character equal to the k-infinitesimal character of W .
Hence they are Z(g)-finite. It is well-known (see e.g. [KV], Chapter X) that this implies
that they are of finite length. �

3.7. Example: (g,K) = (sl(2, C), SO(2)). We will use the following basis of g:

H =
(

0 −i
i 0

)
, E =

1
2

(
1 i
i −1

)
, F =

1
2

(
1 −i
−i −1

)
.

Then H spans k while E and F span p, and the commutation relations are the usual ones

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

We will furthermore normalize the form B so that B(E,F ) = 1. Then as generators of
C(p), E and F satisfy the relations

E2 = 0, F 2 = 0, EF + FE = −2.

From the definition of the map α : k → C(p) in 2.1 (or from formula (2.10) in [HP2]), one
sees that

α(H) = FE + 1 = −EF − 1.

Hence, the subalgebra k∆ of A is spanned by the element

(3.7.1) H∆ = H ⊗ 1 + 1⊗ FE + 1⊗ 1 = H ⊗ 1− 1⊗ EF − 1⊗ 1.

The Dirac operator is of course

D = E ⊗ F + F ⊗ E.

Our next task is to study the two-sided ideal I of AK .

Lemma 3.7.1. The following elements of AK are in I:

E ⊗ F, F ⊗ E, FE ⊗ 1− 1
2
H ⊗ FE.

Proof. The element E ⊗ F is in I because

E ⊗ F = −1
2
(1⊗ FE)D.

For F ⊗ E there is an analogous formula, or notice that F ⊗ E = D − E ⊗ F . Finally,

FE ⊗ 1− 1
2
H ⊗ FE = −1

2
D2,

so it is also in I. �

Let now W be a one-dimensional K̃-module spanned by w such that

(3.7.2) H∆w = kw,

where k ∈ Z+. (For k < 0, we can do a similar analysis, or we can replace the basis
H,E, F of g with the basis −H,F, E, which has the effect of switching k and −k.) We
want to describe the (A, K̃)-module

IndD(W ) = A⊗B W.

By the Poincaré-Birkhoff-Witt Theorem, U(g) has a basis consisting of monomials F iEjHk,
i, j, k ∈ Z+. Using (3.7.1) and (3.7.2) we see that for any a ∈ A,

a(H ⊗ 1)⊗ w = a((k − 1)⊗ 1− 1⊗ FE)⊗ w

in A⊗B W . It follows that (U(g)⊗ C(p))⊗B W is spanned by elements of the form

(F iEj ⊗ F rEs)⊗ w, i, j ∈ Z+, r, s ∈ {0, 1}.
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If we also use Lemma 3.7.1, we see that (U(g) ⊗ C(p)) ⊗B W is spanned already by the
following elements:

(En ⊗ 1)⊗ w, (En ⊗ E)⊗ w, n ≥ 1;(3.7.3)
(Fn ⊗ F )⊗ w, (Fn ⊗ (−2))⊗ w, n ≥ 1;

(1⊗ F )⊗ w, (1⊗ EF )⊗ w;
(1⊗ FE)⊗ w, (−2⊗ E)⊗ w.

(Note that (1⊗1)⊗w is not missing here, as it can be obtained as −1/2⊗(EF +FE)⊗w.)
There are no more obvious relations between the elements in (3.7.3). So let us assume

that they actually form a basis of (U(g)⊗ C(p))⊗B W . We will prove this a little later,
using a concrete A-module; now we first want to show how to arrive at this particular
module.

Assuming the elements (3.7.3) form a basis of (U(g)⊗C(p))⊗BW , it is easy to see that
for every n, each row in (3.7.3) is a copy of the spin module for the action of C(p) ⊂ A
by left multiplication, with the first element in each row corresponding to 1 ∈ S and the
second element to E ∈ S. So we get IndD(W ) = X ⊗ S, where X is the (g,K)-module
spanned by the first elements of the rows of (3.7.3).

To get the exact structure of X, there are two possible approaches. One is to calculate
the action of g⊗ 1, that is, of H⊗ 1, E⊗ 1 and F ⊗ 1, by left multiplication. For this, one
only needs the commutation relations in U(g) and the relations we already used, given by
(3.7.1), (3.7.2) and Lemma 3.7.1.

The other approach uses less calculation and that’s the one we sketch. We first calculate
the action of H ⊗ 1 by left multiplication. The outcome is that the H-weights of X are

(3.7.4) k + 1 + 2i, i ∈ Z, each with multiplicity one.

Namely, (En ⊗ 1) ⊗ w is of weight k + 1 + 2n, (Fn ⊗ F ) ⊗ w is of weight k − 1 − 2n,
(1 ⊗ F ) ⊗ w is of weight k − 1, and (1 ⊗ FE) ⊗ w is of weight k + 1. For example, we
calculate

(H ⊗ 1)(En ⊗ 1)⊗ w = (En ⊗ 1)((H + 2n)⊗ 1)⊗ w =

(En ⊗ 1)(H∆ + 1⊗ EF + 1 + 2n)⊗ w = (k + 1 + 2n)(En ⊗ 1)⊗ w.

(For the last equality we used (En ⊗ EF ) ⊗ w = (En−1 ⊗ E)(E ⊗ F ) ⊗ w = 0 since
E ⊗ F ∈ I by Lemma 3.7.1.)

Recall that by Proposition 3.6.2 we know that all composition factors of X must have
infinitesimal character equal to k. On the other hand, the weights of X are given by
(3.7.4). It follows that if k ≥ 1, the irreducible subquotients of X are the discrete series
representation Dk+1 and D−k−1 and the finite dimensional module Fk−1, each appearing
once. If k = 0, then the subquotients of X are the limit of discrete series representations
D±1, each appearing once.

The only remaining question is how exactly X is composed from its composition fac-
tors. We can see this using Corollary 3.6.1. First, it is easy to calculate Vogan’s Dirac
cohomology of any (sl(2, C), SO(2))-module M (see [HP2], 9.6.5.):

(3.7.5) HD
V (M) = (Ker F/(Im E ∩Ker F ))⊗ 1⊕ (KerE/(Im F ∩Ker E))⊗ E.

It follows that for k ≥ 1, Vogan’s Dirac cohomology of Dk+1 and Fk−1 is W , while Vogan’s
Dirac cohomology of D−k−1 is W ∗ 6= W , and that for k = 0, Vogan’s Dirac cohomology
of D1 and D−1 is W . Furthermore, in all these cases, Vogan’s Dirac cohomology is equal
to HD.

Thus 3.6.1 implies that for k ≥ 1, Dk+1 and Fk−1 are quotients of X while D−k−1 is
not. In particular, there is a surjection X → Fk−1, whose kernel must be Dk+1 ⊕D−k−1,



10 PAVLE PANDŽIĆ AND DAVID RENARD

since Dk+1 and D−k−1 have no nontrivial extensions. Thus Dk+1 is both a sub and a
quotient of X, hence it is a direct summand. On the other hand, D−k−1 is a sub but not
a quotient. It follows that

X = Vk−1 ⊕Dk+1,

where Vk−1 is the Verma module with sub D−k−1 and quotient Fk−1. If k = 0 we similarly
conclude that

X = D−1 ⊕D1.

We have not yet proved any of this, because we assumed that the elements (3.7.3) form a
basis of IndD(W ).

We can now reverse the above considerations and start with the module X described
above. Using (3.7.5) we see that HD

V (X) consists of two copies of W , one of them spanned
by xk+1⊗1 and the other by xk−1⊗E, where xk+1 and xk−1 are nonzero vectors in X with
H-eigenvalue k + 1 respectively k − 1. Note that xk+1 ⊗ 1 and xk−1 ⊗ E span the whole
k-eigenspace of H∆ in X⊗S, and since this eigenspace is preserved by AK , it follows that
it is annihilated by I. So it is contained in HD(X) (and in fact equal to HD(X)).

Let

w = xk+1 ⊗ 1 + xk−1 ⊗ E.

We denote W = Cw. Then W generates the A-module X ⊗ S, as

(En ⊗ 1)w = Enxk+1 ⊗ 1, (En ⊗ E)w = Enxk+1 ⊗ E, n ≥ 1;
(Fn ⊗ F )w = −2Fnxk−1 ⊗ 1, (Fn ⊗ 1)w = Fnxk−1 ⊗ E, n ≥ 1;

(1⊗ F )w = −2xk−1 ⊗ 1, (1⊗ EF )w = −2xk−1 ⊗ E;
(1⊗ FE)w = −2xk+1 ⊗ 1, (1⊗ E)w = xk+1 ⊗ E.

Comparing this with (3.7.3), we see that the action map A ⊗ W → X ⊗ S sends the
elements listed in (3.7.3) (but now considered as elements of A ⊗ W ) bijectively onto a
basis of X⊗S. It is clear that this action map annihilates the subspace of A⊗W spanned
by ab⊗ w − a⊗ bw, a ∈ A, b ∈ B. Also, we have already seen that the action of B on W
conincides with the B-action we put on W to define IndD(W ). So we conclude

Proposition 3.7.2. Let k ∈ Z+ and let W = Cw be the one-dimensional K̃-module with
H∆ acting as k. Then IndD(W ) = X⊗S where the (g,K)-module X is equal to the direct
sum of Dk+1 and the Verma module Vk−1 of highest weight k − 1.

Note that the formulation of the proposition covers both the cases k ≥ 1 and k = 0.
One can similarly analyze IndD(W ). The conclusion is that if k ≥ 1, the obtained

(g,K)-module is

X = Ṽk−1 ⊕Dk+1,

where Ṽk−1 is the dual Verma module with sub Fk−1 and quotient D−k−1, and if k = 0,
then

X = D−1 ⊕D1.

In particular, we have seen that the induced modules, although manageable, are always
rather big. For example, they are never irreducible. The reason for this is the fact that
the algebra B we considered so far is rather small. We will move towards fixing this in
the next two sections.
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4. On a theorem of Harish-Chandra

The goal of this section is to show that the Dirac cohomology of an irreducible Harish-
Chandra module X, if nonzero, determines X up to isomorphism. This can be viewed as
an extension of the main result of [HP1], which says that the Dirac cohomology determines
the infinitesimal character of X.

To make this into a statement, we will need to view the Dirac cohomology not just as a
K̃-module, but also as a module for the algebra AK . The crucial property implying that
AK acts on HD(X) and HD(X) will be the fact that HD(X) and HD(X) consist of full
K̃-isotypic components of X ⊗ S. This is Proposition 5.1.1 below. Its proof requires the
results of this section.

In this section we show that the action of AK on any nontrivial K̃-isotypic component
of X ⊗ S determines the irreducible (A, K̃)-module X ⊗ S up to isomorphism. This
is a variant of a well known theorem due to Harish-Chandra [HC], which asserts that
an irreducible (g,K)-module is characterized by the action of U(g)K on any non-trivial
K-isotypic component. A simplified algebraic proof of this result was given by Lepowsky-
McCollum [LMC].

We present a conceptual proof of the slightly more general result that we need. The
proof uses the fact that the category of (g,K)-modules (or more generally, of (A,K)-
modules, where (A,K) is a generalized Harish-Chandra pair in the sense of [KV], Chapter
I) is equivalent to the category of non-degenerate modules over an algebra with idempo-
tents. The relevant result is then Proposition 4.3.3 below, due to J. Bernstein, whose
main application is in the theory of reductive p-adic groups ([Re], Section I.3). Bernstein
told us that the idea of his proof came from the treatment of Harish-Chandra’s result
given by Godement in [Go].

4.1. Schur orthogonality relations. Let K be a compact Lie group. Let us fix a
Haar measure µK on K. If f is integrable on K, we will simply write

∫
K f(k) dk for∫

K f(k) dµK(k). Let (π1, V1), (π2, V2) be two irreducible finite dimensional representations
of K. Let 〈. , .〉1 and 〈. , .〉2 be some invariant Hermitian products respectively on V1 and V2.
Let us prove the following generalization of the well-known Schur orthogonality relations:

Proposition 4.1.1. Let f be a smooth function on K. Then

(4.1.1)
∫

K
f(k) 〈π(k) · v1, v

∗
1〉 〈π(k)−1 · v2, v

∗
2〉 dk =

∫
K f(k) dk

dim(V )
〈v1, v

∗
2〉〈v2, v

∗
1〉,

for all v1, v2 in V and for all v∗1, v
∗
2 in V ∗.

To prove this, one uses the fact that V ⊗ V ∗ is an irreducible representation of K ×K,
with contragredient V ∗ ⊗ V and the following lemma:

Lemma 4.1.2. Let G be a compact Lie group, and W be an irreducible finite dimensional
representation of G. If B : W ×W ∗ → C is a G-invariant bilinear form, then there exists
a constant c ∈ C such that

B(w,w∗) = c 〈w,w∗〉, (w ∈ W ), (w∗ ∈ W ∗).

In particular, if B is nonzero, then B is non-degenerate.

The proof is an easy consequence of Schur lemma (see [Re], Prop II.1.9).
To prove Proposition 4.1.1, we apply Lemma 4.1.2 for G = K×K and W = V ⊗V ∗. The

left-hand side of (4.1.1) defines a K×K-invariant bilinear form B on (V ⊗V ∗)×(V ∗⊗V ).
Thus, Lemma 4.1.2 gives a constant c ∈ C such that for all v1, v2 ∈ V and v∗1, v

∗
2 ∈ V ∗,
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∫
K

f(k) 〈π(k) · v1, v
∗
1〉〈π(k)−1 · v2, v

∗
2〉 dk = c 〈v1, v

∗
2〉〈v2, v

∗
1〉.

It remains to evaluate the value of c. To do this, we fix a basis {zi}i of V , with dual
basis {z∗i }i. Then we write the above formula for v∗1 = z∗i , and v2 = zi, and add up the
results over i. The details are left to the reader. �

4.2. Generalized Harish-Chandra pairs and Hecke algebras. Let (A,K) be a gen-
eralized Harish-Chandra pair, in the sense of [KV], Chapter I. Let R(A,K) be the Hecke
algebra constructed in [KV], §I.5. As a vector space, R(A,K) is isomorphic to

A⊗U(k) R(K),

where R(K) is the convolution algebra of K-finite distributions on K (see [KV], Definition
I. 115).

Let (γ, Fγ) be an irreducible finite dimensional representation of K. Let us denote by
Θγ̃ the character of the contragredient representation (γ̃, F ∗

γ ), and let

χγ =
dim(Vγ)
vol (K)

Θγ̃ dk

be the idempotent element of R(K) giving the projection operators on K-isotypic com-
ponents of type γ. Then 1 ⊗ χγ defines an idempotent of R(A,K). Our goal is to prove
the following:

Theorem 4.2.1. The algebra

(1⊗ χγ) ·R(A,K) · (1⊗ χγ)

is isomorphic to
AK ⊗U(k)K End(Fγ).

Proof. For a ∈ A, T ∈ R(K), we have

(a⊗ T ) · (1⊗ χγ) = a⊗ T ∗ χγ .

But T ∗χγ = χγ ∗T is the projection of T on R(K)γ (see [KV], Proposition I.24, I.30 and
Equation (1.37)). Furthermore ([KV], Proposition I.39)

R(K)γ = R(K)l,γ = R(K)r,γ̃
∼= Fγ ⊗C F ∗

γ
∼= End(Fγ),

the isomorphism between Fγ ⊗C F ∗
γ and R(K)γ being given by

v ⊗ v∗ 7→ 〈v, γ̃(.) · v∗〉µK = 〈γ(.)−1 · v, v∗〉µK .

Thus we see that

R(A,K) · (1⊗ χγ) ∼= A⊗U(k) (Fγ ⊗C F ∗
γ )

To compute (1⊗χγ) · (a⊗ T ) · (1⊗χγ), we may now assume that T = T ∗χγ = χγ ∗ T
is of the form

T = 〈v, γ̃(.) · v∗〉 = 〈γ(.)−1 · v, v∗〉µK ,

and we need to evaluate :
(1⊗ χγ) · (a⊗ T ).

According to [KV], Proposition I.104, one may compute this product by introducing a
basis of the (finite dimensional) space generated by a ∈ A as a representation of K. Let
{aj}j be such a basis, with dual basis {a∗j}j . Then

(1⊗ χγ) · (a⊗ T ) =
∑

j

aj ⊗ (〈Ad(.)a, a∗j 〉χγ) ∗ T.
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Let us give another expression for the element

(〈Ad(.)a, a∗i 〉χγ) ∗ T

of R(K). As a matter of notation, recall that 〈Ad(.)a, a∗j 〉χγ is the result of the multi-
plication of the distribution χγ in R(K) by the smooth function 〈Ad(.)a, a∗i 〉 on K, an
element in R(K). For a test function φ ∈ C∞(K),

〈 (〈Ad(.)a, a∗j 〉χγ) ∗ T, φ〉 =
∫

K×K
φ(xy) 〈Ad(x)a, a∗j 〉 dχγ(x)dT (y)

=
∫

K×K
φ(xy) 〈Ad(x)a, a∗j 〉

dim(Vγ)
vol (K)

Θγ̃(x)〈γ̃(y) · v∗, v〉 dxdy

=
∫

K

∫
K

φ(y)〈Ad(x)a, a∗j 〉
dim(Vγ)
vol (K)

(∑
i

〈γ̃(x) · v∗i , vi〉

)
〈γ̃(x−1y) · v∗, v〉 dxdy

=
∫

K
φ(y)

∑
i

dim(Vγ)
vol (K)

(∫
K
〈Ad(x)a, a∗j 〉〈γ̃(x)v∗i , vi〉〈γ̃(x)−1 · (γ̃(y) · v∗), v〉 dx

)
dy

=
∫

K
φ(y)

∑
i

(∫
K
〈Ad(x)a, a∗j 〉 dx

)
1

vol (K)
〈v∗i , v〉〈γ̃(y) · v∗, vi〉dy

=
(∫

K
〈Ad(x)a, a∗j 〉 dx

)
1

vol (K)

∫
K

φ(y)〈
∑

i

〈γ̃(y) · v∗, vi〉v∗i , v〉 dy

=
(∫

K
〈Ad(x)a, a∗j 〉 dx

)
1

vol (K)

∫
K

φ(y)〈γ̃(y) · v∗, v〉dy

=
(∫

K
〈Ad(x)a, a∗j 〉 dx

)
1

vol (K)
〈T, φ〉

In the third line, we have written Θγ̃ as a trace, choosing a basis {vi}i of Fγ with
dual basis {v∗i }i, and we also made a change of variable y 7→ x−1y. In the fourth line, we
arrange the terms so that an expression like the left-hand side of (4.1.1) becomes apparent.
Then, we simplify the expression using (4.1.1). The rest of the computation is clear.

Thus we obtain,

(〈Ad(.)a, a∗i 〉χγ) T =
(∫

K
〈Ad(x)a, a∗i 〉 dx

)
1

vol (K)
T

and

(1⊗ χγ) · (a⊗ T ) =
∑

i

ai ⊗
(∫

K
〈Ad(x)a, a∗i 〉 dx

)
1

vol (K)
T

=
1

vol (K)

(∫
K

∑
i

〈Ad(x)a, a∗i 〉aidx

)
⊗ T

=
1

vol (K)

(∫
K

Ad(x)a dx

)
⊗ T

But a 7→ 1
vol (K)

(∫
K

Ad(x)a dx

)
is the projection operator from A to AK . The

assertion in the theorem is now clear. �

4.3. A theorem about idempotented algebra. We start by recalling a few basic facts
about idempotented algebras. The reference for the results in this section is [Re], Section
I.3.
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Definition. Let A be a ring (possibly without unit). We say that A is an idempotented
ring if for any finite subset {a1, . . . , an} of A, there exists an idempotent e in A (e2 = e)
such that ai = eaie for all i.

Definition. A module M for the idempotented ring A is non-degenerate if for any m ∈ M ,
there exists an idempotent e in A such that e ·m = m.

For an A-module M , we denote by MA the non-degenerate part of M , i.e., the largest
non-degenerate submodule of M .

Let us remark that a ring with unit is an idempotented ring, and that non-degenerate
modules are in this case simply the unital modules, i.e., the modules on which the unit of
the ring acts as the identity.

We denote by M(A) the category of non-degenerate left modules for the idempotented
ring A. When A is a ring with unit, M(A) is the category of left unital A-modules.

Let A be an idempotented C-algebra, and let e be an idempotent element of A. Let M
be a non-degenerate A-module. Then M decomposes as

(4.3.1) M = e ·M ⊕ (1− e) ·M
Notice that eAe is an algebra with unit e, and that e ·M is a unital eAe-module.

Let us define the functor :

je : M(A) →M(eAe), M 7→ e ·M.

The functor je is exact.
Let us denote by:

— M(A, e) the full subcategory of M(A) of modules M such that M = Ae ·M .
— Irr(A) the set of isomorphism classes of simple non-degenerate A-modules,
— Irr(eAe) the set of isomorphism classes of simple unital eAe-modules,
— Irr(A, e) the subset of Irr(A) of modules M satisfying e ·M 6= 0.

Modules in M(A, e) are thus the modules M in M(A) generated by e ·M , and Irr(A, e)
is the set of isomorphism classes of irreducible objects in M(A, e).

Lemma 4.3.1. Consider the induction functor i:

i : M(eAe) →M(A), Z 7→ A⊗eAe Z.

Then je ◦ i is naturally isomorphic to the identity functor of M(eAe), i.e.,

(4.3.2) je ◦ i(Z) ∼= Z, Z ∈M(eAe),

these isomorphisms being natural in Z.

One deduces from this that A · (e · i(Z)) = i(Z), thus the functor i takes values in
M(A, e).

Of course, it is possible that je annihilates some modules in M(A), and therefore
one cannot hope to obtain all non-degenerate A-modules from modules in M(eAe) by
induction. Nevertheless, we get all irreducible modules in M(A, e).

Definition. Let M be a non-degenerate A-module and let e ∈ Idem(A). Let us define
the non-degenerate A-module :

Me := M/F (eA,M), where F (eA,M) = {m ∈ M | eA ·m = 0}.

Lemma 4.3.2. Let M be a non-degenerate A-module. Then (Me)e = Me.

Proposition 4.3.3. The map M 7→ e ·M gives a bijection from Irr(A, e) onto Irr(eAe),
with inverse given by W 7→ (A⊗eAe W )e.
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4.4. Consequences for (A,K)-modules. Let (A,K) be a generalized Harish-Chandra
pair. The category of (A,K)-modules is naturally equivalent to the category of non-
degenerate R(A,K)-modules. Let (γ, Fγ) be an irreducible finite dimensional represen-
tation of K and let 1 ⊗ χγ be the corresponding idempotent element in R(A,K), as in
4.2. Then for any (A,K)-module V , (1⊗χγ) · V is the K-isotypic component V (γ) of V .
Thus Theorem 4.2.1 and the computation in 4.2 give

Theorem 4.4.1. Let us fix an irreducible finite dimensional representation (γ, Fγ) of K.
Then the map V 7→ V (γ) from the set of equivalence classes of irreducible (A,K)-modules
V with non-zero K-isotypic component V (γ) to the set of equivalence classes of simple
unital AK ⊗U(k)K End(Vγ)-modules is a bijection, with inverse given by

W 7→
(

R(A,K)⊗h
AK⊗

U(k)K
End(Fγ)

i W

)
1⊗χγ

5. The algebra C(p)K

From now on A will again denote the algebra U(g) ⊗ C(p) and not a part of some
unspecified generalized Harish-Chandra pair like in the previous section. Furthermore,
the role of the group K from the last section will be played by the group K̃.

As we have seen in 3.7, the induced modules as defined in 3.4 are rather big. That
is because the algebra B is rather small. In view of the results of Section 4, we would
like to tensor over the algebra B̂ = U(k∆)AK . This algebra acts irreducibly on any full
K̃-isotypic component of an irreducible (A, K̃)-module X ⊗ S.

5.1. Dirac cohomology as a B̂-module. The above remarks imply that the algebra
B̂ acts on HD(X) and HD(X); this action is irreducible if X is irreducible. Namely, we
have the following proposition.

Proposition 5.1.1. Let X be an irreducible (g,K)-module. If the Dirac cohomology
HD(X) contains an irreducible K̃-submodule Eγ of X ⊗S, then HD(X) contains the full
isotypic component (X ⊗ S)(γ). The same is true for the Dirac homology HD(X).

Proof. It follows from the results of 4.4 that since the algebra B̂ acts irreducibly on (X ⊗
S)(γ), the algebra AK must act irreducibly on the multiplicity space HomK̃(Eγ , X ⊗ S),
or equivalently on the highest weight space (X ⊗ S)(γ)n∩k. (Here we fix some compat-
ible choice of positive roots for g and k, and let b = h ⊕ n be the corresponding Borel
subalgebra.)

It follows that if Fγ is any other copy of γ in X ⊗ S, then there is some a ∈ AK such
that Fγ = aEγ . If now b ∈ I, then bFγ = baEγ = 0, since Eγ is annihilated by I, and
ba ∈ I since I is an ideal in AK . So Fγ ⊂ HD(X). The proof for HD(X) is similar. �

Corollary 5.1.2. Let X be an irreducible (g,K)-module. Then the (B̂, K̃)-module HD(X),
if nonzero, determines X uniquely up to isomorphism. The same is true for HD(X).

5.2. Reduced Dirac induction. The above proposition implies that we can consider
HD and HD as functors from (A, K̃)-modules to (B̂, K̃)-modules with the property that I
acts by 0 (these can be viewed as B̂/U(k∆)I-modules.) Taking any of the latter modules,
we can tensor it with A over B̂; this is the functor ÎndD, left adjoint to the functor
HD. Analogously, we can consider the functor Înd

D
= HomB̂(A, •)K̃−finite, which is right

adjoint to HD. We call these two functors the reduced Dirac induction functors. It is now
not difficult to obtain results for these functors analogous to those from 3.6.



16 PAVLE PANDŽIĆ AND DAVID RENARD

The problem with this approach is the following. Unfortunately, as is well known, it
is difficult to describe modules, or even characters, of the algebra U(g)K . The same can
then be expected for the algebras AK and B̂, as they contain U(g)K as U(g)K ⊗ 1. So
there is not much hope that we can understand the above construction explicitly, except
in some easy examples.

The algebra AK however contains a much simpler (and smaller) subalgebra C(p)K =
1 ⊗ C(p)K , which we can use to our benefit. Using this algebra, we will construct an
intermediate subalgebra B̃ of A, lying between B and B̂, and consider corresponding
functors ĨndD and Ĩnd

D
.

5.3. The structure of C(p)K . We learned the following facts from Kostant [K4].
First, note that C(p) = End(S), and the adjoint action of K on C(p) descends from

the K̃-action on End(S) given by k · f = kfk−1 for k ∈ K̃ and f ∈ End(S). It follows
that C(p)K ∼= EndK̃(S).

Since g and k have equal rank, it is well known that the K̃-types in S have multiplicity
one. (They can moreover be described explicitly; see [W] or [HP2].)

It follows that EndK̃(S) is spanned by the projections onto each of these K̃-types. Let
us denote these projections by p1, . . . , pn. (Here n is the number of positive root systems
for (g, h) containing a fixed positive root system for (k, h).) The relations among the pi

are
p2

i = pi, i = 1, . . . , n; pipj = 0, i 6= j.

It follows that C(p)K is isomorphic to the commutative algebra Cn with coordinate-wise
multiplication. The isomorphism is given by sending p1, . . . , pn to the standard basis
elements e1, . . . , en of Cn.

Since the algebra C(p)K is finite-dimensional and commutative, all its modules are
direct sums of irreducibles, and all irreducibles are one-dimensional. Moreover, each of
the pi must act by 0 or 1, and since 1 = p1 + · · ·+ pn must act by 1, we see that exactly
one of the pi must act by 1, while all other pi must act by 0. Thus, C(p)K has exactly n
different characters.

5.4. An intermediate version of induction functors. We will now enlarge our alge-
bra B ⊂ A to include also C(p)K , but not other more complicated elements of AK . Let B̃
be the subalgebra of A generated by k∆, the ideal I ⊂ AK generated by D, and C(p)K .
Since U(k∆) commutes with AK and since I is an ideal of AK , we can also write B̃ as

B̃ = U(k∆)(C(p)K + I) = (C(p)K + I)U(k∆).

Let now W be a U(k∆)-module. We extend it to a B̃-module by letting I act by 0, and
C(p)K by one of the n characters described above. Then we define

ĨndD(W ) = A⊗B̃ W ; Ĩnd
D

(W ) = HomB̃(A,W )K̃−finite.

Since B̃ ⊃ B, it is clear that there is a natural surjection from IndD(W ) to ĨndD(W ), and

a natural injection from Ĩnd
D

(W ) into IndD(W ).
It is easy to show that the functor ĨndD is left adjoint to HD considered as a functor

from the category of (A, K̃)-modules into the category of (B̃, K̃)-modules with I acting

by 0. Likewise, Ĩnd
D

is right adjoint to HD considered as a functor between the same two
categories. From this one immediately gets results for these functors analogous to those
from 3.6.
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5.5. The sl(2) example revisited. Let us get back to the setting of 3.7. The spin
module S, which is spanned by 1 and E, consists of two K̃-types. On one of them, C · 1,
α(H) = FE + 1 acts by −1, and on the other, C ·E, by 1. It follows that C(p)K consists
of two projections, p1 projecting onto C · 1, and p2 projecting onto C ·E. Explicitly, these
projections are

p1 = −1
2
FE and p2 = −1

2
EF.

Let us now assume as before that W = Cw is a k∆-module such that H∆w = kw for some
k ≥ 0. We now make W into a B̃-module by choosing p1 to act as 1 and p2 as 0. So
1⊗ EF acts on W by 0 while 1⊗ FE acts by −2. It follows that

(1⊗ F )w = −1
2
(1⊗ F )(1⊗ EF )w ∈ A⊗B̃ W

is 0. So is then
(F ⊗ 1)w = −1

2
(D(1⊗ F ) + (1⊗ F )D)w.

We conclude that the elements (F i ⊗ 1)w, (F i ⊗ F )w, −(1⊗ F )w and −(1⊗EF )w from
3.7 are all 0, and thus we conclude that ĨndD(W ) = X ⊗ S, where X is a (g,K)-module
with K-types k +1, k +3, k +5, . . . . The only (g,K)- module with these K-types is Dk+1.
So we see that

ĨndD(W ) = Dk+1 ⊗ S.

In particular, we see that the module ĨndD(W ) is irreducible. Similarly as in 3.7, one can

see that also Ĩnd
D

(W ) = Dk+1 ⊗ S.
If W is the K̃-type k < 0, then we choose the other character of C(p)K , i.e., we make

p2 act as 1 and p1 as 0. The result is that in this case

ĨndD(W ) = Ĩnd
D

(W ) = D−k−1 ⊗ S.

We leave it to the reader to see what is obtained if one makes the “wrong” choice of
characters of C(p)K , i.e., lets p2 act as 1 and p1 as 0 for k ≥ 0, respectively lets p1 act as
1 and p2 as 0 for k < 0.

Finally, we remark that in this case, the algebra B̃ is in fact equal to the usually much
larger algebra B̂.

6. Further examples: holomorphic discrete series

In this section we show that conclusions similar to those we made in the sl(2) case
apply also in the case of arbitrary holomorphic discrete series. In particular, holomorphic
discrete series can be obtained using the “intermediate” Dirac induction. We note that
except for sl(2), the algebra B̂ is in fact larger than the algebra B̃.

6.1. Some structural results in the Hermitian case. Let us assume that the pair
(g,K) is Hermitian, so we have a K-invariant decomposition p = p+ ⊕ p− and p± are
abelian subalgebras of p. We fix a choice of positive roots for k and add the roots corre-
sponding to p+ to obtain a positive root system for g.

We can choose the spin module to be S =
∧

p+. Then every
∧i p+ is K̃-invariant

(but not necessarily irreducible). In particular, S1 = C · 1 ⊂ S is a one-dimensional K̃-
submodule1. We denote by p1 ∈ C(p)K the projection of S to S1, and by p2, . . . , pn ∈
C(p)K the projections to other K̃-types S2, . . . , Sn of S. Let S′ = ⊕n

i=2Si; the correspond-
ing projection is p′ = p2 + · · ·+ pn.

1Its weight is −ρn, where ρn = ρg − ρk is the half sum of the noncompact positive roots corresponding
to p+. This can be obtained e.g. from (6.3.1) below. It also follows from [K2], Proposition 3.6.
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If T ∈ EndC(S) ∼= C(p) is any linear operator such that T (1) = 0, then T = Tp′.
Namely, T and Tp′ agree both on S1 and on S′. In particular, if F ∈ p− ⊂ C(p), then
F · 1 = 0 and hence F = Fp′.

6.2. A description of holomorphic discrete series representations. Let W1 be an
irreducible K-module. Let X be the (g,K)-module

X = U(g)⊗U(q) W1,

where q = k⊕ p− is a maximal parabolic subalgebra of g which acts on W1 so that p− act
as 0. The action of g on X is given by the left multiplication in the first factor, while the
action of K is the adjoint action in the first factor tensored by the given action on W1.
Clearly, X is a lowest weight g-module with lowest weight equal to the k-lowest weight of
W1.

Using the Poincaré-Birkhoff-Witt theorem, one can also write

X = S(p+)⊗W1,

where p+ acts by left multiplication, and to see the action of the elements of q, they have
to be commuted through the first factor and then transferred to the second factor.

If the K-type W1 is sufficiently regular, it is well known that X is irreducible and
unitary. This is for example true if W1 is in the weakly good range, i.e., the infinitesimal
character of W1 plus ρn has nonnegative inner product with all roots corresponding to
p+. Namely, it is clear that X is cohomologically induced from W1, so we can apply the
well known results about irreducibility and unitarity of cohomologically induced modules
(see [KV], Theorem 8.2 and Theorem 9.1.) The resulting module X is then said to belong
to the holomorphic discrete series (or antiholomorphic, depending on the conventions.)

6.3. Obtaining X by Dirac induction. Note that W = W1 ⊗ 1 ⊂ X ⊗ S is clearly
annihilated by the Dirac operator D. Namely, D can be written as

D =
∑

i

Ei ⊗ Fi + Fi ⊗ Ei,

where Ei and Fi are mutually dual bases of p+ respectively p−. Now the Fi in the second
factor kill 1 ∈ S, while the Fi in the first factor kill W1 ⊂ X. In the weakly good case,
when X is irreducible and unitary, it follows that W is contained in the Dirac cohomology
of X. Moreover, we see that this is a K̃-type of multiplicity 1 in X⊗S, hence AK acts on
it by a character, and this character is given on C(p)K so that p1 acts by 1 and p2, . . . , pn

act by 0. (In fact, it is not difficult to see that the Dirac cohomology of X is equal to W .)
Finally, note that I acts on W by 0.

We can now start from W , make it into a B̃-module by letting I act on it by 0, p1 by
1 and p2, . . . , pn by 0, and consider the module ĨndD(W ) = A⊗B̃ W .

Theorem 6.3.1. Let X = U(g) ⊗U(q) W1 be a holomorphic discrete series module as
above, and let W = W1 ⊗ 1 ⊂ X ⊗S. Then the (A, K̃)-module ĨndD(W ) is isomorphic to
X ⊗ S.

Proof. Since X ⊗ S is an irreducible A-module, and W ⊂ X ⊗ S is nonzero, the action
map

φ : A⊗W → X ⊗ S

is onto. We will be done if we show that the kernel of φ is equal to the space

Z = span{ab⊗ w − a⊗ bw | a ∈ A, b ∈ B̃, w ∈ W}.
It is clear that φ(Z) = 0. It is also clear that φ is a linear isomorphism from the space

Y = (S(p+)⊗
∧

p+)⊗ (W1 ⊗ 1) ⊂ A⊗W = (U(g)⊗ C(p))⊗ (W1 ⊗ 1)
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to
X ⊗ S = (S(p+)⊗W1)⊗

∧
p+.

The proof will be complete if we show that Y + Z = A⊗W .
By the Poincaré-Birkhoff-Witt Theorem, one can write

U(g) = S(p+)U(k)⊕ U(g)p−; C(p) =
∧

p+ ⊕ C(p)p−

as K-modules. By the last paragraph of 6.1, for any F ∈ p− ⊂ C(p) we have F = Fp′.
Since p′w = 0 for any w ∈ W , it follows that for any a ∈ A we have

a(1⊗ F )⊗ w = a(1⊗ F )p′ ⊗ w = a(1⊗ F )p′ ⊗ w − a(1⊗ F )⊗ p′w ∈ Z.

So (U(g)⊗ C(p)p−)⊗W ⊂ Z.
By an easy direct calculation, for any F ∈ p−, we have

D(1⊗ F ) + (1⊗ F )D = −2F ⊗ 1.

(This is implicit in [HP1].) It follows that also

a(F ⊗ 1)⊗ w ∈ Z, a ∈ A, F ∈ p−, w ∈ W.

So also (U(g)p− ⊗ C(p))⊗W ⊂ Z.
Furthermore, for any H ∈ k, α(H) ∈ C(p) is equal to

(6.3.1) α(H) = −1
4

∑
i

([H,Fi]Ei + [H,Ei]Fi) =

1
4

∑
i

(Ei[H,Fi] + 2B([H,Fi], Ei)− [H,Ei]Fi).

(See [HP2], (2.10).) So modulo C(p)p−, α(H) is the constant 1
2B(H,

∑
i[Fi, Ei]). Since

∆(H) = H ⊗ 1 + 1⊗ α(H) ∈ k∆ ⊂ B̃,

we conclude that modulo Z,

(S(p+)U(k)⊗
∧

p+)⊗W = (S(p+)⊗
∧

p+)⊗W

This finishes the proof.
�
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[HP3] Huang, J.-S. and Pandžić, P., Dirac cohomology for Lie superalgebras, Transform. Groups, 10

(2005), no. 2, 201–209.
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(P. Pandžić) Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb,
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