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Abstract. We prove the vanishing of the (possibly twisted) or-
bital integrals of certain functions on real Lie groups at non semisim-
ple elliptic elements. This applies to Euler-Poincaré functions and
makes some results of [CCl] unconditionnal.

Introduction

Let G be a connected reductive algebraic group over a number field
F and θ an automorphism of finite order of G defined over F . View
Gθ as a connected component of the linear group G o 〈θ〉, and let
f =

∏
v fv be a smooth bi-K-finite function with compact support on

G(AF )θ. In his monumental work [A1], J. Arthur shows that under
some “cuspidality” assumption on fv at two places v, a simple form
of his trace formula holds for f . Under an extra assumption on fv at
some place v, he even shows that the geometric side of his formula
reduces to the sum of the orbital integrals of f (times some volume)
over the G(F )-conjugacy classes of semisimple F -elliptic elements of
G(F )θ. This extra assumption is the following ([A1, Cor. 7.4]):

H(fv) : For any element γ ∈ G(Fv)θ which is not semisimple and
Fv-elliptic, the orbital integral Oγ(fv) of fv at γ vanishes.

Recall that for L = F or L = Fv, a semisimple element γ ∈ G(L)θ
is L-elliptic if the split component of the center of the connected cen-
tralizer of γ in G coincides with the split component of Z(G)θ, where
Z(G)θ is the subgroup of the center Z(G) of G which is invariant under
θ ([A1, §3, p. 508]).

This condition H(fv) actually implies that fv is cuspidal in the sense
of Arthur (see §7, p. 538 loc.cit.). Historically, H(fv) has been first
imposed by assuming that the support of fv lies in the regular elliptic
subset of G(Fv)θ, for instance for a finite place v, and in conjonction
with a supercuspidality assumption at another place, in which case it
is actually possible to give a much simpler proof of Arthur’s results, as
explained in [DKV, A.1]. This option has the disadvantage to kill the
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non-regular terms of the geometric side of the trace formula, which is
a problem for some applications.

When v is a finite place, and in the non-twisted case θ = 1, Kottwitz
had shown that the Euler-Poincaré functions fv of G(Fv) satisfy H(fv)
([Ko2]). These fv are pseudo-coefficients of the Steinberg representa-
tion and a key property that Kottwitz proves, using the Bruhat-Tits
building of G(Fv) and results of Serre on Euler-Poincaré measures, is
first that their orbital integrals Oγ(fv) vanish at every semisimple non-
Fv-elliptic element γ ∈ G(Fv), and second, that Oγ(fv) is constant on
the set of semisimple elliptic elements γ in G(Fv) (the Haar measure on
their connected centralizers being the Euler-Poincaré measures). Using
an argument of Rogawski relying on results of Harish-Chandra on Sha-
lika germs, Kottwitz concludes the non-vanishing of Oγ(fv) for all non
semisimple γ. These results were extended to the twisted case in [CCl,
§3] (see also [BLS]).

In this paper, we are interested in the case where v is archimedean.
Euler-Poincaré functions fv still exist and have been constructed by
Labesse [L] and Clozel-Labesse [CL]. The orbital integrals of these
functions fv vanish at all the semisimple non-elliptic elements and sat-
isfy some stability properties at the semisimple elliptic ones. Our aim
in this paper is to show that these properties imply the vanishing of
all the non semisimple orbital integrals. Although this might well be
known to some specialists, we have not been able to find a proof of
this precise statement in the literature. After this paper was written,
J.-L. Waldspurger told us that our main result is very close, in the
non-twisted (but essential) case, to Arthur’s theorem 5.1 in [A3]. Our
assumptions are slightly different but the main ideas of the proof are
the same. Nevertheless, we think that for past and future applica-
tions this paper might be a useful reference. Our main motivation for
this question is a recent paper [CCl] of Clozel and the first author, in
which they prove some results concerning the orthogonal/symplectic
alternative for selfdual automorphic representations of GL2n assuming
H(fv) for certain pseudo-coefficients fv as above, in the special case
G = GL2n and θ(g) = tg−1. Before discussing the statements that the
present work make unconditional, let us explain our results in more
detail.

Assume from now on that G is a connected reductive algebraic group
over R, and that θ is an automorphism of finite order of G defined over
R. Let f : G(R)θ −→ C be a smooth function with compact support
and consider the two following properties :

(i) Oγ(f) = 0 if γ ∈ G(R)θ is semisimple, strongly regular, but
non-elliptic.
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(ii) if γ and γ′ are stably conjugate strongly regular semisimple el-
ements of G(R)θ, then Oγ(f) = Oγ′(f), the measure on the
connected centralizers of γ and γ′ being compatible (see§1.3).

Theorem A: If f ∈ C∞c (G(R)θ) satisfies (i) and (ii), then

Oγ(f) = 0

for any γ ∈ G(R)θ which is not semisimple and elliptic.

The proof of this statement follows two steps. The first one is to use
a version of Harish-Chandra’s descent to the connected centralizer of
the semisimple part of γ. This reduces the problem to θ = 1 and to a
statement on the real Lie algebra g of G(R). We rely on results of one
of us thesis [R]. We are then led to prove the following infinitesimal
variant of Theorem A.

Let us consider now the adjoint action of G(R) on g. Let f be a
smooth complex function on g with compact support and denote by
OX(f) the integral of f over the G(R)-orbit of X ∈ g, equipped with
some G(R)-invariant measure. (We actually use Duflo-Vergne normal-
ization to simultaneously fix such an invariant measure for the semisim-
ple orbits. Moreover, we consider in the proof another normalization of
OX(f) that we denote by Jg(f)(X).) Recall that a regular semisimple
X ∈ g is elliptic if the Cartan subalgebra of g containing X only has
imaginary roots in gC. If X,Y ∈ g are two regular semisimple ele-
ments, they are said to be stably conjugate if Ad(g)(X) = Y for some
g ∈ G(C).

Theorem B : Let f : g −→ C be a smooth function with compact
support. Assume that there exists a neighborhood V of 0 in g such that:

(i) OX(f) = 0 for all regular, semisimple, and non elliptic X ∈ V.

(ii) OX(f) = OY (f) for all regular, semisimple, elliptic, and stably
conjugate elements X, Y ∈ V.

Then OX(f) = 0 if X ∈ g is nilpotent, unless perhaps if X = 0 and g
has an elliptic Cartan subalgebra.

Let us give a proof of this result in the simple case G = SL2. In
this case, g is three-dimensional and the nilpotent elements N form a
quadratic cone over which G(R) has 3 orbit : 0, O and −O. The com-
plement of N , consisting of semisimple elements, has three connected
components : two inside the cone consisting of the elliptic orbits, each
one being a sheet of an hyperboloid with two sheets, and one outside
the cone consisting of non elliptic orbits, which are hyperboloids with
one sheet.

Choose G(R)-invariant measures on O and −O which are symmet-
ric with respect to zero. The idea is to view the nilpotent orbits as
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orbit

Nilpotent
cone

orbit
Non elliptic

Elliptic

limits of these hyperboloid sheets, either from inside or from outside
the cone, which gives two relations. First, approaching O ∪ −O with
hyperboloids with one sheet, over which O∗(f) vanishes by (i), we ob-
tain that OX(f) + O−X(f) = 0 for any nonzero nilpotent X. Second,
approaching now ±O using elliptic orbits, condition (ii) ensures that
OX(f) = O−X(f). These two relations lead to OX(f) = O−X(f) = 0,
what we had to prove.

Note that if we had chosen G = PGL2, then N\{0} would be a
single orbit, hence the first step would have been enough to conclude.
This is compatible with the fact that (ii) is automatically satisfied in
G(R) (stable conjugacy and conjugacy coincide). For a general group
G, the strategy that we use is a little different as the geometry of the
nilpotent cone is more complicated. However, part of this geometry
is encoded in the so-called jump relations of orbital integrals, due to
Harish-Chandra, which actually essentially reflect the situation in this
sl2-case. Another ingredient will be a description by Bouaziz of the
invariant distributions on g with support in the nilpotent cone, as well
as a more refined version for measures on nilpotent orbits due to Hotta-
Kashiwara [HoKa] (we use [Ko3] as a reference for these results).

Let us recall now the two statements of [CCl, §4.18] that our work
makes unconditional (see Thm. 4.20 and Thm. 4.22 of loc. cit.).

Theorem C : Let F be a totally real number field and π an automor-
phic cuspidal representation of GL2n(AF ). Assume that π is selfdual,
essentially square-integrable at one finite place w at least, and cohomo-
logical at all archimedean places. Then :

(i) For all places v of F , πv is symplectic.

(ii) If V` is an `-adic Galois representation of Gal(F/F ) associated
to π|.|(2n−1)/2, with ` prime to w, then there exists a non degenerate,
Galois-equivariant, symplectic pairing V` ⊗ V` −→ Q`(2n− 1).

By πv is symplectic we mean that the Langlands’ parameter1 of πv

L(πv) : WDFv −→ GL2n(C)

1For v non archimedean, we use the SU(2)-form of the Weil-Deligne group
WDFv

= WFv
× SU(2).
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defined by Langlands for archimedean v, and by Harris-Taylor in gen-
eral, may be conjugate to fall into the symplectic group Sp2n(C). Of
course, we may define similarly an orthogonal representation (and there
are plenty of them), and the interesting fact is that an essentially dis-
crete πw cannot be both orthogonal and a local component component
of a automorphic π as in the statement. Actually, assertion (i) for
archimedean v is automatic by definition, and its truth at all v is sug-
gested by the hypothetical existence of the global Langlands’ group: see
the discussion in [CCl, §4.18]. An important feature of the automorphic
representations π of the statement is their relation with algebraic num-
ber theory. Indeed, as conjectured by Langlands, Clozel-Kottwitz and
Harris-Taylor attached to such a π a system of `-adic representations
V` satisfying some strong compatible conditions with the local Lang-
lands correspondence (see [HT],[T],[TY]). Assertion (ii) of the theorem
above implies a previously missing property of these representations.

Actually, (i) is an simple consequence of (ii) and of the irreducibility
of V`, and it is easy to show (ii) when π is furthermore a Steinberg
representation at an auxiliary finite place (see [CCl, §4.18]). The the-
orem above is then a consequence of the following other one. There w
is a finite place of a totally real number field F , θ is the automorphism
g 7→ wtg−1w−1 of GL2n where

w =


1

. ..

−1
1

−1

 ∈ GL2n(Q).

Note that the element θ ∈ GL2n(Q)θ is semisimple, Q-elliptic and with
centralizer Sp2n.

Theorem D : Let πw be an essentially discrete, selfdual, irreducible
representation of GL2n(Fw), and let fw ∈ C∞c (GL2n(Fw)θ) be a twisted
pseudo-coefficient of πw. The following conditions are equivalent:

(i) πw is a local component of a cuspidal, selfdual, automorphic
representation π of GL2n(AF ), which is cohomological at all
archimedean places.

(ii) πw is a local component of a cuspidal, selfdual, automorphic
representation π of GL2n(AF ), which is cohomological at all
archimedean places, and which is moreover a Steinberg repre-
sentation at another finite place (that we may choose).

(iii) Oθ(fw) 6= 0.

If these conditions are satisfied, then πw is symplectic.
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This theorem was proved loc. cit. under some assumption called
(H) ([CCl, §4.17]) which was used2 to apply Arthur’s simple form
of the trace formula for the reasons discussed in the first paragraph
of this introduction: this assumption (H) is property H(f) for f a
twisted pseudo-coefficient of a θ-discrete cohomological representation
of GL2n(R). These pseudo-coefficients are studied in detail in [CCl,
§2.7]. In particular, it is shown there they satisfy the assumptions of
Theorem A, hence its conclusion (H).

We have to mention now that Theorem C is actually as special case
of a more general recent result of Joël Belläıche and the first author
[BeC]. Their proof is however more demanding than the one obtained
here, and we think that the method of [CCl], completed here, is still of
interest. In any case, it is natural to expect that Theorem A may have
other applications in the future.

The first author would like to thank Laurent Clozel for sharing his
knowledge of the trace formula. We are grateful to J.-L. Waldspurger
for drawing our attention on Arthur’s paper [A3].

Contents

Introduction 1

1. Notation and preliminaries 7

1.1. Reductive groups and their Lie algebras 7

1.2. Regular elements 7

1.3. Normalization of measures 8

2. Results on the Lie algebra 8

2.1. Invariant distributions and orbital integrals 8

2.2. Cayley transforms 9

2.3. Jump data 10

2.4. Jump relations 10

2.5. Invariant distributions in the nilpotent cone 11

2.6. Main result 15

3. Proof of Theorem A 16

3.1. The setting 16

3.2. A special case 17

3.3. The general case 18

References 20

2More precisely, this was used in the proof of (i) ⇒ (iii), possibly after some
well-chosen real quadratic base change of π if F = Q.



ON THE VANISHING OF SOME NON SEMISIMPLE ORBITAL INTEGRALS 7

1. Notation and preliminaries

1.1. Reductive groups and their Lie algebras. Let G be a group,
X a set on which G acts, and Y a subset of X. Set:

ZG(Y ) = {g ∈ G | ∀x ∈ Y, g · x = x},
NG(Y ) = {g ∈ G | ∀x ∈ Y, g · x ∈ Y }.

When NG(Y ) is a group, we denote by W (G, Y ) the quotient group
NG(Y )/ZG(Y ). We will also use the notation GY for ZG(Y ).

If G is an algebraic group defined over R, we denote by G(R) and
G(C) respectively the groups of real and complex points of G and by
g the Lie algebra of G(R). We denote by G0 the identity component
of G and by Z(G) the center of G.

For any real Lie algebra g, we denote by gC its complexification.

1.2. Regular elements. Let G be a connected algebraic reductive
group defined over R, let θ be an automorphism of finite order of G
defined over R, and consider the (non necessarily connected) algebraic
group G+ = Go 〈θ〉. We will denote by Gθ the connected component
of G+ containing θ and G(R)θ its real points. The group G acts by
conjugacy on Gθ. In particular, if γ ∈ Gθ, Gγ denotes the centralizer
in G of γ.

Since G+ is linear, there is a well-defined notion of semisimple and
unipotent element in G+, and any element γ ∈ G+(R) can be written
uniquely as γ = su = us with s ∈ G+(R) semisimple, and u ∈ G(R)
unipotent.

Definition 1.1. An element X ∈ g is regular if gX is a Cartan subal-
gebra of g. An element γ ∈ G(R)θ is regular (resp. strongly regular) if
(Gγ)0 is a torus (resp. if it is semisimple and if Gγ is abelian).

Proposition 1.2. (i) If an element X ∈ g is regular, then it belongs
to a unique Cartan subalgebra of g.

(ii) If γ ∈ G(R)θ is regular, then γ is semisimple and a := gγ is an
abelian subalgebra of g whose elements are semisimple. Moreover, gγ

contains regular elements of g, thus h := ga is a Cartan subalgebra of
g. In this setting, we denote by Tγ the centralizer in G of h. This is a
maximal torus in G.

(iii) A strongly regular element is regular and an element γ ∈ G(R)θ
is strongly regular if and only if Gγ ⊂ Tγ.

(iv) Let γ ∈ G(R)θ be semisimple. There exists a G(R)γ-invariant
neighborhood V of 0 in gγ such that if X ∈ V is regular in gγ, then it is
regular in g and γ expX is strongly regular. Furthermore a = gγ exp X

is a Cartan subalgebra of gγ.
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Proof. The assertion (i) is well-known. For (ii), see for instance [R],
Propositions 2.1 and 2.4. For (iii), it is obvious that if Gγ ⊂ Tγ, then γ
is semisimple, hence strongly regular since Tγ is abelian. Assume now
that γ is strongly regular. In particular, γ is semisimple, and (Gγ)0 is
both reductive and abelian, hence is a torus in G. This shows that γ
is regular. We use the notation of (ii). If g ∈ Gγ, then g ∈ ZG(a), and
since a contains regular elements in g, we get g ∈ ZG(h). This shows
that Gγ ⊂ Tγ.

For (iv), choose a G(R)γ-invariant neighborhood V of 0 in gγ such
that

— for all X ∈ V , G(R)γ exp X ⊂ G(R)γ.

— exp is injective on V .

The existence of such a neighborhood is proved in [R], Section 6. Let
g ∈ G(R)γ exp X . Then g ∈ G(R)γ, so expX = g(expX)g−1 = exp g ·X,
and since exp is injective on V , g · X = X. Now, as X is regular in
g, we have g ∈ Tγ exp X , so by (iii) γ expX is strongly regular. The
remaining statements follow immediately. �

1.3. Normalization of measures. We recall Duflo-Vergne normal-
ization of Haar measures on reductive Lie groups, defined as follows: let
A be a reductive group (complex or real), and pick an A-invariant sym-
metric, non-degenerate bilinear form κ on a. Then a will be endowed
with the Lebesgue measure dX such that the volume of a parallelotope
supported by a basis {X1, . . . , Xn} of a is equal to | det(κ(Xi, Xj))|

1
2

and A will be endowed with the Haar measure tangent to dX. If M
is a closed subgroup of A such that κ is non-degenerate on m, such as
centralizers of semisimple elements, we endow M with the Haar mea-
sure determined by κ as above. If M ′ ⊂ M are two closed subgroups
of A such that κ is non-degenerate on their respective Lie algebras, we
endow M/M ′ with the M -invariant measure, which is the quotient of
the Haar measures on M and M ′ defined as above. We will denote it
by dṁ.

2. Results on the Lie algebra

2.1. Invariant distributions and orbital integrals. Let G be an
algebraic connected reductive group defined over R. Let us denote by

— C∞c (g) the space of smooth compactly supported functions on g.

— D(g) the space of distributions on g.

— D(g)G(R) the space of invariant distributions on g, with respect to
the adjoint action of G(R) on g.

We now recall the definition of orbital integrals on g, and their char-
acterization ([Bou]). For any subset Ω of g, we denote by Ωreg the set
of semisimple regular elements in Ω.
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Let h be a Cartan subalgebra of g and let H = ZG(h). We fix a
non degenerate G(R)-invariant symmetric bilinear form κ on g, which
determines, according to §1.3, Haar measures dg, dh and dġ respectively
on G(R), H(R) and G(R)/H(R).

If X is regular in h, then G(R)X = H(R), the measure µX on g is
defined by

OX(f) =
∫

G(R)/H(R)
f(g ·X) dġ.

for all f ∈ C∞c (g).

For all f ∈ C∞c (V), one defines a function on greg, called the orbital
integral of f , by

X 7→ Jg(f)(X) = | det(ad(X)g/h)|
1
2OX(f).

It is easy to see that Jg(f) ∈ C∞(greg)
G(R). Furthermore, Harish-

Chandra has given some properties of orbital integrals. These proper-
ties are listed in [Bou] as I1, I2, I3, I4. Bouaziz has considered the sub-
space I(g) of C∞(greg)

G(R) consisting of functions satisfying I1, I2, I3, I4,
endowed with the natural induced topology (an inductive limit of Fréchet
spaces) and showed the following

Theorem 2.1. The map Jg : C∞c (g) → I(g) is a continuous surjective
linear map. Its transpose

tJg : I(g)′ → D(g)

realizes a topological isomorphism between the dual I(g)′ of I(g) and
the space of invariant distributions D(g)G(R).

We will need to describe the most subtle of the properties of orbital
integrals, namely the jump relations I3, but also I2. For this, we need
to introduce more material from [Bou].

2.2. Cayley transforms. Let g be a real reductive Lie algebra and
gC its complexification. We denote by σ the complex conjugation of
gC with respect to g. Let b ⊂ g be a Cartan subalgebra. We denote
by R(gC, bC) the root system of bC in gC. Let α ∈ R(gC, bC) be an
imaginary root, that is a root such that

σ(α) = −α.

Choose a root vector Xα for α and fix a root vector X−α of −α such
that [Xα, X−α] = Hα, where Hα is another notation for the coroot
α̌ ∈ bC. Then

sC = C ·Xα + C ·X−α + C ·Hα

is a simple complex Lie algebra invariant under σ, σ(Hα) = −Hα =
H−α and σ(Xα) = cX−α for some c ∈ R∗. If c < 0, we can renormalize
to get σ(Xα) = −X−α or if c > 0, to get σ(Xα) = X−α. In the former
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case, s = sσ
C ' su(2) (and we say that α is a compact root). In the

latter case, s ' sl(2,R) and α is a non-compact root.

Suppose that α is non-compact. We define a standard Cayley trans-
form with respect to α as an element of the adjoint group of sC of the
form cα = exp(−iπ(Xα + X−α)/4), where Xα, X−α are normalized as
explained above. They are unique up to a scalar factor of absolute
value 1, and all the standard Cayley transforms for α are conjugate in
the adjoint group of sC. We have :

bC = kerα⊕ C ·Hα

b = kerα|b ⊕ iR ·Hα.

Let aC := cα ·bC = kerα⊕C · (Xα−X−α). This is a Cartan subalgebra
defined over R and its σ-invariant subspace is

a = kerα|b ⊕ iR · (Xα −X−α).

The root β := cα ·α of R(gC, aC) is real and cα ·Hα = Hβ = i(Xα−X−α).
Furthermore :

σ(cα) = exp(iπ(Xα +X−α)/4) = c−1
α .

It is easy to check that σ(cα)−1cα = c2α realizes the Weyl reflection sα

with respect to the root α.

2.3. Jump data. We say that X ∈ g is semi-regular when the derived
algebra of gX is isomorphic to sl(2,R) or su(2). Suppose it is sl(2,R).
Let b be a fundamental Cartan subalgebra of gX , and ±α the roots
of bC in gX

C . They are non-compact imaginary. Let cα be a Cayley
transform with respect to α as in the previous paragraph and let us
also denote by a the maximally split Cartan subalgebra of gX obtained
from the Cayley transform (ie. aC = cα·bC). We refer to these notations
by saying that (X, b, a, cα) is a jump datum for g.

2.4. Jump relations. Let h be a Cartan subalgebra of g. We will
denote by hI−reg the set of X ∈ h such that the root system of hC in
gX

C has no imaginary root. Equivalently, hI−reg ⊂ h is the complement
of the union of the kernels of imaginary roots.

We denote by S(hC) the symmetric algebra of hC, and we identify
it with the algebra of differential operators with constant coefficients
on h. We denote by ∂(u) the differential operator corresponding to
u ∈ S(hC).

Let h be a Cartan subalgebra of g, Y ∈ h and φ a function on hreg.
Let β be an imaginary root of hC in gC, and Hβ ∈ ih its coroot. Then,
when the limits in the following formula exist we set:

[φ]+β (Y ) = lim
t→0+

φ(Y + tiHβ) + lim
t→0−

φ(Y + tiHβ).
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Let ψ be a function in C∞(Vreg)
G(R) and denote by ψ|h its restriction

to h ∩ Ureg for any Cartan subalgebra h of g.

Property I2 of orbital integrals is the following :

I2 : for any Cartan subalgebra h of g, ψ|h has a smooth extension to
hI−reg, and for all semi-regular elements X ∈ h such that the roots ±α
of hC in gX

C are compact imaginary, for all u ∈ S(hC),

[∂(u) · ψ|h]+α (X) = 0.

The jump relation property I3 is :

I3 : for all jump data (X, b, a, cα) and for all u ∈ S(bC),

[∂(u) · ψ|b]+α (X) = d(X) ∂(cα · u) · ψ|a(X),

where d(X) is equal to 2 if the reflection sα is realized in G(R) and 1
otherwise.

2.5. Invariant distributions in the nilpotent cone. Let N be the

nilpotent cone in g and let us denote by D(g)
G(R)
N the space of invariant

distributions on g with support in N . This space can be explicitly
described in terms of limits of orbital integrals as follows ([Bou], Section
6).

Fix a Cartan subalgebra h of g and a connected component Γ of
hI−reg. For all f ∈ C∞c (g) and all u ∈ S(hC), set

Θu,Γ(f) = lim
X→0,X∈Γ

∂(u) · Jg(f)(X).

Then Θu,Γ is an invariant (tempered) distribution on g with support in
N .

Now, we fix a system of representatives hi of conjugacy classes (under
G(R)) of Cartan subalgebras, and for each of them, we fix a connected
component Γ of hi,I−reg. Let us denote by

εI
i : W (G(R), hi) −→ {±1}

the imaginary signature of the real Weyl group of hi, defined as follows.
Consider the root system RI(gC, (hi)C) of imaginary roots (a subsys-
tem of R(gC, (hi)C), and fix a choice of positive roots R+

I (gC, (hi)C).
The action of W (G(R), hi) on R(gC, (hi)C) preserves RI(gC, (hi)C), and
if w ∈ W (G(R), hi), ε

I
i (w) is (−1)lI(w) where lI(w) is the number of

positive imaginary roots α such that w · α is negative.

Let S((hi)C)εI
i be the subspace of elements u ∈ S((hi)C) satisfying

w · u = εI
i (w)u for all w ∈ W (G(R), hi). Then
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Theorem 2.2. The map

Φ :
⊕

i

S((hi)C)εI
i → D(g)

G(R)
N

(ui)i 7→
∑

i

Θui,Γi

is an isomorphism of vector spaces.

The fact unipotent orbital integrals are in the image of Φ is due to
Harish-Chandra (see also [A3]), appendix). Let us also recall Harish-
Chandra’s limit formula for the Dirac distribution at 0: suppose b is
fundamental Cartan subalgebra of g, so that all its roots are imaginary
or complex, and let $ =

∏
α∈R+ Hα, where R+ is any positive root

system in R(gC, bC). Then

lim
X→0,X∈breg

(∂($) · Jg(f))(X) = c δ0(f)

for all f ∈ C∞c (g), c being a non zero constant and δ0 the Dirac distri-
bution at 0. Denote by ε the signature character of the complex Weyl
group W (gC, bC) and by S(bC)ε the subspace of u ∈ S(bC) be such that
w(u) = ε(w)u for all w ∈ W (gC, bC). Since b is a fundamental Cartan
subalgebra of g, it is well-known that the restriction of the character ε
to W (G(R), b) coincides with εI . Thus,

S(bC)ε ⊂ S(bC)εI

.

Lemma 2.3. Let u ∈ S(bC)ε. Then Θu,Γ is a distribution with support
in {0} and any invariant distribution with support in {0} is obtained
in this way.

Indeed, w · $ = ε(w)$ and the ε-isotypic component S(bC)ε for
the representation of W (gC, bC) in S(bC) is $S(bC)W (gC,bC). Let u ∈
S(bC)W (gC,bC), and let Du be the element of S(gC) corresponding to
u by Harish-Chandra’s natural isomorphism S(gC)gC ∼→ S(bC)W (gC,bC).
We consider Du as a differential operator on g. Then, from Harish-
Chandra’s limit formula and the property

(∂(u) · Jg)(f) = Jg(Du · f), (f ∈ C∞c (g)),

(see [Var], Prop. II.10.4) we get

lim
X→0,X∈breg

(∂($u) · Jg(f))(X) = c δ0(Du · f).

For the last assertion, it is well-known that any distribution on g with
support in {0} is a derivative of the Dirac distribution. For such a dis-
tribution to be invariant, the constant coefficient differential operator
has to be invariant under the action of G(R), i.e. given by an element
in S(gC)G(R) = S(gC)gC .
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If D(g)
G(R)
{0} denotes the space of invariant distributions on g with

support in {0}, the lemma says that Φ realizes an isomorphism

S(bC)ε
∼→ D(g)

G(R)
{0} .

We shall need to define a class of distributions Θ ∈ D(g)
G(R)
N which are

somehow “orthogonal” to D(g)
G(R)
{0} . Note that for any u ∈ S(bC), we

may write u = ũ+ u− ũ where

ũ =
1

|W |
∑

w∈W

ε(w)w(u) (W = W (gC, bC))

is the W -equivariant projection of u to the ε-isotypic component of
S(bC).

Let b = hi0 be the representant of the fundamental Cartan subal-
gebra of g among the hi, and set εI = εI

i0
. By Theorem 2.2, each

Θ ∈ D(g)
G(R)
N may be uniquely written as

Θ = Θb,Γ + Θ′

where b = b(Θ) ∈ S(bC)εI
and Θ′ ∈ Φ(

∑
i6=i0 S(hi)

εI
i ).

Definition 2.4. Define D+(g)
G(R)
N ⊂ D(g)

G(R)
N as the subspace of dis-

tributions Θ whose component b(Θ) as above has a trivial ε-projection

under W (gC, bC), i.e. such that flb(Θ) = 0. We have a direct sum

D(g)
G(R)
N = D(g)

G(R)
{0} ⊕D+(g)

G(R)
N .

Let O ⊂ N be a G(R)-orbit. As is well-known, the centralizer in
G(R) of any X ∈ O is unimodular, so O admits a G(R)-invariant
measure µO. By [Rao], this measure defines an invariant distribution,

which obviously belongs to D(g)
G(R)
N .

Proposition 2.5. If O is a nonzero G(R)-orbit in N , then µO ∈
D+(g)

G(R)
N .

Indeed, this is an immediate consequence of a (much more precise)
description of the Θui,Γi

-components of µO that we shall now recall.

Fix a nilpotent G(C)-orbit OC in gC, and denote by O1, . . . ,Or its
real forms, i.e. the nilpotent G(R)-orbits in g ∩ OC.

Using the Springer correspondence (Thm 3.6.9 in [ChG]), we get from
the nilpotent orbit OC an irreducible representation χO of the abstract
Weyl group Wa of gC. The Springer correspondence is normalized so
that the trivial orbit {0} corresponds to the sign character ε of Wa.
Of course, any choice of a Cartan subalgebra hC of gC identifies Wa

with the Weyl group W (gC, hC). To OC is also attached an integer dO
defined by

dO =
1

2
(dim gC − dim hC − dimOC).
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The Weyl group W (gC, hC) acts naturally on S(hC) and preserves the
subspace H(hC) of harmonic polynomials ([Ste]). The representation of
W (gC, hC) on H(hC) is isomorphic to the regular representation. This
space is graded by the degree of polynomials:

H(hC) =
⊕
d∈N

H(hC)d

and this is a direct sum of representations of W (gC, hC). The repre-
sentation χO appears in H(hC)dO with multiplicity one. Let us denote
by H(hC)dO,χO the χO-isotypic component in H(hC)dO . Let us remark
also that the maximal degree appearing in the above decomposition of
H(hC) is d{0}, and that

H(hC)d{0}

is the sign representation of W (gC, hC), generated by∏
α∈R+

Hα,

where R+ is any positive root system in R(gC, hC).

Let us denote by D(g)
G(R)
OC

the space of invariant distribution on g
with support in the nilpotent cone generated by the invariant measures
on the nilpotent orbits O1, . . . ,Or.

Theorem 2.6. With the notations above, the map Φ restricts to an
isomorphism

Φ :
⊕

i

H((hi)C)
εI
i

dO,χO

∼→ D(g)
G(R)
OC

(ui)i 7→
∑

i

Θui,Γi

This result is due to Hotta-Kashiwara [HoKa] and Rossmann [Ross].
For a convenient reference, see [Ko3].

This gives in particular Rossmann’s formula for the number of real
forms of the complex orbit OC

r = rO =
∑

i

m(εI
i , χO)

where m(εI
i , χO) is the multiplicity of the character εI

i of W (G(R), hi)
in H((hi)C)dO,χO .

Let us now give a proof of Thm. 2.5. Write µO as

µO =
∑

i

Θui,Γi
, ui ∈ H((hi)C)

εI
i

dO,χO
,

and set as above b = hi0 and b = ui0 . Since O (hence OC) is not
the zero orbit, the character χO is not ε, and thus, since b is in the
χO-isotypic component of S(bC), its ε-projection is trivial. �
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2.6. Main result. To state the main result of this section, we need to
recall some more definitions.

Definition 2.7. We say that a Cartan subalgebra h ⊂ g is elliptic
if all the roots of h in gC are imaginary. Let X ∈ g be semisimple
and regular. We say that X is elliptic if the Cartan subalgebra gX is
elliptic.

Definition 2.8. Let G be an algebraic connected reductive group de-
fined over R and let X and Y be regular semisimple elements in g. Re-
call that X and Y are called stably conjugate if there exists g ∈ G(C)
such that g ·X = Y .

The goal of this section is to show the following

Theorem 2.9. Let f ∈ C∞c (g) be a function such that for a neighbor-
hood V of 0 in g:

1— Jg(f)(X) = 0 for all regular semisimple, non elliptic X ∈ V.

2— Jg(f)(X) = Jg(f)(Y ) for all regular semisimple, elliptic and
stably conjugate elements X, Y in a neighborhood of 0 in V.

Let Θ ∈ D(g)
G(R)
N and assume either that g has no elliptic Cartan

subalgebra or that Θ ∈ D+(g)
G(R)
N . Then Θ(f) = 0.

Proof. Let Θ be as in the statement. From the first property of f ,
Θui,Γi

(f) = 0 whenever hi is a non-elliptic Cartan subalgebra and ui ∈
S(hi)C. By Theorem 2.2, we obtain that Θ(f) = 0 unless g admits an
elliptic Cartan subalgebra b = hi0 , which we assume from now on. We
set for short Γ = Γi0 and εI = εI

i0
. In this case, Theorem 2.2 only gives

Θ(f) = Θb,Γ(f),

where b = b(Θ) ∈ S(bC)εI
. Notice that since b is elliptic, all its roots

in gC are imaginary and therefore εI is the restriction to W (G(R), b)
of the signature ε of the complex Weyl group W (gC, bC).

By assumption on Θ, b̃ = 0 so it only remains to show that Θb,Γ(f) =
Θb̃,Γ(f). More generally, we claim that under the assumptions on f

(2.6.1) ∀u ∈ S(bC), ∀w ∈ W (gC, bC), Θw(u),Γ(f) = ε(w)Θu,Γ(f).

Indeed, it is enough to check (2.6.1) for any u ∈ S(bC) and any w of
the form sα where α is a root of bC in gC such that kerα is a wall of Γ
(those sα generate W (gC, bC) as bC is elliptic).

Let α be such a root and fix X ∈ b a semi-regular element with
respect to α. In particular, X ∈ kerα and kerα is a wall of Γ. Let
Hα ∈ gX

C be the coroot α̌, so iHα ∈ b. Up to replacing α by −α if
necessary, we may assume that

X + itHα ∈ Γ
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for any small real t > 0. Note that the elements X+itHα and X−itHα

of b are regular for small t 6= 0 and stably conjugate under sα = c2α ∈
G(C).

For u ∈ S(bC) and µ, t > 0, consider

(∂(sα(u))Jg(f)|b)(µX + tiHα) := (∂(u)Jg(f)sα

|b )(µX − tiHα).

For Y ∈ b, Jg(f)sα(Y ) := Jg(f)(sα(Y )). By property (2) of f ,

Jg(f)sα

|b = Jg(f)|b

in V ∩ b. Moreover, note that

lim
µ,t→0+

(∂(u)Jg(f)|b)(µX + tiHα) = − lim
µ,t→0+

(∂(u)Jg(f)|b)(µX − tiHα).

Indeed, this identity is exactly property I2 of orbital integrals if α is
a compact root. If α is non compact, we may consider a root datum
(µX, b, a, cα) and apply to it property I3 of orbital integrals. We obtain
that the same identity holds as well, as the Cartan subalgebra a is not
elliptic and by property (1) of f . As a consequence,

∀u ∈ S(bC), Θsα(u),Γ(f) = −Θu,Γ(f),

and we are done. �

As an immediate consequence of the theorem and of Proposition 2.5,
we obtain the

Corollary 2.10. If f is as in the statement of the theorem, then
µO(f) = 0 for any nonzero G(R)-orbit O ⊂ N . Moreover, f(0) = 0 if
g has no elliptic Cartan subalgebra.

3. Proof of Theorem A

3.1. The setting. Let G be a linear algebraic connected reductive
group over R and θ an automorphism of finite order of G defined over
R (see §1.2).

Let γ ∈ G(R)θ and denote by Iγ the identity component of its cen-
tralizer in G. Choose any G(R)-invariant measure µ on the G(R)-
conjugacy class of γ, or equivalently on the quotient G(R)/Iγ(R) (it is
well-known that Iγ(R) is unimodular). For f ∈ C∞c (G(R)θ), define the
orbital integral of f at γ as:

Oγ(f) =
∫

G(R)/Iγ(R)
f(gγg−1) dµ.

When γ is semisimple, we assume that µ is normalized as in our con-
vention 1.3. Recall that a semisimple element γ ∈ G(R)θ is elliptic
if the split component of Z(Iγ) coincides with the split component of
Z(G)θ (the θ-invariants in Z(G)).
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Definition 3.1. Let γ, γ′ be strongly regular elements of G(R)θ. We
say that γ and γ′ are stably conjugate if there exists g ∈ G(C) such
that gγg−1 = γ′ and σ(g)−1g ∈ Tγ(C), where Tγ is the maximal torus
of G defined in Prop. 1.2 (ii).

Notice that when θ = 1 the condition on σ(g)−1g is superfluous.

Theorem 3.2. Let f ∈ C∞c (G(R)θ). Assume that:

1 – Oγ(f) = 0 if γ ∈ G(R)θ is semisimple, strongly regular, and
non-elliptic,

2 – Oγ(f) = Oγ′(f) if γ, γ′ ∈ G(R)θ are semisimple, strongly regular,
and stably conjugate.

Then Oγ(f) = 0 for all γ ∈ G(R)θ which is not semisimple elliptic.

3.2. A special case. We shall first prove a special instance of this
theorem, namely the case where θ is trivial and γ is unipotent in G(R),
which is the group theoretic analogue of Thm. 2.9. Assume θ = 1.

Theorem 3.3. Let f ∈ C∞c (G(R)). Assume that in a neighborhood U
of 1 in G(R) :

1 – Oγ(f) = 0 if γ ∈ U is semisimple, strongly regular, and non-
elliptic,

2 – Oγ(f) = Oγ′(f) if γ, γ′ ∈ U are semisimple, strongly regular, and
stably conjugate.

Then Ou(f) = 0 for all unipotent elements u 6= 1 in G(R). Moreover,
f(1) = 0 if g has no elliptic Cartan subalgebra.

We fix once and for all an f as above. The following lemma is well
known:

Lemma 3.4. There exists:

— a G(R)-invariant neighborhood V0 of 0 in g,

— a G(R)-invariant neighborhood U0 of 1 in G(R),

such that exp : V0 −→ U0 is a diffeomorphism.

Note that for X ∈ V0, G
X = Gexp(X). Thus, if X is regular semisim-

ple, then exp(X) is strongly regular. Furthermore, for such an X,
exp(X) is elliptic if and only if X is elliptic.

Lemma 3.5. There exists h ∈ C∞c (g) and a neighborhood V ⊂ V0 of 0
in g such that for any X ∈ V,

Oexp(X)(f) = OX(h).

Proof. By [Bou], Cor. 2.3.2, there exists a G(R)-invariant χ ∈ C∞c (V0)
such that χ equals 1 in a G(R)-invariant neighborhood V of 0 in g. As
already noticed, for any X ∈ V ⊂ V0, G

X coincides with the centralizer
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inG of exp(X), it is now obvious that h(X) := f(exp(X))χ(X) satisfies
the statement. �

Let us now prove the theorem. By the corollary of Theorem 2.9 and
the fact that any nilpotent orbit in g meets V , it is enough to show
that h satisfies conditions 1 and 2 of that theorem. We have already
remarked that if X ∈ V0 is semisimple regular and non-elliptic, then
exp(X) is strongly regular and non-elliptic, thus

OX(h) = Oexp(X)(f) = 0,

so condition 1 is satisfied. Let now X,Y ∈ V be semisimple regular
and stably conjugate (so exp(X) and exp(Y ) are strongly regular). Let
g ∈ G(C) be such that g.X = Y . We obviously have g exp(X)g−1 =
exp(g.X) = exp(Y ), so exp(X) and exp(Y ) are stably conjugate in
G(R), hence

OX(h) = Oexp(X)(f) = Oexp(Y )(f) = OY (h),

and we are done. �

3.3. The general case. We return to the proof of Theorem 3.2. Let
γ ∈ G(R)θ and γ = su = us its Jordan decomposition, with s ∈ G(R)θ
semisimple and u ∈ G(R) nilpotent. Let M = Is be the identity
component of the centralizer of s in G. The following lemma is an
application of Harish-Chandra’s descent method.

Lemma 3.6. There is a function h ∈ C∞c (M(R)), and a M(R)-invariant
neighborhood U of 1 in M(R) such that ∀m ∈ U , (Gsm)0 = (Mm)0 and
Osm(f) = Om(h).

Proof. The proof can essentially be found in [CCl, Prop. 3.11] which
is a similar statement in the non archimedean case. There is a small
number of minor changes that we now indicate. We first remark that
the compactness lemma, which is an essential argument in the proof, is
established in the twisted case by Arthur in [A2] Lemma 2.1, and that
it is valid also for groups defined over R. Then, we need the existence
of an M(R)-invariant open neighborhood U of 1 in M(R) such that if
g ∈ G(R) satisfies gs expUg−1 ∩ expU 6= ∅, then g ∈ Gs(R). This is
proved in [R], Section 6. Finally, the function χ introduced in loc.cit.
has to be replaced by any function in C∞c (G(R)/M(R)) which equals 1
on the compact ω introduced in loc.cit. �

We may also assume, up to replacing U by a smaller open neigh-
bohrood of 1 in M(R), that there exists a M(R)-invariant neighbor-
hood V of 0 in m such that exp is a diffeomorphism from V onto U and
satisfying Proposition 1.2 (iv).

We shall now apply Theorem 3.3 to the connected group M and the
function h. We have to check that h satisfies conditions 1 and 2 of
that theorem. If m ∈ U is semisimple strongly regular in M , then
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m = expX with X ∈ V regular in m, so sm is strongly regular in
G(R)θ by Prop. 1.2. Moreover, (Gsm)0 = Mm and

Z(G)θ ⊂ Z(M) ⊂Mm,

thus m non-elliptic in M(R) ⇒ sm non-elliptic in G(R)θ, and for those
m we have

Om(h) = Osm(f) = 0,

so condition 1 is satisfied. Let now m1,m2 ∈ U be strongly regular and
stably conjugate (so sm1 and sm2 are strongly regular). Let g ∈M(C)
be such that gm1g

−1 = m2. We have

σ(g)−1g ∈Mm1(C) ⊂ Tsm1(C)

by Prop. 1.2 (ii), and obviously gsm1g
−1 = gsg−1gm1g

−1 = sm2, so
sm1 and sm2 are stably conjugate in G(R) and

Om1(h) = Osm1(f) = Osm2(f) = Om2(h),

so h satisfies condition 2.

As the unipotent part u of γ lies in U , we obtain that Ou(h) =
Oγ(f) = 0 if u 6= 1, i.e. if γ is non semisimple. It only remains
to show that Oγ(f) vanishes for semisimple but non elliptic elements
γ ∈ G(R)θ.

Lemma 3.7. Let f ∈ C∞c (G(R)θ) be any function such that Oγ(f) =
0 for all semisimple γ ∈ G(R)θ which are strongly regular and non-
elliptic. Then Oγ(f) = 0 for all non-elliptic semisimple γ ∈ G(R)θ.

Proof. Let γ ∈ G(R)θ be semisimple. Applying the descent argument
above to the identity component M of the centralizer of γ, and then a
descent to the Lie algebra as in §3.2, we may find an M(R)-invariant
neighborghood V of 0 in m (with exp : V → exp(V) an onto diffeor-
morphism) and a function h ∈ C∞c (V) such that

(3.3.1) ∀X ∈ V , MX = M exp X and (M exp X)0 = (Gγ exp X)0,

(3.3.2) OX(h) = Oγ exp X(f).

Assume that γ is not elliptic in G(R)θ, which means that Z(M) con-
tains a non trivial split torus T with Z(G)θ ∩ T = 1. Then for any
semisimple X ∈ V , γ exp(X) is not elliptic either, since by (3.3.1)

T ⊂ Z(M) ⊂ Z((Gγ exp X)0) = Z((M exp X)0).

If furthermore X is regular in m, then γ expX is strongly regular in
G(R)θ by (3.3.1) and Prop.1.2. Therefore the assumption on f and
(3.3.2) show that OX(h) = 0 for all regular X ∈ V . In particular,
going back to Harish-Chandra’s normalization of integral orbital used
in §2, Jm(h) is identically zero on V ∩mreg. By Harish-Chandra’s limit
formula recalled in §2.5, we obtain that h(0) = 0, and we are done. �
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