
UNITARY DUAL OF GL(n) AT ARCHIMEDEAN PLACES
AND GLOBAL JACQUET-LANGLANDS

CORRESPONDENCE

I. A BADULESCU AND D. RENARD

Abstract. In [7], results about the global Jacquet-Langlands corre-
spondence, (weak and strong) multiplicity-one theorems and the clas-
sification of automorphic representations for inner forms of the general
linear group over a number field are established, under the condition
that the local inner forms are split at archimedean places. In this pa-
per, we extend the main local results of [7] to archimedean places so
that this assumption can be removed. Along the way, we collect several
results about the unitary dual of general linear groups over R, C or H
of independent interest.
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1. Introduction

In [7], results about the global Jacquet-Langlands correspondence, (weak and strong)
multiplicity-one theorems and the classification of automorphic representations for inner
forms of the general linear group over a number field are established, under the condition
that the local inner forms are split at archimedean places. The main goal of this paper is
to remove this hypothesis. The paper consists of two parts. In the first part, we extend
the main local results of [7] to archimedean places. In the second part, we explain how
to use these local results to establish the global results in their full generality. Along
the way, we collect several results about the unitary dual of general linear groups over
R, C or H of independent interest. Let us now explain in more details the content of
this paper.

1.1. Some notation. Let A be one of the division algebras R, C or H. If A = R or
A = C and n ∈ N×, we denote by det the determinant map on GL(n,A) (taking values
in A). If A = H, let RN be the reduced norm map on GL(n,H) (taking values in R×

+).
If n ∈ N and

∑s
i=1 ni = n is a partition of n, the group GL(n1, A)×GL(n2, A)× ...×

GL(ns, A) is identified with the subgroup of GL(n,A) of bloc diagonal matrices of size
n1, . . . , ns. Let us denote G(n1,...,ns) this subgroup and P(n1,...,ns) the parabolic subgroup
of GL(n,A) containing G(n1,...,ns) and the Borel subgroup of invertible upper triangular
matrices. For 1 ≤ i ≤ s, let πi be an admissible representation of GL(ni, A) of finite
length. We write then π1 × π2 × ... × πs for the representation parabolically induced
from the representation π1 ⊗ π2 ⊗ ... ⊗ πs of G(n1,...,ns) with respect to P(n1,...,ns). We
will also use this notation for the image of representations in the Grothendieck group
of virtual characters, which makes the above product commutative. We also often do
not distinguish between a representation and its isomorphy class and write “equal” for
“isomorphic”.

1.2. Classification of unitary representations. We recall first Tadić classification of
the unitary dual of the groups GL(n,R) and GL(n,C), following [47]. The classification
is similar to the one for non archimedean local fields ([42],[44]) and is explained in
details in Section 7. Part of the arguments do not appear in the literature in the case
of GL(n,H), so we give the complete proofs in Section 10, 11 and 12, using Vogan’s
classification [52].

Let XC be the set of unitary characters of C×. If χ ∈ XC, n ∈ N× let χn be the
character χ ◦ det of GL(n,C). Let νn be the character of GL(n,C) given by the square
of the module of the determinant. If σ is a representation of GL(n,C) and α ∈ R, write
π(σ, α) for the representation να

nσ × ν−α
n σ of GL(2n,C). Set

UC = {χn, π(χn, α) | χ ∈ XC, n ∈ N×, α ∈]0,
1
2
[}.

Let XR be the set of unitary characters of R×. Let sgn denote the sign character.
If χ ∈ XR, n ∈ N× let χn be the character χ ◦ det of GL(n,R) and χ′n the character
χ ◦RN of GL(n,H). For fixed n, the map χ 7→ χn is an isomorphism from the group of
unitary characters of R× to the group of unitary characters of GL(n,R), while χ 7→ χ′n
is a surjective map from the group of unitary characters of R× to the group of unitary
characters of GL(n,H), with kernel {1, sgn}.

Let νn (resp. ν ′n) be the character of GL(n,R) (resp. GL(n,H)) given by the ab-
solute value (resp. the reduced norm) of the determinant. If σ is a representation of
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GL(n,R) (resp. GL(n,H)) and α ∈ R, write π(σ, α) for the representation να
nσ× ν−α

n σ

of GL(2n,R) (resp. the representation ν ′αnσ × ν ′−α
n σ of GL(2n,H)).

Let Du
2 be the set of isomorphy classes of square integrable (modulo center) represen-

tations of GL(2,R). For δ ∈ Du
2 and k ∈ N×, write u(δ, k) for the Langlands quotient of

the representation ν
k−1
2

2 δ×ν
k−3
2

2 δ×ν
k−5
2

2 δ× ...×ν−
k−1
2

2 δ. Then u(δ, k) is a representation
of GL(2k,R). Set

UR = {χn, π(χn, α) | χ ∈ XR, n ∈ N×, α ∈]0,
1
2
[}

∪ {u(δ, k), π(u(δ, k), α) | δ ∈ Du
2 , k ∈ N×, α ∈]0,

1
2
[}.

Let now D be the set of isomorphism classes of irreducible unitary representations
of H× which are not one-dimensional. For δ ∈ D and k ∈ N×, write u(δ, k) for the

Langlands quotient of the representation ν ′
k−1
2

1 δ× ν ′
k−3
2

1 δ× ν ′
k−5
2

1 δ× ...× ν ′−
k−1
2

1 δ. Then
u(δ, k) is a representation of GL(k,H).

Set

UH = {χ′n, π(χ′n, α) | χ ∈ XR, n ∈ N×, α ∈]0, 1[}

∪ {u(δ, k), π(u(δ, k), α) | δ ∈ D, k ∈ N× α ∈]0,
1
2
[}.

Theorem 1.1. For A = C,R,H, any representation in UA is irreducible
and unitary, any product of representations in UA is irreducible and unitary,
and any irreducible unitary representation π of GL(n,A) can be written as
a product of elements in UA. Moreover, π determines the factors of the
product (up to permutation).

Notice the two different ranges for the the possible values of α in the case A = H.

1.3. Jacquet-Langlands correspondence for unitary representations. Any ele-
ment in GL(n,H) has a characteristic polynomial of degree 2n with coefficients in R.
We say that two elements g ∈ GL(2n,R) and g′ ∈ GL(n,H) correspond (to each other)
if they have the same characteristic polynomial and this polynomial has distinct roots
in C (this last condition means that g and g′ are regular semisimple). We then write
g ↔ g′.

Let C denote the Jacquet-Langlands correspondence between irreducible square inte-
grable representations of GL(2,R) and irreducible unitary representations of H× ([23]).
This correspondence can be extended to a correspondence |LJ| between all irreducible
unitary representations of GL(2n,R) and GL(n,H) (it comes from a ring morphism
LJ between the respective Grothendieck groups, defined in Section 4, which explain
the notation). In what follows, it is understood that each time we write the relation
|LJ|(π) = π′ for π and π′ representations of GL(2n,R) and GL(n,H) respectively, then
π and π′ satisfy the character relation Θπ(g) = ε(π)Θ′

π(g′) for all g ↔ g′ where ε(π) is
an explicit sign (π clearly determines π′ and ε). The correspondence |LJ| for unitary
representations is given first on elements in UR:

(a) |LJ|(χ2n) = χ′n and |LJ|(π(χ2n, α)) = π(χ′n, α) for all χ ∈ XR and α ∈]0, 1
2 [;

(b) If δ ∈ Du
2 is such that C(δ) is inD (i.e. is not one-dimensional) then |LJ|(u(δ, k)) =

|LJ|(C(δ), k) and LJ(π(u(δ, k), α)) = π(u(C(δ), k), α) for all α ∈]0, 1
2 [;
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(c) If δ ∈ Du
2 is such that C(δ) is a one-dimensional representation χ′1, then

— |LJ|(u(δ, k)) = π(χ′k
2

, 1
2), |LJ|(π(u(δ, k), α)) = π(π(χ′k

2

, 1
2), α) if k is even and

α ∈]0, 1
2 [.

— |LJ|(u(δ, k)) = χ′k+1
2

×χ′k−1
2

, |LJ|(π(u(δ, k), α)) = π(χ′k+1
2

, α)×π(χ′k−1
2

, α) if k 6= 1

odd and α ∈]0, 1
2 [.

— |LJ|(δ) = χ′1, |LJ|(π(δ, α)) = π(χ′1, α), α ∈]0, 1
2 [,.

Let π be an irreducible unitary representation of GL(2n,R). If writing π as a product
of elements in UR involves a factor not listed in (a), (b) or (c) it is easy to show that π
has a character which vanishes on elements which correspond to elements of GL(n,H),
and we set |LJ|(π) = 0. If all the factors σi of π are in (a) (b) (c) above, |LJ|(π) is the
product of the |LJ|(σi) (an irreducible unitary representation of GL(n,H)). Elements
of UR not listed at (a) (b) (c) are of type χ or π(χ, α), with χ a character of some
GL(k,R) and k odd.

Notice that some unitary irreducible representations of GL(n,H) are not in the image
of this map (if n ≥ 2). For instance, when χ ∈ XR and 1

2 < α < 1, then both
π(χ2, α) and π(χ′1, α) are irreducible and correspond to each other by the character
relation, but π(χ′1, α) is unitary while π(χ2, α) is not. Using the classification of unitary
representations for GL(4,R) and basic information from the infinitesimal character, it is
clear that no (possibly other) unitary representation of GL(4,R) has matching character
with π(χ′1, α).

As a consequence of the above results, we get:

Theorem 1.2. Let u be a unitary irreducible representation of GL(2n,R).
Then either the character Θu of u vanishes on the set of elements of GL(2n,R)
which correspond to some element of GL(n,H), or there exists a unique ir-
reducible unitary (smooth) representation u′ of GL(n,H) such that

Θu(g) = ε(u)Θu′(g′)

for all g ↔ g′, where ε(u) ∈ {−1, 1}.
The above results are proved in Section 13 and are based on the fact that GL(2n,R)

and GL(n,H) share Levi subgroups (of θ-stable parabolic subgroups, the ones used in co-
homological induction ([27])) which are products of GL(ni,C). The underlying principle
(a nice instance of Langlands’ functoriality) is that the Jacquet-Langlands morphism LJ
commutes with cohomological induction. The same principle, with Kazhdan-Patterson
lifting instead of Jacquet-Langlands correspondence, was already used in [1].

1.4. Character identities and ends of complementary series. In Section 14, we
give the composition series of ends of complementary series in most cases. This is not
directly related to the main purpose of the paper, which is the global theory of the second
part, but it solves some old conjectures of Tadić which are important in understanding
the topology of the unitary dual of the groups GL(n,A), A = R,C,H. The starting
point is Zuckerman formula for the trivial representation of GL(n,A). Together with
cohomological induction, it gives character formulas for unitary representations of the
groups GL(n,A). In case A = C, Zuckerman formula is given by a determinant (see
formula (14.2)), and the Lewis Carroll identity of [14] allows us to deduce formulas
(14.3), (14.5), (14.6), (14.7), (14.10) for the ends of complementary series.
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1.5. Global results. Let F be a global field of characteristic zero and D a central
division algebra over F of dimension d2. Let n ∈ N∗. Set A′ = Mn(D). For each place v
of F let Fv be the completion of F at v and set A′v = A′ ⊗Fv. For every place v of F ,
A′v is isomorphic to the matrix algebra Mrv(Dv) for some positive number rv and some
central division algebra Dv of dimension d2

v over Fv such that rvdv = nd. We will fix
once and for all an isomorphism and identify these two algebras. Let V be the (finite)
set of places where Mn(D) is not split (i.e. dv 6= 1).

Let G′(F) be the group A′× = GL(n,D). For every place v ∈ V , set G′v = A′×v =
GL(rv,Dv) and Gv = GL(n,Fv). For a given place v (clear from the context) write
g ↔ g′ if g ∈ Gv and g′ ∈ G′v are regular semisimple and have equal characteristic
polynomial.

If v /∈ V , the groups Gv and G′v are isomorphic and we fix once and for all an
isomorphism which allows us to identify them.

Theorem 1.2 has been proved in the p-adic case too ([46], [7]). So, if v ∈ V , with the
same notation and conventions in the p-adic case as in the archimedean case :

Theorem 1.3. Let u be a unitary irreducible smooth representation of Gv.
Then we have one and only one of the two following possibilities:

(i) the character Θu of u vanishes on the set of elements of Gv which
correspond to elements of G′v,

(ii) there exists a unique unitary smooth irreducible representation u′ of
G′v such that

Θu(g) = ε(u)Θu′(g′)

for any g ↔ g′, where ε(u) ∈ {−1, 1}.

In the second case (ii) we say u is compatible. We denote the map u 7→ u′ defined
on the set of compatible (unitary) representations by |LJv|.

Let A be the ring of adeles of F . The group G′(F) (resp. G(F)) is a discrete subgroup
of G′(A) (resp. G(A)). The centers of G′ and G consist of scalar nonzero matrices and
can be identified, so both will be denoted by Z, which we consider as an algebraic group
defined over F .

We endow these local and global groups with measures as in [3] and for every unitary
continuous character ω of Z(A) trivial on Z(F), we let L2(G′(F)Z(A)\G′(A);ω) be the
space of functions f defined on G′(A) with values in C such that

i) f is left invariant under G′(F),
ii) f(zg) = ω(z)f(g) for all z ∈ Z(A) and all g ∈ G′(A),
iii) |f |2 is integrable over G′(F)Z(A)\G′(A).

Let us denote by R′ω the representation of G′(A) on L2(G′(F )Z(A)\G′(A);ω) by right
translations. A discrete series of G′(A) is the equivalence class of an irreducible subrep-
resentation of R′ω for some smooth unitary character ω of Z(A) trivial on Z(F). Then
ω is the central character of π. Let R′ω,disc be the subrepresentation of R′ω generated by
irreducible subrepresentations. It is known that a discrete series representation of G′(A)
appears with finite multiplicity in R′ω,disc ([18]).

Similar definitions and statements can be made with G instead of G′, with obvious
notation. Every discrete series π of G′(A) (resp. G(A)) is “isomorphic” to a restricted
Hilbert tensor product of irreducible unitary smooth representations πv of the groups
G′v (resp. Gv) - see [17] for a precise statement and proof. The local components πv are
determined by π.
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Denote DS (resp. DS′) the set of discrete series of G(A) (resp. G′(A)). Let us say
that a discrete series π of G(A) is D-compatible if πv is compatible for all places v ∈ V .

Theorem 1.4. (a) There exists a unique map G : DS′ → DS such that for
every π′ ∈ DS′, if π = G(π′), one has

— π is D-compatible,
— if v /∈ V , then πv = π′v and
— if v ∈ V , then |LJv|(πv) = π′v.

The map G is injective. The image of G is the set of all D-compatible
discrete series of G(A).

(b) If π′ ∈ DS′, then the multiplicity of π′ in the discrete spectrum is one
(Multiplicity One Theorem).

(c) If π′, π′′ ∈ DS′, if π′v ' π′′v for almost all v, then π′ = π′′ (Strong
Multiplicity One Theorem).

With D fixed, we need now to consider all possible n ∈ N× at the same time and we
add a subscript in the notation : An = Mn(F), A′n = Mn(D), Gn, G′n, DSn, DS′n...
We recall the Moeglin-Waldspurger classification of the residual spectrum for the groups
Gn(A), n ∈ N∗. Let ν be the character ofGn(A) orG′n(A) given by the restricted product
of characters νv = |det |v where | |v is the v-adic norm and det is the reduced norm at
the place v. Let m ∈ N∗ and ρ ∈ DSm be a cuspidal representation. If k ∈ N∗, then the
induced representation to Gmk(A) from ⊗k−1

i=0 (ν
k−1
2
−iρ) has a unique constituent (in the

sense of [30]) π which is a discrete series (i.e. π ∈ DSmk). We set then π = MW (ρ, k).
Discrete series π of groups Gn(A), n ∈ N∗, are all of this type, k and ρ are determined
by π. The discrete series π is cuspidal if k = 1 and residual if k > 1. These results are
proved in [32].

The proof of the following propositions and corollary is the same as in [7], once
the local and global transfer are established without condition on archimedean places.
Firstly, concerning cuspidal representations of G′(A), we get:

Proposition 1.5. Let m ∈ N∗ and let ρ ∈ DSm be a cuspidal representation.
Then

(a) There exists sρ,D ∈ N∗ such that, for k ∈ N∗, MW (ρ, k) is D-
compatible if and only if sρ,D|k. We have sρ,D|d.

(b) G−1(MW (ρ, sρ,D)) = ρ′ ∈ DS′msρ,D
d

is cuspidal. The map G−1 sends

cuspidal D-compatible representations to cuspidal representations.
(c) Every cuspidal representation in DS′msρ,D

d

is obtained as in (b).

Let us call essentially cuspidal representation the twist of a cuspidal representation
by a real power of ν. If n1, n2, ..., nk are positive integers such that

∑k
i=1 ni = n,

then the subgroup L of G′n(A) of diagonal matrices by blocks of sizes n1, n2,...,nk will
be called standard Levi subgroup of G′n(A). We identify then L to ×k

i=1G
′
ni

(A). All
the definitions extend in an obvious way to L. The two statements in the following
Proposition generalize respectively [32] and Theorem 4.4 in [24].

Proposition 1.6. (a) Let ρ′ ∈ DS′m be a cuspidal representation and let

k ∈ N∗. The induced representation from ⊗k−1
i=0 (ν

k−1
2
−i

ρ′ ρ′) has a unique ir-
reducible quotient π′ (also characterized among irreducible subquotients by
being in the discrete series), denoted by π′ = MW ′(ρ′, k). Every discrete
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series π′ of a group G′n(A), n ∈ N∗, is of this type, and k and ρ′ are de-
termined by π′. The representation π′ is cuspidal if k = 1, and residual
if k > 1. If π′ = MW ′(ρ′, k), then G(ρ′) = MW (ρ, sρ,D) if and only if
G(π′) = MW (ρ, ksρ,D).

(b) Let (Li, ρ
′
i), i = 1, 2, be such that Li is a standard Levi subgroup of

G′n(A) and ρ′i is an essentially cuspidal representation of Li for i = 1, 2.
Fix any finite set of places V ′ containing the infinite places and all the finite
places v where ρ′1,v or ρ′2,v is ramified (i.e. has no non-zero vector fixed
under Kv). If, for all places v /∈ V ′, the unramified subquotients of the
representation of G′n(A) induced from the ρ′i,v are equal, then (L1, ρ

′
1) and

(L2, ρ
′
2) are conjugate.

We know by [30] that if π′ is an automorphic representation of G′n, then there exists
(L, ρ′) where L is a standard Levi subgroup of G′n and ρ′ is an essentially cuspidal
representation of L such that π′ is a constituent of the representation of G′n induced
from ρ′. A corollary of the point (b) of the proposition is

Corollary 1.7. (L, ρ′) is unique up to conjugation.

1.6. Final comment and acknowledgment. Let us say a word about the length of
the paper which can be explained by our desire to give complete proofs or/and references
of all the statements. For instance, the proof of U(3) for GL(n,H) in Section 10 is quite
long in itself, and requires the material about Bruhat G-order introduced in the previous
section, not needed otherwise. We could have saved four or five pages by referring to
[47] which gives the proof of U(3) for GL(n,R) and GL(n,C), but [47] is at the time
still unpublished, and our arguments using Bruhat G-order could be used to simplify
the proofs in [47]. Our exposition is also intended for the reader who is interested in
comparing the archimedean and non-archimedean theory, by making them as similar
as possible. Our discussion of Vogan’s classification in Section 12 is also longer than
strictly needed, but we feel that it is important that the relation between Vogan and
Tadić classifications is explained somewhere in some details.

We would like to thank D. Vogan for answering many questions concerning his work.

2. Notation

2.1. Multisets. Let X be a set. We denote by M(X) the set of functions from X to N
with finite support, and we consider an element m ∈M(X) as a ‘set with multiplicities’.
Such an element m ∈M(X) will be typically denoted by

m = (x1, x2, . . . , xr)

It is a (non ordered) list of elements xi in X.
The multiset M(X) is endowed with the structure of a monoid induced from the one

on N : if m = (x1, , . . . , xr), n = (y1, , . . . , ys) are in M(X), we get

m+ n = (x1, . . . , xr, y1, . . . , ys).

2.2. Local fields and division algebras. In the sequel, we will use the following
notation : F is a local field, | . |F is the normalized absolute value on F and A is a
central division algebra over F with dimF (A) = d2.

If F is archimedean, then either F = R and A = R or A = H, the algebra of
quaternions, or F = A = C.
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2.3. GL. For n ∈ N×, we set Gn = GL(n,A) and G0 = {1}. We denote the reduced
norm on Gn by

RN : Gn → F×.

We set :
νn : Gn → |RN(g)|F .

When the value of n is not relevant to the discussion, we will simply put G = Gn and
ν = νn.

Remark 2.1. If A = F , the reduced norm is just the determinant.

The character ν of G is unramified and in fact the group of unramified characters of
G is

X (G) = {νs, s ∈ C}.
If G is one of the groups Gn, or more generally, the group of rational points of any

reductive algebraic connected group defined over F , we denote by M(G) the category of
smooth representations of G (in the non archimedean case), or the category of Harish-
Chandra modules (in the archimedean case), with respect to a fixed maximal compact
subgroup K of G. For GL(n,R), GL(n,C) and GL(n,H), these maximal compact sub-
groups are respectively chosen to be O(n), U(n) and Sp(n), embedded in the standard
way. Then R(G) denotes the Grothendieck group of the category of finite length repre-
sentations in M(G). This is the free Z-module with basis Irr(G), the set of equivalence
classes of irreducible representations in M(G). If π ∈ M(G), of finite length, we will
again denote by π its image in R(G). When confusion may occur, we will state precisely
if we consider π as a representation or as an element in R(G).

Set
Irrn = Irr(Gn), Irr =

∐
n∈N

Irrn, R =
⊕
n∈N

R(Gn), .

If τ ∈M(Gn) or R(Gn), we set deg τ = n.

2.4. Standard parabolic and Levi subgroups. Let n ∈ N and let
∑s

i=1 ni = n be a
partition of n. The group

s∏
i=1

Gni

is identified with the subgroup ofGn of bloc diagonal matrices of respective size n1, . . . , ns.
Let us denote G(n1,...,ns) this subgroup and P(n1,...,ns) (resp. P̄(n1,...,ns)) the parabolic
subgroup of Gn generated by G(n1,...,ns) and the Borel subgroup of invertible upper tri-
angular matrices (resp. lower triangular). The subgroup G(n1,...,ns) is a Levi factor of
the standard parabolic subgroup P(n1,...,ns).

In this setting, we denote by i(n1,...,ns) (resp. i(n1,...,ns)) the functor of normalized par-
abolic induction from M(G(n1,...,ns)) to M(Gn) with respect to the parabolic subgroup
P(n1,...,ns) (resp. P̄(n1,...,ns)).

Definition 2.2. Let π1 ∈M(Gn1) and π2 ∈M(Gn2), both of finite length.
We can then form the induced representation :

π1 × π2 := i(n1,n2)(π1 ⊗ π2).

We still denote by π1 × π2 the image of in1,n2(π1 ⊗ π2) in the Grothendieck
group Rn1+n2 . This extends linearly to a product

× : R×R → R.
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Remark 2.3. Again we warn the reader that it is important to know when
we consider π1 × π2 as a representation or an element in R. For instance
π1 × π2 = π2 × π1 in R (see below), but i(n1,n2)(π1 ⊗ π2) is not isomorphic
to i(n1,n2)(π2 ⊗ π1) in general.

Proposition 2.4. The ring (R,×) is graded commutative. Its identity is
the unique element in Irr0.

3. Langlands classification

We recall how to combine Langlands classification of Irr in terms of irreducible essen-
tially tempered representations, and the fact that for the groups Gn, tempered repre-
sentations are induced fully from irreducible square integrable modulo center represen-
tations to give a classification of Irr in terms of irreducible essentially square integrable
modulo center representations.

Let us denote respectively by

Du
n ⊂ Irrn, Dn ⊂ Irrn,

the set of equivalence classes of irreducible, square integrable modulo center (respectively
essentially square integrable modulo center) representations of Gn, and set

Du =
∐

n∈N×
Du

n, D =
∐

n∈N×
Dn.

Similarly,
T u

n ⊂ Irrn, Tn ⊂ Irrn,

denote respectively the sets of equivalence classes of irreducible tempered representations
of Gn and equivalence classes of irreducible essentially tempered representations of Gn.
Set

T u =
∐
n∈N

T u
n , T =

∐
n∈N

Tn.

For all τ ∈ T , there exists a unique e(τ) ∈ R and a unique τu ∈ T u such that

τ = νe(τ)τu.

Theorem 3.1. Let d = (δ1, . . . , δl) ∈M(Du). Then

δ1 × δ2 × . . .× δl

is irreducible, therefore in T u. This defines a one-to-one correspondence
between M(Du) and T u.

This is due to Jacquet and Zelevinsky in the case A = F non archimedean ([21]
or [53]). For a non archimedean division algebra, this is established in [16]. In the
archimedean case, reducibility of induced from square integrable representations are
well-understood in terms of R-groups (Knapp-Zuckermann [28]), and for the groups Gn,
the R-groups are trivial.

Definition 3.2. Let t = (τ1, . . . , τl) ∈ M(T ). We say that t is written in a
standard order if

e(τ1) ≥ . . . ≥ e(τl).
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Theorem 3.3. Let d = (d1, . . . , dl) ∈ M(D) written in a standard order,
i.e.

e(d1) ≥ e(d2) > . . . ≥ e(dl).

Then :
(i) the representation :

λ(d) = d1 × . . .× dl

has a unique irreducible quotient Lg(d), appearing with multiplicity one in
a Jordan-Hölder sequence of λ(d). It is also the unique subrepresentation of

dl × dl−1 × . . .× d2 × d1.

(ii) Up to a multiplicative scalar, there is an unique intertwining operator

J : d1 × . . .× dl −→ dl × . . .× d1.

We have then Lg(d) ' λ(d)/ ker J ' Im J .
(iii) The map

d 7→ Lg(d)

is a bijection between M(D) and Irr.

For a proof in the non archimedean case, the reader may consult [36].

Representations of the form λ(d) = d1× . . .×dl with d = (d1, . . . , dl) ∈M(D) written
in a standard order are called standard representations.

Remark 3.4. If d is a multiset of representations in Irr, we denote by deg d
the sum of the degrees of representations in d. Let M(D)n be the subset
of M(D) of multisets of degree n. Then the theorem gives a one-to-one
correspondence between M(D)n and Irrn.

Proposition 3.5. The ring R is isomorphic to Z[D], the ring of polynomials
in Xd, d ∈ D with coefficients in Z, i.e. {[λ(d)]}d∈D is a Z-basis of R.

See [53], Prop. 8.5 for a proof.

We give some easy consequences of the proposition :

Corollary 3.6. (i) The ring R is a factorial domain.
— (ii) If δ ∈ D, [δ] is prime R.
— (iii) If π ∈ R is homogeneous and π = σ1 × σ2 in R , the σ1 and σ2

are homogeneous.
— (iv) The group of invertible elements in R is {±Irr0}.
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4. Jacquet-Langlands correspondence

In this section, we fix a central division algebra A of dimension d2 over the local field
F . We recall the Jacquet-Langlands correspondence between GL(n,A) and GL(nd, F ).
Since we need simultaneously both F and A in the notation, we set GA

n , GF
n respectively

for GL(n,A), GL(n, F ), and similarly with other notation e.g. R(GA
n ) or R(GF

n ), DA
n

or DF
n , etc.

There is a standard way of defining the determinant and the characteristic polynomial
for elements of GA

n , in spite of A being non commutative (see for example [34] Section
16), and the reduced norm RN introduced above is just given by the constant term of
the characteristic polynomial. If g ∈ GA

n , then the characteristic polynomial of g has
coefficients in F , it is monic and has degree nd. If g ∈ GA

n for some n, we say g is regular
semisimple if the characteristic polynomial of g has distinct roots in an algebraic closure
of F .

If π ∈ R(Gn), then we let Θπ denote the function character of π, as a locally constant
map, stable under conjugation, defined on the set of regular semisimple elements of Gn.

We say that g′ ∈ GA
n corresponds to g ∈ GF

nd if g and g′ are regular semisimple and
have the same characteristic polynomial, and we write then g′ ↔ g. Notice that if g′ ↔ g
and if g′1 and g1 are respectively conjugate to g′ and g, then g′1 ↔ g1. Said otherwise, it
means that ↔ is really a correspondence between conjugacy classes.

Theorem 4.1. There is a unique bijection C : DF
nd → DA

n such that for all
π ∈ DF

nd we have

Θπ(g) = (−1)nd−nΘC(π)(g
′)

for all g ∈ GF
nd and g′ ∈ GA

n such that g′ ↔ g.

For the proof, see [16] if the characteristic of the base field F is zero and [4] for the non
zero characteristic case. In the archimedean case, see sections 9.2 and 9.3, and Remark
9.6 for more details about this correspondence ([23],[16]).

We identify the centers of GF
nd and GA

n via the canonical isomorphisms with F×. Then
the correspondence C preserves central characters so in particular σ is unitary if and
only if C(σ) is.

The correspondence C may be extended in a natural way to a correspondence LJ
between Grothendieck groups :

- If σ ∈ DF
nd, viewed as an element in R(GF

nd), we set

LJ(σ) = (−1)nd−nC(σ),

viewed as an element in R(GA
n ).

- If σ ∈ DF
r , where r is not divisible by d, we set LJ(σ) = 0.

- Since RF is a polynomial algebra in the variables d ∈ DF , one can extend LJ
in a unique way to an algebra morphism between RF and RA. It is clear that LJ is
surjective.

The fact that LJ is a ring morphism means that “it commutes with parabolic in-
duction”. Let us describe how to compute (theoretically) LJ(π), π ∈ RF . Since
{λ(a)}a∈M(DF ) is a basis of RF , we first write π in this basis as

π =
∑

a∈M(DF )

M(a, π)λ(a),



12 I. A BADULESCU AND D. RENARD

with M(a, π) ∈ Z (see Section 6). Since LJ is linear,

LJ(π) =
∑

a∈M(DF )

M(a, π) LJ(λ(a)),

so it remains to describe LJ(λ(a)). If a = (d1, . . . dk), then

λ(a) = d1 × . . .× dk

(since we consider λ(a) as an element in RF , the order of the dj is not important). Since
LJ is an algebra morphism

LJ(λ(a)) = LJ(d1)× . . .× LJ(dk).

If d does not divide one of the deg di, this is 0, and if d divides all the deg di, setting∑
i deg di = n, we get

LJ(λ(a)) =
k∏

i=1

(−1)d deg di−deg diC(di) = (−1)nd−nC(d1)× . . .×C(dk).

5. Support and infinitesimal character

The goal of this section is again to introduce some notation and to recall well known re-
sults, but we want to adopt a uniform terminology for archimedean and non archimedean
case. In the non archimedean case, some authors, by analogy with the archimedean
case, call ‘infinitesimal character’ the cuspidal support of a representation (a multiset
of irreducible supercuspidal representations). We take the opposite view of considering
infinitesimal characters in the archimedean case as multisets of complex numbers.

5.1. Non archimedean case. We start with the case F non archimedean. We denote
by C (resp. Cu) the subset of Irr of supercuspidal representations (resp. unitary
supercuspidal, i.e. such that e(ρ) = 0).

For all π ∈ Irr, there exist ρ1, . . . , ρn ∈ C such that π is a subquotient of ρ1×ρ2×. . .×
ρn. The multiset (ρ1, . . . , ρn) ∈M(C) is uniquely determined by π, and we denote it by
Supp (π). It is called the cuspidal support of π. When π is a finite length representation
whose irreducible subquotients have same cuspidal support, we denote it by Supp (π).
If τ = π1 × π2, with π1, π2 ∈ Irr we have

(5.1) Supp (τ) = Supp (π1) + Supp (π2)

For all ω ∈M(C), denote by Irrω the set of π ∈ Irr whose cuspidal support is ω. We
obtain a decomposition :

(5.2) Irr =
∐

ω∈M(C)

Irrω.

Set
Rω =

⊕
π∈Irrω

Zπ.

Then

(5.3) R =
⊕

ω∈M(C)

Rω

is a graduation of R by M(C).
We recall the following well known result.

Proposition 5.1. Let ω ∈M(C). Then Irrω is finite.
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5.2. Archimedean case. Denote by gn the complexification of the Lie algebra of Gn,
Un = U(gn) its enveloping algebra, and Zn the center of the latter. Let hn be a Cartan
subalgebra of gn, and Wn = W (gn, hn) its Weyl group. Harish-Chandra has defined an
algebra isomorphism from Zn to the Weyl group invariants in the symmetric algebra
over hn :

HCn : Zn −→ S(hn)Wn .

Using this isomorphism, every character of Zn (i.e. a morphism of algebra with unit
Zn → C) is identified with a character of S(hn)Wn . Such characters are given by orbits
of Wn in h∗n, by evaluation at a point of the orbit.

A representation (recall that in the archimedean case, this means a Harish-Chandra
module) admits an infinitesimal character if the center of the enveloping algebra acts on
it by scalars. Irreducible representations admit infinitesimal character. For all λ ∈ h∗n,
let us denote by Irrλ the set of π ∈ Irr whose infinitesimal character is given by λ.

We are now going to identify infinitesimal characters with multisets of complex num-
bers.

— A = R. In this case, gn = Mn(C) and we can choose hn to be the space of diagonal
matrices, identified with Cn. Its dual space is also identified with Cn by the canonical
duality

Cn × Cn → C, ((x1, . . . , xn), (y1, . . . yn)) 7→
n∑

i=1

xiyi.

The Weyl group Wn is then identified with the symmetric group Sn, acting on Cn by
permuting coordinates. Thus, an infinitesimal character for Gn is given by a multiset of
n complex numbers.

— A = C. In this case, gn = Mn(C)⊕Mn(C), and we can choose hn to be the space
of couples of diagonal matrices, identified with Cn×Cn. Its dual space is also identified
with Cn × Cn as above. The Weyl group is then identified with Sn × Sn, acting on
h∗n ' Cn × Cn by permuting coordinates. Thus, an infinitesimal character for Gn is
given by a couple of multisets of n complex numbers.

— A = H. The group Gn is a real form of GL(2n,C), so gn = M2n(C). The discussion
is then the same as for F = R, with 2n replacing n.

By analogy with the non archimedean case, we denote by M(C) the set of multisets
(or couple of multisets if A = C) described above.

Definition 5.2. Let ω ∈ M(C) be a multiset (or a couple of multisets of
the same cardinality, if A = C) of complex numbers. If π ∈ Irrn, we set

Supp (π) = ω

where ω ∈M(C) is the multiset (or couple of multisets of the same cardinal-
ity if F = C) defined by the infinitesimal character of π. We say that ω is the
support of π. When π is a finite length representation whose subquotients
have all same support, we denote it by Supp (π). If π ∈ Irr, π = Lg(a) for
a ∈M(D), we set

Supp (a) := Supp (π).
We denote by M(D)ω the set of a ∈M(D) with support ω.

Proposition 5.3. The results of 5.1 are valid in the archimedean case.
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By this, we mean (5.1), (5.2), (5.3) and Prop. 5.1 above.

6. Bruhat G-order

We continue with the notation of the previous section. In the sequel, we will use a
partial order ≤ on M(D), called Bruhat G-order, obtained from partial orders on each
M(D)ω, ω ∈M(C) whose main properties are described in the following :

Proposition 6.1. Let a ∈ M(D). Then the decomposition of λ(a) in the
basis {Lg(b)}b∈M(D) of R is of the form

λ(a) =
∑
b≤a

m(b, a) Lg(b),

where the m(a, b) are non negative integers. The decomposition of Lg(a) in
the basis {λ(b)}b∈M(D) of R is of the form

Lg(a) =
∑
b≤a

M(b, a) λ(b),

where the M(b, a) are integers. In particular, all factors Lg(b) (resp. λ(b))
appearing in the decomposition of λ(a) (resp. Lg(a)) have same support.
Furthermore, m(a, a) = M(a, a) = 1.

In the non archimedean case, Bruhat G-order is described by Zelevinsky [53] (A = F )
and Tadić [44] in terms of linked segments. On arbitrary real reductive groups, Bruhat
G-order is defined by Vogan on a different sets of parameters, in terms of integral
roots (see [51], def. 12.12). In all cases, Bruhat G-order is constructed by defining
first elementary operations, starting from an element a ∈M(D) and obtaining another
element a′ ∈M(D). This is written

a′ ≺ a.

Bruhat G-order is then generated by ≺1. Another important property of Bruhat G-order
is the following. One can define on all M(D)ω a length function :

l : M(D)ω → N

such that if b ≤ a, then l(b) ≤ l(a), if b ≤ a and l(b) = l(a) then b = a and finally if
b ≤ a, and l(b) = l(a) − 1 then b ≺ a. In particular, if b ≺ a, there is no c ∈ M(D)ω

such that b ≤ c < a but b = c.
We have then

Proposition 6.2. Let a, b ∈M(D)ω such that b ≺ a. Then m(b, a) 6= 0 and
M(b, a) 6= 0.

Proof. The first assertion follows from the recursion formulas for Kazhdan-Lusztig-
Vogan polynomials in the archimedean case [48]. We even have m(b, a) = 1 in this case.
It is established by Zelevinsky [53] or Tadić [44] in the non archimedean case, and the
second assertion follows using Prop. 6.1. �

1In the case A = R, the situation is a little more complicated.
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7. Unitary dual

7.1. Representations u(δ, n) and π(δ, n;α). Let δ ∈ D. Then δ × δ is irreducible.
Indeed, if δ ∈ Du, this is 3.1, and the general case follows by tensoring with an unramified
character. Consider δ×ναδ, with α > 0. There exists a smallest α0 > 0 such that δ×να0δ
is reducible.

Definition 7.1. Let δ ∈ D. Set νδ = να0 , where α0 > 0 is the smallest real
number α > 0 such that δ × ναδ is reducible.

For all δ ∈ D, and for all n ∈ N× we set

(7.1) a(δ, n) = (ν
n−1

2
δ δ, ν

n−1
2
−1

δ δ, . . . , ν
−n−1

2
δ δ) ∈M(D),

(7.2) u(δ, n) = Lg(a(δ, n)).

For all δ ∈ D, for all n ∈ N×, and for all α ∈ R, set

(7.3) π(δ, n;α) = να
δ u(δ, n)× ν−α

δ u(δ, n).

7.2. Tadić hypotheses U(0), . . . , U(4) and classification of the unitary dual. We
recall Tadić’s classification of the unitary dual of the groups Gn. For a fixed division
algebra A, consider the following hypotheses :
U(0) : if σ, τ ∈ Irru, then σ × τ ∈ Irru.
U(1) : if δ ∈ Du and n ∈ N×, then u(δ, n) ∈ Irru.
U(2) : if δ ∈ Du, n ∈ N× and α ∈]0, 1/2[, then π(δ, n;α) ∈ Irru.
U(3) : if δ ∈ D, u(δ, n) is prime in R.
U(4) : if a, b ∈M(D), then L(a)× L(b) contains L(a+ b) as a subquotient.

Suppose Tadić’s hypotheses are satisfied for A. We have then the following :

Theorem 7.2. The set Irru is endowed with the structure of a free com-
mutative monoid, with product (σ, τ) 7→ σ × τ and with basis

B = {u(δ, n), π(δ, n;α) | δ ∈ Du, n ∈ N×, α ∈]0, 1/2[ }.
More explicitly, if π1, . . . , πk ∈ B, then π1× . . .× πk ∈ Irru and if π ∈ Irru,
there exists π1, . . . , πk ∈ B, unique up to permutation, such that π = π1 ×
. . .× πk.

This is proved in [45], prop 2.1. The proof is formal.

Let us first notice that U(4) is a quite simple consequence of Langlands classification,
established by Tadić for all A in [46] (the proof works also for archimedean A, see [47]).
It is also easy to see that U(2) can be deduced from U(0) and U(1) by the following
simple principle : if (πt)t∈I , is a family of hermitian representations in M(G), where
I is an open interval containing 0, continuous in a sense that we won’t make precise
here, and if π0 is unitary and irreducible, then πt is unitary on the largest interval J ⊂ I
containing 0 where πt is irreducible (the signature of the hermitian form can change only
when crossing reducibility points). Representations π(δ, n;α), α ∈ R are hermitian,

π(δ, n; 0) = u(δ, n)× u(δ, n)

is unitary and irreducible (U(0) and U(1)), and π(δ, n;α) is irreducible for α ∈]− 1
2 ,

1
2 [.

See [47] and the references given there for details.
For the remaining U(0), U(1) and U(3), the situation is more complicated.
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— U(3) is proved by Tadić in the non archimedean case in [42], and for A = R,C in
[47]. We give below the proof for A = H, following Tadić’s ideas.

— U(1) is proved by Tadić in the non archimedean case in [42] for the field case A = F .
The generalization to all division algebra over F is given by the authors in [9], using
unitarity of some distinguished representations closely related to the u(δ, n) established
by the first named author in [6] by global methods. For F = C, u(δ, n) is a unitary
character, so the statement is obvious. For F = R, U(1) was first proved by Speh in
[41] using global method. It can also be proved using Vogan’s results on cohomological
induction (see details below). Finally, for A = H, U(1) can be established using again
the general results on cohomological induction, and the argument in [9]. A more detailed
discussion of the archimedean case is in section 11.

— U(0) is by far the most delicate point. For A = F non archimedean, it is established
by Bernstein in [12], using reduction to the mirabolic subgroup. For A = R or C, the
same approach can be used, but some serious technical difficulties remained unsolved
until the paper of Baruch [11]. For A a general non archimedean division algebra, U(0) is
established by V. Sécherre [39] using his deep results on Bushnell-Kutzko’s type theory
for the groups GL(n,A), which give Hecke algebras isomorphisms and allow one to
reduce the problem to the field case (the proof also uses in a crucial way Barbash-Moy
results on unitarity for Hecke algebras representations [10]). In the case A = H, there is
to our knowledge no written references, but it is well-known to some experts that this can
be deduced from Vogan’s classification of the unitary dual of Gn in the archimedean case
([52]). Vogan’s classification is conceptually very different from Tadić’s classification. It
has its own merits, but the final result is quite difficult to state and to understand, since
it uses sophisticated concepts and techniques of the theory of real reductive groups. So,
for people interested mainly in applications, to automorphic forms for instance, Tadić’s
classification is much more convenient. In the literature, before Baruch’s paper was
published, one can often find the statement of Tadić’s classification, with reference to
Vogan’s paper [52] for the proof. It might not be totally obvious for non experts to
derive Tadić’s classification from Vogan’s. We take this opportunity to explain in this
paper (see §12 below) some aspects of Vogan’s classification’s, how it is related to Tadić’s
classification and how to deduce U(0) from it. Of course, an independent proof of U(0)
would be highly desirable in this case. It would be even better to have an uniform proof
of U(0) for all cases, but for this, new ideas are clearly needed.

— all these results are true if the characteristic of F is positive (as explained in [8]).

8. Classification of generic irreducible unitary
representations

From the classification of the unitary dual of GL(n,R) given above and the classi-
fication of irreducible generic representations of a real reductive groups ([49], [29]), we
deduce the classification of generic irreducible unitary representations of GL(n,R). Let
us first recall that Vogan gives a classification of ’large’ irreducible representations of a
quasi-split real reductive group (i.e. having maximal Gelfand-Kirillov dimension), that
Kostant shows that such a group admits generic representations if and only if the group
is quasi-split, and that “generic” is equivalent to “large”. Therefore, Vogan’s result can
be stated as follows :

Theorem 8.1. Any generic irreducible representation of any quasisplit real
reductive group is irreducibly induced from a generic limit of discrete series,
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and conversely, a representation which is irreducibly induced from a generic
limit of discrete series is generic.

Let us notice that in the above theorem, one can replace “limit of discrete series” by
“essentially tempered”, because according to [28], any tempered representation is fully
induced from a limit of discrete series. In the case of GL(n,R) all discrete series are
generic, so by Theorem 3.1, all essentially tempered representations are generic.

Let us denote by Irru
gen the subset of Irru consisting of generic representations. We

have then the following specialization of theorem 7.2.

Theorem 8.2. The set Irru
gen is endowed with the structure of a free com-

mutative monoid, with product (σ, τ) 7→ σ × τ and with basis

Bgen = {u(δ, 1), π(δ, 1;α) | δ ∈ Du, α ∈]0, 1/2[ }.
More explicitly, if π1, . . . , πk ∈ Bgen, then π1 × . . . × πk ∈ Irru

gen and if
π ∈ Irru

gen, there exists π1, . . . , πk ∈ Bgen, unique up to permutation, such
that π = π1 × . . .× πk.

9. Classification of discrete series : archimedean case

In this section, we describe explicitly square integrable modulo center irreducible
representations of Gn in the archimedean case. In the case A = H, we give also details
about supports, Bruhat G-order... Since the Bruhat G-order is defined by Vogan on
a set of parameters for irreducible representations consisting of (conjugacy classes of)
characters of Cartan subgroups, we also describe the bijections between the various sets
of parameters.

9.1. A = C. There are square integrable modulo center irreducible representations of
GL(n,C) only when n = 1. Thus

D = D1 = Irr1.

An element δ ∈ D is then a character

δ : GL(1,C) ' C× → C×

Let δ ∈ D. Then there exists a unique n ∈ Z and a unique β ∈ C such that

δ(z) = |z|2β

(
z

|z|

)n

= |z|βC

(
z

|z|

)n

.

Let x, y ∈ C satisfying {
x+ y = 2β
x− y = n.

We set, with the above notation (and abusively writing a complex power of a complex
number),

δ(z) = γ(x, y) = zxz̄y.

The following is well-known.

Proposition 9.1. Let δ = γ(x, y) ∈ D as above. Then δ × ναδ is reducible
for α = 1 and irreducible for 0 ≤ α < 1. Thus νδ = ν (cf. 7.1). In the case
of reducibility α = 1, we have in R:

γ(x, y)×γ(x+1, y+1) = Lg((γ(x, y), γ(x+1, y+1)))+γ(x, y+1)×γ(x+1, y).
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9.2. A = R. There are square integrable modulo center irreducible representations of
GL(n,R) only when n = 1, 2 :

D = D1

∐
D2 = Irr1

∐
D2.

Let us start with the parametrization of D1. An element δ ∈ D1 is a character

δ : GL(1,R) ' R× → C×

Let δ ∈ D1. Then there exists a unique ε ∈ {0, 1} and a unique α ∈ C such that

δ(x) = |x|αsgn(x)ε, (x ∈ R×).

We set
δ = δ(α, ε).

Let us now give a parametrization of D2. Let δ1, δ2 ∈ D1. Then δ1 × δ2 is reducible
if and only if there exists p ∈ Z \ {0} such that

δ1δ
−1
2 (x) = xpsgn(x), (x ∈ R×)

If δi = δ(αi, εi), we rewrite these conditions as

(9.1) α1 − α2 = p, ε1 − ε2 = p+ 1 mod 2

If δ1 × δ2 is reducible, we have in R,

(9.2) δ1 × δ2 = Lg((δ1, δ2)) + η(δ1, δ2)

where η(δ1, δ2) ∈ D2 and Lg((δ1, δ2)) is an irreducible finite dimensional representation
(of dimension |p| with the notation above).

Definition 9.2. If α1, α2 ∈ C satisfy α1 − α2 ∈ Z \ {0}, we set

(9.3) η(α1, α2) = η(δ1, δ2)

where δ1(x) = |x|α1 and δ2(x) = |x|α2sgn(x)α1−α2+1. This define a surjective
map from

{(α1, α2) ∈ C2 |α1 − α2 ∈ Z \ {0}}
to D2 and

η(α1, α2) = η(α′1, α
′
2) ⇔ {α1, α2} = {α′1, α′2}.

This gives a parametrization of D2 by pairs of complex numbers α1, α2

satisfying α1 − α2 ∈ Z \ {0}.

Remark 9.3. The representation η(x, y) ∈ D2, x, y ∈ C, x− y ∈ Z \ {0} is
obtained from the character γ(x, y) of C× by some appropriate functor of co-
homological induction. But, even when x = y, the functor of cohomological
induction maps γ(x, x) to an irreducible essentially tempered representation
of GL(2,R), namely the limit of discrete series δ(x, 0)× δ(x, 1), which is an
irreducible principal series.

For that reason, we set for x ∈ C :

(9.4) η(x, x) := δ(x, 0)× δ(x, 1) ∈ Irr2

Proposition 9.4. Let δ ∈ D. Then δ × ναδ is reducible for α = 1 and
irreducible for 0 ≤ α < 1. Thus νδ = ν (cf. 7.1).
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This is also well-known. Let us be more precise, by giving the composition series for
δ × νδ. We start with the case δ = δ(α, ε) ∈ D1. Then we get from (9.2) that we have
in R,

(9.5) δ(α, ε)× δ(α+ 1, ε) = Lg(δ(α, ε), δ(α+ 1, ε)) + η(α, α+ 1).

In the case where δ = η(x, y) ∈ D2, x− y = r ∈ N×, we get if r 6= 1,

η(x, y)× η(x+ 1, y + 1) =(9.6)

Lg(η(x, y),η(x+ 1, y + 1)) + η((x, y + 1)× η(x+ 1, y)).

If r = 1, the situation degenerates, but the following formulas remain valid by coherent
continuation (see Section 13.1) :

η(x, y)× η(x+ 1, y + 1) =

Lg(η(x, y),η(x+ 1, y + 1)) + η(x, y + 1)× η(x+ 1, y).

Recall that our convention is that

η(y + 1, y + 1) = δ(y + 1, 0)× δ(y + 1, 1)

is a limit of discrete series, thus :

η(y + 1, y)× η(y + 2, y + 1) =(9.7)

Lg(η(y + 1, y),η(y + 2, y + 1)) + δ(y + 1, 0)× δ(y + 1, 1)× η(y + 2, y).

9.3. A = H. Let us identify quaternions and 2× 2 matrices of the form(
α β
−β̄ ᾱ

)
, α, β ∈ C.

The reduced norm is given by

RN

(
α β
−β̄ ᾱ

)
= |α|2 + |β|2.

The group of invertible elements H× contains SU(2), the kernel of the reduced norm.
Thus we have an exact sequence

1 → SU(2) ↪→ H× RN−→ R×
+ → 1,

and we can identify H× with the direct product SU(2)× R×
+.

The group GL(n,H) is a real form of GL(2n,C), its elements are 2n × 2n-matrices
composed of 2 × 2 quaternionic matrices described above. Complex conjugacy on
GL(2n,C) for this real form is given on the 2× 2 blocs by(

α β
γ δ

)
7→

(
δ̄ −γ̄
−β̄ ᾱ

)
.

A maximal compact subgroup of GL(n,H) is then

Sp(n) ' U(2n) ∩GL(n,H).

Its rank is n, the rank of GL(n,H) is 2n and the split rank of the center is 1. Thus
there are square integrable modulo center representations only when n = 1.
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For n = 1, D1 = Irr1, all irreducible representations of H× are essentially square inte-
grable modulo center, since H× is compact modulo center. Harish-Chandra’s parametriza-
tion in this case is as follows : irreducible representations of H× are parametrized by
some characters of a fundamental Cartan subgroup, here we choose

C× ↪→ H×, α 7→
(
α 0
0 ᾱ

)
,

which is connected. Characters of C× were described in section F = C. They are of
the form γ(x, y), x − y ∈ Z. An irreducible representation of H× is then parametrized
by a couple of complex numbers (x, y), such that x − y ∈ Z. The couples (x, y) and
(x′, y′) parametrize the same representation if and only if the characters γ(x, y) and
γ(x′, y′) are conjugate under the Weyl group, i.e. if the multisets (x, y) and (x′, y′) are
equal. Furthermore γ(x, y) corresponds to an irreducible representation if and only if
x 6= y. Let us denote η′(x, y) the representation parametrized by the multiset (x, y),
x− y ∈ Z \ {0}. It is obtained from the character γ(x, y) of the Cartan subgroup C× by
cohomological induction.

Remark 9.5. As opposed to the case A = R, when we induced cohomo-
logically the character γ(x, x) of the Cartan subgroup C× to H×, we get 0 :
there is no limits of discrete series. Thus we set η′(x, x) = 0.

Remark 9.6. Jacquet-Langlands correspondence (see Section 4) between
representations of GL(1,H) = H× and essentially square integrable modulo
center irreducible representations GL(2,R) is given by

C(η(x, y)) = η′(x, y), x, y ∈ C, x− y ∈ Z \ {0}.
The representations η(x, y) and η′(x, y) are obtained by cohomological in-
duction from the same character γ(x, y) of the Cartan subgroup C× of
GL(2,R) and H×. In the case x = y the construction still respect the
Jacquet-Langlands character relation since both sides are equal to zero.

More generally let us give now the parametrization of irreducible representations of
GL(n,H) by conjugacy classes of characters of Cartan subgroups. The group GL(n,H)
has only one conjugacy class of Cartan subgroups, a representative being Tn, which

consist of 2 × 2 bloc diagonal matrices of the form
(
α 0
0 ᾱ

)
. Thus Tn ' (C×)n is

connected, tn = Lie(T ) ' Cn and (tn)C ' (C⊕ C)n.
Let Λ be a character of Tn. Its differential

λ = dΛ : tn → Lie(C×) ' C,
is a R-linear map, with complexification the C-linear map

λ = dΛ : tC ' (C⊕ C)n → Lie(C×) ' C.
Such a linear form is given by a n-tuple of couples (λi, µi) such that λi − µi ∈ Z.

Since Tn is connected, a character Λ of Tn is determined by its differential. We write

Λ = Λ(λ1, µ1, . . . , λn, µn) = Λ((λi, µi)1≤i≤n)

if its differential is given by the n-tuple of couples (λi, µi) such that λi − µi ∈ Z.
Let P be the set of characters Λ = Λ((λi, µi)1≤i≤n) of the Cartan subgroup Tn, such

that λi − µi ∈ Z \ {0}.
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Irreducible representations of GL(n,H) are parametrized by P, two characters Λ1

and Λ2 giving the same irreducible representations if and only if they are conjugate
under W (GL(2n,C), Tn). This group is isomorphic to {±1}n × Sn. Its action on
tC ' (C ⊕ C)n is as follows : each factor {±1} acts inside the corresponding factor
C⊕C by permutation, and Sn acts by permuting the n factors C⊕C. Thus we see that
irreducible representations of GL(n,H) are parametrized by multisets of cardinality n
of pairs of complex numbers (λi, µi) such that λi−µi ∈ Z\{0}. Since such a pair (λi, µi)
parametrizes the representation η′(λi, µi), we recover the Langlands parametrization of
Irr by M(D). Let us denote by ∼ the equivalence relation on P given by the Weyl
group action W (GL(2n,C), T ). We have described one-to-one correspondences

P/ ∼ ' Irrn 'M(D)n

Recall that a support for GL(n,H) is a multiset of 2n complex numbers, i.e. an
element of the quotient of t∗C ' (C ⊕ C)n ' C2n, by the action of the Weyl group
WC ' S2n.

Definition 9.7. The support of a character Λ = Λ((λi, µi)1≤i≤n) ∈ P is the
multiset

(λ1, µ1, . . . , λn, µn).
It does not depend on the equivalence class of Λ for ∼. If Λ ∈ P parametrizes
the irreducible representation π, we denote Supp (Λ) = Supp (π).

This describes explicitly the map

P →M(C), Λ 7→ Supp (Λ)

and its fibers : two parameters

Λ1((λ1
i , µ

1
i )) and Λ2((λ2

i , µ
2
i )),

have same support if and only if the multisets

(λ1
1, . . . , λ

1
n, µ

1
1, . . . , µ

1
n, ) and (λ2

1, . . . , λ
2
n, µ

2
1, . . . , µ

2
n)

are equal. We denote by P(ω) the fiber at ω.
Let us give now the description of the Bruhat G-order, in terms of integral roots. We

have the decomposition of Lie algebra :

Lie(GL(2n,C)) = (g2n)C = (tn)C ⊕ (
⊕
α∈R

gα
C)

where R = {±(ei − ej), 1 ≤ i < j ≤ 2n} is the usual root system of type A2n−1. Let us
denote by σ the non-trivial element of the Galois group of C/R.

The roots ±(e2j−1 − e2j), j = 1, . . . , n are imaginary compact, thus

σ · e2j−1 = e2j , j = 1, . . . , n.

Other roots are complex: for all j, l, 1 ≤ j 6= l ≤ l,

σ · (e2j−1 − e2l−1) = e2j − e2l, σ · (e2j−1 − e2l) = e2j − e2l−1.

Let us fix a support ω and let Λ be a character of Tn such that Supp (Λ) = ω, say
Λ = Λ((λi, µi)i=1,...,n), λi − µi ∈ Z \ {0}. Notice that WC ' S2n doesn’t act on P(ω),
since the condition

λi − µi ∈ Z
might not hold anymore after some permutation of the λi.
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Denote by WΛ the subgroup of WC consisting of elements w such that

w · (λi, µi)i − (λi, µi)i ∈ (Z× Z)n.

Then WΛ is the Weyl group of the root system RΛ of integral roots for Λ. A root
α = ek − el in R is integral for Λ if, when writing

λ1, µ1, λ2, µ2, . . . , λn, µn = ν1, . . . , ν2n

then νk − νl ∈ Z.
Suppose that the support ω is regular, i.e. all the νi, 1 ≤ i ≤ 2n are distinct. We

choose as a positive root system R+
Λ ⊂ RΛ the roots ek − el such that νk − νl > 0. This

defines simple roots.
Let us state first a necessary and sufficient condition for reducibility of standard

modules (for regular support).

Proposition 9.8. Let a = (η′(λi, µi)i=1,...,n) ∈M(D)ω, parametrized by the
character Λ = Λ((λi, µi)i=1,...,n) of Tn. Suppose that the support

ω = (λ1, µ1, . . . , λn, µn)

is regular. Then λ(a) is reducible if and only if there exists a simple root
ek − el in R+

Λ , which is complex, such that, if ek − el = e2i−1 − e2j−1, or
ek − el = e2i − e2j, i 6= j, then

λi − λj > 0 and µi − µj > 0,

and if ek − el = e2i−1 − e2j, or ek − el = e2i − e2j−1, i 6= j, then

λi − µj > 0 and µi − λj > 0.

When ω is not regular, we still have a necessary condition for reducibility:
if λ(a)is reducible, then there exists a root ek − el in R+

Λ , not necessarily
simple, but still satisfying the condition above.

See [51].

Definition 9.9. We still assume ω ∈M(C) to be regular, and suppose that
Λ ∈ P(ω) satisfies the reducibility criterion above for the simple integral
complex root ek − el. Write

Λ = Λ((λ1, µ1), . . . , (λn, µn)) = Λ((ν1, ν2), . . . , (ν2n−1, ν2n))

Let Λ′ ∈ P(ω), obtained from Λ by exchanging νk and νl, and let a′ ∈M(D)ω

correspond to Λ′. We say that a′ is obtained from a by an elementary
operation, and we write a′ ≺ a. The Bruhat G-order on M(D)ω is the
partial order generated by ≺.

Let us now deduce from the reducibility criterion above the invariant νδ attached (cf.
definition 7.1) to an essentially square integrable modulo center irreducible representa-
tion δ = η′(x, y), x, y ∈ C, x− y ∈ Z \ {0}. We may suppose that x− y = r > 0, since
η′(x, y) = η′(y, x).

Proposition 9.10. With the previous notation, νδ = ν if r > 1 and νδ = ν2

if r = 1. Since r is the dimension of δ, we see that νδ = ν except when δ is
a one-dimensional representation of GL(1,H).
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Proof. We want to study the reducibility of

π = η′(y + r, y)× η′(y + r + α, y + α)

for α > 0. The support of this representation is regular if and only if y+r, y, y+r+α, y+α
are distinct, but since

y + r + α > y + α > y, y + r + α > y + r > y,

the support is regular except when r = α. The representation π is the standard repre-
sentation attached to the character

Λ = Λ((y + r + α, y + α), (y + r, y)).

If α /∈ Z, the support is regular, all integral roots are imaginary compact for Λ, and
then π is irreducible.

If α = 1 and r 6= 1, the support is regular, all the roots are integral for

Λ((y + r + 1, y + 1), (y + r, y)),

and e1 − e3 is a complex root, simple in

R+
Λ = {e1 − e3, e1 − e2, e1 − e4, e3 − e2, e3 − e4, e2 − e4},

satisfying the reducibility criterion, since

(σ·(e1−e3))(y+r+1, y+1, y+r, y) = (e2−e4)(y+r+1, y+1, y+r, y) = 1 > 0.

The only smaller element than Λ in the Bruhat G-order is

Λ′ = Λ((y + r, y + 1), (y + r + 1, y)),

and we get

η′(y + r, y)× η′(y + r + 1, y + 1) =(9.8)

Lg(η′(y + r, y),η′(y + r + 1, y + 1)) + η′(y + r, y + 1)× η′(y + r + 1, y).

If α = 1 and r = 1, the support is singular. Applying Zuckerman translation functors
(see [27] for instance), we get

η′(y + 2, y)× η′(y + 3, y + 1) =

Lg(η′(y + 2, y),η′(y + 3, y + 1)) + η′(y + 1, y + 1)× η′(y + 2, y).

But, according to our convention, η′(y + 1, y + 1) = 0 (this is really what we get
applying translation functor to the wall), thus

η′(y + 1, y)× η′(y + 2, y + 1) = Lg(η′(y + 1, y), η′(y + 2, y + 1)).

is irreducible.
The next possibility of reducibility for r = 1 is then α = 2, but then the support is

regular and we see as above that π is reducible, more precisely

η′(y + 3, y + 2)× η′(y + 1, y) =(9.9)

Lg(η′(y + 3, y + 2),η′(y + 1, y)) + η′(y + 2, y + 1)× η′(y + 3, y).

�
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10. U(3) for A = H

We follow Tadić [47] who gives a proof of U(3) for A = C,R to deal with the case
A = H.

Theorem 10.1. Let δ = η′(y+r, y) ∈ D, y ∈ C and r ∈ N× and let n ∈ N×.
Then u(δ, n) is a prime in the ring R.

Proof. We know that δ is prime in R, thus we start with n ≥ 2. Let us first deal with
the case r = 1. Then νδ = 2 and

a0 = a(δ, n) = (ν
n−1

2
δ δ, ν

n−1
2
−1

δ δ, . . . , ν
−n−1

2
δ δ) =

(η′(y + n, y + n− 1), η′(y + n− 2, y + n− 3), . . . η′(y − n+ 2, y − n+ 1)).

Set a0 = a(δ, n) = (X1, . . . , Xn) with

Xi = γ (y + n+ 2− 2i, y + n+ 1− 2i) , i = 1, . . . , n.

Remark 10.2. The support of u(δ, n) is the multiset

(y + n+ 2− 2i, y + n+ 1− 2i)i=1,...n.

This support is regular.

Suppose that u(δ, n) is not prime in R. Then there exists polynomials P and Q in the
variables d ∈ D, non invertible, such that u(δ, n) = PQ. Since u(δ, n) is homogeneous
in R for the natural graduation, the same holds for P and Q.

Let us write

(10.1) P =
∑

c∈M(D)

m(c, P )λ(c), Q =
∑

d∈M(D)

m(d,Q)λ(d).

Set SP = {a ∈M(D)|m(a, P ) 6= 0}, SQ = {a ∈M(D)|m(a,Q) 6= 0}. We get

Lg(a0) = X1 ×X2 . . .×Xn +
∑

a∈M(D), a<a0

M(a, a0) λ(a).

Thus there exists c0 ∈ SP and d0 ∈ SQ such that

c0 + d0 = a0 = (X1, . . . , Xn).

Since degP > 0, degQ > 0, c0 and d0 are not empty and the polynomials P and Q are
not constant Denote by S1 the set of Xi such that Xi ∈ c0 and by S2 the set of Xi such
that Xi ∈ d0. We get a partition of the Xi’s into two non empty disjoint sets. Thus we
can find 1 ≤ i ≤ n− 1 such that

{Xi, Xi+1} 6⊂ Sj , j = 1, 2,

and without any loss of generality, we may suppose that Xi ∈ S1, Xi+1 ∈ S2. Further-
more, we have

|S1| = degP, |S2| = degQ, degP + degQ = n

We get from (9.9) that Xi ×Xi+1 is reducible, more precisely

Xi ×Xi+1 = Lg(Xi, Xi+1) + Yi × Yi+1

where Yi = η′(y + n+ 2− 2i, y + n− 1− 2i), Yi+1 = η′(y + n+ 1− 2i, y + n− 2i).
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We have a1 := (Yi, Yi+1) ≺ (Xi, Xi+1). Set

ai,i+1 = a1 + (X1, . . . , Xi−1, Xi+2, . . . , Xn).

Then ai,i+1 ≺ a0 and thus M(a1, a0) 6= 0 by Prop. 6.2. Therefore, there exists non
empty c1 ∈ SP , d1 ∈ SQ and such that

c1 + d1 = ai,i+1.

We suppose now that Yi divides λ(c1) in R. The case where Yi divides λ(d1) is similar.
Suppose that also λ(Yi+1) divide λ(c1). We get a partition of the Xj , j 6= i, i+ 1 into

two non empty sets S′1 and S′2, such that

c1 = {Xj , j ∈ S′1}+ Yi + Yi+1, d1 = {Xj , j ∈ S′2}.

The polynomials P and Q being homogeneous, we get

deg(P ) = |S′1|+ 2, deg(Q) = |S′2|.

We see that Xi+1 /∈ T := S1 ∪ S′2, thus {X1, . . . , Xn} 6⊂ T . For r ∈ R, let us denote
by degT (r) the degree of r in the variables Xj ∈ T . We get degT P ≥ |S1| = degP ,
degT Q ≥ |S′2| = degQ, thus degT (Lg(a0)) ≥ n. But the fact that the total degree
of Lg(a0) is n implies degT (Lg(a0)) = n. The expression of Lg(a0) in the basis λ(b),
b ≤ a0 shows that we can find b0 ∈ M(D), such that M(b0, a0) 6= 0, deg(b0) = n and
degT λ(b0) = n. Furthermore λ(b0) can be written

λ(b0) = Xα1
1 Xα2

2 . . . Xαn
n , αj ∈ N, α1 + · · ·+ αn = n.

Since T 6= {X1, . . . , Xn}, there exists j such that αj > 1. But then Xj appears with
multiplicity at least two in b0. Since Supp (b0) = Supp (a0) is regular, we get a contra-
diction.

Suppose now that λ(Yi+1) doesn’t divide λ(c1). We get a partition of the Xj , j 6=
i, i+ 1 into two non empty sets S′1 and S′2, such that

c1 = {Xj , j ∈ S′1}+ Yi, d1 = {Xj , j ∈ S′2}+ Yi+1.

We set now T = S′1∪S2, and we see that Xi+1 doesn’t belong to T , thus {X1, . . . , Xn} 6⊂
T . For r ∈ R, denote by degT (r) the degree of r in the variables Xj ∈ T and Yi. As
above, we get that degT (Lg(a0)) = n and that there exists b0 ∈ M(D), such that
M(b0, a0) 6= 0, deg(b0) = n and degT (λ(b0)) = n. We can write

λ(b0) = Xα1
1 Xα2

2 . . . Xαn
n Y α

i , αj ∈ N, α1 + · · ·+ αn + α = n.

Since {X1, . . . , Xn} 6⊂ T , there exists j such that αj = 0. If α = 0, we get a contradiction
as above. Thus α ≥ 1, but since multiplicities in Supp (a0) are at most 1, we get α = 1,
αj = 1 if j 6= i + 1, i, αi = αi+1 = 0 and we still get a contradiction. This finishes the
case r = 1.

Let us deal with briefly the case r > 1. Then νδ = ν and

a(δ, n) = (ν
n−1

2 δ, ν
n−1

2
−1δ, . . . , ν−

n−1
2 δ) =

(η′(x +
n− 1

2
, y +

n− 1

2
), η′(x +

n− 1

2
− 1, y +

n− 1

2
− 1), . . . η′(x− n− 1

2
, y − n− 1

2
)).

Set a0 = a(δ, n) = (X1, . . . , Xn) with

Xi = γ

(
y + r +

n− 1
2

+ 1− i, y +
n− 1

2
+ 1− i

)
, i = 1, . . . , n.
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We proceed as above, using now formula (9.8) for the reducibility of λ(Xi, Xi+1) :

λ(Xi, Xi+1) = Lg(Xi, Xi+1) + λ(Yi, Yi+1)

where Yi = η′(y+r+ n−1
2 +1−i, y+ n−1

2 −i) and Yi+1 = η′(y+r+ n−1
2 −i, y+ n−1

2 +1−i).
In all cases, we get contradictions by inspecting multiplicities in the support. We leave
the details to the reader. �

11. U(1) : archimedean case

We recall briefly the arguments for A = C and R, even if it is well known and done
elsewhere, because we will need the notation anyway. We give the complete argument
when A = H.

11.1. A = C. This case is easy because for γ = γ(x, y), x, y ∈ C, x− y ∈ Z, a character
of C×, we have

u(γ, n) = γ ◦ det .
Representations u(γ, n) are thus 1-dimensional representations of GL(n,C). Further-
more, if γ is unitary (i.e. <e(x+ y) = 0) then u(γ, n) is unitary.

11.2. A = R. There are two cases to consider. The first is δ ∈ D1, δ = δ(α, ε), α ∈ C,
ε ∈ {0, 1}. This case is similar to the case A = C above, since

u(δ, n) = δ ◦ det .

Representations u(δ, n) are 1-dimensional representations of GL(n,R). Furthermore, if
δ is unitary (ie. <e(α) = 0) then u(δ, n) is unitary.

The second case is δ = η(x, y) ∈ D2, x, y ∈ C, x − y = r ∈ N×. We have already
mentioned without giving any details that η(x, y) is obtained by cohomological induction
from the character γ(x, y) of the Cartan subgroup C× of GL(2,R). Let us be now
more precise. Cohomological induction functors considered here are normalized as in
[27], (11.150b): if (gC,K) is a reductive pair associated to a real reductive group G, if
qC = lC⊕uC is a θ-stable parabolic subalgebra of gC, with Levi factor lC, and if L is the
normalizer in G of qC, we define the cohomological induction functor :

RqC : M(lC,K ∩ L) −→M(gC,K)

X 7→ ΓS ◦ pro(X ⊗ τ̃)

where S = dim(uC ∩ kC), ΓS is the S-th Zuckerman derived functor from M(gC,K ∩L)
toM(gC,K), pro is the parabolic induction functor from M(lC,K∩L) to M(gC,K∩L),
and τ̃ is a character of L, square root of the character

∧top(uC/uC ∩ kC) (such a square
root is usually defined only on a double cover of L, but for the cases we are interested in
here, i.e. products of G = GL(n,R), GL(n,C) or GL(n,H), we can find such a square
root on L). This normalization preserves infinitesimal character.

With this notation, for G = GL(2,R), L ' C× and uC = ge1−e2
C , we get

RqC(γ(x, y)) = η(x, y), x, y ∈ C, x− y ∈ N.
Recall the convention η(x, x) = δ(x, 0) × δ(x, 1) for limits of discrete series, so this
formula is also valid when x = y.

Set a0 = a(η(x, y), n) ∈ M(D). The standard representation λ(a0) is obtained by
parabolic induction from the representation

η = η(x+
n− 1

2
, y+

n− 1
2

)⊗η(x+
n− 3

2
, y+

n− 3
2

)⊗ . . .⊗η(x− n− 1
2

, y− n− 1
2

)
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of GL(2,R)× . . .×GL(2,R), the representation η being from what has just been said
obtained by cohomological induction from the character

γ = γ(x+
n− 1

2
, y+

n− 1
2

)⊗γ(x+
n− 3

2
, y+

n− 3
2

)⊗ . . .⊗γ(x− n− 1
2

, y− n− 1
2

)

of C×× . . .×C×. Furthermore u(η(x, y), n) is the unique irreducible quotient of λ(a0).
Independence of polarization results in [27], chapter 11 show that the standard rep-

resentation λ(a0) could be also obtained from the character γ of (C×)n in the following
way : first use parabolic induction from (C×)n to GL(n,C) (with respect to the usual
upper triangular Borel subgroup) to get the standard representation

(11.1) γ(x+
n− 1

2
, y+

n− 1
2

)×γ(x+
n− 3

2
, y+

n− 3
2

)×. . .×γ(x−n− 1
2

, y−n− 1
2

)

whose unique irreducible quotient is u(γ(x, y), n), and then the cohomological induc-
tion functor RqC from GL(n,C) to GL(2n,R) (the reader can guess which θ-stable
parabolic subalgebra qC we use). This shows also that u(δ, n) is the unique irreducible
quotient of RqC(u(γ(x, y), n)). Now, irreducibility and unitarizability theorems of [27]
also imply, the character u(γ(x, y), n) of GL(n,C) being in the weakly good range, that
RqC(u(γ(x, y), n)) is irreducible and unitary if u(γ(x, y), n) is unitary. Thus we get

RqC(u(γ(x, y), n)) = u(η(x, y), n)

and this representation is unitary if and only if <e(x+ y) = 0.
In the degenerate case x = y (see (9.4)), we get

RqC(u(γ(x, y), n)) = u(δ(x, 0), n)× u(δ(x, 1), n).

11.3. A = H. Let δ = η′(x, y), x, y ∈ C, x− y ∈ N×, be an irreducible representation of
H×. Consider the representation u(η′(x, y), n), and recall the invariant νδ of definition
7.1. We have seen that νδ = ν when x − y > 1, νδ = ν2 when x − y = 1. In the
first case, the discussion for the unitarizability of u(η′(x, y), n) is exactly the same as in
the case A = R: the standard representation λ(a0) whose unique irreducible quotient is
u(η′(x, y), n) is obtained by cohomological induction from GL(n,C) to GL(n,H) of the
representation γ defined in (11.1). Furthermore u(η′(x, y), n) is the unique irreducible
quotient of Rq′C

(u(γ(x, y), n)) and is unitary if and only if <e(x+ y) = 0.
When νδ = ν2, i.e. x − y = 1, we get the same results, not for u(η′(x, y), n), but for

ū(η′(x, y), n), the Langlands quotient of the standard representation

η′(x+
n− 1

2
, y+

n− 1
2

)× η′(x+
n− 3

2
, y+

n− 3
2

)× . . .× η′(x− n− 1
2

, y− n− 1
2

)

= ν
n−1

2 η′(x, y)× ν
n−3

2 η′(x, y)× . . .× ν−
n−1

2 η′(x, y).
Recall that u(η′(x, y), n) is the Langlands quotient of

ν
n−1

2
δ η′(x, y)× ν

n−3
2

δ η′(x, y)× . . .× ν
−n−1

2
δ η′(x, y)

= νn−1η′(x, y)× νn−3η′(x, y)× . . .× ν−(n−1)η′(x, y).

With the two conditions x− y = 1 and <e(x+ y) = 0, we see that, up to a twist by a
unitary character, we only have to study the case u(η′, n) with η′ = η′(1

2 ,−
1
2). Unitarity

of u(η′, n) can be deduced from the unitarity of the ū(η′, k) as in [9], using the facts that

ū(η′, 2n+ 1) = u(η′, n+ 1)× u(η′, n)(11.2)
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ū(η′, 2n) = ν
1
2u(η′, n)× ν−

1
2u(η′, n).(11.3)

One could also observe (as it was done by the referee) that u(η′, n) is the trivial repre-
sentation, and so is certainly unitarizable.

12. Vogan’s classification and U(0) in the archimedean case

As we have already said, U(0) is established in the case A = R or C by the work of M.
Baruch filling the serious technical gap that remained in Kirillov’s treatment of Bernstein
approach ([25]). It is also possible to establish U(0) from Vogan’s classification, and this
will work also for A = H. Of course, this might seem a rather convoluted and unnatural
approach, if the final goal is to prove the classification of the unitary dual in Tadić’s
form, since a direct comparison between the classifications is possible. But let us notice
that :

— One of the main difficulty of Vogan’s paper is to prove some special cases of
U(0) (the other difficult point is the exhaustion of the list of unitary almost spherical
representations). The rest of his paper uses only standard and general techniques of the
representation of real reductive groups, mainly cohomological induction.

— The argument which allows the comparison between the two classifications (“inde-
pendence of polarizations”) is also the one leading to U(0) from Vogan’s classification.

— There is still some hope to find an uniform proof of U(0) for all A.

In this section, we give a brief overview of Vogan’s paper [52], and how it implies
U(0). Here, A = R,C or H.

Let us fix a unitary character

δ : GL(1, A) ' A× → C×.

It extends canonically to a family of unitary characters

δn : GL(n,A) → C×,

by composing with the determinant GL(n,A) → GL(1, A) (non commutative determi-
nant of Dieudonné if F = H).

The basic blocs of Vogan’s classification are the representations :

νiβδn, β ∈ R

(with Tadić’s notation, νiβδn = u(νiβδ, n) : it is a unitary character of GL(n,A)), and
the representations

π(νiβδ, n;α) = ν−ανiβδn × νανiβδn, 0 < α <
1
2

of GL(2n, F ). These are Stein’s complementary series.
Vogan considers first parabolically induced representations of the form

(12.1) τ = τ1 × τ2 × . . .× τr

where each τj is either a unitary character

τj = νβjδnj , βj ∈ iR,
or a Stein’s complementary series

τj = π(νβjδ, nj ;α), βj ∈ iR, 0 < α <
1
2
.
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The reason for these conditions is the following : recall our choices of maximal compact
subgroups K(n,A) of GL(n,A) respectively for A = R,C and H :

O(n),U(n) and Sp(n)

and denote by µn the restriction of δn to K(n,A). We say that µn is a special 1-
dimensional representation of K(n,A). If A = R, since µn factorizes through the deter-
minant, there are two special representations of O(n) : the trivial representation, and
the sign of the determinant. If A = C, special representations of U(n) are obtained by
composing the determinant (with values in U(1)), and a character of U(1) (given by an
integer). Finally, if A = H the only special representation of Sp(n) is the trivial one.
A representation of GL(n,A) is said to be almost spherical (of type µn) if it contains
the special K-type µn. This generalizes spherical representations. The characters δnνβ

are exactly the ones whose restriction to K(n,A) is µn. The τi’s above are thus either
almost spherical unitary characters of type µ (the family µ = (µn)n is fixed), or almost
spherical Stein’s complementary series of type µ.

Then Vogan shows the following ([52], Theorem 3.8):

Theorem 12.1. The representations τ = τ1 × τ2 × . . .× τr are
(i) unitary
(ii) irreducible
Furthermore, every irreducible, almost spherical of type µ, unitary repre-

sentation is obtained in this way, and two irreducible, almost spherical of
type µ, unitary representations

τ = τ1 × τ2 × . . .× τr

and

τ ′ = τ ′1 × τ ′2 × . . .× τ ′s

are equivalent if and only if the multisets {τ ′i} and {τj} are equal.

Let us notice that this theorem contains a special case of U(0) : this is the point (ii).
It can be proved using Proposition 2.13 in [7] and results of S. Sahi ([37], Thm 3A).

Furthermore, the classification of irreducible, almost spherical, unitary representa-
tions it gives coincide with Tadić’s classification. (One has to notice that an irreducible,
almost spherical, unitary representation is such with respect to an unique special K-
type : special K-types are minimal, and minimal K-types for GL(n,A) are unique, and
appear with multiplicity 1).

Vogan classification of the unitary dual of GL(n,A) reduces matters to this par-
ticular case of almost spherical representations using cohomological induction functors
preserving irreducibility and unitarity. More precisely, let us recall some material about
Vogan’s classification of the admissible dual of a real reductive group G by minimal
K-types ([50]). To each irreducible representation of G is attached a finite number of
minimal K-types. As we said above, for G = GL(n,A), the minimal K-type is unique,
and appears with multiplicity 1. This gives a partition (which can be explicitly given in
terms of Langlands classification) of the admissible dual of GL(n,A).

Vogan’s classification of the unitary dual deals with each term of this partition sepa-
rately. To each irreducible representation µ of the compact group K(n,A) is attached
a subgroup L of GL(n,A) with maximal compact subgroup KL := K(n,A)∩L, and an
irreducible representation µL of KL. The subgroup L is a product of groups of the form
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GL(ni, Ai),
K(n,A) ∩ L '

∏
i

K(ni, Ai)

and µL is a tensor product of special representations of the K(ni, Ai).
As opposed to Tadić’s classification which uses only parabolic induction functors, Vo-

gan’s classification of GL(n,R) for instance, will use classification of the almost spherical
unitary dual of groups GL(k,C). More precisely :

- For F = R, the subgroups L are products of GL(k,R) and GL(m,C).
- For F = C, the subgroups L are products of GL(k,C).
- For F = H, the subgroups L are products of GL(k,H) and GL(m,C).
A combination of parabolic and cohomological induction functors then defines a func-

tor
IG

L

from M(L) to M(GL(n,A)) with the following properties :
- IG

L sends an irreducible (resp. unitary) representation of L with minimal KL-type
µL to an irreducible (resp. unitary) representation of GL(n, F ) with minimal K-type
µ.

- IG
L realizes a bijection between equivalence classes of irreducible unitary represen-

tations of L with minimal KL-type µL and equivalence classes of irreducible unitary
representations of GL(n, F ) with minimal K-type µ.

From this point of view, to establish U(0), the first thing to do is to check that
products of representations of the form (12.1) for different families of special K-types µ
are irreducible. For F = H, there is nothing to check since there is only one family of
special K-types µ = (µn)n. For F = R, there are two families of special K-types, the
trivial and sign characters of the determinant of O(n). The relevant result is then lemma
16.1 of [52]. For F = R, we have now obtained all irreducible unitary representations
which are products of u(δ, k) and π(δ, k;α) with δ any unitary character of GL(1,R) =
R×.

The case A = C is simpler and dealt with as follows. Let us notice first that since
square integrable modulo center representations of GL(n,C) exist only for n = 1, the
above assertion shows that we get all representations of Tadić’s classification, and this
establishes U(0). In that case, the subgroups L from which we use cohomological in-
duction are of the form

L = GL(n1,C)× . . .GL(nr,C).

The cohomological induction setting is that lC = Lie(L)C is a Levi factor of a θ-stable
parabolic subalgebra qC of gC = Lie(GL(n,C))C. But L is also a Levi factor of a para-
bolic subgroup of GL(n,C). Thus there are two ways of inducing from L to GL(n,C):
parabolic and cohomological induction. An ‘independence of polarization’ result ([52],
Theorem 17.6, see [27], Chapter 11 for a proof), asserts that the two coincide. This
finishes the case A = C.

Let us now finish to discuss the cases A = R and A = H. Representations from Tadić’s
classification which are still missing are the ones built from u(δ, k)’s and π(δ, k;α)’s
with δ a square integrable modulo center representation of GL(2,R) or H×. As we
have seen in 11.2 a square integrable modulo center representation of GL(2,R) or H×

is obtained by cohomological induction from the subgroup L ' C× of GL(2,R) or
GL(1,H) = H×. This explains somehow why cohomological induction will produce the
missing representations. Let us explain this :
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— case F = R : we start with representations of the form

u(χa, ka), π(χb, kb;αb), u(χc, kc), π(χd, kd;αd), u(χe, ke), π(χf , kf ;αf ))

where u(χa, ka) are unitary characters of GL(ka,C), π(χb, kb;αb) are Stein complemen-
tary series of GL(2kb,C), u(χc, kc) are unitary characters of GL(kc,R) of trivial type µ,
π(χd, kd;αd) are Stein complementary series of GL(2kd,R) of trivial type µ, u(χe, ke) are
unitary characters of GL(kc,R) of type µ = sgn, π(χf , kf ;αf ) are Stein complementary
series of GL(2kf ,R) of type µ = sgn.

The tensor product

(
⊗

a

u(χa, ka))⊗ (
⊗

b

π(χb, kb;αb))⊗ (
⊗

c

u(χc, kc))

⊗(
⊗

d

π(χd, kd;αd))⊗ (
⊗

e

u(χe, ke))⊗ (
⊗

f

π(χf , kf ;αf ))

is a representation of the Levi subgroup∏
a

GL(ka,C)
∏
b

GL(2kb,C)
∏
c

GL(kc,R)
∏
d

GL(2kd,R)
∏
e

GL(ke,R)
∏
f

GL(2kf ,R)

of GL(n,R), where n =
∑

a 2ka +
∑

b 4kb +
∑

c kc +
∑

d 2kd +
∑

e ke +
∑

k 2kf .
As we saw, we first form almost spherical representations of a given type by parabolic

induction. Thus we induce

(
⊗

c

u(χc, kc))⊗ (
⊗

d

π(χd, kd;αd))

from ∏
c

GL(kc,R)
∏
d

GL(2kd,R)

to GL(q0,R), where q0 =
∑

c kc +
∑

d 2kd, obtaining an irreducible unitary spherical
representation π0, and similarly

(
⊗

e

u(χe, ke))⊗ (
⊗

f

π(χf , kf ;αf ))

from ∏
e

GL(ke,R)
∏
d

GL(2kf ,R)

to GL(q1,R), where q1 =
∑

e ke +
∑

f 2kf , obtaining an irreducible unitary almost
spherical type µ = sgn representation.

Then we mix spherical and almost spherical of type µ = sgn representations inducing
parabolically π0×π1 from GL(q0,R)×GL(q1,R) to GL(q0+q1,R) : we get an irreducible
unitary representation π of GL(q0 + q1,R).

The group
∏

a GL(ka,C)
∏

b GL(2kb,C) ×GL(q0 + q1,R) is denoted by Lθ in [52].
Applying cohomological induction functor IG

Lθ
to the representation

(
⊗

a

u(χa, ka))⊗ (
⊗

b

π(χb, kb;αb))⊗ π

of Lθ, we get an irreducible unitary representation ρ of GL(n,R).
Independence of polarization theorems ([52], Theorem 17.6, Theorem 17.7 and 17.9,

see [27], Chapter 11), allows us to invert the order of the two types of induction. We
could in fact start with cohomological induction, inducing each

u(χa, ka)



32 I. A BADULESCU AND D. RENARD

from GL(ka,C) to GL(2ka,R). In non degenerate case, following the terminology of
[52], definition 17.3, we get representations u(δa, 2ka), where δa is a square integrable
modulo center irreducible representation of GL(2,R). In the degenerate case, δa is a
limit of discrete series (9.4). These are almost spherical representations that we had
before (see [52], prop. 17.10).

In the same way, we induce all

π(χb, kb;αb)

from GL(2kb,C) to GL(4kb,R). In the non degenerate case, we get representations
π(δb, 2kb;αb), where δb is as above. In the degenerate case, we still get almost spherical
representations.

The parabolically induced representation from∏
a

GL(2ka,R)
∏
b

GL(4kb,R)×GL(q0 + q1,R)

to GL(n,R) of
(
⊗

a

u(δa, ka))⊗ (
⊗

b

π(δb, kb;αb))⊗ π

is ρ (and thus irreducible), see [52], Theorem 17.6 .
This finishes the comparison of the two classifications. The case A = H is entirely

similar.
We deduce U(0) using again independence of polarization. We want to show that

ρ = ρ1 × ρ2 is irreducible if ρ1 and ρ2 are irreducible and unitary. We write ρ1 and
ρ2 as above using first cohomological induction and then, parabolic induction. Using
parabolic induction by stage, we see that ρ1 × ρ2 is also written in this form. Using
again independence of polarization we write ρ as a parabolically then cohomologically
induced representation, and we see that as such, this is a representation appearing in
Vogan’s classification which is therefore irreducible.

13. Jacquet-Langlands correspondence in the archimedean
case

Ideas in this section are taken from [1] which deals with a similar problem (Kazhdan-
Patterson lifting).

13.1. Jacquet-Langlands correspondence and coherent families. Since we need
to consider simultaneously the case A = R and A = H, we add relevant superscripts
to the notation when needed, as in Section 4. We have noticed that Jacquet-Langlands
correspondence between essentially square integrable modulo center irreducible repre-
sentations of GL(2,R) and irreducible representations of H× is given at the level of
Grothendieck groups by

LJ(η(x, y)) = −η′(x, y)
Representations in DR

1 are sent to 0. We extend this linearly to an algebra morphism :

RR → RH.

Lemma 13.1. Jacquet-Langlands correspondence preserves supports.

Proof. a ∈M(D), a = (η(x1, y1), . . . , η(xr, yr)). We have then

LJ(λ(a)) = (−1)rλ(a′)
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where a = (η′(x1, y1), . . . , η′(xr, yr)). The support of a is (x1, y1, . . . , xr, yr), and this is
also the support of a′.

We recall now the definition of a coherent family of Harish-Chandra modules.

Definition 13.2. Let G be a real reductive group, H a Cartan subgroup,
gC and hC the respective complexification of their Lie algebras and Λ the
lattice of weights of H in finite dimensional representations of G. A coherent
family of (virtual) Harish-Chandra modules based at λ ∈ h∗C is a family

{π(λ+ µ) |µ ∈ Λ}

(λ + µ is just a formal symbol, since the two terms are not in the same
group) in the Grothendieck group R(G) such that

— The infinitesimal character of π(λ+ µ) is given by λ+ dµ.
— For any finite dimensional representation F of G, we have, with ∆(F )

denoting the set of weights of H in F , the following identity in R(G) :

π(λ+ µ)⊗ F =
∑

γ∈∆(F )

π(λ+ µ+ γ).

Jacquet-Langlands correspondence preserves coherent families :

Lemma 13.3. Let us identify two Cartan subgroups H and H ′ respectively
of GL(2n,R) and GL(n,H) isomorphic to (C×)n. Let π(λ+µ) be a coherent
family of Harish-Chandra modules for GL(2n,R) based at λ ∈ h∗C. Then
LJ(π(λ+ µ)) is a coherent family for GL(n,H).

Proof. The first property of coherent families is satisfied by LJ(π(λ + µ)) because of
the previous lemma. For the second property, let us remark first that GL(2n,R) and
GL(n,H) being two real forms of GL(2n,C), a finite dimensional representation F of
one of these two groups is in fact the restriction of a finite dimensional representation of
GL(2n,C). We get for all regular element g′ of GL(n,H) corresponding to an element
g in GL(2n,R),∑

γ∈∆(F )

ΘLJ(π(λ+µ+γ))(g
′) =

∑
γ∈∆(F )

Θπ(λ+µ+γ)(g) = Θπ(λ+µ)⊗F (g)

= Θπ(λ+µ)(g) ΘF (g) = ΘLJ(π(λ+µ))(g
′)ΘF (g′) = ΘLJ(π(λ+µ))⊗F (g′),

so
∑

γ∈∆(F ) LJ(π(λ+ µ+ γ)) = LJ(π(λ+ µ))⊗ F . �

13.2. Jacquet-Langlands correspondence and cohomological induction. The
cohomological induction functor RqC introduced in 11.2 preserves irreducibility and uni-
tarity when the infinitesimal character of the induced module satisfies certain positivity
properties with respect to qC (“weakly good range”). Furthermore, with the same con-
ditions, other derived functors Γi(pro(•⊗ τ̃)), i 6= S, vanish. This is not true in general,
and this is the reason why we need to consider Euler-Poincaré characteristic :

R̂qC :=
∑

i

(−1)iΓi(pro(• ⊗ τ̃)).

This is not a functor between M(L) and M(G) anymore, but simply a morphism be-
tween the Grothendieck groups R(L) and R(G).
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Lemma 13.4. The morphism R̂qC : R(L) → R(G) preserves coherent
families.

Proof. The functors Γi(pro(• ⊗ τ̃)) are normalized in order to preserve infinitesimal
character, and thus the first property of coherent family is preserved.

Let π(λ+µ) be a coherent family of Harish-Chandra for (l, L∩K). We want to show
that for any finite dimensional representation F of G,

(13.1) R̂qC(π(λ+ µ))⊗ F =
∑

γ∈∆(F )

R̂qC(π(λ+ µ+ γ))

But ∑
γ∈∆(F )

R̂qC(π(λ+ µ+ γ)) = R̂qC

 ∑
γ∈∆(F )

π(λ+ µ+ γ)


=R̂qC(π(λ+ µ)⊗ F )

It is then enough to show that for any (l, L ∩K)-module X,

(13.2) R̂qC(X)⊗ F = R̂qC(X ⊗ F )

Let U be a any (g,K)-module. Let us compute, using adjunction properties of the
functors involved:

Homg,K(U,Γ(pro((X ⊗ F )⊗ τ̃))) ' Homl,L∩K(U,X ⊗ F ⊗ τ̃)

' Homl,L∩K(U,X ⊗ (F ∗)∗ ⊗ τ̃) ' Homl,L∩K(U,HomC(F ∗, X ⊗ τ̃)

' Homl,L∩K(U ⊗ F ∗, X ⊗ τ̃)) ' Homg,K(U ⊗ F ∗,Γ(pro(X ⊗ τ̃)))

' Homg,K(U,Γ(pro(X ⊗ τ̃))⊗ F )

We deduce from this that Γ(pro(X ⊗ τ̃ ⊗ F )) ' Γ(pro(X ⊗ τ̃))⊗ F .
The same is true for Γi replacing Γ in the computation above. This can be seen

using general arguments and the exactness of the functor • ⊗ F . Thus, for all i ≥ 0,
Γi(pro(X ⊗⊗τ̃ ⊗ F )) ' Γi(pro(X ⊗ τ̃))⊗ F , which implies (13.2).

�

Let us now denote R̂R
qC and R̂H

q′C
the Euler-Poincaré morphisms of cohomological

induction between GL(1,C) and respectively GL(2,R) and GL(1,H), where qC and q′C
are as 11.2 and 11.3.

Lemma 13.5. With the above notation, and x, y ∈ C, x− y ∈ Z,

LJ(R̂R
qC(γ(x, y))) = −R̂H

q′C
(γ(x, y))

Proof. When x− y ≥ 0, we have

R̂R
qC(γ(x, y)) = −RR

qC(γ(x, y)) = −η(x, y)

and
R̂H

q′C
(γ(x, y)) = −RH

q′C
(γ(x, y)) = −η′(x, y).

The formula is thus true in this case. The case x− y < 0 follows because LJ(R̂R
qC(γ(x−

n, y+ n))) and R̂H
q′C

(γ(x− n, y+ n)) are two coherent families which coincide for n ≥ 0,
and are therefore equal.
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Theorem 13.6. Let RR
qC and RH

q′C
be the cohomological induction functors

from GL(n,C) to respectively GL(2n,R) and GL(n,H). We have then

LJ ◦ R̂R
qC = (−1)nR̂H

q′C
.

Proof. It is enough to show that the formula holds on the basis λ(a), a ∈M(D) of RC).
Let a ∈M(D), a = (γ(x1, y1), . . . , γ(xr, yr)). We compute

LJ ◦ R̂R
qC(λ(a)) = LJ ◦ R̂R

qC(γ(x1, y1)× . . .× γ(xr, yr))

= LJ(iGL(2r,R)
GL(2,R)r ◦ R̂R

qC(γ(x1, y1)⊗ . . .⊗ γ(xr, yr))

= i
GL(r,H)
GL(1,H)r ◦ LJ(R̂R

qC(γ(x1, y1)⊗ . . .⊗ γ(xr, yr))

= (−1)ri
GL(r,H)
GL(1,H)r ◦ R̂H

q′C
(γ(x1, y1)⊗ . . .⊗ γ(xr, yr))

= (−1)rR̂H
q′C

(γ(x1, y1)× . . .× γ(xr, yr))

= (−1)rR̂H
q′C

(λ(a)).

We have used independence of polarization theorem of [27], Chapter 11, to replace a
part of cohomological induction by parabolic induction, and the fact that LJ commutes
with parabolic induction. �

Corollary 13.7. Recall the representations ū(η′, n) introduced in 11.3. We
have

LJ(u(η(x, y), n) = (−1)n ū(η′(x, y), n),
x, y ∈ C, x− y ∈ N.

Recall that when x− y 6= 1, then ū(η′(x, y), n) = u(η′(x, y), n) (see 11.3).
Proof. This follows from the theorem and the formulas RR

qC(u(γ(x, y)) = u(η(x, y), n),
RH

q′C
(u(γ(x, y)) = ū(η′(x, y), n) obtained in 11.2 and 11.3. �

To be able to compute the transfer to GL(n,H) of any irreducible unitary represen-
tation of GL(2n,R), we need to compute the transfer of the u(δ, k) when δ ∈ DR

1 . But,
in this case, if δ = δ(α, ε),

u(δ(α, ε), 2k) = δ(α, ε) ◦ det,

and we know from [16] that the transfer of this character is the character

δ(α, ε) ◦RN

(RN is the reduced norm) which is

u(η′(α+
1
2
, α− 1

2
), k).

From this, we get

Theorem 13.8. Let u be an irreducible unitary representation of GL(2n,R).
Then LJ(u) is either 0, or up to a sign, an irreducible unitary representation
of GL(n,H). For representations u(δ, k), we get:

— if δ = δ(α, ε) ∈ DR
1 ,

LJ(u(δ(α, ε), 2k)) = u(η′(α+
1
2
, α− 1

2
), k),
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— if δ = η(x, y) ∈ DR
2 ,

LJ(u(η(x, y)), k) = (−1)kū(η′(x, y), k).

To make it simple, a character is sent by LJ on the corresponding character, while if
δ ∈ DF

2 and δ′ = C(δ) = −LJ(δ), then LJ(u(δ, k)) = (−1)kū(δ′, k).
In the first case note that we deal with a slightly different situation from non archimedean

fields, since the reduced norm of H is not surjective, but has image in R∗
+. In particular,

if s is the character sign of the determinant on GL2k(R), then LJ(s) is the trivial char-
acter of GLk(H). In the non archimedean case, it is easy to check that LJ is injective
on the set of representations u(δ, k).

The above theorem gives a correspondence between irreducible unitary representa-
tions of GL(2n,R) and of GL(n,H), by forgetting the signs. As in the introduction, we
denote this correspondence by |LJ|. Using (11.2) and (11.3), we easily reformulate the
result as in the introduction.

14. Character formulas and ends of complementary series

From Tadić’s classification of the unitary dual, and the character formula for induced
representations, the character of any irreducible unitary representation of GL(n,A) can
be computed from the characters of the u(δ, n), δ ∈ D, n ∈ N. It is remarkable that
the characters of the u(δ, n) can be computed, or more precisely, expressed in terms of
characters of square integrable modulo center representations. We give also composition
series of ends of complementary series. This information is important for the topology
of the unitary dual (see [43]).

14.1. A = C. Let γ = γ(x, y) be a character of C×, x, y ∈ C, x − y = r ∈ Z. The
representation u(γ(x, y), n) is the character

det ◦γ
of GL(n,C). There is a formula, due to Zuckerman, for the trivial character of any real
reductive group, obtained from a finite length resolution of the trivial representation by
standard modules in the category M(G).

For GL(n,C), this formula is, denoting 1GL(n,C) the trivial representation

1GL(n,C) = u(γ(0, 0), n) =
∑

w∈Sn

(−1)l(w)
n∏

i=1

γ(
n− 1

2
−i+1,

n− 1
2

−w(i)+1)

From this, we get by tensoring with γ(x, y),
(14.1)

u(γ(x, y), n) =
∑

w∈Sn

(−1)l(w)
n∏

i=1

γ(x+
n− 1

2
− i+ 1, y +

n− 1
2

− w(i) + 1)

Set γi,j = γ(x+ n−1
2 − i+ 1, y + n−1

2 − j + 1) ∈ R. The formula above becomes :

(14.2) u(γ(x, y), n) = det((γi,j)1≤i,j≤n)

From the Lewis Carroll identity ([14]), we deduce easily from this a formula for com-
position series of ends of complementary series. This was obtained previously by Tadić
[45], using partial results of Sahi [38], but the proof was complicated. For an easy
formula, set

γ(x, y) = δ(β, r)
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with, r = x− y, 2β = x+ y.

Proposition 14.1. With the above notation, and n ≥ 2

ν−
1
2u(δ(β, r), n)× ν

1
2u(δ(β, r), n)(14.3)

= u(δ(β, r), n+ 1)× u(δ(β, r), n− 1)

+ u(δ(β, r + 1), n)× u(δ(β, r − 1), n)

14.2. A = R. Let η(x, y) be an essentially square integrable modulo center representa-
tion of GL(2,R), x, y ∈ C, x− y = r ∈ N×. Since

u(η(x, y), n) = −R̂R
qC(u(γ(x, y))),

we get from (14.1) that

u(η(x, y), n) = −
∑

w∈Sn

(−1)l(w)
n∏

i=1

R̂R
qC(γ(x+

n− 1
2

−i+1, y+
n− 1

2
−w(i)+1)).

We have noticed in the proof of Lemma 13.5 that −R̂R
qC(γ(x−n, y+n)) is a coherent

family of representation of GL(2,R) such that −R̂R
qC(γ(x− n, y + n)) = η(x− n, y + n)

when x− n > y + n. Set η̃(x− n, y + n) = −R̂R
qC(γ(x− n, y + n)). Then we get

u(η(x, y), n) = (−1)n+1
∑

w∈Sn

(−1)l(w)
n∏

i=1

η̃(x+
n− 1

2
−i+1, y+

n− 1
2

−w(i)+1).

Set η̃i,j = η̃(x+ n−1
2 − i+ 1, y + n−1

2 − j + 1). The formula above becomes :

(14.4) u(η(x, y), n) = (−1)n+1 det((η̃i,j)1≤i,j≤n)

Again from the Lewis Carroll identity ([14]), we deduce easily from this a formula for
composition series of ends of complementary series

Proposition 14.2. With the above notation, n ≥ 2, x− y > 1,

ν−
1
2u(η(x, y), n)× ν

1
2u(η(x, y), n)(14.5)

= u(η(x, y), n+ 1)× u(η(x, y), n− 1)

+ u(η(x+
1
2
, y − 1

2
), n)× u(η(x− 1

2
, y +

1
2
), n).

If x = y + 1, recall the convention that

η(x− 1
2
, x− 1

2
) = δ(x− 1

2
, 0)× δ(x− 1

2
, 1).

We get

ν−
1
2u(η(x, x− 1), n)× ν

1
2u(η(x, x− 1), n)

(14.6)

= u(δ(x, x− 1), n+ 1)× u(η(x, x− 1), n− 1)

+ u(η(x+
1
2
, x− 3

2
), n)× [u(δ(x− 1

2
, 0), n)× u(δ(x− 1

2
, 1), n)]
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Remark 14.3. We cannot deduce by our method the composition series
of the ends of complementary series for u(δ, n) when δ ∈ D1. There is
still a formula for the character of u(δ, n), since u(δ, n) = δ ◦ det is a one-
dimensional representation (Zuckerman), but no interpretation for the right-
hand-side of this formula as a determinant, so we cannot apply the Lewis
Carroll identity.

14.3. A = H. The discussion is similar to the real case for the u(η′(x, y), n) when x−y ≥
2.

Proposition 14.4. With the above notation, n ≥ 2, x− y ≥ 2,

ν−
1
2u(η′(x, y), n)× ν

1
2u(η′(x, y), n)(14.7)

= u(η′(x, y), n+ 1)× u(η′(x, y), n− 1)

+ u(η′(x+
1
2
, y − 1

2
), n)× u(η′(x− 1

2
, y +

1
2
), n).

If y = x− 1, we get the same kind of character formulas, but for the ū(η′(x, y), n) :

(14.8) ū(η′(x, x− 1), n) = (−1)n+1 det((η̃′i,j)1≤i,j≤n),

where η̃′i,j = η̃′(x + n−1
2 − i + 1, y + n−1

2 − j + 1), and η̃′ denotes the coherent family
coinciding with η when x− y is positive, as in the real case.

Again from the Lewis Carroll identity, we deduce the following (with 2n in place of
n):

ν−
1
2 ū(η′(x, x− 1), 2n)× ν

1
2 ū(η′(x, x− 1), 2n)(14.9)

= ū(η′(x, x− 1), 2n+ 1)× ū(η(x, x− 1), 2n− 1)

+ ū(η′(x+
1
2
, x− 1

2
), 2n)× ū(η(x− 1

2
, x− 3

2
), 2n).

The representations ū(η′(., .), .) in this expression can be expressed as products of
u(η′(., .), .) explicitly in the following way:

ū(η′(x, x− 1), 2n) = u(η′(x+
1
2
, x− 1

2
), n)× u(η′(x− 1

2
, x− 3

2
), n),

ū(η′(x, x− 1), 2n+ 1) = u(η′(x, x− 1), n+ 1)× u(η′(x, x− 1), n).

Substituting this in (14.9), and using the fact that the ring R is a domain, we find
that :

Proposition 14.5.

ν−1u(η′(x, x− 1), n)× νu(η′(x, x− 1), n)(14.10)

= u(η′(x, x− 1), n+ 1)× u(η′(x, x− 1), n− 1)

+ u(η′(x+
1
2
, x− 1

2
), n)× u(η′(x− 1

2
, x− 3

2
), n).
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15. Compatibility and further comments

Let F be a local field (archimedean or non archimedean of any characteristic) and A
a central division algebra of dimension d2 over F (if F is archimedean, then d ∈ {1, 2}).
If g ∈ GF

nd is a regular semisimple element, we say that g transfers if there exists an
element g′ of GA

n which corresponds to g (see Section 4). Then g transfers if and only if
its characteristic polynomial breaks into a product of irreducible polynomials of degrees
divisible by d. We say that π ∈ R(GF

nd) is d-compatible if LJ(π) 6= 0. Otherwise stated,
π is d-compatible if and only if its character does not identically vanish on the set of
elements of GF

nd which transfer. This justify the dependence of the definition only on d
(and not on D). We then have the following results:

Proposition 15.1. Let πi ∈ IrrF
ni

, 1 ≤ i ≤ k, with
∑

i ni = n. Then
π1 × π2 × ... × πk is d-compatible if and only if for all 1 ≤ i ≤ k, d divides
ni and πi is d-compatible.

Proof. If an element g ∈ GF
n is conjugated with an element of a Levi subgroup of GF

n ,
say (g1, g2, ..., gk) ∈ G(n1,n2,...,nk) with gi ∈ GF

ni
, then the characteristic polynomial of g

is the product of the characteristic polynomials of gi. It follows that, if g is semisimple
regular, it transfers if and only if d|ni for all i and gi transfers.

It is a general fact that for a fully induced representation of a group G from a Levi
subgroup M , the character is zero on regular semisimple elements which are not conju-
gated in G to some element inM . Moreover, one has a precise formula of the character of
the fully induced representation in terms of the character of the inducing representation
(see [20] and [15], Proposition 3 for non-archimedean F , [26] Section 13, for archimedean
F ). The proposition follows. �

We define now an order << finer than the Bruhat order on < on IrrA
n . If π =

Lg(δ1, δ2, ..., δk) and π′ = Lg(δ′1, δ
′
2, ..., δ

′
k′) are in IrrA

n , we set π << π′ if

Lg(C−1(δ1),C−1(δ2), ...,C−1(δk)) < Lg(C−1(δ′1),C
−1(δ′2), ...,C

−1(δ′k′))

in IrrF
nd.

Proposition 15.2. Let δi ∈ DF
ni

, 1 ≤ i ≤ k. Assume for all 1 ≤ i ≤ k we
have d|ni, and set δ′i = C(δi) ∈ DA

ni
. Then Lg(δ1, δ2, ..., δk) is compatible

and one has:

LJ(Lg(δ1, δ2, ..., δk)) = (−1)nd−nLg(δ′1, δ
′
2, ..., δ

′
k) +

∑
j∈J

mjπ
′
j

where J is empty or finite, mj ∈ Z∗, π′j ∈ IrrAP
ni

and π′j << Lg(δ′1, δ
′
2, ..., δ

′
k)

for all j ∈ J .

Proof. One applies Theorem 6.1 and an induction on the number of representations
smaller than Lg(δ1, δ2, ..., δk). See [6], Proposition 3.10. �

Proposition 15.3. If δ ∈ DF
n , set deg(δ) = n and let l(δ) be the length of

Supp(δ) (notice that l(δ)|deg(δ)). Then
a) u(δ, k) is d-compatible if and only if either d|deg(δ) or d|k deg(δ)

l(δ) .
b) there exists kδ ∈ N∗ such that u(δ, k) is d-compatible if and only if kδ|k.

Moreover, kδ|d.

Proof. a) is in Section 3.5 of [7] for the non-archimedean case. It follows from Theorem
13.8 in the archimedean case.
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b) follows easily from a). For the archimedean (non trivial i.e. A = H) case, d = 2
and the transfer theorem 13.8 shows that

— if deg(δ) = 2, then u(δ, k) is 2-compatible for all k (hence kδ = 1) and
— if deg(δ) = 1 then u(δ, k) is 2-compatible if (and only if, because of the dimension

of GF
k ) k is even (hence kδ = 2). �

Let γ be an irreducible generic unitary representation of GF
n . As γ is generic, it is fully

induced from an essentially square integrable representation ([53] for non archimedean
fields, section 8 for archimedean fields). Then as γ is unitary, thanks to the classification
of the unitary spectrum ([42], [52] and Section 8 the present paper), γ is an irreducible
product σ1 × σ2 × ...× σp × π1 × π2 × ...× πl, where, for 1 ≤ i ≤ p, σi ∈ Du,F , and, for
1 ≤ j ≤ l, πj = π(δj , 1;αj) for some δj ∈ Du,F and some αi ∈]0, 1

2 [.
Using the Langlands classification, it is easy to see that the representation

ν
k−1
2 γ × ν

k−1
2
−1γ × ...× ν−

k−1
2 γ

has a unique quotient u(γ, k), and one has

u(γ, k) = u(σ1, k)×u(σ2, k)×...×u(σp, k)×π(δ1, k;α1)×π(δ2, k;α2)×...×π(δl, k;αl)

(see for instance [6] Section 4.1). The local components of cuspidal automorphic repre-
sentations of GLn over adeles of global fields are unitary generic representations ([40]).
According to the classification of the residual spectrum ([32]), it follows that local com-
ponent of residual automorphic representations of the linear group are of type u(γ, k).

Proposition 15.4. Let γ be a unitary generic representation of GF
n for

some n ∈ N×. There exists kγ such that u(γ, k) is d-compatible if and only
if kγ |k. Moreover, kγ |d.

Proof. The (easy) proof given in [7] Section 3.5 for non-archimedean fields works also
for archimedean fields. If

u(γ, k) = u(σ1, k)×u(σ2, k)×...×u(σp, k)×π(δ1, k;α1)×π(δ2, k;α2)×...×π(δl, k;αl),

then u(γ, k) is d-compatible if and only if all the u(σi, k) and u(δj , k) are compatible
(Proposition 15.1). Then Prop. 15.3 implies Prop. 15.4. If F = R, kγ = 1 if and only if
all the σi and δj are in D2. If not, kγ = 2. �

16. Notation for the global case

Let F be a global field of characteristic zero and D a central division algebra over
F of dimension d2. Let n ∈ N∗. Set A = Mn(D). For each place v of F let Fv be the
completion of F at v and set Av = A⊗ Fv. For every place v of F , Av is isomorphic to
Mrv(Dv) for some positive integer rv and some central division algebra Dv of dimension
d2

v over Fv such that rvdv = nd. We fix once for all an isomorphism Av 'Mrv(Dv) and
identify these two algebras. We say that Mn(D) is split at a place v if dv = 1. The set
V of places where Mn(D) is not split is finite. For each v, dv divides d, and moreover d
is the smallest common multiple of the dv over all the places v.

Let G′(F ) be the group A× = GLn(D). For every finite place v of F , set G′v = A×v =
GLrv(Dv). For every finite place v of F , we set Kv = GLrv(Ov), where Ov is the ring
of integers of Dv. Let A be the ring of adèles of F . We define the group G′(A) of adèles
of G′(F ) as the restricted product of the G′v over all v, with respect to the family of
open compact subgroups Kv, v finite.
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Let G′∞ be the direct product of G′v over the set of infinite places of F and and G′f the
restricted product of G′v over finite places, with respect to the open compact subgroups
Kv. The group G′(A) decomposes into the direct product

G′(A) = G′∞ ×G′f .

Fix maximal compact subgroups Kv at archimedean places v like before, Kv =
O(n),U(n),Sp(n) according to G′v being GLn(R), GLn(C) or GLn(H). Let K∞ (resp.
Kf ) be the compact subgroup of G∞ (resp. of G′f ) which is the direct product of Kv over
the infinite places (resp. finite places) v. Let K be K∞ ×Kf as a (compact) subgroup
of G′(A). Let g∞ be the Lie algebra of G∞.

An admissible G′(A)-module is a linear space V which is both a (g∞,K∞)-module
and a smooth G′f -module such that the actions of (g∞,K∞) and G′f commute and for
all irreducible equivalence class of continuous representations π of K the π isotypic
component of V is of finite dimension. It is irreducible if it has no proper G′(A)-
submodule, and unitary if admits a Hermitian product which is invariant under both
actions of (g∞,K∞) and G′f .

If V is an irreducible admissible G′(A)-module, then V is isomorphic with a tensor
product V∞⊗Vf , where V∞ is an irreducible (g∞,K∞)-module and Vf is an irreducible
smooth representation of Vf .

If (π,H) is a unitary irreducible admissible Gf -module, then π breaks into a restricted
tensor product ⊗v finiteπv where πv is a unitary irreducible representation of G′v ([23],
[31], [18] or [17]). For almost all v, πv has a fixed vector under the maximal compact
subgroup Kv. Such a representation is called spherical. The πv are determined by π.
Such a πv is called the local component of π at the place v. The set of local components
πv determines π.

Let Z(F ) be the center of G′(F ) and, for every place v, let Zv be the center of G′v.
Then we identify the center Z(A) of G′(A) with the restricted product of the Zv, with
respect to the open compact subgroups Zv ∩Kv at finite places. For any finite v, we fix
a Haar measure dgv on G′v such that the volume of Kv is one, and a Haar measure dzv
on Zv such that the volume of Zv ∩Kv is one. The set of measures {dgv}v finite induce
a well defined Haar measure on the locally compact group G′f and {dzv}v finite induce
a well defined measure on its center (see for instance [35] where measures on restricted
products are explained).

For the archimedean groups we chose Duflo-Vergne’s normalization, defined as follows:
let G be a reductive group (complex or real), and pick a G-invariant symmetric, non-
degenerate bilinear form κ on the Lie algebra g. Then g will be endowed with the
Lebesgue measure dX such that the volume of a parallelotope supported by a basis
{X1, . . . , Xn} of g is equal to |det(κ(Xi, Xj))|

1
2 and G will be endowed with the Haar

measure tangent to dX. If G′ is a closed subgroup of G, such that κ is non-degenerate
on its Lie algebra g′, we endow G′ with the Haar measure determined by κ as above.
This gives measures on G′∞ and its center.

We fix now the measure dg on G′(A) = G′∞ × G′f (resp. dz on Z(A)) which is the
product of measures chosen before for the infinite and the finite part. We fix a measure
on Z(A)\G′(A) which is the quotient measure dz\dg.

We view G′(F ) as a subgroup of G′(A) via the diagonal embedding. As G′(F ) ∩
Z(A)\G′(F ) is a discrete subgroup of Z(A)\G′(A), dz\dg defines a measure on the
quotient space Z(A)G′(F )\G′(A). The measure of the space Z(A)G′(F )\G′(A) is finite.

Fix a unitary continuous character ω of Z(A), trivial on Z(F ).
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Let L2(Z(A)G′(F )\G′(A);ω) be the space of classes of functions f defined on G′(A)
with values in C such that

i) f is left invariant under G′(F ),
ii) f satisfies f(zg) = ω(z)f(g) for all z ∈ Z(A) and almost all g ∈ G′(A),
iii) |f |2 is integrable over Z(A)G′(F )\G′(A).

Let R′ω be the representation of G′(A) in L2(Z(A)G′(F )\G′(A);ω) by right transla-
tions. As explained in [13], each irreducible subspace of L2(Z(A)G′(F )\G′(A);ω) gives
rise to a unique unitary irreducible admissible G′(A)-module. We call such a G′(A)-
module a discrete series of G′(A).

Every discrete series of G′(A) with the central character ω appears in R′ω with a finite
multiplicity ([18]).

Let R′ω,disc be the subrepresentation of R′ω generated by the discrete series. If π is a
discrete series we call the multiplicity of π in the discrete spectrum the multiplicity with
which π appears in R′ω,disc.

Notation. Fix n and D as before. The same constructions work obviously starting
with A = GLnd(F ) instead of A = GLn(D). We denote G(A) the group of invertible
elements of A and modify all notations accordingly.

17. Second insight of some local results

We would like to point out that some of the archimedean results described in this
paper may be proved by global methods and local tricks as in the non-archimedean
case ([7] and [6]), avoiding any reference to cohomological induction. These are U(1)
for GL(n,H), the fact that products of representations in UH are irreducible and the
Jacquet-Langlands transfer of unitary representations (using U(0) for GL(n,R) - [11] -
but not on GL(n,H)) We sketch here these proofs.

17.1. U(1) and the transfer of u(δ, k). Let LJ : RR
2n → RH

n be the morphism be-
tween Grothendieck groups extending the classical Jacquet-Langlands correspondence
for square integrable representations (Section 4). We give here a second proof of the

Proposition 17.1. (a) If χ ∈ D1, then LJ(u(χ, 2n)) = χ′n.
(b) If δ ∈ D2 and δ′ = C(δ), then LJ(u(δ, n)) = (−1)nū(δ′, n).
(c) The statement U(1), i.e. u(δ′, n) are unitary, is true for GL(n,H).

The first assertion (a) is obvious since u(χ, 2n) = χ2n and the equality of characters
may be checked directly. To prove (c), recall we have

(17.1) LJ(u(δ, n)) = (−1)n(ū(δ′, n) +
k∑

i=1

aiui),

where the ui are irreducible non-equivalent representations of GL(n,H), non equivalent
to ū(δ′, n), and ai are non-zero integers (Proposition 15.2).

We now claim that all the irreducible representations on the right hand side of the
equality are unitary and the ai are all positive. One may proceed like in [6]: choose a
global field F and a division algebra D over F such that, if G′(A) is the adele group
of D×, we have G′v = GLn(H) for some place v. As δ ∈ D2, there exists a cuspidal
representation ρ of G(A) = GL2n(A) such that ρv = δ. According to the classification
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of the residual spectrum for G(A) ([32]) there exists a residual representation π of G(A)
such that πv = u(δ, n). Comparing then the trace formula from [3] (or the simple
trace formula from [2]) of G(A) and G′(A), one gets using standard simplifications and
multiplicity one on the G(A) side a local formula LJ(u(δ, n)) = ±

∑k
j=1 bjwi, where the

bj are multiplicities of representations - hence positive, and wj are local component of
global discrete series - hence unitary. By linear independence of characters on GL(n,H),
this formula is the same as the formula (17.1) which implies in particular ū(δ′, n) is
unitary (see [6], Cor. 4.8(a)). This implies the assertion U(1), since when δ′ is not a
character one has ū(δ′, n) = u(δ′, n), while when δ′ is a (unitary) character we know
u(δ′, k) is the unitary character δ′ ◦RN . So (c) is proved.

We now prove (b). We want to prove that on the right hand side of the equality (17.1)
there is just one term, ū(δ′, n). If π is an irreducible unitary representation of GL(n,R)
we say π is semirigid if it is a product of representations u(δ, k). We already showed in
the previous paragraph that all these representations u(δ, k) correspond by LJ to zero
or a sum of unitary representations. As LJ commutes with products and a product
of irreducible unitary representations is a sum of irreducible unitary representations, it
follows that any sum of semirigid irreducible unitary representation of some GL(2n,R)
correspond to zero or a sum of unitary representations of GL(n,H). The relation (17.1)
shows now that for all α ∈ R, LJ(π(δ, n;α)) = ν ′α(

∑k
i=0 aiui)× ν ′−α(

∑k
i=0 aiui) where

a0 = 1, u0 = ū(δ′, n). When α = 1
2 on the left hand side of the equality we obtain a

sum of semirigid unitary representations (see Proposition 14.5 for precise formula), so
on the right hand side we should have a sum of unitary representations. But this is
impossible as soon as the sum

∑k
i=1 aiui contains a representation u1, since then the

mixed product ν ′−
1
2u0 × ν ′

1
2u1 contains a non hermitian subquotient (the “bigger” one

for the Bruhat order for example). This shows there is only one ui, i = 0, and so
LJ(u(δ, n)) = (−1)nū(δ′, n). �

17.2. Irreducibility and transfer of all unitary representations. We know now
that the representations in UH are all unitary. To show that their products remain
irreducible, we may use the irreducibility trick in [7], Proposition 2.13 which reduces the
problem to show that u(δ′, k)×u(δ′, k) is irreducible for all discrete series δ′ of GL(1,H)
and all k ∈ N×. Let δ be a square integrable representation of GL(2,R) such that
LJ(δ) = δ′. It follows that we have the equality LJ(u(δ, k)×u(δ, k)) = ū(δ′, k)× ū(δ′, k).
On the left hand side we have the irreducible representation M = u(δ, k) × u(δ, k).
On the right hand side we have a sum of unitary representations, the product M ′ =
ū(δ′, k) × ū(δ′, k) (we already know ū(δ′, k) is unitary), which we want to show has
actually a single term. Apply the same α trick like before : we know that π(M,α)
corresponds to π(M ′, α). For α = 1

2 the first representation breaks into a sum of
semirigid unitary representations, while the second is a sum containing non unitary
representations unless M ′ contains a single term. Notice that the Langlands quotient
theorem and U(4) guarantee M ′ has a subquotient which appears with multiplicity one,
so either M ′ is a sum containing two different terms, or is irreducible. So the square
of ū(δ′, k) is irreducible for all k. If δ′ is not a character, then u(δ′, k) = ū(δ′, k) so
the square of u(δ′, k) is irreducible. If δ′ is a character then we saw ū(δ′, 2k + 1) =
u(δ′, k)× u(δ′, k + 1) and the result follows again.

This implies now: if u is an irreducible unitary representation of GL(2n,R), then
LJ(u) is either zero, or plus or minus irreducible unitary representation of GL(n,H).
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The proofs here are based on the trace formula and do not involve cohomological
induction. However, the really difficult result is U(0) on GL(n,H), and it does.

18. Global results

18.1. Global Jacquet-Langlands, multiplicity one and strong multiplicity one
for inner forms. For all v ∈ V , denote LJv (resp. |LJ|v) the correspondence LJ (resp.
|LJ|), as defined in Sections 4 and 13, applied to Gv and G′v.

If π is a discrete series of G(A), we say π is D-compatible if, for all v ∈ V , πv is
dv-compatible. Then LJ(πv) 6= 0 and |LJ|v(πv) is an irreducible representation of G′n.

Here are the Jacquet-Langlands correspondence and the multiplicity one theorems for
G′(A) (already known for G(A): [40], [33]).

Theorem 18.1. (a) There exists a unique map G from the set of discrete
series of G′(A) into the set of discrete series of G(A) such that G(π′) = π
implies |LJ|v(πv) = π′v for all places v ∈ V , and πv = π′v for all places
v /∈ V . The map G is injective and onto the set of D-compatible discrete
series of G(A).

(b) The multiplicity of every discrete series of G′(A) in the discrete spec-
trum is 1. If two discrete series of G′(A) have isomorphic local component
at almost every place, then they are equal.

The proof is the same as the proof of Theorem 5.1 in [7] with the following minor
changes: Lemma 5.2 [7] is obviously still true when the inner form is not split at infinite
places using the Proposition 15.1 here. For the finiteness property quoted in [7], p. 417
as [BB], one has to replace this reference with [5], where the case of ramified at infinite
places inner form is addressed. We do not need here the claim (d) in [7], Theorem
5.1 which is now a particular case of Tadić classification of unitary representation for
inner forms. At the bottom of pages 417 and 419 in [7], the independence of characters
on a product of connected p-adic groups is used. Here the product involves also real,
sometimes non connected groups like GL(n,R). The linear independence of characters
on each of these GLn is enough to ensure the linear independence of characters on the
product, as at infinite places representations are Harish-Chandra modules so for all these
groups, real or p-adic, irreducible representations correspond to irreducible modules on
a well chosen algebra with idempotents.

As in [7], the hard core of the proof is the powerful equality 17.8 from [3] (comparison
of trace formulae of G(A) and G′(A)).

Let us show now the classification of cuspidal representations of G′(A) in terms of
cuspidal representations of G(A). Let ν (resp. ν ′) be the global character of G(A)
(resp. G′(A)) given by the product of local characters like before (i.e. absolute value of
the reduced norm). Recall that, according to Moeglin-Waldspurger classification, every
discrete series π of G(A) is the unique irreducible quotient of an induced representation
ν

k−1
2 ρ × ν

k−3
2 ρ × ... × ν−

k−1
2 ρ where ρ is cuspidal. Then k and ρ are determined by π,

so π is cuspidal if and only if k = 1. We set π = MW (ρ, k).
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Proposition 18.2. (a) Let n ∈ N× and let ρ be a cuspidal representation
of Gn(A). Then there exists kρ such that, if k ∈ N×, then MW (ρ, k) is
D-compatible if and only if kρ|k. Moreover, kρ|d.

(b) Let π′ be a discrete series of G′(A) and π = G(π′). Then π′ is cuspidal
if and only if π is of the form MW (ρ, kρ).

(c) Let ρ′ be a cuspidal representation of some G′n(A). Write G(ρ′) =
MW (ρ, kρ) and then set νρ′ = νkρ . For every k ∈ N×, the induced represen-
tation

ν
k−1
2

ρ′ ρ′ × ν
k−3
2

ρ′ ρ′ × ...× ν
− k−1

2
ρ′ ρ′

has a unique irreducible quotient which we will denote MW ′(ρ′, k). It is a
discrete series and all discrete series are obtained from some cuspidal ρ′ like
that. If G(ρ′) = MW (ρ, kρ) we have G(MW ′(ρ′, k)) = MW (ρ, kkρ).

Proof. (a) This follows from the Proposition 15.4 and the fact that for all v ∈ V
dv|d.

(b) This is the proposition 5.5 in [7], with “cuspidal” in place of “basic cuspidal”
thanks to Grbac’s appendix. Both the proof of the claim and the proof in the appendix
work the same way here.

(c) When G′n(A) is split at infinite places, this is the claim (a) of Proposition 5.7 in
[7]. We follow the same idea which reduces the problem to local computation. As [7]
makes use of Zelevinsky involution, we have to give here a proof in the archimedean case
(where the involution doesn’t exist). First, to show that the induced representation

ν
k−1
2

ρ′ ρ′ × ν
k−3
2

ρ′ ρ′ × ...× ν
− k−1

2
ρ′ ρ′

has a constituent which is a discrete series, we will directly show that G−1(MW (ρ, kkρ)),
which is a discrete series indeed, is a constituent of

ν
k−1
2

ρ′ ρ′ × ν
k−3
2

ρ′ ρ′ × ...× ν
− k−1

2
ρ′ ρ′.

We will show it place by place, local component by local component. Fix a place v and
let γ be the local component of ρ at the place v. It is an irreducible unitary generic
representation, and we know that u(γ, kρ) transfers. Set π = LJ(u(γ, kρ)). What
we want to prove is that LJ(u(γ, kkρ)) is a subquotient of νkρ

k−1
2 π × νkρ

k−3
2 π × ... ×

νkρ(− k−1
2

)π. The unitary generic representation γ may be written as γ = (×i σi) ×
(×j π(τj , 1, αj)), with σi and τj square integrable representations and αj ∈]0, 1

2 [. So
it is enough to prove the result when γ is a square integrable representation. Let us
suppose γ is square integrable. To prove that π = LJ(u(γ, kρ)) implies LJ(u(γ, kkρ))
is a quotient of νkρ

k−1
2 π × νkρ

k−3
2 π × ... × νkρ(− k−1

2
)π we would like to show that the

essentially square integrable support of the representation LJ(u(γ, kkρ)) is the union of
the square integrable support of the representations {νkρ( k−1

2
−i)π}i∈{0,1,...,k−1}. Then,

as the essentially square integrable support of ×k−1
i=0 [νkρ( k−1

2
−i)π] is in standard order,

LJ(u(γ, kkρ)) will be the unique quotient of the product.
If γ lives on a group of a size such that it transfers to some C(γ), then π = ū(C(γ), kρ),

LJ(u(γ, kkρ)) = ū(C(γ), kkρ) ([7] Proposition 3.7 (a) and second case of transfer in The-
orem 13.8 of this paper), and the result is straightforward. If not, then u(γ, kρ) verifies
the “twisted” case of transfer [7], Proposition 3.7 (b) for non archimedean field, first
case of Theorem 13.8 in this paper for archimedean field. In the non archimedean case,
one may compute more explicit formulas for the transfer ([7] formula (3.9)) and see that
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it works. In the archimedean case γ is a character of GL1(R) and so π = γ ◦RN kρ
2

and

LJ(u(γ, kkρ)) = γ ◦RN kkρ
2

. �

Let us recall the uniqueness of the cuspidal support for automorphic representations.
According to a result of Langlands [30] particularized to our case, we know that any
automorphic representation of G′(A) is a constituent of an induced representation of
the form ν ′a1ρ1 × ν ′a2ρ2 × ... × ν ′akρk where ai are real numbers and ρi are cuspidal
representations. In [24] the authors prove that, for G(A), the couples (ρi, ai) are unique
which in particular solves the question of the existence of CAP representations. In [7],
it is shown that the result is true (more or less by transfer) for the more general case
G′(A), if the inner form is split at infinite places. Using the previous results, the same
proof now works with no condition on the infinite places.

19. L-functions ε-factors and transfer

The fundamental work of Jacquet, Langlands and Godement of L-functions and ε-
factors of linear groups over division algebras easily implies the following theorem. What
we call ε′-factors following [19] are sometimes called γ-factors in literature. The value of
all functions depend on the choice of some additive non trivial character ψ of R which
is not relevant for the results.

Theorem 19.1. (a) Let u be a 2-compatible irreducible unitary represen-
tation of GL2n(R) and u′ the irreducible unitary representation of GLn(H)
such that LJ(u) = ±u′. Then the ε′ factors of u and u′ are equal.

(b) Let δ ∈ D2 and set δ′ = C(δ). Then for all k ∈ N× the L-functions
of u(δ, k) and ū(δ′, k) are equal and the ε-factors of u(δ, k) and ū(δ′, k) are
equal.

(c) If χ is a character of GL(2n,R) and χ′ = LJ(χ), then the ε′-factors
of χ and χ′ are equal.

Proof. If we prove (b) and (c), then (a) follows by the corollary 8.9 from [19] and
classifications of unitary representations in Tadić setting explained in the present paper.

(b) is proved in [23] for k = 1. As a particular case of [22] (5.4) page 80, the L-function
(resp. ε-factor) of a Langlands quotient u(δ, k) is the product to the L-functions (resp.
ε-factors) of representations νi− k−1

2 δ, 0 ≤ i ≤ k − 1. The same proof given there for
GL2n(R) works for GLn(H) as well, so the case k = 1 imply the general case.

(c) In case χ is the trivial character, this is the corollary 8.10 page 121 in [19]. The
general case follows easily by torsion with χ (or by reproducing the same proof). �
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[47] M. Tadić. GL(n, C)̂ and GL(n, R)̂ . Contemporary Mathematics. Amer. Math. Soc.,
Providence, R.I., 2009.

[48] D. A. Vogan. Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-
Lusztig conjecture in the integral case. Invent. Math., 71(2):381–417, 1983.

[49] D. A. Vogan, Jr. Gel′fand-Kirillov dimension for Harish-Chandra modules. Invent.
Math., 48(1):75–98, 1978.



GLOBAL JACQUET-LANGLANDS CORRESPONDENCE 49

[50] D. A. Vogan, Jr. The algebraic structure of the representation of semisimple Lie
groups. I. Ann. of Math. (2), 109(1):1–60, 1979.

[51] D. A. Vogan, Jr. Irreducible characters of semisimple Lie groups. IV. Character-
multiplicity duality. Duke Math. J., 49(4):943–1073, 1982.

[52] D. A. Vogan, Jr. The unitary dual of GL(n) over an Archimedean field. Invent. Math.,
83(3):449–505, 1986.

[53] A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irre-

ducible representations of GL(n). Ann. Sci. École Norm. Sup. (4), 13(2):165–210,
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