The role of minimal surfaces in the study of the Allen-Cahn equation

Frank Pacard

Abstract. In these lectures, we review some recent results on the existence of solutions of the Allen-Cahn equation \(\varepsilon^2 \Delta_g u + u - u^3 = 0 \) defined in a given Riemannian manifold \((M, g)\). In the case where the ambient manifold is compact, we give a simple complete proof of the existence of solutions whose zero set is close to a given minimal hypersurface.

Given a \((n + 1)\)-dimensional Riemannian manifold \((M, g)\), we are interested in solutions of the semilinear elliptic equation

\[
\varepsilon^2 \Delta_g u + u - u^3 = 0,
\]

which is known as the Allen-Cahn equation. Here \(\varepsilon > 0\) is a parameter. The ambient manifold \(M\) might be compact or non compact but, for the sake of simplicity, we will assume that \(M\) does not have any boundary.

The Allen-Cahn equation has its origin in the gradient theory of phase transitions \([2]\) where one is interested in critical points of the energy

\[
E_{\varepsilon}(u) := \int_M e_{\varepsilon}(u),
\]

where the density energy of a function \(u\) is defined by

\[
e_{\varepsilon}(u) := \left(\frac{\varepsilon}{2} |\nabla u|^2_g + \frac{1}{4\varepsilon} (1 - u^2)^2 \right) d\text{vol}_g.
\]

One easily checks that (0.1) is the Euler-Lagrange equation of \(E_{\varepsilon}\). We will show in these lectures that the space of solutions of (0.1) is surprisingly rich and also that it has an interesting structure. As we will see, minimal hypersurfaces play a key role in the understanding of the set of solutions of (0.1). We will also briefly review the different technics leading to existence of solutions of (0.1) and we will also provide a simplified proof of an existence result which was first published in \([43]\) and which is at the origin of most of the constructions in the field.

1991 Mathematics Subject Classification. 35J25, 35J20, 35B33, 35B40.

Key words and phrases. minimal surfaces, Allen-Cahn equation, infinite-dimensional Liapunov-Schmidt reduction.

The author was supported in part by the ANR Grant ANR-08-BLANC-0335-01.
1. The role of minimal hypersurfaces

The relation between sets of minimal perimeter and critical points of \mathcal{E}_ε was first established by Modica in [40]. Let us briefly recall the main results in this direction: If u_ε is a family of local minimizers of \mathcal{E}_ε whose energy is controlled, namely for which

\begin{equation}
\sup_{\varepsilon > 0} \mathcal{E}_\varepsilon(u_\varepsilon) < +\infty,
\end{equation}

then, up to a subsequence, u_ε converges as ε tends to 0, in L^1 to $1_{M_+} - 1_{M_-}$, where M_\pm have common boundary Γ which has minimal perimeter. Here 1_{M_\pm} is the characteristic function of the set M_\pm, $M_+ \cap M_- = \emptyset$ and $M - \Gamma = M_+ \cup M_-$. Moreover,

\[E_\varepsilon(u_\varepsilon) \longrightarrow \frac{1}{\sqrt{2}} \mathcal{H}^n(\Gamma). \]

For critical points of \mathcal{E}_ε which satisfy (1.1), a related assertion is proven in [29]. In this case, the convergence of the interface holds with certain integer multiplicity to take into account the possibility of multiple transition layers converging to the set of minimal perimeter (or to the same minimal hypersurface).

These results provide a link between solutions of (0.1) and the theory of minimal hypersurfaces. This link has been exploited to construct nontrivial solutions of (0.1). For example, solutions whose energy density concentrates along non-degenerate, minimal hypersurfaces of a compact manifold have been found in [43] (see also [32] for the Euclidean case). Let us describe these results more carefully.

We assume that (M, g) is a compact $n+1$-dimensional manifold without boundary (in the case where M has a boundary one requires that the solution u of (0.1) has zero Neumann boundary data) and that $\Gamma \subset M$ is an oriented minimal hypersurface which separates M into two different connected components. Namely, Γ is the zero set of a smooth function f_Γ which is defined on M and for which 0 is a regular value. Then $M - \Gamma = M_+ \cup M_-$ where

\[M_+ := f_\Gamma^{-1}((0, \infty)) \quad \text{and} \quad M_- := f_\Gamma^{-1}((\infty, 0)). \]

We also assume that, N, the unit normal vector field of Γ which is compatible with the given orientation, points towards M_+ while $-N$ points towards M_- (Γ might have many different connected components).

We recall the definition of the Jacobi operator about Γ

\begin{equation}
J_\Gamma := \Delta_g + |\hat{h}|^2 + \text{Ric}_g(N, N),
\end{equation}

where Δ_g is the Laplace-Beltrami operator on Γ for \hat{g} the induced metric on Γ, $|\hat{h}|^2$ denotes the square of the norm of the shape operator defined by

\[\hat{h}(t_1, t_2) = -g(\nabla_{t_1}^g N, t_2), \]

for all $t_2, t_2 \in T \Gamma$ and where Ric_g denotes the Ricci tensor on M. We will say that Γ is a nondegenerate minimal hypersurface if J_Γ has trivial kernel.

Given these definitions, we have the:

Theorem 1.1. [43] Assume that (M, g) is a $(n + 1)$-dimensional compact Riemannian manifold without boundary and $\Gamma \subset M$ is a nondegenerate oriented minimal hypersurface such that $M - \Gamma = M_+ \cup M_-$ and N points toward M_+ while $-N$ points towards M_-. Then, there exists $\varepsilon_0 > 0$ and for all $\varepsilon \in (0, \varepsilon_0)$ there exists
u_ε, critical point of E_ε, such that u_ε converges uniformly to 1 on compacts subsets of M^+ (resp. to -1 on compacts subsets of M^-) and

$$E_\varepsilon(u_\varepsilon) \rightarrow \frac{1}{\sqrt{2}} H^n(\Gamma),$$

as ε tends to 0.

The proof of this result relies on an infinite dimensional Liapunov-Schmidt reduction argument which, in this context was first developed in [43]. As already mentioned, in the second part of these lectures, we will provide a complete, simple proof of this result. This proof is much simpler than the original proof in [43] and makes use of many ideas which have been developed by the different authors working in the field.

As far as multiple transition layers are concerned, given a minimal hypersurface Γ (subject to some additional property on the sign of the potential of the Jacobi operator about Γ, which holds on manifolds with positive Ricci curvature) and given an integer $k \geq 1$, solutions of (0.1) with multiple transitions layers near Γ were built in [18], in such a way that

$$E_\varepsilon(u_\varepsilon) \rightarrow k \sqrt{2} H^n(\Gamma).$$

More precisely, we have the following difficult result:

Theorem 1.2. [18] Assume that (M, g) is a $(n+1)$-dimensional compact Riemannian manifold and $\Gamma \subset M$ is a nondegenerate, oriented, connected minimal hypersurface such that $M - \Gamma = M_+ \cup M_-$ and N points toward M_+ and $-N$ points toward M_-. Further assume that

$$|\hat{h}|^2 + \text{Ric}_g (N, N) > 0,$$

along Γ. Then, there exists a sequence $(\varepsilon_j)_{j \geq 0}$ of positive numbers tending to 0 and, for each $j \geq 0$ there exists u_j a critical point of E_{ε_j}, such that $(u_j)_{j \geq 0}$ converges uniformly to 1 on compacts subsets of M^+ (resp. to $(-1)^k$ on compacts subsets of M^-) and

$$E_{\varepsilon_j}(u_j) \rightarrow k \frac{\sqrt{2}}{\sqrt{2}} H^n(\Gamma),$$

as j tends to ∞. In particular, u_j has k transition layers close to Γ.

Observe that Theorem 1.1 provides solutions of (0.1) for any ε small while the later only produces solutions for some sequence of ε tending to 0. This new restriction is due to some subtle resonance phenomena which arises in the case of multiple interfaces.

2. Entire solutions of the Allen-Cahn equation in Euclidean space

In this section, we focus on the case where the ambient manifold is the Euclidean space. Observe that a simple scaling argument implies that we can always reduce to the case where $\varepsilon = 1$, hence, we are interested in entire solutions of

$$(2.1) \quad \Delta u + u - u^3 = 0,$$

in \mathbb{R}^{n+1}. Namely, solutions which are defined on all \mathbb{R}^{n+1}. We review some recent results and explain the different existence proofs which are available in this case.
2.1. De Giorgi’s conjecture. In dimension 1, solutions of (2.1) which are not constant and have finite energy are given by translations of the function \(u_1 \) which is the unique solution of the problem

\[
u_1'' + u_1 - u_1^3 = 0, \quad \text{with} \quad u_1(\pm \infty) = \pm 1 \quad \text{and} \quad u_1(0) = 0.
\]

In fact, the function \(u_1 \) is explicitly given by

\[
u_1(x) := \tanh \left(\frac{x}{\sqrt{2}} \right).
\]

Observe that, for all \(a \in \mathbb{R}^{n+1} \) with \(|a| = 1 \) and for all \(b \in \mathbb{R} \), the function

\[
u(x) = u_1(a \cdot x + b),
\]

solves (2.1).

A celebrated conjecture due to De Giorgi asserts that, in dimension \(n + 1 \leq 8 \), these solutions are the only one which are bounded, non constant and monotone in one direction. In other words, if \(u \) is a (smooth) bounded, non constant solution of (2.1) and if for example \(\partial x_{n+1} u > 0 \) then for \(\lambda \in (-1, 1) \), the set \(u^{-1}(\{\lambda\}) \) is a hyperplane provided \(n + 1 \leq 8 \).

In dimensions 2 and 3, De Giorgi’s conjecture has been proven in [24], [4] and (under some mild additional assumption) in the remaining dimensions in [47] (see also [21], [22]). When \(n + 1 = 2 \), the monotonicity assumption can even be replaced by a weaker stability assumption [27]. Finally, counterexamples in dimension \(n + 1 \geq 9 \) have recently been built in [17], using the existence of non trivial minimal graphs in higher dimensions. We will return to this later on.

Let us briefly explain the proof of De Giorgi’s conjecture in the two dimensional case.

Theorem 2.1. [24] De Giorgi’s conjecture is true in dimension 2.

Proof. Assume that \(u \) satisfies (2.1). Then

\[
\Delta \nabla u + (1 - 3u^2) \nabla u = 0.
\]

It is convenient to identify \(\mathbb{R}^2 \) with \(\mathbb{C} \) and write

\[
\nabla u = \rho e^{i\theta},
\]

where \(\rho \) and \(\theta \) are real valued functions. Observe that we implicitly use the fact that \(\partial x_2 u > 0 \) and hence we can choose the function \(\theta \) to take values in \((0, \pi)\). Elliptic estimates imply that \(\nabla u \) is bounded and hence so is \(\rho \).

Now, with these notations, (2.4) can be written as

\[
\Delta \rho - |\nabla \theta|^2 \rho + (1 - 3\rho^2) \rho + i (\rho \Delta \theta + 2 \nabla \rho \cdot \nabla \theta) = 0.
\]

In particular, the imaginary part of the left-hand side of this equation is identically equal to 0 and hence

\[
\text{div} (\rho^2 \nabla \theta) = 0.
\]

As already mentioned, \(\theta \in (0, \pi) \) and the next Lemma (Liouville type result) implies that \(\theta \) is in fact a constant function. Therefore, the unit normal vector to the level lines of \(u \) is constant and hence the level sets of \(u \) are straight lines. \(\square \)

In order for the proof to be complete, it remains to prove the following:
LEMMA 2.1. Assume that ρ is a positive smooth, bounded function. Further assume that θ is a bounded solution of

$$\text{div} \left(\rho^2 \nabla \theta \right) = 0,$$

in \mathbb{R}^2. Then, θ is a constant function.

PROOF. Let χ be a cutoff function which is identically equal to 1 in the unit ball and identically equal to 0 outside the ball of radius 2. For all $R > 0$, we define $\chi_R = \chi(\cdot / R)$.

Observe that $|\nabla \chi_R| \leq C R^{-1}$ for some constant $C > 0$ independent of $R > 0$. We multiply (2.5) by $\chi^2 R$ and integrate the result over \mathbb{R}^2 to find

$$\int_{\mathbb{R}^2} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx = -2 \int_{\mathbb{R}^2} \theta \rho^2 \chi_R \nabla \theta \nabla \chi_R \, dx.$$

Now, the integral on the right-hand side is taken over the set of $x \in \mathbb{R}^2$ such that $|x| \in [R, 2R]$. Using Cauchy-Schwarz inequality, we conclude that

$$\int_{\mathbb{R}^2} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx \leq 2 \left(\int_{|x| \in [R, 2R]} \rho^2 \theta^2 |\nabla \chi_R|^2 \, dx \right)^{1/2} \times \left(\int_{|x| \in [R, 2R]} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx \right)^{1/2}. $$

Using the bound $|\nabla \chi_R| \leq C R^{-1}$, we get

$$\int_{\mathbb{R}^2} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx \leq C \left(\int_{|x| \in [R, 2R]} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx \right)^{1/2}. $$

This in particular implies that

$$\int_{\mathbb{R}^2} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx \leq C^2,$$

and hence

$$\lim_{R \to \infty} \int_{|x| \in [R, 2R]} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx = 0.$$

Inserting this information back in (2.6), we conclude that

$$\int_{\mathbb{R}^2} |\nabla \theta|^2 \rho^2 \chi_R^2 \, dx = 0,$$

which implies that θ is a constant function.

2.2. Solutions obtained using the variational structure of the problem. In this section, we explain how the variational structure of the problem can be exploited to derive the existence of nontrivial solutions of (2.1) whose zero set is prescribed.

As already mentioned, the functions $u(x) = u_1(a \cdot x + b)$ are solutions of (2.1). In dimension 2, nontrivial examples (whose nodal set is the union of two perpendicular lines) were built in [11] using the following strategy:

Theorem 2.2. [11] In dimension 2, there exists a solution of (2.1) whose zero set is the union of two perpendicular lines.
Proof. For all $R > 0$ we define
\[\Omega_R := \{(x, y) \in \mathbb{R}^2 : x > |y| \text{ and } x^2 + y^2 < R^2 \}, \]
and consider the energy
\[E_R(u) := \frac{1}{2} \int_{\Omega_R} |\nabla u|^2 \, dx + \frac{1}{4} \int_{\Omega_R} (1 - u^2)^2 \, dx. \]
Standard arguments of the calculus of variations imply that, for all $R > 0$, there exists a minimiser $u_R \in H^1_0(\Omega_R)$ of E_R, which can be assumed to be positive and bounded by 1. This minimiser is a smooth solution of (2.1) in Ω_R which has 0 boundary data and is bounded. It is easy to cook up a test function to show that (2.7)
\[E_R(u_R) \leq C R. \]
Indeed, just build a function which interpolates smoothly from 0 to 1 in a layer of size 1 around the boundary of Ω_R and which is identically equal to 1 elsewhere. Obviously the test function can be designed in such a way that its energy is controlled by the length of $\partial \Omega_R$ and hence is less than a constant times R). Since the energy of the trivial solution (identically equal to 0) is
\[E_R(0) = \frac{1}{4} \int_{\Omega_R} dx \geq C R^2, \]
we conclude that u_R is certainly not identically equal to 0 for R large enough since otherwise we would have the inequalities
\[C R^2 \leq E_R(0) \leq E_R(u_R) \leq C R, \]
which do not hold for R large enough.

Elliptic estimates together with Ascoli-Arzela’s theorem allow one to prove that, as R tends to ∞, this sequence of minimisers u_R converges (up to a subsequence and uniformly on compacts) to a solution of (2.1) which is defined in the quadrant $\{(x, y) \in \mathbb{R}^2 : x > |y|\}$ and which vanishes on the boundary of this set. A solution u_2 defined in the entire space is then obtained using odd reflections through the lines $x = \pm y$. The function u_2 is a solution of (2.1), whose 0-level set is the union of the two axis.

Observe that we need to rule out the fact that u_2 is the trivial solution (identically equal to 0). The proof is again by contradiction. If $u_2 \equiv 0$, then for R large enough, the solution u_R would be less that $1/2$ on Ω_R (here R is fixed large enough, independently of R). However, arguing as above and choosing R large enough, it would be possible to modify the definition of u_R on Ω_R while reducing its energy (this would contradict the fact that u_R is a minimiser of the energy).

This construction can easily be generalized to obtain solutions with dihedral symmetry by considering, for $k \geq 3$, the corresponding solution within the angular sector
\[\{(r \cos \theta, r \sin \theta) : r > 0, |\theta| < \frac{\pi}{2k}\}, \]
and extending it by $2k - 1$ consecutive odd reflections to yield an entire solution u_k (we refer to [26] for the details). The zero level set of u_k is constituted by $2k$ infinite half lines with dihedral symmetry.

Following the same strategy, Cabré and Terra [5] have obtained a higher dimensional version of this construction and they are able to prove the:
Theorem 2.3. [5] There exist solutions of (2.1) which are defined in \mathbb{R}^{2m} and whose zero set is the minimal cone

$$C_{m,m} := \{(x, y) \in \mathbb{R}^{2m} : |x| = |y|\}.$$

Again using similar arguments, it is proven in [20] that there exists solutions of (2.1) in \mathbb{R}^3 whose zero set is a given helicoid. In dimension 3, given $\lambda > 0$, we define the helicoid H_λ to be the minimal surface parameterized by

$$\mathbb{R} \times \mathbb{R} \ni (t, \theta) \mapsto \left(t \cos \theta, t \sin \theta, \frac{\lambda}{\pi} \theta\right) \in \mathbb{R}^3,$$

and, identifying \mathbb{R}^3 with $\mathbb{C} \times \mathbb{R}$, we define the screw motion of parameter λ by

$$\sigma_\lambda^\alpha (z, t) = \left(e^{i\alpha} z, t + \frac{\lambda}{\pi} \alpha\right),$$

for all $\alpha \in \mathbb{R}$. We have the :

Theorem 2.4. [20] Assume that $\lambda > \pi$. Then, there exists an entire solution to the Allen-Cahn equation (2.1) which is bounded and whose zero set is equal to H_λ. This solution is invariant under the screw motion of parameter λ, namely $u \circ \sigma_\lambda^\alpha = u$, for all $\alpha \in \mathbb{R}$.

The condition on λ is sharp since we also have the :

Theorem 2.5. [20] Assume that $\lambda \leq \pi$. Then, there are no nontrivial bounded entire solution of the Allen-Cahn equation (2.1) whose zero set is equal to H_λ.

Observe that, in this last result, we do not assume that the solution is invariant under screw motion.

2.3. Entire solutions of the Allen-Cahn equation which are associated to embedded minimal hypersurfaces. Recently, there has been important existence results for entire solutions of (2.1) which are associated to complete noncompact embedded minimal hypersurfaces in Euclidean space. All these solutions are counterparts, in the noncompact setting, of the solutions obtained in [43] in the compact setting. They all rely on the knowledge of complete noncompact minimal hypersurfaces and use the infinite dimensional Liapunov-Schmidt reduction argument. Let us mention two important results along these lines.

There is a rich family of minimal surfaces in \mathbb{R}^3 which are complete, embedded and have finite total curvature. Among these surfaces there is the catenoid, Costa’s surface [8] and its higher genus analogues, and all k-ended embedded minimal surfaces studied by Perez and Ros [45].

The main result in [19] asserts that there exists solutions of (2.1) whose nodal set is close to a dilated version of any nondegenerate complete, noncompact minimal surface with finite total curvature. In other words, if one considers the equation with scaling

$$\varepsilon^2 \Delta u + u - u^3 = 0,$$

then the following result holds :

Theorem 2.6. [19] Given Γ, a nondegenerate complete, embedded minimal surface with finite total curvature, there exists $\varepsilon_0 > 0$ and for all $\varepsilon \in (0, \varepsilon_0)$ there exists u_ε solution of (2.8), such that $u_\varepsilon^{-1}(\{0\})$ converges uniformly on compacts to Γ.
In this result, nondegeneracy refers to the fact that all bounded Jacobi fields of \(\Gamma \) arise from the action of rigid motions on \(\Gamma \).

Also, thanks to the result of Bombieri-De Giorgi-Giusti \([3]\), it is known that there exists minimal graphs which are not hyperplanes in dimension \(n + 1 \geq 9 \). Following similar ideas, it is proven in \([17]\) that one can construct entire solutions of (2.1) whose level sets are not hyperplanes, provided the dimension of the ambient space is \(n + 1 \geq 9 \).

Theorem 2.7. \([17]\) In dimension 9, there exist solutions of the Allen-Cahn equation which are monotone in one direction and whose level sets are not hyperplanes.

This last result shows that the statement of De Giorgi’s conjecture is sharp.

2.4. Entire solutions of (2.1) which are associated to the Toda system

We assume in this section that the dimension is equal to 2. There is yet another interesting construction of entire solutions of (2.1) which can be done in dimension 2. Surprisingly, this construction relates solutions of (2.1) whose zero set is the union of finitely many curves which are close to parallel lines to the solutions of a Toda system.

Definition 2.1. We say that \(u \), solution of (2.1), has \(2k \)-ends if, away from a compact set, its nodal set is given by \(2k \) connected curves which are asymptotic to \(2k \) oriented, disjoint, half lines of equation \(a_j \cdot x + b_j = 0 \), \(j = 1, \ldots, 2k \) (for some choice of \(a_j \in \mathbb{R}^2 \), \(|a_j| = 1 \) and \(b_j \in \mathbb{R} \)) and if, along these curves, the solution is asymptotic to either \(x \mapsto u_1(a_j \cdot x + b_j) \) or \(x \mapsto -u_1(a_j \cdot x + b_j) \).

Given any \(k \geq 1 \), one can prove the existence of a wealth of \(2k \)-ended solutions of (2.1). Moreover, one can show that these solutions belong to a smooth \(2k \)-parameter family of \(2k \)-ended solutions of (2.1). To state this result in a precise way, we assume that we are given a solution \(q_1, \ldots, q_k \) of the Toda system

\[
(2.9) \quad c_0 q_j'' = e^{\sqrt{2}(q_{j-1} - q_j)} - e^{-\sqrt{2}(q_j - q_{j+1})},
\]

for \(j = 1, \ldots, k \), where \(c_0 = \frac{\sqrt{2}}{4} \) and we agree that

\[q_0 \equiv -\infty \quad \text{and} \quad q_{k+1} \equiv +\infty. \]

The Toda system (2.9) is a classical example of integrable system which has been extensively studied. It models the dynamics of finitely many mass points on the line under the influence of an exponential potential. We refer to \([31]\) and \([41]\) for the complete description of the theory. Of importance is the fact that solutions of (2.9) can be described (almost explicitly) in terms of \(2k \) parameters. Moreover, if \(q \) is a solution of (2.9), then the long term behavior (i.e. long term scattering) of the \(q_j \) at \(\pm \infty \) is well understood and it is known that, for all \(j = 1, \ldots, k \), there exist \(a_j^+, b_j^+ \in \mathbb{R} \) and \(a_j^-, b_j^- \in \mathbb{R} \), all depending on \(q_1, \ldots, q_k \), such that

\[
(2.10) \quad q_j(t) = a_j^+ |t| + b_j^+ + \mathcal{O}(e^{-\tau \log |t|}),
\]
as \(t \) tends to \(\pm \infty \), for some \(\tau_0 > 0 \). Moreover, \(a_j^+ > a_j^- \) for all \(j = 1, \ldots, k - 1 \).

Given \(\varepsilon > 0 \), we define the vector valued function \(q_1, \ldots, q_k, e \), whose components are given by

\[
(2.11) \quad q_{j, \varepsilon}(x) := q_j(\varepsilon x) - \sqrt{2} \left(j - \frac{k + 1}{2} \right) \log \varepsilon.
\]
It is easy to check that the $q_{j,\varepsilon}$ are also solutions of (2.9).

Observe that, according to the description of the asymptotics of the functions q_j, the graphs of the functions $q_{j,\varepsilon}$ are asymptotic to oriented half lines at infinity. In addition, for $\varepsilon > 0$ small enough, these graphs are disjoint and in fact the distance between two adjacent graphs is given by $-\sqrt{2} \log \varepsilon + O(1)$ as ε tends to 0.

It will be convenient to agree that $\chi^+ (\text{resp.} \chi^-)$ is a smooth cutoff function defined on \mathbb{R} which is identically equal to 1 for $x > 1$ (resp. $x < -1$) and identically equal to 0 for $x < -1$ (resp. $x > 1$) and additionally that $\chi^- + \chi^+ \equiv 1$.

With these cutoff functions at hand, we define the 4 dimensional space

\begin{equation}
D := \text{Span} \{ x \mapsto \chi^\pm (x), x \mapsto x \chi^\pm (x) \},
\end{equation}

and, for all $\mu \in (0,1)$ and all $\tau \in \mathbb{R}$, we define the space $C^{2,\mu}_\tau (\mathbb{R})$ of $C^{2,\mu}$ functions h which satisfy

\begin{equation}
\| h \|_{C^{2,\mu}_\tau (\mathbb{R})} := \| (\cosh \tau) h \|_{C^{2,\mu}(\mathbb{R})} < \infty.
\end{equation}

Keeping in mind the above notations, we have the :

Theorem 2.8. \cite{13} For all $\varepsilon > 0$ sufficiently small, there exists an entire solution u_ε of the Allen-Cahn equation (2.1) whose nodal set is the union of k disjoint curves $\Gamma_1, \ldots, \Gamma_k, \varepsilon$ which are the graphs of the functions

\begin{equation}
x \mapsto q_{j,\varepsilon} (x) + h_{j,\varepsilon} (\varepsilon x),
\end{equation}

where the functions $h_{j,\varepsilon} \in C^{2,\mu}_\tau (\mathbb{R}) \oplus D$ satisfy

\begin{equation}
\| h_{j,\varepsilon} \|_{C^{2,\mu}_\tau (\mathbb{R}) \oplus D} \leq C \varepsilon^{\alpha},
\end{equation}

for some constants $C, \alpha, \tau, \mu > 0$ independent of $\varepsilon > 0$.

In other words, given a solution of the Toda system, we can find a one parameter family of $2k$-ended solutions of (2.1) which depend on a small parameter $\varepsilon > 0$. As ε tends to 0, the nodal sets of the solutions we construct become close to the graphs of the functions $q_{j,\varepsilon}$. The fact that the Toda system appears in this construction is not straightforward and follows from the study of the interactions between the different copies of u_1 we try to glue together.

Going through the proof, one can be more precise about the description of the solution u_ε. If $\Gamma \subset \mathbb{R}^2$ is a curve in \mathbb{R}^2 which is the graph over the x-axis of some function, we denote by dist(\cdot, Γ) the signed distance to Γ which is positive in the upper half of $\mathbb{R}^2 - \Gamma$ and is negative in the lower half of $\mathbb{R}^2 - \Gamma$. Then, we have the :

Proposition 2.1. \cite{13} The solution of (2.1) provided by Theorem 2.8 satisfies

\begin{equation}
\| e^{\varepsilon \hat{\alpha}} |x| (u_\varepsilon - u^*_\varepsilon) \|_{L^{\infty}(\mathbb{R}^2)} \leq C \varepsilon^{\hat{\alpha}},
\end{equation}

for some constants $C, \alpha, \hat{\alpha} > 0$ independent of ε, where

\begin{equation}
u^*_\varepsilon := \sum_{j=1}^{k} (-1)^{j+1} u_1 \{ \text{dist}(\cdot, \Gamma_{j,\varepsilon}) \} - \frac{1}{2}((-1)^k + 1).
\end{equation}

It is interesting to observe that, when $k \geq 3$, there are solutions of (2.9) whose graphs have no symmetry and our result yields the existence of entire solutions of (2.1) without any symmetry provided the number of ends is larger than or equal to 6.
2.5. Stable solutions of the Allen-Cahn equation. Recently, there has been some interest in the understanding of stable solutions of (2.1). We start with the:

Definition 2.2. We will say that u, solution of (0.1), is stable if

$$
\int_{\mathbb{R}^{n+1}} (|\nabla \psi|^2 - \psi^2 + 3u^2 \psi^2) \, dx \geq 0,
$$

for any smooth function ψ with compact support.

In dimension 2, the stability property is also a key ingredient in the proof of De Giorgi’s conjecture which is given in [4], [24] and, as observed by Dancer [10], the stability assumption is indeed a sufficient condition to classify solutions of (2.1) in dimension 2 and prove that solutions satisfying (2.14) are given by (2.3) in this dimension.

The monotonicity assumption in De Giorgi’s conjecture implies the stability of the solution. Indeed, if u is a solution of (2.1) such that $\partial_{x_{n+1}} u > 0$, then u is stable in the above sense and the linearized operator

$$
L := -(\Delta + 1 - 3u^2),
$$
satisfies maximum principle. More generally, observe that if $\phi > 0$ is a solution of

$$
L \phi = 0,
$$
once can multiply this equation by $\phi^{-1} \psi^2$ and integrate the result by part to get

$$
\int_{\mathbb{R}^{n+1}} (|\nabla \psi|^2 - \psi^2 + 3u^2 \psi^2) \, dx = \int_{\mathbb{R}^{n+1}} |\nabla \psi - \phi^{-1} \psi \nabla \phi|^2 \, dx \geq 0,
$$
and hence u is stable in the sense of Definition 2.2. In the case where u is monotone in the x_{n+1} direction, this argument can be applied with $\phi = \partial_{x_{n+1}} u$ to prove that monotone solutions of (2.1) are stable. Standard arguments imply that L also satisfies the maximum principle.

As a consequence, in dimension 9, the monotone solutions constructed by del Pino, Kowalczyk and Wei [17] provide non trivial stable solutions of the Allen-Cahn equation. It is shown in [44] that:

Theorem 2.9. [44] Assume that $n+1 = 2m \geq 8$. Then, there exist non constant, bounded, stable solutions of (2.1) whose level sets are not hyperplanes.

In fact, we can be more precise and prove that the zero set of our solutions are asymptotic to

$$
C_{m,m} := \{(x, y) \in \mathbb{R}^m \times \mathbb{R}^m : |x| = |y|\},
$$
which is a minimal cone in \mathbb{R}^{2m} which is usually referred to as Simons’ cone. The proof of Theorem 2.9 strongly uses the fact that Simons’ cone is a minimizing minimal hypersurface and hence is stable but also uses the fact that this cone is strictly area minimizing (we refer to [28] or [44] for a definition).

As already mentioned, in dimension $n+1 = 2m$, with $m \geq 1$, Cabré and Terra [5] have found solutions of the Allen-Cahn equation whose zero set is exactly given by the cone $C_{m,m}$. When $m \geq 1$, these solutions generalize the so called saddle solutions which have been found by Dang, Fife and Peletier [11] in dimension 2. The proof of this result makes use of a variational argument in the spirit of [11]. Moreover, the same authors have proven that, when $m = 2$ or 3, the solutions they find is unstable [6].
It turns out that Theorem 2.9 is a corollary of a more general result:

Theorem 2.10. [44] Assume that $n+1 \geq 8$ and that C is a minimizing cone in \mathbb{R}^{n+1}. Then, there exist bounded solutions of (2.1) whose zero sets are asymptotic to C at infinity.

We refer to [28] or [44] for a definition of minimizing cones. The solutions of (2.1) constructed in these theorems are not unique and in fact they arise in families whose dimensions can be computed.

In view of De Giorgi’s conjecture, the results of Dancer and the above result, the following statement seems natural: **Assume that u is a non constant, bounded, stable solution of (2.1) and that $n + 1 \leq 7$, then the level sets of u should be hyperplanes.**

This question parallels the corresponding well known conjecture concerning the classification of stable, embedded minimal hypersurfaces in Euclidean space: **Stable, embedded minimal hypersurfaces in Euclidean space \mathbb{R}^{n+1} are hyperplanes as long as $n + 1 \leq 7$.** This latter problem is still open except when the ambient dimension is equal to 3 where the result of Ficher-Colbrie and Schoen [23] guaranties that affine planes are the only stable embedded minimal surfaces in \mathbb{R}^3.

3. Proof of Theorem 1.1

As already mentioned, the proof of Theorem 1.1 and many constructions in the field make use of an infinite dimensional Lyapunov-Schmit reduction argument. We present here a rather detailed proof which is much simpler than the original proof since it uses many ideas which have been developed by all the different authors working on the subject or on closely related problems: S. Brendle, M. del Pino, M. Kowalczyk, A. Malchiodi, M. Montenegro, J. Wei, ... We believe that the technical tools have now evolved sufficiently so that they can be presented in a rather simple and synthetic way.

3.1. Local coordinates near a hypersurface and expression of the Laplacian.

The first important tool is the use of Fermi coordinates to parameterize a neighborhood of a given hypersurface which is embedded in M.

In this section, we assume that $n \geq 1$ and that Γ is an oriented smooth hypersurface embedded in a compact $(n + 1)$-dimensional Riemannian manifold (M,g). We assume that Γ separates M into two different connected components in the sense that Γ is the zero set of a smooth function f_Γ for which 0 is a regular value. We define the Fermi coordinates about Γ and we provide an asymptotic expansion of the Laplace-Beltrami operator in Fermi coordinates about Γ.

We denote by N the unit normal vector field on Γ which defines the orientation of Γ. We make use of the exponential map to define

$$Z(y, z) := \text{Exp}_y(z N(y)),$$

where $y \in \Gamma$ and $z \in \mathbb{R}$. The implicit function theorem implies that Z is a local diffeomorphism from a neighborhood of a point $(y, 0) \in \Gamma \times \mathbb{R}$ onto a neighborhood of $y \in M^{n+1}$.

Remark 3.1. In the case where the ambient manifold is the Euclidean space, we simply have

$$Z(y, z) = y + z N(y),$$

for $y \in \Gamma$ and $z \in \mathbb{R}$.
Given \(z \in \mathbb{R} \), we define \(\Gamma_z \) by

\[
\Gamma_z := \{ Z(y, z) \in M : y \in \Gamma \}.
\]

Observe that for \(z \) small enough (depending on the point \(y \in \Gamma \) where one is working), \(\Gamma_z \) restricted to a neighborhood of \(y \) is a smooth hypersurface which will be referred to as the \textit{hypersurface parallel to} \(\Gamma \) \textit{at height} \(z \). The induced metric on \(\Gamma_z \) will be denoted by \(g_z \).

The following result is a consequence of Gauss’ Lemma. It gives the expression of the metric \(g \) on the domain of \(M \) which is parameterized by \(Z \).

Lemma 3.1. We have

\[
Z^* g = g_z + dz^2,
\]

where \(g_z \) is considered as a family of metrics on \(T\Gamma \), smoothly depending on \(z \), which belongs to a neighborhood of \(0 \in \mathbb{R} \).

Proof. It is easier to work in local coordinates. Given \(y \in \Gamma \), we fix local coordinates \(x := (x_1, \ldots, x_n) \) in a neighborhood of \(0 \in \mathbb{R}^n \) to parameterize a neighborhood of \(y \) in \(\Gamma \) by \(\Phi \), with \(\Phi(0) = y \). We consider the mapping

\[
\tilde{F}(x, z) = \text{Exp}_{\Phi(x)}(z \mathcal{N}(\Phi(x))),
\]

which is a local diffeomorphism from a neighborhood of \(0 \in \mathbb{R}^{n+1} \) into a neighborhood of \(y \) in \(M \). The corresponding coordinate vector fields are denoted by

\[
X_0 := \tilde{F}_*(\partial_x) \quad \text{and} \quad X_j := \tilde{F}_*(\partial_{x_j}),
\]

for \(j = 1, \ldots, n \). The curve \(x_0 \mapsto \tilde{F}(x_0, x) \) being a geodesic we have \(g(X_0, X_0) \equiv 1 \). This also implies that \(\nabla_{X_0}^g X_0 \equiv 0 \) and hence we get

\[
\partial_z g(X_0, X_j) = g(\nabla_{X_0}^g X_0, X_j) + g(\nabla_{X_j}^g X_j, X_0) = g(\nabla_{X_0}^g X_j, X_0).
\]

The vector fields \(X_0 \) and \(X_j \) being coordinate vector fields we have \(\nabla_{X_0}^g X_j = \nabla_{X_j}^g X_0 \) and we conclude that

\[
2 \partial_z g(X_0, X_j) = 2 g(\nabla_{X_j}^g X_0, X_0) = \partial_z g(X_0, X_0) = 0.
\]

Therefore, \(g(X_0, X_j) \) does not depend on \(z \) and since on \(\Gamma \) this quantity is 0 for \(j = 1, \ldots, n \), we conclude that the metric \(g \) can be written as

\[
g = g_z + dz^2,
\]

where \(g_z \) is a family of metrics on \(\Gamma \) smoothly depending on \(z \) (this is nothing but Gauss’ Lemma).

The next result expresses, for \(z \) small, the expansion of \(g_z \) in terms of geometric objects defined on \(\Gamma \). In particular, in terms of \(\hat{g} \) the induced metric on \(\Gamma \), \(\hat{h} \) the second fundamental form on \(\Gamma \), which is defined by

\[
\hat{h}(t_1, t_2) := -\hat{g}(\nabla_{t_1}^g N, t_2),
\]

and in terms of the square of the second fundamental form which is the tensor defined by

\[
\hat{h} \otimes \hat{h}(t_1, t_2) := \hat{g}(\nabla_{t_1}^g N, \nabla_{t_2}^g N),
\]

for all \(t_1, t_2 \in TT \). Observe that, in local coordinates, we have

\[
(\hat{h} \otimes \hat{h})_{ij} = \sum_{a,b} h_{ia} g^{ab} \hat{h}_{bj}.
\]
With these notations at hand, we have the :

Lemma 3.2. The induced metric g_z on Γ_z can be expanded in powers of z as

$$g_z = \hat{g} - 2z\hat{h} + z^2 \left(\hat{h} \otimes \hat{h} + g(R_g(\cdot, N), \cdot, N) \right) + \mathcal{O}(z^3),$$

where R_g denotes the Riemannian tensor on (M, g).

Proof. We keep the notations introduced in the previous proof. By definition of \hat{g}, we have

$$g_z = \hat{g} + O(z).$$

We now derive the next term the expansion of g_z in powers of z. To this aim, we compute

$$\partial_z g(X_i, X_j) = g(\nabla_{X_0}^g X_i, X_j) + g(\nabla_{X_0}^g X_j, X_i) + 2g(\nabla_{X_0}^g X_j, \nabla_{X_0}^g X_0, X_i),$$

for all $i, j = 1, \ldots, n$. Since $X_0 = N$ on Γ, we get

$$\partial_z g_{z=0} = -2\hat{h},$$

by definition of the second fundamental form. This already implies that

$$g_z = \hat{g} - 2z\hat{h} + O(z^2).$$

Using the fact that the X_0 and X_j are coordinate vector fields, we can compute

$$\partial_z^2 g(X_i, X_j) = 2g(R_g(X_0, X_i) X_0, X_j) + 2g(\nabla_{X_0}^g X_j, \nabla_{X_0}^g X_0, X_i).$$

By definition of the curvature tensor, we can write

$$\nabla_{X_0}^g X_j = R_g(X_0, X_j) X_0 + \nabla_{X_0}^g X_j X_0,$$

which, using the fact that X_0 and X_j are coordinate vector fields, simplifies into

$$\nabla_{X_0}^g X_j X_0 = R_g(X_0, X_j) X_0.$$

Since $\nabla_{X_0}^g X_0 \equiv 0$, we get

$$\nabla_{X_0}^g X_j X_0 = R_g(X_0, X_j) X_0.$$

Inserting this into (3.2) yields

$$\partial_z^2 g(X_i, X_j) = 2g(R_g(X_0, X_i) X_0, X_j) + 2g(\nabla_{X_0}^g X_j, \nabla_{X_0}^g X_0, X_i).$$

Evaluation at $x_0 = 0$ gives

$$\partial_z^2 g_{z=0} = 2g(R(N, \cdot) N, \cdot) + 2g(\nabla^g N, \nabla^g N).$$

The formula then follows at once from Taylor’s expansion. □

Similarly, the mean curvature H_z of Γ_z can be expressed in term of \hat{g} and \hat{h}.

Lemma 3.3. The following expansion holds

$$H_z = \text{Tr} \hat{h} + z \left(\text{Tr} \hat{h} \otimes \hat{h} + \text{Ric}(\cdot, N) \right) + \mathcal{O}(z^2),$$

for z close to 0.
Proof. The mean curvature appears in the first variation of the volume form of parallel hypersurfaces, namely

\[H_z = -\frac{1}{\sqrt{\det g_z}} \frac{d}{dz} \sqrt{\det g_z}. \]

The result then follows at once from the expansion of the metric \(g_z \) in powers of \(z \) together with the well known formula

\[\det(I + A) = 1 + \text{Tr}A + \frac{1}{2} \left((\text{Tr}A)^2 - \text{Tr}A^2 \right) + O(\|A\|^3), \]

where \(A \in M_n(\mathbb{R}) \). \(\square \)

Recall that, in local coordinates, the Laplace Beltrami operator is given by

\[\Delta g = \frac{1}{\sqrt{|g|}} \partial_x \left(g^{ij} \sqrt{|g|} \partial_x \right). \]

Therefore, in a fixed tubular neighborhood of \(\Gamma \), the Euclidean Laplacian in \(\mathbb{R}^{n+1} \) can be expressed in Fermi coordinates by the (well-known) formula

\[\Delta_{g_\ast} = \partial_z^2 - H_z \partial_z + \Delta g_z. \]

3.2. Construction of an approximate solution. In this section, we use the Fermi coordinates which have been introduced in the previous section and rephrase the equation we would like to solve in a tubular neighborhood of \(\Gamma \). We also build an approximate solution of (0.1) whose nodal set is close to \(\Gamma \).

We define

\[u_\varepsilon(z) := u_1(z/\varepsilon), \quad \hat{u}_\varepsilon(z) := u'_1(z/\varepsilon), \]

and

\[\hat{u}_\varepsilon(z) := u''_1(z/\varepsilon), \]

where \(u_1 \) is the solution of (2.2).

We agree that \(\Gamma \) is a smooth, compact, minimal hypersurface which is embedded in \(M \) and we use the notations introduced in the previous section for the Fermi coordinates about \(\Gamma \).

Given any (sufficiently small) smooth function \(\zeta \) defined on \(\Gamma \), we define \(\Gamma_\zeta \) to be the normal graph over \(\Gamma \) for the function \(\zeta \). Namely

\[\Gamma_\zeta := \{ Z(y, \zeta(y)) \in M : y \in \Gamma \}. \]

We keep the notations of the previous section and, in a tubular neighborhood of \(\Gamma \) we write

\[Z^* u(y, z) = \bar{u}(y, z - \zeta(y)), \]

where \(\zeta \) is a (sufficiently small) smooth function defined on \(\Gamma \). It will be convenient to denote by \(t \) the variable

\[t := z - \zeta(y). \]

Using the expression of the Laplacian in Fermi coordinates which has been derived in (3.3), we find with little work that the equation we would like to solve can be rewritten as

\[\varepsilon^2 \left[(1 + \|d\zeta\|^2_{g_z}) \partial_t^2 \bar{u} + \Delta g_z \bar{u} - (\Delta g_z \zeta + H_z) \partial_t \bar{u} \right. \]

\[-2 \left. \left(d\zeta, d\partial_t \bar{u} \right)_{g_z} \right|_{z=t+\zeta} + \bar{u} - \bar{u}^3 = 0, \]
for $t > 0$ close to 0 and $y \in \Gamma$. Some comments are due about both the notations and the way this equation has been obtained. We have inserted the expression of u in the equation and then computed the result at the point $Z(y, z + \zeta(y))$ and not at the point $Z(y, z)$. Therefore, in this equation and below all computations of the quantities between the square brackets $[\]$ are performed using the metric g_z defined in Lemma 3.2 and considering that z is a parameter, and once this is done, we set $z = t + \zeta(y)$.

We set
$$\bar{u}(y, t) := u_z(t) + v(y, t),$$
in which case, the equation (3.4) becomes
$$\mathfrak{N}(v, \zeta) = 0,$$
where
$$(3.5) \quad \mathfrak{N}(v, \zeta) := \left[(\varepsilon^2 (\partial_t^2 + \Delta_{g_z}) + 1 - 3u_z^2) v - \varepsilon (\Delta_{g_z} \zeta + H_z)(\bar{u}_z + \varepsilon \partial_t v) \right. + \left. \|d\zeta\|_{g_z}^2 \bar{u}_z + \varepsilon^2 \partial_t^2 v \right]_{z=t+\zeta} + v^3 + 3u_z v^2.$$

Observe that, when $v \equiv 0$ and $\zeta \equiv 0$, we simply have
$$(3.6) \quad \mathfrak{N}(0, 0) = -\varepsilon H_t \bar{u}_z.$$
Also recall that
$$(3.7) \quad H_t = \left(\text{Tr}_g \hat{h} \otimes \hat{h} + \text{Ric}_g(N, N) \right) t + \mathcal{O}(t^2).$$
In this last formula, we have implicitly used the fact that Γ is a minimal hypersurface and hence $H_0 = \text{Tr}_g \hat{h} = 0$.

In particular, this implies that, there exists a constant $C > 0$ such that
$$(3.8) \quad |\mathfrak{N}(0, 0)| \leq C \varepsilon^2.$$
Similar estimates can be derived for the partial derivatives of $\mathfrak{N}(0, 0)$.

We have the :

Lemma 3.4. For all $k, k' \geq 0$, there exists a constant $C_{k, k'} > 0$ such that
$$(3.9) \quad |\nabla^{k'} \partial_t^k \mathfrak{N}(0, 0)|_g \leq C_{k, k'} \varepsilon^{2-k},$$
in a fixed neighborhood of Γ.

Given a function f which is defined in $\Gamma \times \mathbb{R}$, we define Π to be the L^2-orthogonal projection over \bar{u}_z, namely
$$\Pi(f) := \frac{1}{\varepsilon} \int_{\mathbb{R}} f(y, t) \bar{u}_z(t) dt,$$
where c is a normalization constant given by
$$c := \frac{1}{\varepsilon} \int_{\mathbb{R}} \bar{u}_z^2(t) dt = \int_{\mathbb{R}} (\bar{u}_z')^2(t) dt.$$
Of importance for us, will be the L^2-projection of $\mathfrak{N}(0, 0)$ over \bar{u}_z. The crucial observation is that, thanks to parity,
$$(3.10) \quad \int_{\mathbb{R}} H_t \bar{u}_z^2 dt = \mathcal{O}(\varepsilon^3),$$
since the integral of $t \bar{u}_z^2$ is equal to 0. Using this property, we conclude that:
Lemma 3.5. For all \(k \geq 0 \), there exists a constant \(C_k > 0 \) such that
\[
|\nabla^k \Pi (\chi \Re(0,0))|_g \leq C_k \varepsilon^3,
\]
in \(\Gamma \), where \(\chi \) is a cutoff function which is identically equal to 1 when \(|t| \leq c\), for some \(c > 0 \) which is fixed small enough.

The function \(u_\varepsilon \), which is defined by
\[
Z^* u_\varepsilon(y,t) := u_\varepsilon(t),
\]
in a neighborhood of \(\Gamma \), will be used to define an approximate solution of our problem.

3.3. Analysis of the model linear operator. In this section, we analyze the operator
\[
L_\varepsilon := \varepsilon^2 \left(\partial_t^2 + \Delta_g \right) + 1 - 3 u_\varepsilon^2,
\]
which is acting on functions defined on the product space \(\Gamma \times \mathbb{R} \), endowed with the product metric
\[
g + dt^2.
\]
First, we recall some standard injectivity result which is the key result. Then, we will use this result to obtain an a priori estimate for solutions of \(L_\varepsilon w = f \), when the functions \(w \) and \(f \) are defined in appropriate weighted spaces. The proof of the a priori estimate is by contradiction. Finally, application of standard results in functional analysis will provide the existence of a right inverse for the operator \(L_\varepsilon \) acting on some special infinite codimensional function space.

3.3.1. The injectivity result. We collect some basic information about the spectrum of the operator
\[
L_0 := - \left(\partial_t^2 + 1 - 3 u_1^2 \right),
\]
which is the linearized operator of (2.1) about \(u_1 \) and which is acting on functions defined in \(\mathbb{R} \). All the information we need are included in the :

Lemma 3.6. The spectrum of the operator \(L_0 \) is the union of the eigenvalue \(\mu_0 = 0 \), which is associated to the eigenfunction
\[
w_0(t) := \frac{1}{\cosh^2 \left(\frac{t}{\sqrt{2}} \right)},
\]
the eigenvalue \(\mu_1 = \frac{3}{2} \), which is associated to the eigenfunction
\[
w_1(t) := \frac{\sinh \left(\frac{t}{\sqrt{2}} \right)}{\cosh^2 \left(\frac{t}{\sqrt{2}} \right)},
\]
and the continuous spectrum which is given by \([2, \infty)\).

Proof. The fact that the continuous spectrum is equal to \([2, \infty)\) is standard. The fact that the bottom eigenvalue is 0 follows directly from the fact that the equation for \(u_1 \) is autonomous and hence the function \(u_1' = \partial_t u_1 \) is in the \(L^2 \)-kernel of \(L_0 \). Since this function is positive, it has to be the eigenfunction associated to the lowest eigenvalue of \(L_0 \). Direct computation shows that \(\mu_1 \) is an eigenvalue of \(L_0 \) and, finally, it is proven in [42] that \(\mu_0 = 0 \) and \(\mu_1 = 3/2 \) are the only eigenvalues of \(L_0 \).
Observe that this result implies that the quadratic form associated to L_0 is definite positive when acting on functions which are L^2-orthogonal to u_1'. More precisely, we have

\begin{equation}
\int_{\mathbb{R}} (|\partial_t w|^2 - w^2 + 3u_1^2w^2) \, dt \geq \frac{3}{2} \int_{\mathbb{R}} w^2 \, dt,
\end{equation}

for all function $w \in H^1(\mathbb{R})$ satisfying the orthogonality condition

\begin{equation}
\int_{\mathbb{R}} w(t)u_1'(t) \, dt = 0.
\end{equation}

As already mentioned, the discussion to follow is based on the understanding of the bounded kernel of the operator

\begin{equation}
L_* := \partial_t^2 + \Delta_{\mathbb{R}^n} + 1 - 2u_1^2,
\end{equation}

which is acting on functions defined on the product space $\mathbb{R} \times \mathbb{R}^n$. This is the subject of the following:

Lemma 3.7. Assume that $w \in L^\infty(\mathbb{R} \times \mathbb{R}^n)$ satisfies $L_*w = 0$. Then w only depends on t and is collinear to u_1'.

Proof. The original proof of this Lemma, which is based on Fourier transform in \mathbb{R}^n, can be found in [43]. We give here a much simpler proof which is borrowed from [17]. First, we observe that, by elliptic regularity theory, the function w is smooth and we decompose

\[w(t, y) = c(y)u_1'(t) + \bar{w}(t, y), \]

where $\bar{w}(\cdot, y)$ satisfies (3.16) for all $y \in \mathbb{R}^n$. Inserting this decomposition into the equation satisfied by w, we find

\[u_1' \Delta_{\mathbb{R}^n} c + (\partial_t^2 + 1 - 2u_1^2) \bar{w} + \Delta_{\mathbb{R}^n} \bar{w} = 0. \]

Multiplying this equation by u_1' and integrating the result over $t \in \mathbb{R}$, we conclude easily that

\[\Delta_{\mathbb{R}^n} c = 0, \]

since $L_0 u_1' = 0$ and since $\Delta_{\mathbb{R}^n} \bar{w}$ is L^2-orthogonal to the function u_1'. Since w is a bounded function, so is the function c and hence, we conclude that c is a constant function.

Next, we prove that $\bar{w} \equiv 0$. Since we have proven that c is the constant function, we can now write

\begin{equation}
(\partial_t^2 + 1 - 2u_1^2) \bar{w} + \Delta_{\mathbb{R}^n} \bar{w} = 0.
\end{equation}

We claim that, for any $\sigma \in (0, \sqrt{2})$, the function \bar{w} is bounded by a constant times $(\cosh \delta t)^{-\sigma}$. Indeed, in the equation (3.18), the potential, which is given by $1 - 3u_1^2$, tends to -2 as $|t|$ tends to ∞. Using this property, we conclude that for all $\delta \in (0, 1)$ and all $\eta > 0$, the function

\[W(y, t) := e^{-\sigma |t|} + \eta \cosh(\delta t) \sum_{i=1}^{n} \cosh(\delta y_i), \]
satisfies \(L_* W < 0 \) in the region where \(|t| \geq t_* \), provided \(t_* > 0 \) is fixed large enough (depending on \(\sigma \) and \(\delta \)). Since \(\bar{w} \) is bounded, we conclude that
\[
|\bar{w}| \leq \|\bar{w}\|_{L^\infty} e^{\sigma t_*} \left(e^{-\sigma |t|} + \eta \cosh(\delta t) \sum_{i=1}^{n} \cosh(\delta y_i) \right),
\]
when \(|t| \geq t_* \). Letting \(\eta \) tend to 0, this implies that
\[
|\bar{w}| \leq \|\bar{w}\|_{L^\infty} e^{-\sigma (|t|-t_*),}
\]
for \(|t| \geq t_* \) and this completes the proof of the claim.

Multiplying the equation satisfied by \(\bar{w} \) by \(\bar{w} \) itself and integrating the result over \(\mathbb{R} \) (and not over \(\mathbb{R}^n \)), we find that
\[
\int_\mathbb{R} \left(|\partial_t \bar{w}|^2 - \bar{w}^2 + 3 u_1^2 \bar{w}^2 \right) dt + \int_\mathbb{R} \bar{w} \Delta_{\mathbb{R}^n} \bar{w} \, dt = 0.
\]
Using the identity
\[
2 \bar{w} \Delta_{\mathbb{R}^n} \bar{w} = \Delta_{\mathbb{R}^n} \bar{w}^2 - 2 |\nabla \bar{w}|^2
\]
together with Lemma 3.6, we conclude that the function
\[
V(y) := \int_\mathbb{R} \bar{w}^2(t, y) \, dt,
\]
satisfies
\[
\Delta_{\mathbb{R}^n} V - \frac{3}{4} V = \int_\mathbb{R} |\nabla \bar{w}|^2 \, dt \geq 0.
\]

We define \(\lambda_1 \) to be the first eigenvalue of \(-\Delta_{\mathbb{R}^n}\), with 0 Dirichlet boundary condition, in the ball of radius 1. An associated eigenfunction will be denoted by \(E_1 \) (normalized to be positive and have \(L^2 \)-norm equal to 1) so that
\[
(3.19) \quad \Delta_{\mathbb{R}^n} E_1 = -\lambda_1 E_1.
\]
Then \(E_R(x) := E_1(x/R) \) is an eigenfunction of \(-\Delta_{\mathbb{R}^n}\), with 0 Dirichlet boundary condition, in the ball of radius \(R \) and the associated eigenvalue is given by \(\lambda_1 R^{-2} \).

We multiply (3.18) by \(E_R \) and integrate by parts the result over \(B_R \), the ball of radius \(R \) in \(\mathbb{R}^n \). We get
\[
\left(\lambda_1 R^{-2} - \frac{3}{4} \right) \int_{B_R} V E_R \, dx + \int_{\partial B_R} \partial_t E_R V \, da \geq 0.
\]
Choosing \(R \) large enough and using the fact that \(V \geq 0 \), we conclude that \(V \equiv 0 \) in \(B_R \). Therefore \(V \equiv 0 \) on \(\mathbb{R}^n \). \(\square \)

3.3.2. The a priori estimate. We are now in a position to analyze the operator \(L_\varepsilon \) which has been defined in (3.13) and which is acting on Hölder weighted spaces which we now define. We consider on \(\Gamma \times \mathbb{R} \), the scaled metric
\[
g_\varepsilon := \varepsilon^2 (g + dt^2).
\]

With these notations in mind, we can state the :

\textbf{Definition 3.1.} For all \(k \in \mathbb{N}, \, \alpha \in (0, 1) \), the space \(C^{k,\alpha}_\varepsilon(\Gamma \times \mathbb{R}) \) is the space of functions \(w \in C^{k,\alpha}_{\text{loc}}(\Gamma \times \mathbb{R}) \) where the Hölder norm is computed with respect to the scaled metric \(g_\varepsilon \).
In other words, if \(w \in C^{k,\alpha}_\varepsilon(\Gamma \times \mathbb{R}) \), then
\[
|\nabla^a \partial_t^b w(y,t)| \leq C \|w\|_{C^{k,\alpha}_\varepsilon(\Gamma \times \mathbb{R})} e^{-a-b},
\]
provided \(a + b \leq k \). Hence, taking partial derivatives, we lose powers of \(\varepsilon \).

We shall work in the closed subspace of functions satisfying the orthogonality condition
\[
\int_{\mathbb{R}} w(t,y) \dot{u}_\varepsilon(t) \, dt = 0,
\]
for all \(y \in \Gamma \).

We have the following:

Proposition 3.1. There exist constants \(C > 0 \) and \(\varepsilon_0 > 0 \) such that, for all \(\varepsilon \in (0,\varepsilon_0) \) and for all \(w \in C^2_\varepsilon(\Gamma \times \mathbb{R}) \) satisfying (3.20), we have
\[
\|w\|_{C^2_\varepsilon(\Gamma \times \mathbb{R})} \leq C \|L_\varepsilon w\|_{C^0(\Gamma \times \mathbb{R})}.
\]

Proof. Observe that, by elliptic regularity theory, it is enough to prove that
\[
\|w\|_{L^\infty(\Gamma \times \mathbb{R})} \leq C \|L_\varepsilon w\|_{L^\infty(\Gamma \times \mathbb{R})}.
\]
The proof of this result is by contradiction. We assume that, for a sequence \(\varepsilon_i \) tending to 0 there exists a function \(w_i \) such that
\[
\|w_i\|_{L^\infty(\Gamma \times \mathbb{R})} = 1,
\]
and
\[
\lim_{i \to \infty} \|L_{\varepsilon_i} w_i\|_{L^\infty(\Gamma \times \mathbb{R})} = 0.
\]
For each \(i \in \mathbb{N} \), we choose a point \(x_i := (t_i, y_i) \in \mathbb{R} \times \Gamma \) where
\[
|w_i(t_i, y_i)| \geq 1/2.
\]
Arguing as in the proof of Lemma 3.7, one can prove that the sequence \(t_i \) tends to 0 and more precisely that \(|t_i| \leq C \varepsilon_i \). Indeed, the function
\[
(t, y) \mapsto 1,
\]
can again be used as a super-solution for the problem and this shows that necessarily \(|t_i| \leq t_\varepsilon \varepsilon_i \).

Now, we use
\[
y \in T_{y_i} \Gamma \mapsto \exp_{y_i}(y) \in \Gamma,
\]
the exponential map on \(\Gamma \), at the point \(y_i \), and we define
\[
\tilde{w}_i(y,t) := w_i(\varepsilon_i t, \exp_{y_i}(\varepsilon_i y)),
\]
which is defined on \(T_{y_i} \Gamma \times \mathbb{R} \).

Using elliptic estimates together with Ascoli’s Theorem, we can extract sub-sequences and pass to the limit in the equation satisfied by \(\tilde{w}_i \). We find that \(\tilde{w}_i \) converges, uniformly on compacts to \(\tilde{w} \) which is a non trivial solution of
\[
(\partial_t^2 + 1 - 3 u_1^2 + \Delta_{\mathbb{R}^n}) \tilde{w} = 0.
\]
In addition, passing to the limit in (3.20), we check that \(\tilde{w} \) satisfies (3.16) and \(\tilde{w} \in L^\infty(\mathbb{R}^n \times \mathbb{R}) \). This clearly contradicts the result of Lemma 3.7. The proof of the result is therefore complete. \(\square \)
3.3.3. The surjectivity result. The final result of this section is the surjectivity of the operator \(L_\varepsilon \) acting on the space of functions satisfying (3.20).

Proposition 3.2. There exists \(\varepsilon_0 > 0 \), such that, for all \(\varepsilon \in (0, \varepsilon_0) \) and for all \(f \in C^0_c(\Gamma \times \mathbb{R}) \) satisfying (3.20), there exists a unique function \(w \in C^2_c(\Gamma \times \mathbb{R}) \) which also satisfies (3.20) and which is a solution of

\[
L_\varepsilon w = f,
\]

in \(\Gamma \times \mathbb{R} \).

Proof. We use the variational structure of the problem and consider the functional

\[
F(w) := \int_{\Gamma \times \mathbb{R}} \left(\varepsilon^2 (|\partial_t w|^2 + |\nabla w|^2) - w^2 + 3 u_\varepsilon^2 w^2 \right) \, \text{dvol}_g \, \text{dt},
\]

acting on the space of functions \(w \in H^1(\Gamma \times \mathbb{R}) \) which satisfy (3.20) for a.e. \(y \in \Gamma \).

Thanks to Lemma 3.6, we know that

\[
F(w) \geq \frac{3}{2} \int_{\Gamma \times \mathbb{R}} w^2 \, \text{dt} \, \text{dvol}_g.
\]

Now, given \(f \in L^2(\Gamma \times \mathbb{R}) \), we can apply Lax-Milgram’s Theorem to obtain a weak solution of \(L_\varepsilon w = f \) in \(H^1(\Gamma \times \mathbb{R}) \). It is then enough to apply elliptic regularity to conclude. \(\square \)

3.4. Study of a strongly coercive operator. This short section is devoted to the mapping properties of the operator

\[
L_\varepsilon := \varepsilon^2 \Delta_g - 2.
\]

Certainly this operator satisfies the maximum principle and solvability of the equation \(L_\varepsilon w = f \) and obtention of the estimates boils down to the construction of appropriate super-solutions. In particular, we have

Proposition 3.3. There exists a constant \(C > 0 \) such that

\[
(3.22) \quad \|w\|_{C^2(\Omega)} \leq C \|L_\varepsilon w\|_{C^0_\varepsilon(M)},
\]

where \(C^k_\varepsilon(M) \) is the Hölder space of functions defined on \(M \) where the computation of the norms of the derivatives and Hölder derivatives is performed using the scaled metric \(\varepsilon^2 g \).

Proof. This is a consequence of standard elliptic estimates applied on geodesic balls of radius \(\varepsilon \). \(\square \)

3.5. The nonlinear scheme. We describe in this section the nonlinear scheme we are going to use to perturb the approximate solution into a genuine solution of (0.1).

3.5.1. Some useful cutoff functions. We will need various cutoff functions in our construction. Therefore, for \(j = 1, \ldots, 5 \), we define the cut-off function \(\chi_j \) by

\[
Z^* \chi_j(y, t) := \begin{cases}
1 & \text{when } |t| \leq \varepsilon^{\delta_\varepsilon} \left(1 - \frac{2j-1}{100} \right), \\
0 & \text{when } |t| \geq \varepsilon^{\delta_\varepsilon} \left(1 - \frac{2j-2}{100} \right),
\end{cases}
\]

where \(\delta_\varepsilon \in (0, 1) \) is fixed. Observe that, for all \(\varepsilon \) small enough, \(Z \) is a diffeomorphism from the set \(\{(y, t) \in \Gamma \times \mathbb{R} : |t| \leq 2 \varepsilon^{\delta_\varepsilon}\} \) onto its image. We define \(\Omega_j \) to be the support of \(\chi_j \).
3.5.2. A one parameter family of approximate solutions. Building on the analysis we have done in the previous sections, the approximate solution \tilde{u}_ε is defined by

$$\tilde{u}_\varepsilon := \chi_1 \bar{u}_\varepsilon \pm (1 - \chi_1),$$

where \pm corresponds to whether the point belongs to M^ε_{n+1}. Here the function \bar{u}_ε is the one defined in (3.12), namely

$$Z^* \bar{u}_\varepsilon(y,t) := u_\varepsilon(t).$$

Observe that \bar{u}_ε is exponentially close to ± 1 at infinity and hence, it is reasonable to graft it to the constant functions ± 1 away from Γ.

3.5.3. An infinite dimensional family of diffeomorphisms. Given a function $\zeta \in C^{2,\alpha}(\Gamma)$, we define a diffeomorphism D_ζ of M as follows.

$$Z^* D_\zeta(y,t) = Z(y,t - \chi_2(y,t) \zeta(y)), \quad \text{in } \Omega_2$$

and

$$D_\zeta = \text{Id}, \quad \text{in } M - \Omega_0.$$ It is easy to check that this is a diffeomorphism of M provided the norm of ζ is small.

Also, observe that the inverse of D_ζ can be written as

$$Z^* D_\zeta^{-1}(y,t) = Z(y, t + \chi_2(y,t) \zeta(y) + \xi(y,t,\zeta(y)) \zeta(y))^2$$

in Ω_2, where $(y,t,z) \mapsto \xi(y,t,z)$ is a smooth function defined for z small (this follows at once from the inverse function theorem applied to the function $t \mapsto t - \chi_2(y,t)$). Details are left to the reader).

3.5.4. Rewriting the equation. First, given a function $\zeta \in C^{2,\alpha}(\Gamma)$, small enough, we use the diffeomorphism D_ζ, we write $u = \bar{u} \circ D_\zeta$ so that the equation

$$\varepsilon^2 \Delta_g u + u - u^3 = 0$$

can be rewritten as

$$\varepsilon^2 \Delta_g (\bar{u} \circ D_\zeta) \circ D_\zeta^{-1} + \bar{u} - \bar{u}^3 = 0$$

Observe that, when $\chi_2 \equiv 0$, the expression of the diffeomorphism D_ζ is just given by $Z^* D_\zeta(y,t) = Z(y, t - \zeta(y))$, in the coordinates (y,t) and hence this equation is precisely $\mathcal{R}(v,\zeta) = 0$ where \mathcal{R} is given by (3.5). Also observe that this equation is nonlinear in ζ (this was already clear from (3.5)). But, and this is a key point, since we have composed the whole equation with D_ζ^{-1}, the function ζ never appears composed with the function \bar{u}.

Now, we look for a solution of this equation as a perturbation of \tilde{u}_ε, and hence, we define

$$\tilde{u} := \tilde{u}_\varepsilon + v,$$

so that the equation we need to solve can now be written as

(3.23) $$\varepsilon^2 \Delta_g (v \circ D_\zeta) \circ D_\zeta^{-1} + v - 3 \tilde{u}_\varepsilon^2 v + E_\varepsilon(\zeta) + Q_\varepsilon(v) = 0,$$

where

$$E_\varepsilon(\zeta) := \varepsilon^2 \Delta_g \tilde{u}_\varepsilon \circ D_\zeta \circ D_\zeta^{-1} + \tilde{u}_\varepsilon - \tilde{u}_\varepsilon^3,$$

is the error corresponding to the fact that \tilde{u}_ε is an approximate solution and

$$Q_\varepsilon(v) := v^3 + 3 \tilde{u}_\varepsilon v^2.$$
collects the nonlinear terms in \(v \).

Finally, in order to solve (3.23), we use a very nice trick which was already used in [17]. This trick amounts to decompose the function \(v \) we are looking for, as the sum of two functions, one of which \(\chi_4 v^\sharp \) is supported in a tubular neighborhood of \(\Gamma \) and the other one \(v^\flat \) being globally defined in \(M \). Instead of solving (3.23), we are going to solve a coupled system of equation. One of the equation involves the operator \(L_\epsilon \) acting on \(v^\sharp \) as well as the operator \(J_\Gamma \) acting on \(\zeta \), while the other equation involves the operator \(L_\epsilon \) acting on \(v^\flat \). At first glance this might look rather counterintuitive but, as we will see, this strategy allows one to use directly the linear results we have proven in the previous sections.

Therefore, we set
\[
v := \chi_4 v^\sharp + v^\flat,
\]
where the function \(v^\flat \) solves
\[
L_\epsilon v^\flat = -(1 - \chi_4) \left[\varepsilon^2 \left(\Delta_g(v^\flat \circ D\zeta) \circ D\zeta^{-1} - \Delta_g v^\flat \right) \right] + 3 (\tilde{u}^2 - 1) v^\flat - E_\epsilon(\chi_4 u^\sharp + v^\flat)) - \varepsilon^2 \left(\Delta_g((\chi_4 v^\sharp) \circ D\zeta) - \chi_4 \Delta_g(v^\flat \circ D\zeta) \right) \circ D\zeta^{-1}.
\]

For short, the right hand side will be denoted by \(N_\epsilon(v^\flat, v^\sharp, \zeta) \) so that this equation reads
\[
(3.24)
\]
\[
L_\epsilon v^\flat = N_\epsilon(v^\flat, v^\sharp, \zeta).
\]

Observe that the right hand side of this equation vanishes when \(\chi_4 \equiv 1 \).

Remark 3.2. We know from Proposition 3.3 that if
\[
L_\epsilon w = f,
\]
then
\[
(3.25)
\]
\[
\|w\|_{C_2^{\alpha}(M)} \leq C \|f\|_{C_0^{\alpha}(M)}.
\]
In the case where \(f \equiv 0 \) in \(\Omega_4 \), we can be more precise and we can show that the estimate for \(w \) can be improved in \(\Omega_5 \). Indeed, we claim that we have
\[
\|w\|_{C_2^{\alpha}(M)} \leq C \varepsilon^2 \|f\|_{C_0^{\alpha}(M)},
\]
provided \(\varepsilon \) is small enough (as we will see the \(\varepsilon^2 \) can be replaced by any power of \(\varepsilon \)). Starting from (3.25), this estimate follows easily from the construction of suitable barrier functions for the operator \(\varepsilon^2 \Delta_g = 2 \). Indeed, given \(|z^0| \leq \varepsilon^{\gamma} \) and \(\gamma \in (0, \sqrt{2}) \), we can use
\[
z \mapsto \cosh \left(\gamma \frac{z - z^0}{\varepsilon} \right),
\]
as a barrier in \(\Omega_4 \), to estimate \(w \) in terms of the estimate of \(w \) on the boundary of \(\Omega_4 \). Performing this analysis at any point of \(\Omega_5 \), we conclude that
\[
\|w\|_{L^\infty(\Omega_5)} \leq C e^{-c^* \varepsilon^{\gamma - 1}} \|w\|_{L^\infty(\Omega_4)},
\]
where \(c^* := \gamma/100 \). As usual, once the estimate for the \(L^\infty \) norm has been derived, the estimates for the derivatives follow at once from Schauder’s estimates.

We can summarize this discussion by saying that, if \(f \equiv 0 \) in \(\Omega_4 \), then (3.25) can be improved into
\[
(3.26)
\]
\[
\|w\|_{C_2^{\alpha}(M)} \leq C \|f\|_{C_0^{\alpha}(M)},
\]
where, by definition

$$\|v\|_{C^2_\varepsilon(M)} := \varepsilon^{-2} \|\chi_3 v\|_{C^2_\varepsilon(M)} + \|v\|_{C^2_\varepsilon(M)}.$$

Taking the difference between the equation satisfied by v and the equation satisfied by v^\sharp, we find that it is enough that v^\sharp solves,

$$\varepsilon^2 \Delta_g (v^\sharp \circ D\zeta) \circ D\zeta^{-1} + v^\sharp - 3 \bar{u}_\varepsilon^2 v^\sharp = -E_\varepsilon(\zeta) - Q_\varepsilon(\chi_4 v^\sharp + v^\flat) + 3 (\bar{u}_\varepsilon^2 - 1) v^\flat$$

$$- \varepsilon^2 \left(\Delta_g (v^\flat \circ D\zeta) \circ D\zeta^{-1} - \Delta_g v^\flat \right),$$

in the support of χ_4. Since we only need this equation to be satisfied on the support of χ_3, we can as well solve the equation

$$(3.27) \quad L_\varepsilon v^\sharp - \varepsilon J_\Gamma \zeta \dot{u}_\varepsilon = \chi_3 \left[L_\varepsilon v^\sharp - \varepsilon^2 \Delta_g (v^\sharp \circ D\zeta) \circ D\zeta^{-1} - v^\sharp + 3 \bar{u}_\varepsilon^2 v^\sharp \right.

- \varepsilon^2 \left(\Delta_g (v^\flat \circ D\zeta) \circ D\zeta^{-1} - \Delta_g v^\flat \right)

- E_\varepsilon(\zeta) - \varepsilon J_\Gamma \zeta \dot{u}_\varepsilon - Q_\varepsilon(\chi_4 v^\sharp + v^\flat) + 3 (\bar{u}_\varepsilon^2 - 1) v^\flat\right],$$

where the operator L_ε is the one defined in (3.13). Here we have implicitly used the fact that $\tilde{u}_\varepsilon = \bar{u}_\varepsilon$ in the support of χ_3. For short, the right hand side will be denoted by $M_\varepsilon(v^\flat, v^\sharp, \zeta)$ so that this equation reads

$$(3.28) \quad L_\varepsilon v^\sharp - \varepsilon J_\Gamma \zeta \dot{u}_\varepsilon = M_\varepsilon(v^\flat, v^\sharp, \zeta).$$

This equation can be projected over the space of functions satisfying (3.20) and the set of functions of the form \dot{u}_ε times a function defined on Γ. Let us denote by Π the orthogonal projection on \dot{u}_ε, namely

$$\Pi(f) := \frac{1}{\varepsilon c} \int_R f(y, t) \dot{u}_\varepsilon(t) \, dt,$$

where

$$c := \frac{1}{\varepsilon} \int_R \bar{u}_\varepsilon^2(t) \, dt = \int_R (u_1^\varepsilon)^2(t) \, dt,$$

and by Π^\perp the orthogonal projection on the orthogonal of \dot{u}_ε, namely

$$\Pi^\perp(f) := f - \Pi(f) \dot{u}_\varepsilon.$$

We further assume that v^\sharp satisfies (3.20). Then (3.29) is equivalent to the system

$$(3.29) \quad L_\varepsilon v^\sharp = \Pi^\perp \left[M_\varepsilon(v^\flat, v^\sharp, \zeta) \right],$$

and

$$(3.30) \quad -\varepsilon J_\Gamma \zeta = \Pi \left[M_\varepsilon(v^\flat, v^\sharp, \zeta) \right].$$
3.6. The proof of Theorem 1.1. We summarize the above discussion by saying that we are looking for a solution of
\[\varepsilon^2 \Delta_g u + u - u^3 = 0, \]
of the form
\[u = (\bar{u}_\varepsilon + \chi_4 v^\varepsilon + v^\delta) \circ D_\xi, \]
where the function \(v^\varepsilon \) is defined on \(\Gamma \times \mathbb{R} \) and satisfies (3.20), the function \(v^\delta \) is defined in \(M \) and the function \(\xi \) defined on \(\Gamma \), and satisfy
\[L_\varepsilon v^\varepsilon = N_\varepsilon(v^\varepsilon, v^\delta, \xi) \]
\[L_\varepsilon v^\delta = \Pi \left(M_\varepsilon(v^\varepsilon, v^\delta, \xi) \right), \]
and
\[-\varepsilon J_\Gamma \xi = \Pi \left(M_\varepsilon(v^\varepsilon, v^\delta, \xi) \right). \]

Closer inspection of the construction of the approximate solution shows that:

Lemma 3.8. The following estimates hold
\[\|N_\varepsilon(0, 0, 0)\|_{C^0(\Gamma)} + \|\Pi (M_\varepsilon(0, 0, 0))\|_{C^0(\Gamma \times \mathbb{R})} \leq C \varepsilon^2. \]
Moreover
\[\|\Pi (M_\varepsilon(0, 0, 0))\|_{C^0(\Gamma)} \leq C \varepsilon^3. \]

Proof. Since \(v^\varepsilon = 0 \), \(v^\delta = 0 \) and \(\xi = 0 \), the estimate follow from the understanding of
\[E_\varepsilon(0) = \varepsilon^2 \Delta_g \bar{u}_\varepsilon + \bar{u}_\varepsilon - \bar{u}_\varepsilon^3, \]
But, we have already seen that
\[\varepsilon^2 \Delta_g \bar{u}_\varepsilon + \bar{u}_\varepsilon - \bar{u}_\varepsilon^3 = -\varepsilon H_\varepsilon \bar{u}_\varepsilon. \]
The estimates then follow at once from (3.9). \(\square \)

We also need the

Lemma 3.9. There exists \(\delta > 0 \) (independent of \(\alpha \in (0, 1) \)) such that the following estimates hold
\[\|N_\varepsilon(v^\delta_2, v^\varepsilon_2, \xi_2) - N_\varepsilon(v^\delta_1, v^\varepsilon_1, \xi_1)\|_{C^0(\Gamma)} \]
\[\leq C \varepsilon^{\delta} \left(\|v^\delta_2 - v^\delta_1\|_{C^2(\Gamma \times \mathbb{R})} + \|v^\varepsilon_2 - v^\varepsilon_1\|_{C^2(\Gamma \times \mathbb{R})} + \|\xi_2 - \xi_1\|_{C^2(\Gamma)} \right), \]
\[\|\Pi (M_\varepsilon(v^\delta_2, v^\varepsilon_2, \xi_2) - M_\varepsilon(v^\delta_1, v^\varepsilon_1, \xi_1))\|_{C^0(\Gamma \times \mathbb{R})} \]
\[\leq C \varepsilon^{\delta} \left(\|v^\delta_2 - v^\delta_1\|_{C^2(\Gamma \times \mathbb{R})} + \|v^\varepsilon_2 - v^\varepsilon_1\|_{C^2(\Gamma \times \mathbb{R})} + \|\xi_2 - \xi_1\|_{C^2(\Gamma)} \right), \]
and
\[\|\Pi (M_\varepsilon(v^\delta_2, v^\varepsilon_2, \xi_2) - M_\varepsilon(v^\delta_1, v^\varepsilon_1, \xi_1))\|_{C^0(\Gamma)} \]
\[\leq C \varepsilon^{1-\alpha} \|v^\delta_2 - v^\delta_1\|_{C^2(\Gamma \times \mathbb{R})} + \varepsilon^{1+\delta} \left(\|v^\varepsilon_2 - v^\varepsilon_1\|_{C^2(\Gamma \times \mathbb{R})} + \|\xi_2 - \xi_1\|_{C^2(\Gamma)} \right), \]
provided
\[\|v^\delta_j\|_{C^2(\Gamma)} + \|v^\varepsilon_j\|_{C^2(\Gamma \times \mathbb{R})} + \varepsilon^{2\alpha} \|\xi_j\|_{C^2(\Gamma)} \leq C \varepsilon^2. \]
Proof. The proof is rather technical but does not offer any real difficulty. Observe that, in the last two estimates, the use of the norm \(\|v^\flat\|_{C^{2,\alpha}(M)} \) instead of \(\|v^\flat\|_{\tilde{C}^{2,\alpha}(M)} \) is crucial to estimate the term \(-3(\bar{u}_\varepsilon^2 - 1)v^\flat\) in the definition of \(M_\varepsilon(v^\flat, v^\sharp, \zeta) \). In the last estimate, the first term on the right hand side comes from the estimate of the projection of \(\varepsilon^2 (\Delta g - \Delta g') v^\sharp \) which induces a loss of \(\varepsilon^{\alpha} \). □

We use the result of Proposition 3.2 and Proposition 3.3, to rephrase the solvability of (3.31)-(3.33) as a fixed point problem.

Choosing \(\alpha \in (0, 1) \) close to 0, Theorem 2.10 is now a simple consequence of the application of a fixed point theorem for contraction mapping which leads to the existence of a unique solution

\[u_\varepsilon = (\bar{u}_\varepsilon + \chi_4 v^\sharp + v^\flat) \circ D_\zeta \]

where

\[\|v^\flat\|_{C^{2,\alpha}(M)} + \|v^\sharp\|_{C^{2,\alpha}(\Gamma \times \mathbb{R})} + \varepsilon^{2\alpha} \|\zeta\|_{C^{2,\alpha}(\Gamma)} \leq \bar{C} \varepsilon^2 , \]

for some \(\bar{C} > 0 \) fixed large enough. We leave the details for the reader.

References

École Polytechnique and Institut Universitaire de France

Current address: Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau, France

E-mail address: frank.pacard@math.polytechnique.fr