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In this exposé we state and prove Gabber’s modification theorem mentioned in the introduction (see step
(©)). Its main application is to Gabber’s refined — i.e. prime to £ — local uniformization theorem. This is
treated in exposé [X. A relative variant of the modification theorem, also due to Gabber, has applications to
prime to { refinements of theorems of de Jong on alterations of schemes of finite type over a field or a trait. This
is discussed in exposé X. In §1, we state Gabber’s modification theorem in its absolute form (Theorem 1.1). The
proof of this theorem occupies §§4—5. A key ingredient is the existence of functorial (with respect to regular
morphisms) resolutions in characteristic zero; the relevant material is collected in §2. We apply it in §3 to get
resolutions of log regular log schemes, using the language of Kato’s fans and Ogus’s monoschemes. The main
results, on which the proof of 1.1 is based, are Theorems 3.3.16 and 3.4.15. §§2 and 3 can be read independently
of §§1,4, 5.

Though we basically follow the lines of Gabber’s original proof, our approach differs from it at several
places, especially in our use of associated points and saturated desingularization towers, whose idea is due to
the second author. In 2.3.13 and 2.4 we discuss material from Gabber’s original proof.

We wish to thank Sophie Morel for sharing with us her notes on resolution of log regular log schemes and
Gabber’s magic box. They were quite useful.

1. Statement of the main theorem

Theorem 1.1. — Let X be a noetherian, qge, separated, log reqular fs log scheme (exp. VI, 1.2), endowed with an action
of a finite group G. We assume that G acts tamely (exp. VI, 3.1) and generically freely on X (i.e. there exists a G-stable,
dense open subset of X where the inertia groups Gx are trivial). Let Z be the complement of the open subset of triviality
of the log structure of X, and let T be the complement of the largest G-stable open subset of X on which G acts freely.
Then there exists an fs log scheme X' and a G-equivariant morphism f = f(g x,z): X’ — X of log schemes having the
following properties:

(i) As a morphism of schemes, f is a projective modification, i.e. f is projective and induces an isomorphism of dense
open subsets.

(ii) X' is log reqular and Z' = £~ (Z U T) is the complement of the open subset of triviality of the log structure of X'.

(iii) The action of G on X' is very tame (exp. VI, 3.1).

When proving the theorem we will construct f(g x,z) that satisfies a few more nice properties that will
be listed in Theorem 5.6.1. We remark that Gabber also proves the theorem, more generally, when X is not
assumed to be ge. However, the quasi-excellence assumption simplifies the proof so we impose it here. Most
of the proof works for a general noetherian X, so we will assume that X is ge only when this will be needed in

§5.
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1.2. — (a) Note that we do not demand that f is log smooth. In general, it is not. Here is an example. Let k be
an algebraically closed field of characteristic # 2. Let G = {£1} act on the affine plane X = A, endowed with
the trivial log structure, by x +— *x. Then X is regular and log regular, and T = {0}. The action of G on X is
tame, but not very tame, as Go, (= G) does not act trivially on the (only) stratum X of the stratification by the
rank of M# /0*. Let f: X’ — X be the blow up of T, with its natural action of G. Then the pair (X', Z’ = f~1(T))
is log regular, f is a G-equivariant morphism of log schemes, X’ — Z’ is at the same time the open subset of
triviality of the log structure and the largest G-stable open subset of X’ where G acts freely, and G acts very
tamely on X’. However, f is not log smooth (the fiber of f at {0} is the line Z’ with the log structure associated
toN — 0,1 +— 0, which is not log smooth over Spec k with the trivial log structure).

(b) In the above example, let D1, D, be distinct lines in X crossing at {0}, and put the log structure M(D) on
X defined by the divisor with normal crossings D = D7 U D;. Then X = (X, M(D)) is log smooth over Spec k
endowed with the trivial log structure, and G acts very tamely on (X, M(D)) (exp. VI, 4.6). Moreover, the
modification f considered above underlies the log blow up f: X’ — X of X at (the ideal in M(D) of) {0}. While
f depends only on X, the log étale morphism f is not canonical, as it depends on the choice of D. However,
one can recover f from the canonical resolutions of toric singularities (discussed in the next section). Namely,
as G acts very tamely on X, the quotient Y = X/G is log regular (exp. VI, 3.2): Y = Spec k[P], where P is the
submonoid of Z? generated by (2,0), (1,1) and (0, 2), and the projection p: X — Y is a Kummer étale cover of
group G, in particular, U is a G-étale cover of V = p(U), where U = X — D. Let g: Y’ — Y be the log blow up
of {0} = p({0}) in Y. We then have a cartesian diagram of log schemes
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where the horizontal maps are Kummer étale covers of group G. Now, as a morphism of schemes, Y’ — Y is
the canonical resolution of Y, and the underlying scheme X’ of X' is the normalization of Y’ in the G-étale cover
p: U — V. This observation, suitably generalized, plays a key role in the proof of 1.1.

2. Functorial resolutions

For simplicity, all schemes considered in this section are quasi-compact and quasi-separated. In particular,
all morphisms are quasi-compact and quasi-separated.

2.1. Towers of blow ups. — In this section we review various known results on the following related top-
ics: blow ups and their towers, various operations on towers, such as strict transforms and pushforwards,
associated points of schemes and schematic closure.

2.1.1. Blow ups. — We start with recalling basic properties of blow ups; a good reference is [Conrad, 2007, §1].
Let X be a scheme. By a blow up of X we mean a triple consisting of a morphism f: Y — X, a finitely presented
closed subscheme V of X (the center), and an X-isomorphism «: Y — Proj(@,, .y -#™"), where . = .#(V) is
the ideal of V. We will write Y = Bly/(X). When there is no risk of confusion we will omit V and « from the
notation. A blow up (f,V, «) is said to be empty if V = @. In this case, Y = X and f is the identity. The only
X-automorphism of Y is the identity. Also, it is well known that Y is the universal X-scheme such that V xx Y
is a Cartier divisor (i.e. the ideal .# Oy is invertible).

2.1.2. Total and strict transforms. — Givenablow up f: Y = Bly (X) — X, there are two natural ways to pullback
closed subschemes i: Z—X. The total transform of Z under f is the scheme-theoretic preimage f*°'(Z) = ZxxY.

The strict transform 5!(Z) is defined as the schematic closure of f~'(Z —V) = Z — V.

Remark 2.1.3. — (i) The strict transform depends on the centers and not only on Z and the morphism Y — X.
For example, if D—X is a Cartier divisor then the morphism Blp (X) — X is an isomorphism but the strict
transform of D is empty.

(ii) While f*°(Z) — Z is just a proper morphism, the morphism *(Z) — Z can be provided with the blow
up structure because %(Z) — Blyx, z(Z) (e.g., if Z—V then f**(Z) = @ = Blz(Z)). Thus, the strict transform
can be viewed as a genuine blow up pullback of f with respect to i.



2.1.4. Towers of blow ups. — Next we introduce blow up towers and study various operations with them (see
also [Temkin, 2012, §2.2]). By a tower of blow ups of X we mean a finite sequence of lengthn > 0
frn 0
Xo:(XnHXn—l 4>4>X0:X)

of blow ups. In particular, this data includes the centers Vi—X; for 0 <1i < n — 1. Usually, we will denote the
tower as X, or (X,, V,). Also, we will often use notation X,, --» X, to denote a sequence of morphisms.

If n = 0 then we say that the tower is trivial . Note that the morphism X,, — X is projective, and it is a
modification if and only if the centers V; are nowhere dense. If X, is a tower of blow ups, we denote by (X,)c
the contracted tower deduced from X, by omitting the empty blow ups.

2.1.5. Strict transform of a tower. — Assume that 2" = (X,, V,) is a blow up tower of X and h: Y — Xis a
morphism. We claim that there exists a unique blow up tower % = (Y,, W,) of Y such that Y; — Y — X factors
through X; and W; = V; xx, Yi. Indeed, this defines Yy, W and Y7 uniquely. Since Vo xx Y1 = Wy xy, Y1 isa
Cartier divisor, Y1 — X factors uniquely through X;. The morphism Y; — X; uniquely defines W4 and Y», etc.
We call % the strict transform of 2~ with respect to h and denote it h*'(.2").

Remark 2.1.6. — The following observation motivates our terminology: if h: Y—X s a closed immersion then
Y;—X; is a closed immersion and Yi 1 is the strict transform of Y; under the blow up Xi 1 — X;.

2.1.7. Pullbacks. — One can also define a naive base change of 2~ with respect to h simply as (Y, W,) =
Z xx Y. This produces a sequence of proper morphisms Y, --» Yy and closed subschemes W;—Y; for
0 < i < n—1. If this datum is a blow up sequence, i.e. Yii1 — Blw,(Yi), then we say that 2~ xx Y is the
pullback of 2" and use the notation h*(27) = 2" xx Y.

Remark 2.1.8. — The pullback exists if and only if h®(2") — 27 xx Y. Indeed, this is obvious for towers of
length one, and the general case follows by induction on the length.

2.1.9. Flat pullbacks. — Blow ups are compatible with flat base changes h: Y — X in the sense that
Blvxyv(Y) = Bly(X) xx Y (e.g. just compute these blow ups in the terms of Proj). By induction on
length of blow up towers it follows that pullbacks of blow up towers with respect to flat morphisms always
exist. One can slightly strengthen this fact as follows.

Remark 2.1.10. — Assume that X, is a blow up tower of X and h: Y — Xis a morphism. If there exists a flat
morphism f: X — S such that the composition g: Y — S is flat and the blow up tower X, is the pullback of a
blow up tower S, then the pullback h*(X,) exists and equals to g*(S.).

2.1.11. Equivariant blow ups. — Assume that X is an S-scheme acted on by a flat S-group scheme G. We will
denote by p,m: Xo = G xs X — X the projection and the action morphisms. Assume that V—X is a G-
equivariant closed subscheme (i.e., V xx (Xo; m) coincides with Vo =V xx (Xo;p)) then the action of G lifts to
the blow up Y = Bly(X). Indeed, the blow up Yy = Bly, (Xo) — Xo is the pullback of Y — X with respect to
both m and p, i.e. there is a pair of cartesian squares

Yo —— Xo

SR

Y——X

So, we obtain an isomorphism Yo — G xg Y (giving rise to the projection p’: Yo — Y) and a group action
morphism m’: Yo — Y compatible with m. Furthermore, the unit map e: X — X, satisfies the condition of
Remark 2.1.10 (with X = S), hence we obtain the base change e’: Y — Y, of e.

It is now straightforward to check that m’ and e’ satisfy the group action axioms, but let us briefly
spell this out using simplicial nerves. The action of G on V defines a cartesian sub-simplicial scheme
Ner (G, V)—Ner(G, X). By the flatness of G over S and Remark 2.1.10, Blyer(g,v)(Ner(G, X)) is cartesian over
Ner(G), hence corresponds to an action of G on Bly (X).

2.1.12. Flat monomorphism. — Flat monomorphisms are studied in [Raynaud, 1967]. In particular, it is proved
in [Raynaud, 1967, Prop. 1.1] that i : Y—=Xis a flat monomorphism if and only if i is injective and forany y € Y
the homomorphism O, — Ox x is an isomorphism. Moreover, it is proved in [Raynaud, 1967, Prop. 1.2] that
in this case i is a topological embedding and &y = Ox|y. In addition to open immersions, the main source of
flat monomorphisms for us will be morphisms of the form Spec(&x, x)—X and their base changes.



2.1.13. Pushforwards of ideals. — Leti: Y — X be a flat monomorphism, e.g. Spec(&x x)—X. By the pushfor-
ward U = i, (V) of a closed subscheme V=Y we mean its schematic image in X, i.e. U is the minimal closed
subscheme such that V=X factors through U. It exists by [EGA 19.5.1].

Lemma 2.1.14. — The pushforward U = i, (V) extends V in the sense that U xx Y = V.
Proof. — See [Raynaud, 1967, Proof of Proposition 1.2]. O

2.1.15. Pushforwards of blow up towers. — Given a blow up f: Bly(Y) — Y and a flat monomorphism i: Y—=X
we define the pushforward i, (f) as the blow up along U = 1,(V), assuming that U is finitely presented over X.
Using Lemma 2.1.14 and flat pullbacks we see that i*i,(f) = f and Bly/(Y)—Bly(X) is a flat monomorphism.
So, we can iterate this procedure to construct pushforward with respect to i of any blow up tower Y, of Y. It
will be denoted (Xo, Uy) = 1, (Yo, Ve ).

Remark 2.1.16. — (i) Clearly, i*1,(Y,) = Y.
(ii) In the opposite direction, a blow up tower (X, U,) of X satisfies 1,i*(Xo) = X, if and only if the preimage
of Y in each center U; of the tower is schematically dense.

2.1.17. Associated points of a scheme. — Assume that X is a noetherian scheme. Recall that a point x € X is
called associated if m, is an associated prime of Ox y, i.e. Ox x contains an element whose annihilator is m,,
see [EGA 1V, 3.1.1]. The set of all such points will be denoted Ass(X). The following result is well known but
difficult to find in the literature.

Lemma 2.1.18. — Let i: Y—X be a flat monomorphism. Then the schematic image of i coincides with X if and only if
Ass(X) C i(Y).

Proof. — Note that the schematic image of i can be described as Spec(.#), where .# is the image of the homo-
morphism ¢: Ox — i,.(Oy). Thus, the schematic image coincides with X if and only if Ker(¢$) = 0.

If i(Y) omits a point x then any m,-torsion element s € O « is in the kernel of ¢« : Ox x — 1.(Oy)x (We use
that 0y = Ox|y by 2.1.12 and since the closure of x is the support of an extension of s to a sufficiently small
neighborhood, the restriction s|y vanishes). So, if there exists x € Ass(X) with x ¢ i(Y) then Ker(¢) # 0.

Conversely, if the kernel is non-zero then we take x to be any maximal point of its support and choose any
non-zero s € Ker(¢y). In particular, slynx, = 0 and hence x ¢ i(Y). For any non-trivial generization y of x the
image of s in O ,, vanishes because Ker(&x ,, — 1.(0y)y) = 0 by maximality of x. Thus, the closure of x is the
support of s, and hence s is annihilated by a power of m,. Since X is noetherian, we can find a multiple of s
whose annihilator is my, thereby obtaining that x € Ass(X). O

2.1.19. Associated points of blow up towers. — If (X,, V,) is a blow up tower and all X;’s are noetherian then by
the set Ass(X,) of its associated points we mean the union of the images of Ass(V;) in X. Combining Remark
2.1.16(i) and Lemma 2.1.18 we obtain the following:

Lemma 2.1.20. — Let i: Y—X be a flat monomorphism and let X, be a blow up tower of X. Then 1,i*(Xe) = Xo if and
only if Ass(X,) C i(Y).

2.2. Normalized blow up towers. — For reduced schemes most of the notions, constructions and results of
§2.1 have normalized analogs. We develop such a "normalized" theory in this section.

2.2.1. Normalization. — The normalization of a reduced scheme X with finitely many irreducible components,
as defined in [EGA 11 6.3.8], will be denoted X"°*. Recall that normalization is compatible with open immer-
sions and for an affine X = Spec(A) its normalization is X"°" = Spec(B) where B is the integral closure of A in
its total ring of fractions (which is a finite product of fields). The normalization morphism X"" — X is integral
but not necessarily finite.

2.2.2. Functoriality. — Recall (exp. II, 1.1.2) that a morphism f: Y — X is called maximally dominating if it
takes generic points of Y to generic points of X. Normalization is a functor on the category whose objects
are reduced schemes having finitely many irreducible components and whose morphisms are the maximally
dominating ones. Furthermore, it possesses the following universal property: any maximally dominating
morphism Y — X with normal Y factors uniquely through X"*. (By definition, Y is normal if its local rings are
normal domains. Both claims are local on Y and X and are obvious for affine schemes.)



2.2.3. Normalized blow ups. — Assume that X is a reduced scheme with finitely many irreducible components.
By the normalized blow up of X along a closed subscheme V of finite presentation we mean the morphism
f: Bly (X)™" — X. The normalization is well defined since Bly (X) is reduced and has finitely many irreducible
components. Note that f is universally closed but does not have to be of finite type. As in the case of usual
blow ups, V is a part of the structure. In particular, Bly (X)"°" has no X-automorphisms and we can talk about
equality of normalized blow ups (as opposed to an isomorphism).

Proposition 2.2.4. — (i) Keep the above notation. Then Bly (X)"" — X is the universal maximally dominating mor-
phism Y — X such that Y is normal and V xx Y is a Cartier divisor.

(ii) For any blow up f: Y = Blyv(X) — X its normalization f"°: Y"' — X"°' is the normalized blow up along
V oxx X"Or,

Proof. — Combining the universal properties of blow ups and normalizations we obtain (i), and (ii) is its
immediate corollary. O

Towers of normalized blow ups and their transforms can now be defined similarly to their non-normalized
analogs.

2.2.5. Towers of normalized blow ups. — A tower of normalized blow ups is a finite sequence X;, --+ X_; with
n > 0 of normalized blow ups with centers V; — X; for =1 <1 <n —1and V_; = @. The centers are part of
the datum. Note that the map Xy — X_; is just the normalization map. The contraction of a normalized blow
up tower removes the normalized blow ups with empty centers for i > 0. It follows from [EGA 1v; 8.6.3] that
each X; with 1 > 0 is a normalization of a reduced projective X_-scheme. A tower is called noetherian if all
X; are noetherian.

2.2.6. Normalization of a blow up tower. — Using induction on length and Proposition 2.2.4(ii), we can associate
to a blow up tower 2" = (X,, V,) of a reduced scheme X with finitely many irreducible components a normal-
ized blow up tower Z™°" = (Y,, W, ), where Y_; = X and Y; = X{", W; = V; xx, X]°" fori > 0. We call Z™"
the normalization of 2.

2.2.7. Strict transforms. — 1If & = (X.,V,) is a normalized blow up tower of X = X_j and f: Y — X is
a morphism between reduced schemes with finitely many irreducible components then we define the strict
transform f*(.2") as the normalized blow up tower (Yo, W,) such that Y_; = Y and W; = V; xx, Y;. Using
induction on the length and the universal property of normalized blow ups, see 2.2.4 (i), one shows that such
a tower exists and is the universal normalized blow up tower of Y such that f = f_; extends to a compatible
sequence of morphisms fi: Y; — X;.

2.2.8. Pullbacks. — The strict transform (2) as above will be called the pullback and denoted f*(.2") if
Y; — Xi xx Y for any —1 < i < n. Recall that a morphism is regular if it is flat and has geometrically regular
fibers, see [EGA 1V, 6.8.1].

Lemma 2.2.9. — If f: Y — Xis a reqular morphism between reduced noetherian schemes then any normalized blow up
tower Z" of X admits a pullback f*(Z").

Proof. — Blow ups are compatible with flat morphisms hence we should only show that normalizations in
our tower are compatible with regular morphisms: if f: Y — X is a regular morphism of reduced noetherian
schemes then the morphism h: Y?" — X" xx Y is an isomorphism. Since h is an integral morphism which is
generically an isomorphism, it suffices to show that X" xx Y is normal.

To prove the latter we can assume that X and Y are affine. Then f is a filtered limit of smooth morphisms
hi: Y; — X by Popescu’s theorem. If the claim holds for h; then it holds for h, so we can assume that h is
smooth. We claim that, more generally, if A is a normal domain and ¢: A — B is a smooth homomorphism
then B is normal. Indeed, A is a filtered colimit of noetherian normal subdomains A; and by [EGA 1v; 8.8.2]
and [EGA 1v4 17.7.8] ¢ is the base change of a smooth homomorphism ¢;: A; — B for large enough i. For
each j > ilet ¢j: Aj — Bj be the base change of ¢;. Each Bj is normal by [Matsumura, 1980, 21.E (iii)] and B
is the colimit of Bj, hence B is normal. O

2.2.10. Fpqc descent of blow up towers. — The classical fpqc descent of ideals (and modules) implies that there
is also an fpqc descent for blow up towers. Namely, if Y — X is an fpqc covering and Y, is a blow up tower
of Y whose both pullbacks to Y xx Y are equal then Y, canonically descends to a blow up tower of X because
the centers descend. In the same way, normalized blow up towers descend with respect to quasi-compact
surjective regular morphisms.



2.2.11. Associated points. — The material of 2.1.15-2.1.19 extends to noetherian normalized blow up towers
almost verbatim. In particular, if 2" = (X., V,) is such a tower then Ass(.Z") is the union of the images of
Ass(V;) and for any flat monomorphism i: Y<=X (which is a regular morphism by 2.1.12) with a blow up
tower % of Y we always have that i*1,% = ¢/, and we have that i,i*2" = £  if and only if Ass(.Z") C i(Y).

2.3. Functorial desingularization. — In this section we will formulate the desingularization result about toric
varieties that will be used later in the proof of Theorem 1.1. Then we will show how it is obtained from known
desingularization results.

2.3.1. Desingularization of a scheme. — By a resolution (or desingularization) tower of a noetherian scheme X
we mean a tower of blow ups with nowhere dense centers X, such that X = Xy, X, is regular and no f; is an
empty blow up. For example, the trivial tower is a desingularization if and only if X itself is regular.

2.3.2. Normalized desingularization. — We will also consider normalized blow up towers such that each center
is non-empty and nowhere dense, X = X_; and X,, is regular. Such a tower will be called a normalized
desingularization tower of X.

Remark 2.3.3. — (i) For any desingularization tower 2 of X its normalization 2 ™" is a normalized desingu-
larization tower of X.

(ii) Usually one works with non-normalized towers; they are subtler objects that possess more good prop-
erties. All known constructions of functorial desingularization (see below) produce blow up towers by an
inductive procedure, and one cannot work with normalized towers instead. However, it will be easier for us
to deal with normalized towers in log geometry because in this case one may work only with fs log schemes.

2.3.4. Functoriality of desingularization. — For concreteness, we consider desingularizations in the current sec-
tion, but all what we say holds for normalized desingularizations too. Assume that a class .7’° of noetherian
S-schemes is provided with desingularizations .7 (X) = X, for any X € .7°. We say that the desingulariza-
tion (family) .# is functorial with respect to a class .#! of S-morphisms between the elements of .#° if for
any f: Y — X from .# the desingularization of X induces that of Y in the sense that f*.% (X) is defined and
its contraction coincides with .Z (Y) (so, .Z(Y) = (Y xx #(X))c). Note that we put the = sign instead of an
isomorphism sign, which causes no ambiguity by the fact that any automorphism of a blow up is the identity
as we observed above.

Remark 2.3.5. — (i) Contractions in the pulled back tower appear when some centers of .% (X) are mapped to
the complement of f(Y) in X. In particular, if f € .7 is surjective then the precise equality .#(Y) =Y xx .Z(X)
holds.

(ii) Assume that X = |JI"_; X; is a Zariski covering and the morphisms X;—X and [[{_; X; — X are in ..
In general, one cannot reconstruct .% (X) from the .% (X;)’s because the latter are contracted pullbacks and it
is not clear how to glue them with correct synchronization. However, all information about .% (X) is kept in
F (I_H‘:1 Xi). The latter is the pullback of #(X) hence we can reconstruct .% (X) by gluing the restricted blow
up towers .F (]_[?:1 Xi)lx;. Note that & (]_[?:1 Xi)lx, can be obtained from % (X;) by inserting empty blow
ups, and these empty blow ups make the gluing possible. This trick with synchronization of the towers % (X;)
by desingularizing disjoint unions is often used in the modern desingularization theory, and one can formally
show (see [Temkin, 2012, Rem. 2.3.4(iv)]) that such approach is equivalent to the classical synchronization of
the algorithm with an invariant.

(iii) Assume that .#’! contains all identities Idx with X € .#° and for any Y, Z € .#° there exists T = Y[ [ Z
in .#° such that for any pair of morphisms a: Y — X, b: Z — X in . the morphism (a,b): T — Xisin ..
As an illustration of the above trick, let us show that even if f,g: Y — X are in .! but not surjective, we have
an equality .7 (X) xx (Y, f) = F(X) xx (Y, g) of non-contracted towers. Indeed, set Y’ = Y] [ X and consider
the morphisms f’, g’: Y’ — X that agree with f and g and map X by the identity. Then .%# (X) xx (Y’,f’) and
F(X) xx (Y',g’) are equal because f’ and g’ are surjective, hence their restrictions onto Y are also equal, but
these are precisely .Z (X) xx (Y, f) and .# (X) xx (Y, g).

2.3.6. Gabber’s magic box. — Now we have tools to formulate the aforementioned desingularization result.

Theorem 2.3.7. — Let .#° denote the class of finite disjoint unions of affine toric varieties over Q, ie. #° =
{IT, Spec(QI[P:])}, where P, ..., Py are fs torsion free monoids. Let .71 denote the class of smooth morphisms

f: HSpec(Q[Qﬂ) — HSPGC(Q[Pi])
=1 i



such that for each 1 < j < m there exists 1 < 1 = 1i(j) < nand a homomorphism of monoids b;: Py — Qj so that the
restriction of f onto Spec(Q[Q;]) factors through the toric morphism Spec(Qld;]). Then there exists a desingularization
F on #° which is functorial with respect to .71 and, in addition, satisfies the following compatibility condition: if
01, ..., 01 are complete noetherian local rings containing Q, Z = ]_[}:1 Spec(&i), and g,h: Z — X are two regular
morphisms with X € .7° then

(2.3.7.1) (Z,9) xx Z(X) = (Z,h) xx Z(X).

In the above theorem, we use the convention that different tuples Py, ..., Py give rise to different schemes
[T, Spec(QI[Pi]). Before showing how this theorem follows from known desingularization results, let us
make a few comments.

Remark 2.3.8. — (i) Gabber’s original magic box also requires that the centers are smooth schemes. This (and
much more) can also be achieved as will be explained later, but we prefer to emphasize the minimal list of
properties that will be used in the proof of Theorem 1.1.

(ii) It is very important to allow disjoint unions in the theorem in order to deal with synchronization issues,
as explained in Remark 2.3.5(ii). This theme will show up repeatedly throughout the exposé.

2.3.9. Desingularization of qe schemes over Q. — In practice, all known functorial desingularization families
are constructed in an explicit algorithmic way, so one often says a desingularization algorithm instead of a
desingularization family. We adopt this terminology below.

Gabber’s magic box 2.3.7 is a particular case of the following theorem, see [Temkin, 2012, Th. 1.2.1]. Indeed,
due to Remark 2.3.5(iii), functoriality with respect to regular morphisms implies (2.3.7.1).

Theorem 2.3.10. — There exists a desingularization algorithm F defined for all reduced noetherian quasi-excellent
schemes over Q and functorial with respect to all regular morphisms. In addition, & blows up only regular centers.

Remark 2.3.11. — Although this is not stated in [Temkin, 2012], one can strengthen Theorem 2.3.10 by requir-
ing that .# blows up only regular centers contained in the singular locus. An algorithm % is constructed in
[Temkin, 2012] from an algorithm .%y,, that desingularizes varieties of characteristic zero, and one can check
that if the centers of .#y,, lie in the singular loci (of the intermediate varieties) then the same is true for .#. Let
us explain how one can choose an appropriate #y,,. In [Temkin, 2012], one uses the algorithm of Bierstone-
Milman to construct .#, see Theorem 6.1 and its Addendum in [Bierstone et al., 2011] for a description of this
algorithm and its properties. It follows from the Addendum that the algorithm blows up centers lying in the
singular loci until X becomes smooth, and then it performs some additional blow ups to make the exceptional
divisor snc. Eliminating the latter blow ups we obtain a desingularization algorithm .%y,, which only blows
up regular centers lying in the singular locus.

It will be convenient for us to use the algorithm .# from Theorem 2.3.10 in the sequel. Also, to simplify the
exposition we will freely use all properties of .7 but the careful reader will notice that only the properties of
Gabber’s magic box will be crucial in the end. Also, instead of working with .7 itself we will work with its
normalization .#"°" which assigns to a reduced qe scheme over Q the normalized blow up tower .# (X)"". It

will be convenient to use the notation .Z = .Z" in the sequel.

Remark 2.3.12. — (i) Since normalized blow ups are compatible with regular morphisms, it follows from The-

orem 2.3.10 that the normalized desingularization .# is functorial with respect to all regular morphisms.

(ii) The feature which is lost under normalization (and which is not needed for our purposes) is some control
on the centers. The centers \7i of #(X) are preimages of the centers V;—X; of .#(X) under the normalization
morphisms X" — Xj, so they do not have to be even reduced. It will only be important that Vi's are equivari-
ant when a smooth group acts on X. In Gabber’s original argument it was important to blow up only regular
centers because they were not part of the blow up data, and one used that a regular center without codimen-
sion one components intersecting the regular locus is determined already by the underlying morphism of the
blow up.

2.3.13. Alternative desingularization inputs. — For the sake of completeness, we discuss how other algorithms
could be used instead of .#. Some desingularization algorithms for reduced varieties over Q are constructed
in [Bierstone & Milman, 1997], [Wlodarczyk, 2005], [Bravo et al., 2005], and [Kolladr, 2007]. They all are
functorial with respect to equidimensional smooth morphisms (though usually one "forgets” to mention the
equidimensionality restriction). It is shown in [Bierstone et al., 2011, §6.3] how to make the algorithm of
[Bierstone & Milman, 1997] fully functorial by a slight adjusting of the synchronization of its blow ups. All



these algorithms can be used to produce a desingularization of log regular schemes (see §3), so the only
difficulty is in establishing the compatibility (2.3.7.1).

For the algorithm of [Bierstone etal., 2011] it was shown by Bierstone-Milman (unpublished, see
[Bierstone et al., 2011, Rem. 7.1(2)]) that the induced desingularization of a formal completion at a point
depends only on the formal completion as a scheme. This is precisely what we need in (2.3.7.1).

Finally, there is a much more general result by Gabber, see Theorem 2.4.1, whose proof uses Popescu’s
theorem and the cotangent complex. It implies that, actually, any desingularization of reduced varieties over
Q which is functorial with respect to smooth morphisms automatically satisfies (2.3.7.1). So, in principle, any
functorial desingularization of varieties over Q could be used for our purposes. Since Gabber’s result and
its proof are powerful and novel for the desingularization theory (and were missed in [Bierstone et al., 2011],
mainly due to a not so trivial involvement of the cotangent complex), we include them in §2.4.

2.3.14. Invariance of the regular locus. — Until the end of §2.3 we consider only qe schemes of characteristic

zero, and our aim is to establish a few useful properties of .# (and 7) that are consequences of the functoriality
property .# satisfies. First, we claim that .# does not modify the regular locus of X, and even slightly more
than that:

Corollary 2.3.15. — All centers of F(X) and .F (X) sit over the singular locus of X. In particular, X is regular if and
only if % (X) is the trivial tower.

Proof. — It sulffices to study .#. The claim is obvious for S = Spec(Q) because S does not contain non-dense
non-empty subschemes. By functoriality, .% (T) is trivial for any regular T of characteristic zero, because it is
regular over S. Finally, if T is the regular locus of X then .%# (T) = (% (X) xx T). and hence any center V;—X;
of .# (X) does not intersect the preimage of T. O

2.3.16. Equivariance of the desingularization. — It is well known that functorial desingularization is equivariant
with respect to any smooth group action (and, moreover, extends to functorial desingularization of stacks, see
[Temkin, 2012, Th. 5.1.1]). For the reader’s convenience we provide an elementary argument.

Corollary 2.3.17. — Let S be a ge scheme over Q, G be a smooth S-group and X be a reduced S-scheme of finite type
acted on by G. Then there exists a unique action of G on % (X) and Z (X) that agrees with the given action on X.

Proof. — Again, it suffices to study .. Let .#(X) be given by X, --+ Xo = Xand Vi—=X; for0 <i<n—1.
By p,m: Y = G xs X — X we denote the projection and the action morphisms. Note that m is smooth (e.g.
m is the composition of the automorphism (g,x) — (g, gx) of G xs X and p). Therefore, #(X) xx (Y;m) =
F(Y) = Z(X) xs G by Theorem 2.3.10 and Remark 2.3.5@i). In particular, Vo xx (Y;p) = Vo xx (Y;m),i.e. Vp is
G-equivariant. By 2.1.11, X; inherits a G-action. Then the same argument implies that V; is G-equivariant and
X5 inherits a G-action, etc. O

2.4. Complements on functorial desingularizations. — This section is devoted to Gabber’s result on a certain
non-trivial compatibility property that any functorial desingularization satisfies. It will not be used in the
sequel, so an uninterested reader may safely skip it.

Theorem 2.4.1. — Assume that S is a noetherian scheme, #° is a class of reduced S-schemes of finite type and
is a class of morphisms between elements of #° such that if f: Y — X is smooth and X € /° then Y € .° and
f € 1. Let F be a desingularization on .’° which is functorial with respect to all morphisms of 1. Then any pair
of reqular morphisms g: Z — X and h: Z — Y with targets in .7° induces the same desingularization of Z; namely,
F(X)xxZ=F(Y) xy Z.

Note that the theorem has no restrictions on the characteristic (because no such restriction appears in
Popescu’s theorem). Before proving the theorem let us formulate its important corollary, whose main case
is when S = Spec(k) for a field k and .#° is the class of all reduced k-schemes of finite type.

Corollary 2.4.2. — Keep the notation of Theorem 2.4.1. Then % canonically extends to the class 0 of all schemes
that admit a reqular morphism to a scheme from #° and the extension is functorial with respect to all regular morphisms

between schemes of A

The main ingredient of the proof will be the following result that we are going to establish first.



Proposition 2.4.3. — Consider a commutative diagram of noetherian schemes
z

Z N

X2 77 My

RN

such that a and b are of finite type, g and h are reqular and g’ is smooth. Then h' is smooth around the image of f.

For the proof we will need the following three lemmas. In the first one we recall the Jacobian criterion of
smoothness, rephrased in terms of the cotangent complex.

Lemma 2.4.4. — Let f: X — S be a morphism which is locally of finite presentation, and let x € X. Then the following
conditions are equivalent:
(i) T is smooth at x;

L
In the lemma we use the convention H; = H™%, and Lx /s denotes the cotangent complex of X/S.

Proof. — (i) = (ii) is trivial: as f is smooth at x, up to shrinking X we may assume f smooth, then Ly s is
cohomologically concentrated in degree zero and locally free [Illusie, 1972, III 3.1.2]. Let us prove (ii) = (i).
We may assume that we have a factorization

X—i>Z,

i

S
where 1is a closed immersion of ideal I and g is smooth. Consider the standard exact sequence
(%) I/I? - 1*Q) s — Q) 5 — 0.

By the Jacobian criterion [EGA 1V, 17.12.1] and [EGA 0,y 19.1.12], the smoothness of f at x is equivalent to the
fact that the morphism

() (/) @ k(x) = Q) ;s @ k(x)

L
deduced from the left one in (¥) is injective. Now, (I/1?) ® k(x) = H; (Lx,z ®@k(x)) [Ilusie, 1972, 111 3.1.3], and
(*x) is a morphism in the exact sequence associated with the triangle deduced from the transitivity triangle

L
Li*Lz,s = Lx,s — Lx,z — Li*Lz 5[] by applying ®@k(x):
L L
H; (Lx/s @ k(x)) = Hy (Lx/z @ k(x))(= (I/1*) @ k(x)) = Q) s ® k(x).

L
By (ii), H1 (Lx /s ® k(x)) = 0, hence (xx) is injective, which completes the proof. O

Lemma 2.4.5. — Consider morphisms f: X =Y, g: Y = S, h =gf: X = S, and let x € X,y = f(x) € Y. Assume
that

L
(i) Hq(Lx/s @ k(x)) =0
L
(ii) Hz(Lx/y ® k(x)) = 0.
L
Then Hy (Ly,s ® k(y)) = 0. In particular, if g is locally of finite presentation then g is smooth at y.

L
Proof. — It is equivalent to show that H;(Ly,s ® k(x)) = 0, and this follows trivially from the exact sequence
L L L
Ho(Lx,y ® k(x)) = Hy(Ly,s ® k(x)) — Hi(Lx/s ® k(x)).
L]

Lemma 2.4.6. — Let f: X — S be a regqular morphism between noetherian schemes. Then Ly s is cohomologically
concentrated in degree zero and Ho(Lx /s) = Q; /s is flat.
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Proof. — We may assume X = Spec B and S = Spec A affine. Then, by Popescu’s theorem [Swan, 1998, 1.1], X
is a filtering projective limit of smooth affine S-schemes Xy = Spec B«. By [Illusie, 1972, II (1.2.3.4)], we have

LB/A = COhmcx I—B“/A~

By [Illusie, 1972, III 3.1.2 and II 2.3.6.3], Lg_,o is cohomologically concentrated in degree zero and
Ho(Lg, /a) = Q}g“ /A 18 projective of finite type over B, so the conclusion follows. O

Proof of Proposition 2.4.3. — The composition ag’: Z’ — S is locally of finite type. Since S is noetherian, ag’ is
locally of finite presentation, and so h’ is locally of finite presentation too.
Next, we note that the question is local around a pointy = f(x) € Z’, x € Z. In view of Lemma 2.4.4, by

L L
Lemma 2.4.5 applied to Z — Z' — Y it suffices to show that Hy(Lz,y ® k(x)) = 0 and H2(Lz,z- ® k(x)) = 0.
As Z is regular over Y, the first vanishing follows from Lemma 2.4.6. For the second one, consider the exact
sequence

H(Ly x & ki(x)) — Ha(Ly, 2 & k(x)) = Hi(Lz//x & k(x)).

L L
By the regularity of Z/X and Lemma 2.4.6, H>(Lz,x ® k(x)) = 0. As Z’ is smooth over X, Hy (L7, ,x ® k(x)) =0
by Lemma 2.4.4, which proves the desired vanishing and finishes the proof. O

Proof of Theorem 2.4.1. — Find finite affine coverings X = | J; Xi, Y = U, Yi and Z = |J; Z; such that g(Z;) C X;
and h(Z;) C Yi. Set X' = [[; Xy, Y =[[;Yiand Z’ = [[; Ziand let Z" — X" and Z’" — Y’ be the induced
morphisms. It suffices to check that .% (X) xx Z and .Z (Y) xy Z become equal after pulling them back to Z’. So,
we should check that (% (X) xx X') xx Z' coincides with (% (Y) xy Y’) xy. Z'. The morphisms X’ — X and
Y’ — Y are smooth and hence contained in .#'. So, .# (X) xx X’ = .Z(X') and similarly for Y. In particular, it
suffices to prove that #(X') xx: Z' = F(Y') xvy, Z'. This reduces the problem to the case when all schemes
are affine, so in the sequel we assume that X, Y and Z are affine.

Next, note that it suffices to find factorizations g = gof and h = hof, where f: Z — Z; is a morphism with
target in % and go: Zo — X, ho: Zo — X are smooth. By Popescu’s theorem, one can write g: Z — X as a
filtering projective limit of affine smooth morphisms g«: Zo — X, & € A. As Y is of finite type over S, h will
factor through one of the Z,’s ([]::GA V3 8.8.2.3]): there exists « € A, fo: Z — Zy, ho: Zy — Y such that
g = gufa, h = hfy. By Proposition 2.4.3, hy is smooth around the image of f«, so we can take Z, to be a
sufficiently small neighborhood of the image of f. O

3. Resolution of log regular log schemes

All schemes considered from now on will be assumed to be noetherian. Unless said to the contrary, by log
structure we mean a log structure with respect to the étale topology. We will say that a log structure Mx on a
scheme X is Zariski if e*¢,Mx — My, where ¢: Xg — X is the morphism between the étale and Zariski sites.
In this case, we can safely view the log structure as a Zariski log structure. A similar convention will hold also
for log schemes.

3.1. Fans. — Many definitions/constructions on log schemes are of "combinatorial nature". Roughly speak-
ing, these constructions use only multiplication and ignore addition. Naturally, there exists a category of
geometric spaces whose structure sheaves are monoids, and most of combinatorial constructions can be de-
scribed as "pullbacks" of analogous "monoidal" operations. The first definition of such a category was done
by Kato in [Kato, 1994]. Kato called his spaces fans to stress their relation to the classical combinatorial fans
obtained by gluing polyhedral cones. For example, to any combinatorial fan C one can naturally associate a
fan F(C) whose set of points is the set of faces of C. The main motivation for the definition is that fans can be
naturally associated to various log schemes.

It took some time to discover that fans are sort of "piecewise schemes" rather than a monoidal version of
schemes. A more geometric version of combinatorial schemes was introduced by Deitmar in [Deitmar, 2005].
He called them F;-schemes, but we prefer the terminology of monoschemes introduced by Ogus in his book
project [Ogus, 2013]. Note that when working with a log scheme X, we use the sheaf Mx in some constructions
and we use its sharpening Mx (see 3.1.1) in other constructions. Roughly speaking, monoschemes naturally
arise when we work with Mx while fans naturally arise when we work with Mx.

In §3, we will show that: (a) a functorial desingularization of toric varieties over Q descends to a desin-
gularization of monoschemes, (b) to give the latter is more or less equivalent to give a desingularization of
fans, (c) a desingularization of fans can be used to induce a monoidal desingularization of log schemes, (d) the
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latter induces a desingularization of log regular schemes, which (at least in some cases) depends only on the
underlying scheme.

In principle, we could work locally, using desingularization of disjoint unions of all charts for synchroniza-
tion. In this case, we could almost ignore the intermediate categories by working only with fine monoids and
blow up towers of their spectra. However, we decided to emphasize the actual geometric objects beyond the
constructions, and, especially, stress the difference between fans and monoschemes.

3.1.1. Sharpening. — For a monoid M, by M* we denote the group of its invertible elements, and its sharpen-
ing M is defined as M/M*.
3.1.2. Localization. — By localization of a monoid M along a subset S we mean the universal M-monoid

Ms such that the image of S in Ms is contained in M§. If M is integral then Ms is simply the submonoid
MI[S~'] C M8P generated by M and S~ . If M is a fine then any localization is isomorphic to a localization at a
single element f, and will be denoted M.

3.1.3. Spectra of fine monoids. — All our combinatorial objects will be glued from finitely many spectra of
fine monoids. Recall that with any fine monoid P one can associate the set Spec(P) of prime ideals (with the
convention that @ is also a prime ideal) equipped with the Zariski topology whose basis is formed by the sets
D(f) = {p € Spec(P)| f ¢ p} for f € P, see, for example, [Kato, 1994, §9]. The structure sheaf Mp is defined by
Mp(D(f)) = P¢, and the sharp structure sheaf Mp = Mp /M is the sharpening of Mp (we will see in Remark
3.1.4(iii) that actually Mp(D(f)) = P¢ = P¢/(P}), i.e. no sheafification is needed).

Remark 3.1.4. — (i) Since P \ P* and @ are the maximal and the minimal prime ideals of P, Spec(P) possesses
unique closed and generic points s and 1. The latter is the only point whose stalk Mp ,; = P#P is a group.

(ii) The set Spec(P) is finite and its topology is the specialization topology, i.e. U is open if and only if it
is closed under generizations. (More generally, this is true for any finite sober topological space, such as a
scheme that has finitely many points.)

(iii) A subset U C Spec(P) is affine (and even of the form D(f)) if and only if it is the localization of Spec(P)
at a point x (i.e. the set of all generizations of x). Any open covering U = |J; U; of an affine set is trivial (i.e.
U is equal to some U;), therefore any functor .# (U) on affine sets uniquely extends to a sheaf on Spec(P). In
particular, this explains why no sheafification is needed when defining Mp. Furthermore, we see that, roughly
speaking, any notion/construction that is "defined in terms of" localizations X, and stalks M or M, is Zariski
local. This is very different from the situation with schemes.

3.1.5. Local homomorphisms of monoids. — Any monoid M is local because M \ M* is its unique maximal ideal.
A homomorphism f: M — N of monoids is local if it takes the maximal ideal of M to the maximal ideal of N.
This happens if and only if f~' (N*) = M*.

3.1.6. Monoidal spaces. — A monoidal space is a topological space X provided with a sheaf of monoids Mx. A
morphism of monoidal spaces (f, ): (Y, My) — (X, Mx) is a continuous map f: Y — X and a homomorphism
f#: f~1(Mx) — My such that for any y € Y the homomorphism of monoids fz : Mx,t(y) — My,y is local.

Remark 3.1.7. — Strictly speaking one should have called the above category the category of locally monoidal
spaces and allow non-local homomorphisms in the general category of monoidal spaces. However, we will
not use the larger category, so we prefer to abuse the terminology slightly.

Spectra of monoids possess the usual universal property, namely:

Lemma 3.1.8. — Let (X, Mx) be a monoidal space and let P be a monoid.

(i) The global sections functor T induces a bijection between morphisms of monoidal spaces (f,f*): (X,Mx) —
(Spec(P), Mp) and homomorphisms ¢: P — T'(Mx).

(ii) If Mx has sharp stalks then T induces a bijection between morphisms of monoidal spaces (f,*): (X, Mx) —
(Spec(P), Mp) and homomorphisms ¢: P — T'(Mx).

Proof. — (i) Let us construct the opposite map. Given a homomorphism ¢, for any x € X we obtain a ho-
momorphism ¢y: P — My . Clearly, m = P\ ¢;'(M% ) is a prime ideal and hence ¢ factors through a
uniquely defined local homomorphism P, — Mx . Setting f(x) = m we obtain a map f: X — Spec(P), and
the rest of the proof of (i) is straightforward.

If the stalks of Mx are sharp then any morphism (X,Mx) — (Spec(P), Mp) factors uniquely through
(Spec(P),Mp). Also, I'(Mx) is sharp, hence any homomorphism to it from P factors uniquely through P.
Therefore, (ii) follows from (i). O
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3.1.9. Fine fans and monoschemes. — A fine monoscheme (resp. a fine fan) is a monoidal space (X, Mx) that is
locally isomorphic to Ap = (Spec(P), Mp) (resp. Ap = (Spec(P),Mp)), where P is a fine monoid. We say that
(X, Mx) is affine if it is isomorphic to Ap (resp. Ap). A morphism of monoschemes (resp. fans) is a morphism
of monoidal spaces. A monoscheme (resp. a fan) is called torsion free if it is covered by spectra of P’s with
torsion free P&F’s. It follows from Remark 3.1.4(iii) that this happens if and only if all groups M§<P,x are torsion
free.

Remark 3.1.10. — (i) Any fs fan is torsion free because if an fs monoid is torsion free then any of its localization
is so. In particular, if P is fs and sharp then P8P is torsion free. This is not true for general fine fans. For example,
if up ={£1} then P =N & p, \ {(0,—1)} is a sharp monoid with P8 =Z & p,.

(ii) For any point x of a fine monoscheme (resp. fan) X the localization X that consists of all generizations
of x is affine. In particular, by Remark 3.1.4(i) there exists a unique maximal point generizing x, and hence X is
a disjoint union of irreducible components.

3.1.11. Comparison of monoschemes and fans. — There is an obvious sharpening functor (X, Mx) — (X, Mx)
from monoschemes to fans, and there is a natural morphism of monoidal spaces (X, Mx) — (X,Mx). The
sharpening functor loses information, and one needs to know Mip to reconstruct Mx from Mx as a fibred
product (see [Ogus, 2013]). Actually, there are much more fans than monoschemes. For example, the generic
point 1 € Spec(P) is open and Mp ,, is trivial hence for any pair of fine monoids P and Q we can glue their
sharpened spectra along the generic points. What one gets is sort of "piecewise scheme" and, in general, it does
not correspond to standard geometric objects, such as schemes or monoschemes. We conclude that, in general,

fans can be lifted to monoschemes only locally.

Remark 3.1.12. — As a side remark we note that sharpened monoids naturally appear as structure sheaves
of piecewise linear spaces (a work in progress of the second author on skeletons of Berkovich spaces). In
particular, PL functions can be naturally interpreted as sections of the sharpened sheaf of linear functions on
polytopes.

3.1.13. Local smoothness. — A local homomorphism of fine monoids ¢: P — Q is called smooth if it can be

extended to an isomorphism P & N" @ Z* — Q. The following lemma checks that this property is stable under
localizations.

Lemma 3.1.14. — Assume that ¢&: P — Q is smooth and P, Q' are localizations of P, Q such that ¢ extends to a local
homomorphism &': P’ — Q’. Then &' is smooth.

Proof. — Recall that P’ = P, for a € P (notation of 3.1.2), and ¢’ factors through the homomorphism ¢4: P/ —
Qa, which is obviously smooth. Therefore, replacing ¢ with ¢, we can assume that P =P’. Letb = (p,n,z) €
Q be such that Q’ = Qp. Then p € P* because P — Q' is local, and hence Q’ is isomorphic to P & (N"),, & Z°.
It remains to note that any localization of N™ is of the form N"~* ¢ Z*. O

3.1.15. Smoothness. — The lemma enables us to globalize the notion of smoothness: a morphism f: Y — X of
monoschemes is called smooth if the homomorphisms of stalks Mx ¢(,) — My, are smooth. In particular, X
is smooth if its morphism to Spec(1) is smooth, that is, the stalks Mx « are of the form N & Z°. In particular, a
smooth monoscheme is torsion free.

Analogous smoothness definitions are given for fans. Moreover, in this case we can consider only sharp
monoids, and then the group component Z° is automatically trivial. It follows that we can rewrite the above
paragraph almost verbatim but with s = 0. Obviously, a morphism of torsion free fs monoschemes is smooth if
and only if its sharpening is a smooth morphism of fans.

Remark 3.1.16. — (i) Recall that any fine monoscheme X admits an open affine covering X =  J, .« Spec(Mx ).
It follows that a morphism of fine monoschemes f: Y — X is smooth if and only if it is covered by open affine
charts of the form Spec(P & N™ @ Z®) — Spec(P).

(ii) Smooth morphisms of fine fans admit a similar local description, and we leave the details to the reader.

3.1.17. Saturation. — As usually, for a fine monoid P we denote its saturation by P (it consists of all x € P#P
with x™ € P for some n > 0). Saturation is compatible with localizations and sharpening and hence extends to
a saturation functor F — F*® on the categories of fine monoschemes (resp. fine fans). We also have a natural
morphism F¥** — F, which is easily seen to be bijective. So, actually, (F, M)%t = (F, M$).
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3.1.18. Ideals. — A subsheaf of ideals .# C Mx on a monoscheme (X, Mx) is called a coherent ideal if for any
point x € X the restriction of .# on X, coincides with .#,Mx_ . (Due to Remark 3.1.4(iii) this means that .7 is
coherent in the usual sense, i.e. its restriction on an open affine submonoscheme U is generated by the global
sections over U.) We will consider only coherent ideals, so we will omit the word "coherent" as a rule. An ideal
# C My is invertible if it is locally generated by a single element.

3.1.19. Blow ups. — Similarly to schemes, for any ideal .#/ C Ox there exists a universal morphism of
monoschemes h: X’ — X such that the pullback ideal h~'.# = .# Mx. is invertible. We call .# the center of the
blow up. (One does not have an adequate notion of closed submonoscheme, so unlike blow ups of the scheme
it would not make sense to say that "V(.#)" is the center.) An explicit construction of X’ copies its scheme
analog: it is local on the base and for an affine X = Spec(P) with an ideal I C P corresponding to .# one glues
X' from the charts Spec(Pla~'1]), where a € I and P[a~'I] is the submonoid of P8P generated by the fractions
b/a for b € I (see [Ogus, 2013] for details).

Remark 3.1.20. — Blow ups induce isomorphisms on the stalks of M8P; this is an analog of the fact that blow
ups of schemes along nowhere dense subschemes are birational morphisms.

3.1.21. Saturated blow ups. — Analogously to normalized blow ups, one defines saturated blow up of a
monoscheme X along an ideal .# C Mx as the saturation of Bl ~ (X). The same argument as for schemes shows
that Bl (X)®" is the universal saturated X-monoscheme such that the pullback of .7 is invertible.

3.1.22. Towers and pullbacks. — Towers of (saturated) blow ups of a monoscheme X are defined analogously to
towers of (normalized) blow ups. In particular, saturated towers start with the saturation morphism Xo — X_1.
Given such a tower X, with X = Xo (resp. X_; = X) and a morphism f: Y — X we define the pullback tower
Ye = f*(X,) as follows: Yo =Y (resp. Y_1 = Y) and Yi; is the (saturated) blow up of Y; along the pullback of
the center .#; of X; 1 — X;i. Due to the universal property of (saturated) blow ups this definition makes sense
and Y, is the universal (saturated) blow up tower of Y that admits a morphism to X, extending f.

Remark 3.1.23. — Unlike pullbacks of (normalized) blow up towers of schemes, see 2.1.7 and 2.2.8, we do
not distinguish strict transforms and pullbacks. The above definition of pullback covers our needs, and we
do not have to study the base change of monoschemes. For the sake of completeness, we note that fibred
products of monoschemes exist and in the affine case are defined by amalgamated sums of monoids, see
[Deitmar, 2005]. Also, it is easy to check that for a smooth f (which is the only case we will use) one indeed
has that f*(X,) = Xe xx Y for any (saturated) blow up tower X,. For blow ups one checks this with charts
and in the saturated case one also uses that saturation is compatible with a smooth morphism f: Y — X, i.e.
ysat = Xt xx Y.

3.1.24. Compatibility with sharpening. — Ideals and blow ups of fans are defined in the same way, but with Mx
used instead of Mx (Kato defines their saturated version in [Kato, 1994, 9.7]). Towers of blow ups of fans are
defined in the obvious way.

Lemma 3.1.25. — Let X = (X, Mx) be a monoscheme, let (F,Mg) = (X, Mx) be the corresponding fan and let
A: Mx — Mg denote the sharpening homomorphism.

(i) 7 — N &) induces a natural bijection between the ideals on X and on F.

(ii) Blow ups are compatible with sharpening, that is, the sharpening of Bl (X)) is naturally isomorphic to Bl (F).
The same statement holds for saturated blow ups.

(iii) Sharpening induces a natural bijection between the (saturated) blow up towers of X and F.

Proof. — (i) is obvious. (ii) is shown by comparing the blow up charts. Combining (i) and (ii), we obtain
(iii). O
3.1.26. Desingularization. — Using the above notions of smoothness and blow ups, one can copy other def-
initions of the desingularization theory. By a desingularization (resp. saturated desingularization) of a
fine monoscheme X we mean a blow up tower (resp. saturated blow up tower) X, --» Xo = X (resp.
Xn --» X1 = X) with smooth X;,. By Remark 3.1.20, if X admits a desingularization then it is torsion free, and
we will later see that the converse is also true.

For concreteness, we consider below non-saturated desingularizations, but everything extends to the satu-
rated case verbatim. A family .#™°"(X) of desingularizations of torsion free monoschemes is called functorial
(with respect to smooth morphisms) if for any smooth f: Y — X the desingularization .#™°"°(Y) is the con-
tracted pullback of .#™°"°(X). The same argument as for schemes (see Remark 2.3.5(ii)) shows that .#™°"° is
already determined by its restriction to the family of finite disjoint unions of affine monoschemes.
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The definition of a functorial desingularization .Z%" of fine torsion free fans is similar. Since blow up
towers and smoothness are compatible with the sharpening functor, it follows that a desingularization of a
monoscheme X induces a desingularization of its sharpening. Moreover, any affine fan can be lifted to an
affine monoscheme and .7f" is determined by its restriction onto disjoint unions of affine fans, hence we
obtain the following result.

Theorem 3.1.27. — The sharpening functor induces a natural bijection between functorial desingularizations of quasi-
compact fine torsion free monoschemes and functorial desingularizations of quasi-compact fine torsion free fans. A similar
statement holds for saturated desingularizations.

Remark 3.1.28. — Similarly to the normalization of a desingularization tower, to any desingularization .% of
monoschemes or fans one can associate a saturated desingularization .7*": one replaces all levels of the towers,
except the zero level, with their saturations. In this case blow ups are replaced with saturated blow ups along
the pulled back ideals. If .7 is functorial with respect to all smooth morphisms then the same is true for .7
Indeed, for any smooth Y — X the centers of .Z (Y), #%(X) and .Z%(Y) are the pullbacks of those of .7 (X). In
addition, the saturation construction is compatible with the bijections from Theorem 3.1.27 in the obvious way.

Remark 3.1.29. — In principle, (saturated) desingularization of fans or monoschemes can be described in
purely combinatorial terms of fans and their subdivisions (e.g. see [Kato, 1994, 9.6] or [Niziot, 2006, §4]). How-
ever, it is not easy to construct a functorial one directly. We will instead use a relation between monoschemes
and toric varieties to descend desingularization of toric varieties to monoschemes and fans.

3.2. Monoschemes and toric varieties. —

3.2.1. Base change from monoschemes to schemes. — Let S be a scheme. The following proposition introduces
a functor from monoschemes to S-schemes that can be intuitively viewed as a base change with respect to a
"morphism" S — Spec(1).

Proposition 3.2.2. — Let S be a scheme and F be a monoscheme. Then there exists an S-scheme X = S[F| with a
morphism of monoidal spaces f: (X, Ox) — (F, M) such that any morphism (Y, 0y) — (F,Mg), where Y is an S-
scheme, factors uniquely through f.

Proof. — Assume, first, that F = Spec(P) is affine. By Lemma 3.1.8(i), to give a morphism (Y, &y) — (F, M)
is equivalent to give a homomorphism of monoids ¢: P — T'(0y), and the latter factors uniquely through a
homomorphism of sheaves of rings €s[P] — 0. It follows that S[F] = Spec(&’s[P]) in this case. Since the above
formula is compatible with localizations by elements a € P, i.e. S[F] — S[Fl¢(a), it globalizes to the case of an
arbitrary monoscheme. Thus, for a general monoscheme F covered by F; = Spec(P;), the scheme S[F] is glued
from S[F;]. O

Remark 3.2.3. — Note that if S = Spec(R) and F = Spec(P) then S[F] = Spec(R[P]). However, we will often
consider an "intermediate" situation where S = Spec(R) is affine and F is a general monoscheme. To simplify
notation, we will abuse them by writing R[F] instead of Spec(R[F]). Such "mixed" notation will always refer to
a scheme.

3.2.4. Toric schemes. — If F is torsion free and connected then we call S[F] a toric scheme over S. Recall that
by Remark 3.1.10(ii), F possesses a unique maximal point 1 = Spec(P8P), where Spec(P) is any affine open
submonoscheme. Hence X = S[F] possesses a dense open subscheme T = S[n], which is a split torus over S,
and the action of T on itself naturally extends to the action of T on X.

Remark 3.2.5. — Assume that S = Spec(k) where k is a field. Classically, a toric k-variety is defined as a
normal finite type separated k-scheme X that contains a split torus T as a dense open subscheme such that
the action of T on itself extends to the whole X. If F is saturated then our definition above is equivalent to the
classical one. However, we also consider non-normal toric varieties corresponding to non-saturated monoids.

3.2.6. Canonical log structures. — For any monoscheme F, the S-scheme X = S[F] possesses a natural log struc-
ture induced by the universal morphism f: (X, &x) — (F,Mg). Namely, Mx is the log structure associated
with the pre-log structure g '"M¢ — Ox,, where g: (Xa, Ox,.) — (X,0x) — (F,Mg) is the composition. We
call Mx the canonical log structure of X = S[F].

Remark 3.2.7. — (i) The canonical log structure is Zariski, as ¢,Mx coincides with the Zariski log structure
associated with the pre-log structure f~'M — 0.
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(i) The log scheme (X = S[F], Mx) is log smooth over the scheme S provided with the trivial log structure.
In particular, if S is regular and F is saturated then (X, Mx) is fs and log regular. Without the saturation
assumption we still have that X5 — S[F®] is log regular, hence X is log regular in the sense of Gabber (see
§3.5).

(iii) If n is the set of generic points of F then T = S[n] is the open subset of X which is the triviality set of
its log structure. However, the map Mx — Ox Nj.07F is not an isomorphism in general, as the case where
T = SpecClt,t'] C X = SpecC[t?, t3] already shows: the image of t* + t3 in Oy (o) belongs to (j. O} )0y, but
does not belong to My, = tpﬁ;z‘ 10)» Where P is the (fine, but not saturated) submonoid of N generated by 2

and 3. (We use that O (o is strictly smaller than its normalization C[t] 1) = Ox (0)[t] and hence tzt%ﬁ =1+t
is not contained in O (¢}.)

3.2.8. Toric saturation. — Saturation of monoschemes corresponds to normalization of schemes. This will play
an essential role later, since we get a combinatorial description of the normalization.

Lemma 3.2.9. — If S is a normal scheme and F is a fine torsion free monoscheme then there is a natural isomorphism
S[FJnor = S[Fsat].

Proof. — Note that f: Z[F**] — Spec(Z) is a flat morphism and its fibers are normal because they are classical
toric varieties F, [Ff]. So, f x S: S[F*] — S is a flat morphism with normal fibers and normal target, and
we obtain that its source is normal by [Matsumura, 1980, 21.E(iii)]. It remains to note that S[F**] — S[F] is a
finite morphism inducing isomorphism of dense open subschemes S[F8], hence S[F*'] is the normalization of
S[FL. O

Remark 3.2.10. — The same argument shows that if S is Cohen-Macaulay then so is S[F*].

3.2.11. Toric smoothness. — Next, let us compare smoothness of morphisms of monoschemes as defined in
3.1.15 and classical smoothness of toric morphisms. The following lemma slightly extends the classical result

(e.g. see [Fulton, 1993, §2.1]) that if P is fs and C[P] is regular then P — N" & Z5.

Lemma 3.2.12. — Let f: F — F' be a morphism of fine monoschemes and let S be a non-empty scheme.
(i) If T is smooth then SIf] is smooth (as a morphism of schemes).
(ii) If F is torsion free and the morphism S[F] — S is smooth then F is smooth.

Proof. — Part (i) is obvious, so let us check (ii). We can also assume that F = Spec(P) is affine. Also, we
can replace S with any of its points achieving that S = Spec(k). Then P is a fine torsion free monoid and
k[P] C k[P8P] — K[Z™]. It follows that X = Spec(k[P]) is an integral smooth k-variety of dimension n. Note
that Spec(k[P5]) is a finite modification of X which is generically an isomorphism. Since X is normal we have
that Spec(k[Ps2]) = X, and it follows that P is saturated. Now, P — P & Z' and hence X — Spec(k[P]) x\ Gl,.
Obviously, Spec(k[P]) is smooth of dimension r = n — L and our task reduces to showing that P — N".

Let m = P\ {1} be the maximal ideal of P. Then I = k[m] is a maximal ideal of k[P] with residue field

k. In particular, by k-smoothness of k[P] we have that dimy(I/I?) = r. On the other hand, I = Dem Xk
and I? = @, .2 Xk, hence I/I* = @D, cm\m2 xk and we obtain that m \ m? consists of T elements t, ..., t,.
Note that these elements generate P as a monoid and hence they generate P as a group. Since P* =5 ZT,
the elements ty, ..., t, are linearly independent in P*, and we obtain that the surjection @_;tN - Pisan
isomorphism. O
Remark 3.2.13. — It seems very probable that, much more generally, f is smooth whenever S[f] is smooth as a

morphism of schemes and one of the following conditions holds: (a) S has points in all characteristics, (b) the
homomorphisms M, — M, induced by f have torsion free kernels and cokernels. We could prove this
either in the saturated case or under some milder but unnatural restrictions. The main ideas are similar but
the proof becomes more technical. We do not develop this direction here since the lemma covers our needs.

3.2.14. Toric ideals. — Let F be a torsion free monoscheme, k be a field and X = k[F]. For any ideal .# on F one
naturally defines an ideal k[.#] on X: in local charts, an ideal I C P goes to the ideal Ik[P] = k[I] = @, cp akin
k[P]. We say that ¢ = k[.#]is a monoidal ideal on k[F]. Note that ¢ determines .# uniquely via the following
equality, which is obvious in local charts: f*.# = ¢ N Mx, where f: X — F is the natural map.

Lemma 3.2.15. — Assume that F is connected, 1 is its maximal point, X = k[F], and T = k[n] is the torus of the toric
scheme X. A coherent ideal ¢ C O is T-equivariant if and only if it is monoidal.
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Proof. — Any monoidal ideal is obviously T-equivariant, so let us prove the inverse implication. The claim is
local on F, so we should prove that any T-equivariant ideal ] C A = k[P] is of the form k([I] for a unique ideal
I of P. Consider the coaction homomorphism p: A — A ®y k[P8P] = B. The equivariance of | means that B
(with respect to the embedding A—A ®@y k[P8P]) is equal to u(J)B. In particular, ulj: ] — JB = ] ®i k[P8P]
induces a P8P-grading on ] compatible with the P8P-grading A = @, cp Ay. Thus, ] is a homogeneous ideal in
A and, since A1 = k is a field and each k-module A, is of rank one, we obtain that ] = @yel A, for a subset
I C P. Thus, ] = kl[I], and clearly I is an ideal. O

3.2.16. Toric blow ups. — We will also need the well known fact that toric blow ups are of combinatorial origin,
i.e. they are induced from blow ups of monoschemes.

Lemma 3.2.17. — Assume that F is a monoscheme, .# C Mg is an ideal, X = k[F], and # = k[.#]. Then there is a
canonical isomorphism Bl g (X) = kBl (F)].

Proof. — Assume first that F = Spec(P). Then .# corresponds to an ideal I C P and we can simply com-
pare charts: Bl (F) is covered by the charts Spec(P[a~'I]) for a € I, and, since I generates ], the charts
kla~'J] = k[Pla~"1]] cover Blj(X). This construction is compatible with localizations (P, 1) — (Py, b~ 'I) hence
it globalizes to the case of a general fine monoscheme with an ideal. O

Using Lemma 3.2.9 we obtain a similar relation between saturated blow ups and normalized toric blow ups.

Corollary 3.2.18. — Keep notation of Lemma 3.2.17 and assume that F is torsion free. Then Bl z(X)"" —
k([BL (F)%].

3.2.19. Desingularization of monoschemes. — Let F be a torsion free monoscheme and X = k[F] for a field k of
characteristic zero (e.g. k = Q). Recall that the normalized desingularization functor Z from 2.3.9 is com-
patible with the action of any smooth k-group, hence the centers of F(X): Xn --» X_y = X are T-equivariant
ideals. By Lemma 3.2.15, the blown up ideal of Xo = k[F*'] is of the form k[.#] for an ideal .# C Mg, hence
X7 = k[Fq] for F; = Bl # (F2")% by Lemma 3.2.18. Applying this argument inductively we obtain that the entire
normalized blow up tower T (X) descends to a saturated blow up tower of F, which we denote as T mono ()
(in other words, ;;(X) = k[;@v mono(F]). Since Fy, is smooth by Lemma 3.2.12(ii), the tower T mono(F) is a desin-
gularization of F. Moreover, part (i) of the same lemma implies that Zmone js functorial with respect to smooth

morphisms of monoschemes. Namely, for any smooth morphism F’ — F, .#™°"°(F’) is the contracted pullback
of F™"(F) (see 3.1.22). Inspecting what is needed for 2.3.17, one obtains:

Theorem 3.2.20. — Let k be a field and let % be a normalized desingularization of finite disjoint unions of toric k-
varieties which is functorial with respect to smooth toric morphisms. Then each normalized blow up tower % (k[F]) is

the pullback of a uniquely defined saturated blow up tower of monoschemes Fmono (), This construction produces a
saturated desingularization of quasi-compact fine torsion free monoschemes which is functorial with respect to smooth
morphisms.

Combining theorems 3.1.27 and 3.2.20 we obtain a functorial saturated desingularization of fans that will
be denoted .7 n.

Remark 3.2.21. — We will work with normalized and saturated desingularizations, so we formulated the the-
orem for .. The same argument shows that .# induces desingularizations .#™°" and .Zf" that are functorial
with respect to all smooth morphisms. Moreover, the descent from toric desingularization is compatible with
normalization/saturation, i.e. rmono _ (Fmonojsat and similarly for fans.

3.3. Monoidal desingularization. — In this section we will establish, what we call, monoidal desingulariza-
tion of fine log schemes (X, Mx). This operation "resolves" the sheaf Mx but does not "improve" the log strata
of X.

3.3.1. Log stratification. — Using charts one immediately checks that for any fine log scheme (X, Mx) the
monoidal rank function x - rank(M%) is upper semicontinuous. The corresponding stratification of X, whose
strata X({) are the locally closed subsets on which the monoidal rank function equals to i, will be called the log
stratification. We remark that the analogous stratification in exp. VI, 1.5 was called canonical or stratification
by rank.
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Remark 3.3.2. — Sometimes it is more convenient to work with the local log stratification of (X, Mx) whose
strata are the maximal connected non-empty locally closed subsets of X on which the monoidal rank function
is constant. This stratification is obtained from the log stratification by replacing each stratum with the set of
its connected components, in particular, all empty strata are discarded. For example, this stratification showed
up in exp. VI, 3.9.

3.3.3. Monoscheme charts of log schemes. — A (global) monoscheme chart of a Zariski log scheme (X, Mx) is
a morphism of monoidal spaces c: (X,e.Mx) — (F,M¢) such that the target is a monoscheme and &, Mx
is isomorphic to the Zariski log structure associated with the pre-log structure c~'My — O (obtained as
¢ "M = Mx — Ox). In particular, Mx is the log structure associated with (c o ) "M — Ox,. We say that
the chart is fine if (F, M) is so. For example, any toric scheme R[F], where F is a monoscheme, possesses a
canonical chart R[F] — F.

Lemma 3.3.4. — Let (X, Mx) be a log scheme and let (F, M) be a monoscheme. Then any morphism of monoidal
spaces f: (X, Mx) — (F, M) factors uniquely into the composition of a morphism of log schemes (X, Mx) — Z[F] and
the canonical chart Z[F] — F.

Proof. — Note that (Idx, &): (X, Ox) — (X, Mx) is a morphism of monoidal spaces, hence so is the composi-
tion h: (X, Ox) — (F,Mg). If F = Spec(P) then h is determined by the homomorphism P — I'(0x) by Lemma
3.1.8. Since the latter factors uniquely into the composition of the homomorphism of monoids P — Z[P] and
the homomorphism of rings Z[P] — T'(€x), we obtain a canonical factoring X — Spec(Z[P]) — Spec(P). Fur-
thermore, this affine construction is compatible with localizations of P, hence it globalizes to the case when the
monoscheme F is arbitrary. O

Remark 3.3.5. — (i) Usually, one works with log schemes using local charts (X, Mx) — Spec(Z[P]). By Lemma
3.3.4 this is equivalent to working with affine monoscheme charts.

(ii) In particular, any fine log scheme (X, Mx) admits a fine monoscheme chart étale locally, i.e., there exists
a strict (in the log sense) étale covering (Y, My) — (X, Mx) whose source possesses a fine monoscheme chart.
Similarly, any Zariski fine log scheme admits a fine monoscheme chart Zariski locally.

3.3.6. Chart base change. — Given a fine monoscheme chart (X, Mx) — F and a morphism of monoschemes
F' — F we will write (X, Mx) xr F’ instead of (X, Mx) Xz Z[F'], where the second product is taken in the
category of fine log schemes. This notation is partially justified by the following result.

Lemma 3.3.7. — Keep the above notation and let (X', Mx/) = (X, Mx) x¢ F.

(i) The morphism ¢’ (X'yMx) — ¥’ is a monoscheme chart.

(ii) If (Y, My) is a log scheme over (X, Mx) and d: (Y, My) — F is the induced morphism of monoidal spaces, then
any lifting of d to a morphism (Y, My) — ¥’ factors uniquely through c’.

Proof. — Strictness is stable under base changes, hence (X’,Mx/) — Z[F'] is strict and we obtain (i). The
assertion of (ii) is a consequence of Lemma 3.3.4. O

3.3.8. Log ideals. — By a log ideal on a fine log scheme (X, Mx) we mean any ideal .# C Mx that étale
locally on X admits a coherent chart as follows: there exists a strict étale covering f: (Y, My) — (X, Mx), a fine
monoscheme chart c: (Y, My) — F and a coherent ideal .#r C My such that ' (.#)My = ¢ (F)My.

3.3.9. Log blow ups. — Itis proved in [Niziot, 2006, 4.2] that there exists a universal morphism f: (X', Mx/) —
(X, Mx) such that the ideal f~'(.#)My- is invertible, i.e. locally (in the étale topology) generated by one
element. (We use here that, unlike rings, any principal ideal aM of an integral monoid M is invertible in the
usual sense, i.e. M — aM as M-sets.) Actually, the formulation in [Niziot, 2006] refers only to saturated blow
ups, but the proof deals also with the non-saturated ones.

The construction of log blow ups is standard and it also shows that they are compatible with arbitrary strict
morphisms. If (X, Mx) and .# admit a chart F, # C Mg then (X', Mx/) = (X, Mx) xf Bl #(F’) is as required.
If (Y, My) — (X, Mx) is strict then F is also a chart of (Y, My), hence the local construction is compatible with
strict morphisms. The general case now follows by descent because any fine log scheme admits a chart étale
locally. We call f the log blow up of (X, Mx) along .# and denote it LogBl , (X, Mx) (it is called unsaturated
log blow up in [Niziol, 2006]). Log blow up towers are defined in the obvious way. As usual, contraction of
such a tower is obtained by removing all empty log blow ups (i.e. blow ups along .# = Mx).

3.3.10. Saturated log blow ups. — Saturated log blow up along a log ideal .7 is defined as (LogBl , (X, Mx))®".
It satisfies an obvious universal property too. (It is called log blow up in [Niziot, 2006]). Towers of saturated
log blow ups, their pullbacks, and saturation of a tower of log blow ups are defined in the obvious way.
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3.3.11. Pullbacks. — Let f: (Y, My) — (X, Mx) be a morphism of log schemes. By pullback of the log blow up
LogBI , (X, Mx) along a log ideal .# C Mx we mean the log blow up LogBlf (Y, My), where ¢ = f~1(#)My.
This is the universal log scheme over (Y, My) whose morphism to (X, Mx) factors through LogBI , (X, Mx).
The pullback of saturated blow ups is defined similarly, and these definitions extend inductively to pullbacks
of towers of (saturated) log blow ups.

3.3.12. Basic properties. — Despite the similarity with usual blow ups of schemes, log blow ups (resp. saturated
log blow ups) have nice properties that are not satisfied by usual blow ups. First, it is proved in [Niziol, 2006,
4.8] that log blow ups are compatible with any log base change f: Y — X, i.e. LogBl,_, ,(Y) — LogBl ,(X) xx Y
for a monoidal ideal .# on X. In particular, saturated blow ups are compatible with saturated base changes.
Second, log blow ups (resp. saturated log blow ups) are log étale morphisms because so are both saturation
morphisms and charts of the form Z([Bl »(F)] — Z[F].

3.3.13. Fan charts. — A fan chart of a Zariski log scheme (X, M) is a morphism d: (X, e,Mx) — (F, M) of
monoidal spaces such that the target is a fan and d~' (Mf) — &,Mx. For example, for any monoscheme chart
c: (X,e,Mx) — (F, M), its sharpening ¢: (X,e,Mx) — (F, M) is a fan chart. Fan charts were considered
by Kato (e.g., in [Kato, 1994, 9.9]). They contain less information than monoscheme charts, but "remember
everything about ideals and blow ups" because there is a one-to-one correspondence between ideals and blow
up towers of Mr and My. Let us make this observation rigorous. For concreteness, we discuss only non-
saturated (log) blow ups, but everything easily extends to the saturated case.

Remark 3.3.14. — (i) Assume thatc: (X, Mx) — (F, M) is a fan chart. Any ideal .#r C M induces a log ideal
# C My, which is the preimage of ¢~' (.#)Mx under Mx — Myx. We say that the blow up F’ = BI(.%)
induces the log blow up (X’,Mx-) = LogBl (X Mx) or that the latter log blow up is the pullback of Bl(.#).
Furthermore, (X/,Mx/) — F’is also a fan chart (see [Kato, 1994, 9.9], where the fs case is treated), hence this
definition iterates to a tower F, of blow ups of F. We will denote the pullback tower of log blow ups as ¢*(F,).

(i) By a slight abuse of notation, Kato and Niziol denote ¢*(F,) as (X, Mx) x¢ F,. One should be very
careful with this notation because, in general, there is no morphism (X, Mx) — F that lifts €. Also, one cannot
define analogous "base change" for an arbitrary morphism of fans F/ — F. The reason is that there are many
"unnatural” gluings in the category of fans (e.g. along generic points), and such gluings cannot be lifted to log
schemes (and even to monoschemes).

(iii) For blow up towers, however, the base change notation is safe and agrees with the base change from the
monoschemes. Namely, if € is the sharpening of a monoscheme chart c: (X, Mx) — (F, M) then there exists a
one-to-one correspondence between blow up towers of the monoscheme F = (F, M¢) and the fan F = (F, M),
see Lemma 3.1.25. Clearly, the matching towers induce the same log blow up tower of (X, Mx). In particular,
Fmono(E M) and .Z™"(F, M) (see Theorem 3.1.27) induce the same log blow up tower of (X, Mx).

3.3.15. Monoidal desingularization of log schemes. — Let (X, M) be a fine log scheme and assume that (X, M) is
monoidally torsion free in the sense that the groups M2 are torsion free. By a monoidal desingularization
(resp. a saturated monoidal desingularization) of a fine log scheme (X, M) we mean a tower of log blow ups
(resp. a tower of saturated log blow ups) (Xn, Myn) --» (X0, Mo) = (X, M) (resp. (Xn,Mn) --» (X_1,M_;) =
(X, M)) such that for any geometric point X — X, the stalk of M, at X is a free monoid. A morphism (Y, N) —
(X, M) is called monoidally smooth if each induced homomorphism of stalks of monoids Mx — Ny can be
extended to an isomorphism Mz & N™ = Ny.

Theorem 3.3.16. — Let Z' be a saturated desingularization of quasi-compact fine torsion free fans which is functo-
rial with respect to smooth morphisms. Then there exists unique saturated monoidal desingularization F8(X, M) of
monoidally torsion free fine log schemes (X, M), such that T8 s functorial with respect to all monoidally smooth
morphisms and ;ﬁOg(X, M) is the contraction of c*(:%;fan(F)) for any log scheme (X, M) that admits a fan chart
c: (X,Mx) — F. In the same way, a functorial desingularization .F" induces a monoidal desingularization F'°8.

Remark 3.3.17. — Since any monoscheme chart induces a fan chart, it then follows from Remark 3.3.14(iii)

that 7108 (X, M) is the contraction of d* (f?v mono () for any log scheme (X, M) that admits a monoscheme chart
d: (X, MX) — F.

Proof of Theorem 3.3.16. — Both cases are established similarly, so we prefer to deal with .#®" (to avoid men-
tioning saturations at any step of the proof). By descent, it suffices to show that the pullback from fans induces
a functorial monoidal desingularization of those fine log schemes that admit a global fan chart. Thus, if .#'°8
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exists then it is unique, and our aim is to establish existence and functoriality. Both are consequences of the fol-
lowing claim: assume that f: (Y, My) — (X, Mx) is a monoidally smooth morphism whose source and target
admit fan charts d: (Y, My) — G and d’: (X, Mx) — F, then the contractions of d*(.#%"(G)) and c*(.#"(F))
are equal, where ¢ = d’ o f: (Y, My) — (X;Mx) — F. Note that d~'(Mg) — My and the homomorphism
¢ 1(M§) = My is smooth.

Choose a point y € Y and consider the localizations Y’ = Spec(0y,y), F' = Spec(Mg(y)) and G’ =
Spec(Mg, a(y)) aty and its images in the fans. Since ¢: Mg a(y) — MY@ is an isomorphism and the homomor-
phism : Mg ) — My,y is smooth, we obtain a factorization of 1\ into a composition of a homomorphism
At Mg (y) — Mg, a(y) and ¢, where A is smooth. Set U = ¢ " (F)Nd~"(G’). Then U is a neighborhood of y,
and c and d induce homomorphisms ¢u: Mg, ay) — My (U) and Py : Mt cy) — My (U). Since the monoids
are fine, we can shrink U so that the equality Py = ¢y o A holds. It then follows from Lemma 3.1.8(ii) that c|y
factors into a composition of dly and the smooth morphism Spec(A): G’ — F'.

By quasi-compactness of Y we can now find finite coverings Y = |Ji_; Y;, F=J{_, Fiand G = |J}_; G;, and
smooth morphisms A;: Gi — F; such that Y; is mapped to F; and G; by c and d, respectively, and the induced
maps of monoidal spaces ¢;: Y; — Fi and di: Yi — G satisfy ¢; = Ao di. Set Y =[], Yy, F/ =[], Fy,
G'=]J],;Gi,c:Y — Fand d’: Y — G. By descent, it suffices to check that contractions of c/*(Ffn(F))
and d”*(.#%"(G)) are equal. Since, the morphism Y’ — F factors through the surjective smooth morphism
F’ — F, and similarly for G, these two pullbacks are equal to the contracted pullbacks of .Z"(F’) and .Zf"(G’),
respectively. It remains to note that Y/ — F’ factors through the smooth morphism [ [{"; Ai: G’ — F’. Hence
F'n(G") is the contracted pullback of .Z"(F’), and their contracted pullbacks to Y’ coincide. O

3.4. Desingularization of log regular log schemes. — In this section we will see how saturated monoidal
desingularization leads to normalized desingularization of log regular log schemes. Up to now we freely
considered saturated and unsaturated cases simultaneously, and did not feel any essential difference. This will
not be the case in the present section because the notion of log regularity was developed by Kato and Niziot
in the saturated case. Gabber generalized the definition to the non-saturated case and extended to that case all
main results about log regular log schemes. This was necessary for his original approach, but can be bypassed
by use of saturated monoidal desingularization. So, we prefer to stick to the saturated case and simply refer
to all foundational results about log regular fs log schemes to [Kato, 1994] and [Niziol, 2006]. For the sake of
completeness, we will outline Gabber’s results about the general case in §3.5.

3.4.1. Conventions. — Recall that Kato’s notion of log regular fs log schemes was already used in exp. VI,
1.2. Throughout §3.4 we assume that (X, Mx) is a log regular fs log scheme. Note that the homomorphism
ax: Mx — Ox of Xg-sheaves is injective by [Niziol, 2006, 2.6], and actually Mx = &} N Ox, where U C X is
the triviality locus of Mx. So, we will freely identify Mx with a multiplicative submonoid of Ox.

3.4.2. Monoidal ideals. — For any log ideal .# C Mx consider the ideal ¢ = o(.#)0 it generates. We call ¢
a monoidal ideal and by a slight abuse of notation, we will write ¢ = .# 0.

Lemma 3.4.3. — Let (X,Mx) be as in 3.4.1. The rules .9 — FOx and & — J# N Mx give rise to a one-to-one
correspondence between log ideals .# C Mx and monoidal ideals % C Ox.

Proof. — It suffices to show that any log ideal .# coincides with ¢ = .#x N Mx. Furthermore, it suffices
to check the equality at the strict localizations of X, hence we can assume that X = Spec(A) for a strictly local
ring A. Then the log structure admits a chart X — Spec(Z[P]) and .# = IMx for an ideal I C P, and we should
prove that ] := _#(X) = IA N P coincides with L.

Assume on the contrary that I C ], and consider the exact sequence

(3.4.3.1) 1Z[P] ®zp) A — JZ[P] ®z(p) A — JZ[PI/1Z[P] ®z(p) A — O.

Since Tor1Z[P] (Z[P]/1Z[P], A) = 0 by [Kato, 1994, 6.1(ii)], IZ[P] ®zp; A = IA and similarly for J, and we obtain
that the first morphism in the sequence (3.4.3.1) is IA — JA. To obtain a contradiction, it suffices to show that
JZ[P]/1Z[P] ®zp; A # 0. Note that Z[P]/Z[mp] is a quotient of JZ[P]/IZ[P] = Z[]J]/Z]]], so it remains to note that
mpA # A and hence Z[P]/m,Z[P] ®zp) A # 0. O

3.4.4. Interpretation of monoidal smoothness. — Note that by exp. VI, 1.7 (X, Mx) is monoidally smooth if and
only if X is regular and in this case the non-triviality locus of Mx is a normal crossings divisor D.
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3.4.5. Saturated log blow ups of log regular log schemes. — Using Kato’s Tor-independence result [Kato, 1994,
6.1(ii)] Niziot proved in [Niziol, 2006, 4.3] that saturated log blow ups of (X, Mx) are compatible with nor-
malized blow ups along monoidal ideals. Namely, if (Y, My) = LogBl , (X, Mx)*" then Y — Bly gy (X)™F. We
will also need more specific results that showed up in the proof of loc.cit., so we collect them altogether in the
following lemma.

Lemma 3.4.6. — Let f: (X,Mx) — (Y, My) be a strict morphism of fs log regular log schemes, let .# C My be
a lOg ideal and f = f_]fo. Set (X/, Mx/) = LOgBlj (X, Mx), (X”, MXN) = (X/,Mxl)sat, (Y/,MY/) =
LOgBI](Y, My) and (Y”, MYH) = (YI, MY/)Sat. Then

(i) The (saturated) log blow up of (X, Mx) is compatible with (normalized) blow up of X: X' — Bl ¢, (X) and
X" = Bl g g, (XM

(ii) The (normalized) blow up of X along _# Ox is the pullback of the (normalized) blow up of Y along % Oy. In
particular, X' = X xy Y and X" = X xy Y.

Proof. — All claims can be checked étale locally, hence we can assume that there exists a chart g: (Y, My) —
(Z[P],P) and .# = g~ '(Ip)My for an ideal Iy C P. Then it suffices to prove (ii) for g and the induced chart
g o f of (X, Mx). In particular, this reduces the lemma to the particular case when X = Spec(A) and f is a chart
(X, Mx) — (Z[P], P). It is shown in the first part of the proof of [Niziot, 2006, 4.3] that

X" = Proj(A ®zp) (@ 5) — Proj(@ )
n=0 n=0

The first isomorphism implies that X’ — X is the base change of Proj(@;_,I§) = Y’ — Y, and the second

isomorphism means that X’ — Blyg, (X). This establishes the unsaturated and unnormalized part of the
Lemma, and the second part follows in the same way from the second part of the proof of [Niziol, 2006,
4.3]. O

Remark 3.4.7. — It follows from the lemma that the unsaturated log blow up (X', Mx~) is log regular in the
sense of Gabber, see §3.5. Thus, once log regularity is correctly defined in full generality, it becomes a property
preserved by log blow ups (as it should be, since log blow ups are log smooth).

3.4.8. Desingularization of log reqular log schemes. — By Lemma 3.4.6, any saturated log blow up tower
f: (Xn, M) --» (X, Mx) induces a normalized blow up tower g: X,, --» X of the underlying schemes. Fur-
thermore, g completely determines f as follows: if Xi;1 — X; is the normalized blow up along .# C O, then
(Xi1,Mx,,,) = (Xi, Mx,) is the saturated log blow up along .# N Mx, by Lemma 3.4.3. The convention that
centers of blow ups are part of the data is used here essentially. Furthermore, by 3.4.4, f is a saturated monoidal
desingularization if and only if g is a normalized desingularization. In particular, the saturated monoidal

desingularization Z°8(X, Mx) induces a normalized desingularization of the scheme X that depends on

(X, Mx) and will be denoted .# (X, Mx).

Theorem 3.4.9. — The saturated monoidal desingularization 7' (see Theorem 3.3.16) gives rise to desingularization
F of log reqular log schemes that possesses the same functoriality properties: if d: (Y, My) — (X, Mx) is a monoidally

smooth morphism of log reqular log schemes then F (Y, Mly) is the contraction of $5*(.F (X, Mx)). Furthermore, if ¢ is
strict then ¢°1(F (X, Mx)) = .F (X, Mx) xx Y.

Strictness of ¢ in the last claim is not needed. To remove it one should work out the assertion of Remark
3.1.23.

Proof. — We only need to establish functoriality. Let (X', Mx+) = LogBl , (X, Mx)*" be the first saturated blow
up of F1°8(X,Mx). Set # = ¢~ ' .My, then (Y/',My/) = LogBl , (Y, My)*"is the first saturated blow up of
;’TOS(Y, My) by functoriality of Flog, By Lemma 3.4.6, X’ = Bl s, (X)"" and Y’ = Bl 4 ¢, (Y)"*", and using that

¢~ (S Ox)Oy = _# Oy we obtain that Y’ is the strict transform of X'. It remains to inductively apply the same
argument to the other levels of the towers. The last claim follows from Lemma 3.4.6(ii).

Remark 3.4.10. — The same results hold for (non-saturated) monoidal desingularization, which induces a
(usual) desingularization of log regular log schemes. For non-saturated log regular log schemes (see §3.5) one
should first establish analogs of Lemmas 3.4.3 and 3.4.6 (where the input in the second one does not have to
be saturated). Then the same proof as above applies.
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3.4.11. Canonical fans and associated points. — By the canonical fan Fan(X) of (X, Mx) we mean the set of
maximal points of the log stratification (i.e. the maximal points of the log strata). Alternatively, Fan(X) can be
described as in [Niziot, 2006, §2.2] as the set of points x € X such that mx coincides with the ideal Ix C 0%
generated by a(Mx — M%).

We provide F = Fan(X) with the induced topology and define M to be the restriction of Mx onto F. For
example, for a toric k-variety X = Spec(k[Z]), where Z is a monoscheme, (F, M) is isomorphic to the sharpen-
ing of Z. More generally, if a log scheme (X, Mx) is Zariski then (F, M) is a fan and the map c: X — F sending
any point to the maximal point of its log stratum is a fan chart of X. This follows easily from the fact that such
(X, Mx) admits monoscheme charts Zariski locally.

Remark 3.4.12. — In general, (F, Mf) does not have to be a fan, but it seems probable that it can be extended
to a meaningful object playing the role of algebraic spaces in the category of fans. We will not investigate this
direction here.

Lemma 3.4.13. — Let X = (X, Mx) be an fs log regular log scheme with a monoidal ideal .# C Ox. Then:

(i) The set of associated points of Ox /.7 is contained in Fan(X).

(ii) The fans of Bl » (X) and Bl » (X)"°" are contained in the preimage of Fan(X).

(iii) For any tower of monoidal blow ups (resp. normalized monoidal blow ups) X, --+ X, its set of associated points
is contained in Fan(X).

Proof. — (i) Fix a point x € X — Fan(X) and let us prove that it is not an associated point of x/.#. Since
associated points are compatible with flat morphisms, we can pass to the formal completion X = Spec(Ox ).
Let us consider first the more difficult case when A = ﬁx x is of mixed characteristic (0,p). By exp. VI, 1.6,

A = B/(f) where B = C(k)[[QII[[t]], Q is a sharp monoid defining the log structure, t = (t1,...,ty), and f € B
reduces to p modulo (Q\{1},t). Note that n > 1 as otherwise Q \ {1} would generate the maximal ideal of A. In
this case, x is the log stratum of )A(X and hence x is the maximal point of its log stratum in X, which contradicts
that x ¢ Fan(X). The completion 7 of .7 is of the form IA for an ideal I C Q. We should prove that x € )A(X is
not an associated point of A/ :‘7, or, equivalently, depth(A/ :%) > 1. Since B/(fB + ?B) = A/:‘?, it suffices to
show that depth(B/ /jB) > 2 and f is a regular element of B/ 7B.

Regularity of f follows from the following easy claim by taking C = C(k), ] = Iand R = Qt\¥...tN: if C
is a domain, R is a sharp fine monoid with an ideal J, f is an element of C[[R]] with a non-zero free term (i.e.
c1 # 0, where f = ZTGR c,1), and g € CI[R]] satisfies fg € JC[[R]] then g € JC[[R]]. Next, let us bound the
depth of B /7B. In view of [Matsumura, 1980, 21.C], depth is preserved by completions of local rings hence it
suffices to show that depth(D,/ID,) > 2, where D = C(k)[Q][t] and r = (mg,p, t) is the ideal generated by

mqo = Q\ {1}, p and t. Note that D/ID — C(k)[t][Q \ I] as a C(k)[tl-module, hence it is a flat C(k)[t]-module
and the local homomorphism C(k)[tl, ) — D./ID; is flat. By [Matsumura, 1980, 21.C], depth(D,/ID,) >
depth(C(k)[tl(p,¢)) =n+1 > 2, so we have established the mixed characteristic case. In the equal characteristic

case we have that A = k[[Q]][[t]], and the same argument shows that depth(A/ 7 ) > depth(k[t](y)) =n > 1.

To prove (ii) we should check that if x € X — Fan(X) then no point of Fan(Bl ~ (X)) sits over x. We will
only check the mixed characteristic case since it is more difficult. As earlier, Xy = Spec(A) where A = B/(f)
and B = C(K)[[Q]I[[t]] with n > 1. Note that 1{: )?X — Xis a flat strict morphism of log schemes. Hence 1 is
compatible with blow ups and it maps the fans of X, and Bl (Xy) to the fans of X, and Bl #(X), respectively.
Therefore, we should only check that Fan(BI (Xy)) is disjoint from the preimage of x. The latter blow up is
covered by the charts V, = Spec(Ala—'.#]) with a € L. Set P’ = Qla~'1], B = C(K)[[P'll[[t1, ..., tn]]/(f) and
A’ = B'/(f) (Where f is as above). Then the my-adic completion of V, is Vo = Spec(A’). The ideal defining
the closed point of Fan(V,) is generated by the maximal ideal m’ of P’. This ideal does not contain any t;.
Indeed, t; ¢ m'B’ + fB’ because t; ¢ fC(k)[[t1,...,tn]lasf—p € (t1,...,tn). Thus, Fan(V,) is disjoint from
the preimage of x, and hence the same is true for Fan(V,). This proves (ii) in the non-saturated case, and the

saturated case is dealt with similarly but with P’ replaced by its saturation. Finally, (iii) follows immediately
from (i) and (ii). O

3.4.14. Independence of the log structure. — Dependence of .7 7 (X, Mx) on My is a subtle question. In this section

we will use functoriality of 7 to prove that # 7 (X, Mx) is independent of Mx in characteristic zero. This will
cover our needs, but the restriction on the characteristic will complicate our arguments later. Conjecturally,

Z (X, Mx) does not depend on Mx at all and the following result of Gabber supports this conjecture: if P
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and Q are two fine sharp monoids and k[[P]] ~ k[[Q]] for a field k (of any characteristic!) then P ~ Q. For
completeness, we will give a proof of this in §3.6.

Theorem 3.4.15. — Let 7 bea functorial normalized desingularization of reduced qe schemes of characteristic zero, and
let F (X,Mx) be the normalized desingularization of log regular log schemes it induces (see Theorem 3.4.9). Assume
that (X, Mx) and (Y, My) are saturated log regular log schemes such that there exists an isomorphism ¢: Y — X of the
underlying schemes. Assume also that the maximal points of the strata of the stratifications of X and Y by the rank of M
are of characteristic zero. Then ﬁ(X Mx ) and ﬁ(Y My ) are compatible with &, that is, (Y My) = ¢~ (ﬁ(X Mx)).

Proof. — We can check the assertion of the theorem étale locally. Namely, we can replace X with a strict étale
covering X’ and replace Y with Y/ = Y xx X’ with the log structure induced from Y. In particular, we can assume
that the log structures are Zariski, and so the canonical fans Fan(X) and Fan(Y) are defined. Our assumption
on the maximal points actually means that Fan(X) is contained in Xg = X ®z Q. By Lemma 3.4.13(iii) and
2211, Z (X, Mx) is the pushforward of its restriction onto Xg, and similarly for Y. So, it suffices to prove that
the normalized desingularizations of Xg and Yg are compatible with respect to ¢ ®z Q: Xg — Yg. Thus, it
suffices to prove the theorem for X and Y of characteristic zero, and, in the sequel, we assume that this is the
case.

To simplify notation we identify X and Y, and set Nx = My. It suffices to check that the blow up towers
I (X, Mx) and F| (X, Nx) coincide after the base change to each completion XX = Spec(ﬁx %) at a geometric
point X. By exp. VI, 1.6, we have that Xz = Spec(k[[P]][[t1,...,tn]]), where P = Mx %, and the morphism
of fs log schemes ()A(;, P) — (X, Mx) is strict. By Theorem 3.3.16 the contracted pullback of | (X, Mx) to )A(y
coincides with .Z1°8 ()A(g, P). In the same way, the contracted pullback of é‘v(X, Nx) coincides with ﬁ"g()?g, Q),
where @(,; — Spec(k[[QII[[t1, ..., tm]]) (We use that k is isomorphic to the residue field of this ring and hence
depends only on the ring Ox x)-

Let us now recall how @Og(f(x, P) is constructed (Theorems 3.1.27,3.2.20 and 3.3. 16) We have the obvious
strict morphlsm X — Z:= Spec(Q[P] [t1,...,tn]), hence .F# IOg(XX, P) is the pullback of .# l"g(Z P). The latter is
the pullback of T m"m(P) F fa“( P), Wthh in its turn, is induced from .% ( ). Therefore, J(Z P) = ( ) and,
by the functoriality of .7, its pullback to Xx is .7 (Xx). The same argument shows that .7 7 (Xx) is the contracted
pullback of .7 (X Nx).

In order to prove that é:(X, Mx) = §(x, Nx) it only remains to resolve the synchronization issues, i.e.
to prove equality without contractions. For this one should take the union S of the fans of (X, Mx) and

(X, Nx), and consider the morphism )A(g = [yes )A(; rather than the individual completions. The pullbacks

of #(X,Mx) and F| (X,Nx) to )/Zs have no empty blow ups because the fans contain all associated points
of the towers by Lemma 3.4.13(iii). Hence the same argument as above shows that they both coincide with

F(Xs). O

Remark 3.4.16. — (i) Without taking the completion, .% (X) does not even have to be defined as X may be non-
ge. In order to pass to the completion we used functoriality of the monoidal desingularization with respect to
strict morphisms, which may be very bad (e.g. non-flat) on the level of usual morphisms of schemes. Even
when (X, Mx) is log regular, the formal completion morphism X, — X can be non-regular in the non-qge case.
However, one can show that it is regular over the fan, and this is enough to relate the (log) desingularization
of X and 5(\,(. .

(if) We used the very strong desingularization .# from Theorem 2.3.10. However, it is easy to see that only
the properties listed in Theorem 2.3.7 were essential.

3.5. Complements on non-saturated log regular log schemes. — For the sake of completeness, we mention
Gabber’s results on non-saturated log regular log schemes that will not be used. We only formulate results
but do not give proofs. Gabber defines a fine log scheme (X, Mx) to be log regular if its saturation is log
regular in the usual sense. Assume now that (X, Mx) is fine and log regular. The key result that lifts the theory
off the ground is that Kato’s Tor independence extends to non-saturated log regular log schemes. Namely, if

(X, Mx) admits a chart Z[P] and I C P is an ideal then TorZ[P (Ox,Z[P]/1) = 0. For fs log schemes this is due to
Kato, and Gabber deduces the general case using a non—ﬂat descent. It then follows similarly to the saturated

case that if (Y, My) = LogBI , (X, Mx]) then Y = Blygy (X) and (Y, My) is log regular. In addition, one shows
that (X, Mx) is saturated if and only if X is normal, and if (Y, My) = (X, Mx)%* then Y — X"°*. Using these
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foundational results on log regular fine log schemes one can imitate the method of §3.4 to extend Lemma 3.4.13
to the non-saturated case. As a corollary, one obtains an analog of Theorem 3.4.15 for .% and .78,

3.6. Reconstruction of the monoid. — This section will not be used in the sequel. Its aim is to prove that a
fine torsion free monoid P can be reconstructed from a ring A = k[[P]] where k is a field. The main idea of the
proof is that an isomorphism k[[P]] — A defines an action of the torus Spec(k[P#P]) on A, and any two maximal
tori in Auty_aug(A) are conjugate.

3.6.1. Automorphism groups of complete rings. — Let k be a field and A be a complete local noetherian k-algebra
with residue field k. Let m denote the maximal ideal and set A,, = A/ m*t!. Let G, = Autk,aug(An) be the
automorphism group scheme of A,, viewed as an augmented k-algebra, i.e.

Gn(B) ={o € Autg(An ®k B)| o(mA,, ® B) = mA,, ® B}.

This is a closed subgroup of the automorphism group scheme Aut(A,) defined by a nilpotent ideal. The
groups Gn form a filtering projective system --- — G, — G; — Gp; we call such a system an algebraic
pro-group. Note that G, induces a set-valued functor G(B) = lim, G,,(B) on the category of k-algebras, and
G(k) = Auti (A).

Remark 3.6.2. — Gabber also considered more complicated filtering families, but we stick to the simplest case
we need.

3.6.3. Stabilization. — We say that an algebraic pro-group G, is stable if the homomorphisms 7, : G471 — Gn
are surjective for large enough n. Any algebraic group can be stabilized as follows. For each G, and i > 0 let
Gn,i denote the scheme-theoretic image of Gni in G. Then G0 O Gn,1 D ... is a decreasing sequence of
algebraic subgroups of G, hence it stabilizes on a subgroup G$! C G,,. The family G3' with obvious transition
morphisms is an algebraic pro-subgroup of G,, and it is clear from the definition that G§' is stable. Note also

that G§' is isomorphic to G, at least in the sense that G(B) — lim,, G$!(B) for any k-algebra B.

3.6.4. Maximal pro-tori. — By a pro-torus T, in G, we mean a compatible family of tori T,—G;, for alln > 0,
in the sense that 7 (Th41) = Tn. It is called a torus if the 7,’s are isomorphisms for n > 0. A pro-torus is
componentwise maximal if for n > 0 all tori T, are maximal. A pro-torus T, is maximal if for any inclusion
of pro-tori T, C T; we have that T, = T;| for n > 0. In particular, any componentwise maximal pro-torus is
maximal. If k is algebraically closed and Gn41 — Gy, is surjective then any torus S, C G, is the image of a
torus Sn11 C Gn41, and hence componentwise maximal pro-tori exist whenever G, is stable. For shortness,
given an element ¢ € Gy, (k) we will denote the corresponding conjugation by c¢: Gy, — Gy,. Pro-tori T, and T,
are conjugate if there exists a compatible family of elements ¢, € Gy (k) such that for n > 0 the conjugation
Cn: Gn — Gy takes T, to T,..

Proposition 3.6.5. — Assume that k is an algebraically closed field, G, is a stable pro-algebraic k-group, and To, T} —
G, are pro-tori. If T, is componentwise maximal then T, is conjugate to a sub-pro-torus of T,. In particular, a pro-torus
is maximal if and only if it is componentwise maximal, and any two maximal pro-tori are conjugate.

Proof. — It is a classical result that maximal tori in algebraic k-groups are conjugate. In particular, for each n
we can move T}, into T,, by a conjugation, and the only issue is compatibility of the conjugations. Naturally,
to achieve compatibility we should lift conjugations inductively from G, to G, 1. It suffices to prove that if
7, is surjective and ¢n: G, — Gy conjugates T, into T,, then it lifts to cn+1: Gni1 — Gn4 that conjugates
T, into T y1. By the stability assumption, we can lift c¢,, to a conjugation ¢’ of G,41. It takes T/, ; to the
subgroup H = KT, 1, where K is the kernel of 7,. Since maximal tori in H are conjugate and conjugation by
elements of T,, 1 preserves T 1, we can find a conjugation c” by an element of K that takes ¢/(T, ;) to Tr11.
Then ¢ 11 = ¢”c’ is a lifting of c,, as required. O

Corollary 3.6.6. — Assume that k is an algebraically closed field, G, is a pro-algebraic k-group, and To, T] — G, are
pro-tori. If Ty is maximal then T, is conjugate to a sub-pro-torus of T,.

Proof. — Obviously, Tn, T;, C G§! for all n > 0. So, T/ is conjugate to a subtorus of T, already inside of G* by
Proposition 3.6.5. O
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3.6.7. Certain tori in Auty_,ug(A). — Any k-isomorphism C[[P]] — A, where C is a complete local k-algebra
and P is a sharp fine monoid, induces a pro-algebraic action of the split torus Tp = Spec(k[P8P]) on A: a
character x: P — k* acts on C trivially and acts on p € P by p — x(p)p (and the action of B-points x: P — B* is
analogous). Thus we obtain homomorphisms \: Tp — G, which are monomorphisms for n > 0. In particular,
the image is a split torus of G. Furthermore, we claim that if C = k then the torus is maximal (as a pro-torus).
Indeed, if ¢ € Autx(A) commutes with Tp then its action on k[[P]] preserves the Tp-eigenspaces pk for p € P
and on each pk it acts by multiplication by a number A(p). Clearly, A: P — k* is a homomorphism and we
obtain that ¢ belongs to \(Tp(k)) and corresponds to A € Tp (k).

Theorem 3.6.8. — Assume that k is an algebraically closed field, P is a sharp fine monoid and A = k[[P]]. If Cisa
complete local k-algebra, Q is a sharp fine monoid and C[[Q]] — A is a k-isomorphism then C ~ k[[R]] and P ~ Q x R
for a sharp fine monoid R. In particular, P is uniquely determined by A.

Proof. — Consider G = Auty_aug(A) with split tori Tp, To—G corresponding to these isomorphisms. By
maximality of Tp and Corollary 3.6.6 there exists a conjugation of G that maps Tq into Tp. This produces a
new isomorphism C[[Q]] = A = k[[P]] that respects the grading, i.e. each pk lies in some qC, and we obtain a
surjective map f: P — Q, which is clearly a homomorphism. If C = k then f is an isomorphism and we obtain
that P is determined by A.

Set Rq = [[,er1(q) Pk- We have natural embeddings J], .
because A = quQ Rq is isomorphic to C[[Q]] = ]_[qu qC. In particular, for R = f~1(1) we have that
C = quR gk = K[[R]]. Therefore, A ~ k[[R]][[Q]] ~ k[[R x Q]], and since the monoid is determined by A we
obtain that P ~ Q x R. O

(q) Pk—qC which are all isomorphisms

Corollary 3.6.9. — Assume that P and Q are sharp fine monoids and X is a field such that k[[P]] is k-isomorphic to
KI[QI]. Then P is isomorphic to Q.

Proof. — Observe that k[[P]] is isomorphic to k[[Q]] and use the above theorem. O

4. Proof of Theorem 1.1 — preliminary steps

The goal of §4 is to reduce the proof of Theorem 1.1 to the case when the following conditions are satisfied:
(1) X is regular, (2) the log structure is given by an snc divisor Z which is G-strict in the sense that forany g € G
and a component Z; either gZ; = Z; or gZ; N Z; = &, (3) G acts freely on X \ Z and for any geometric point
X — X the inertia group Gx is abelian.

4.1. Plan. — A general method for constructing a G-equivariant morphism f as in Theorem 1.1 is to construct
a tower of G-equivariant morphisms of log schemes X’ = X,, --» Xo = X, where the underlying morphisms
of schemes are normalized blow ups along G-stable centers sitting over Z U T, such that various properties of
the log scheme X; with the action of G gradually improve to match all assertions of the Theorem. To simplify
notation, we will, as a rule, replace X with the new log scheme after each step. The three conditions above will
be achieved in three steps as follows.

4.1.1. Step 1. Making X regular— This is achieved by the saturated log blow up tower .7 (X,Z): X" --» X
from Theorem 3.4.9. In particular, the morphism X’ — X is even log smooth. In the sequel, we assume that
X is regular, in particular, Z is a normal crossings divisor by exp. VI, 1.7. We will call Z the boundary of
X. In the sequel, these conditions will be preserved, so let us describe an appropriate restriction on further
modifications.

4.1.2. Permissible blow ups. — After Step 1 any modification in the remaining tower will be of the form
f: (X',Z2') — (X, Z) where X’ = Bly/(X), Z’ = f~1(Z U V) and V has normal crossings with Z, i.e. étale locally
on X there exist regular parameters t1,...,tq such that Z = V(HL1 ti)and V = V(ti,,..., ti, ). We call such

modification of log schemes permissible and use the convention that the center V is part of the data. A blow
up of schemes f: X’ — X is called permissible (with respect to the boundary Z) if it underlies a permissible
modification. Since there is an obvious bijective correspondence between permissible modifications and blow
ups we will freely pass from one to another. Note that Z’' = f*{(Z) U E’, where E/ = f~'(V) is the exceptional
divisor.
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4.1.3. Permissible towers. — A permissible modification tower (Xq4,Z4) --+ (X0, Zo) = (X, Z) is defined in the
obvious way and we say that a blow up tower X4 --+ Xis permissible if it underlies such a modification tower.
Again, we will freely pass between permissible towers of these types. Note that Z; = Z3' U E;, where Z5' is the
strict transform of Z under h;: X; --» X and E; is the exceptional divisor of h; (i.e. the union of the preimages
of the centers of h;).

Remark 4.1.4. — (i) Consider a permissible tower as above. It is well known that for any i one has that X;
is regular, Z; is normal crossings and E; is even snc. For completeness, let us outline the proof. Both claims
follow from the following: if Z is snc then Z; is snc. Indeed, the claim about E; follows by taking Z = @ and
the claim about Z; can be checked étale locally, so we can assume that Z is snc. Finally, if Z is snc then Z; is snc
by Lemma 4.2.9 below.

(ii) Permissible towers are very common in embedded desingularization because they do not destroy reg-
ularity of the ambient scheme and the normal crossings (or snc) property of the boundary (or accumulated
exceptional divisor). Even when one starts with an empty boundary, a non-trivial boundary appears after the
first step, and this restricts the choice of further centers. Actually, any known self-contained proof of embedded
desingularization constructs a permissible resolution tower.

4.1.5. G-permissible towers. — In addition, we will only blow up G-equivariant centers V. So, f: X’ = Bly/(X) —
X is G-equivariant and the exceptional divisor E = f~'(V) is regular and G-equivariant and hence G-strict.
Such a blow up (or their tower) will be called G-permissible. It follows by induction that the exceptional
divisor of such a tower is G-strict.

4.1.6. Step 2. Making Z snc and G-strict. — Consider the stratification of Z by multiplicity: a point z € Z is in
Z™ if it has exactly n preimages in the normalization of Z. Note that {Z™} is precisely the log stratification as
defined in 3.3.1. By depth of the stratification we mean the maximal d such that Z¢ # @. In particular, Z¢ is
the only closed stratum. Step 2 proceeds as follows: Xi;1 — X; is the blow up along the closed stratum of Z".

Remark 4.1.7. — What we use above is the standard algorithm that achieves the following two things: Z' is
snc and Z%' = & (see, for example, [de Jong, 1996, 7.2]). Even when Z is snc, the second property is often used
in the embedded desingularization algorithms to get rid of the old components of the boundary.

4.1.8. Justification of Step 2. — Since the construction is well known, we just sketch the argument. First, observe
that Z4 has normal crossings with Z, that is, X’ = Blza(X) — X is permissible. Thus, Z’ is normal crossings
and hence Z® is also normal crossings. A simple computation with blow up charts shows that the depth of Z*
is d — 1 (for example, one can work étale locally, and then this follows from Lemma 4.2.8 below). It follows by
induction that the tower produced by Step 2 is permissible, of length d and with Z% = @. So, Zq = Eg4 is snc
by Remark 4.1.4 and G-strict by 4.1.5.

4.1.9. Step 3. Making the inertia groups abelian and the action of G on X \ Z free. — Recall (exp. VI, 4.1) that the
inertia strata are of the form Xy = X" \ J,;cpq. X', Step 3 runs analogously to Step 2, but this time we
will work with the inertia stratification of X instead of the log stratification, and will have to apply the same
operation a few times. Let us first describe the blow up algorithm used in this step; its justification will be
given in §4.2.

Let fix1y: X’ --» X denote the following blow up tower. First we blow up the union of all closed strata
Xi. In other words, Vj is the union of all non-empty minimal X", i.e. non-empty X" that do not contain X*
with @ € X¥ ¢ X". Next, we consider the family of all strict transforms of X" and blow up the union of
the non-empty minimal ones, etc. Obviously, the construction is G-equivariant. We will prove in Proposition
4.2.11 that f;xn) is permissible of length bounded by the length of the maximal chains of subgroups. Also,
we will show in 4.2.13 that fjxn, decreases all non-abelian inertia groups, so the algorithm of Step 3 goes as
follows: until all inertia groups become abelian, apply fx1;: X' --» X (i.e. replace (X, Z) with (X', Z")).

4.2. Justification of Step 3. —

4.2.1. Weakly snc families. — Assume that X is regular, Z—X is an snc divisor, and {Xi}i¢1 is a finite collection
of closed subschemes of X. For any ] C I we denote by Xj the scheme-theoretic intersection ;. ; X;. The family
{Xi} is called weakly snc if each X; is nowhere dense and Xj is regular. The family {X;} is called weakly Z-snc
if it is weakly snc and each Xj has normal crossings with Z. In particular, {X;}icr is weakly snc (resp. weakly
Z-snc) if and only if the family {Xj}g_jc1 is weakly snc (resp. weakly Z-snc).
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Remark 4.2.2. — (i) Here is a standard criterion of being an snc divisor, which is often taken as a definition.
Let D—X be a divisor with irreducible components {D; }ic1. Then D is snc if and only if the set of its irreducible
components is weakly snc and each irreducible component of Dy is of codimension []| in X.

(ii) The condition on the codimension is essential. For example, xy(x +y) = 0 defines a weakly snc but not
snc family of irreducible divisors in AZ = Spec(k[x,yl).

(iii) The criterion from (i) implies that if X is ge then the snc locus of D is open—it is the complement of the
union of singular loci of D}’s and the loci where Dy is of codimension smaller than [J|. (Note that this makes
sense for all points of X because D is snc at a point x € X\ D if and only if X = D is regular at x.)

Lemma 4.2.3. — Let (X, Z) and G be as achieved in Step 2. Then the family {X"} 111 g is weakly Z-snc.

Proof. — Recall that for any subgroup H C G the fixed point subscheme X' is regular by Proposition exp. VI,
4.2, and X" is nowhere dense for H # 1 by generic freeness of the action of G. Since for any pair of subgroups
K,H C G we have that X" xx X¥ = XXH  the family is weakly snc. It remains to show that Y = X" has normal
crossings with Z. Note that it is enough to consider the case when X is local with closed point x and G = H.
The cotangent spaces at x will be denoted T*X = mx ,/ mi’x, T*Y, etc. Their dual spaces will be called the
tangent spaces, and denoted TX, TY, etc. Let ¢* : T*X—T*Y denote the natural map and let ¢ : TY=TX denote
its dual. We will systematically use without mention that |G| is coprime to char k(x), in particular, the action of
G on T*X is semi-simple.

The proof of exp. VI, 4.2 also shows that for any point x € X", the tangent space T, (X") is isomorphic
to (TxX)". In particular, TY = (TX)€ and hence ¢* maps (T*X)€¢ C T*X isomorphically onto T*Y. Therefore,
U = Ker(¢*) is the G-orthogonal complement to (T*X), i.e. the only G-invariant subspace such that (T*X)® @
U — T*X. Let Z; = V(t1), 1 < i < nbe the components of Z and let dt; € T*X denote the image of t;. By Z-
strictness of G, each line L; = Span(dt;) is G-invariant, so G acts on dt; by a character x;. Without restriction of
generality, x1,...,x1 for some 0 < 1 < n are the only trivial characters. In particular, L = Span(dts,...,dtn) is
the direct sum of L = Span(dty, ..., dt;) and its G-orthogonal complement LNU, which (by uniqueness of the
complement) coincides with Span(dty1,..., dt,). Complete the basis of L to a basis {dt1,...,dtn,€1,...,em}
of T*X such that {dt{;1,...,dtn,e1,..., e} for some r < m is a basis of U and choose functions s1,..., s, on
X so that ds; = ej and s1,...,s, vanishon Y. Clearly, t1,...,tn,s1,...,5m is a regular family of parameters of
Ox,x, so the lemma would follow if we prove that Y = V(ti41,...,tn,S1,...,5:).

Since Y is regular and Ker(¢*) is spanned by the images of t1,1,...,tn,s1,...,5r, we should only check
that these functions vanish on Y. The s;’s vanish on Y by the construction, so we should check that t; vanishes
on Y whenever 1 < i < n. Using the functorial definition from exp. VI, 4.1 of the subscheme of fixed points, we
obtain that ZiG = Z; xx XS, hence Z; xx Y is regular by exp. VI, 4.2. However, TY is contained in TZ;, which
is the vanishing space of dt;, hence we necessarily have that Y= Z;. O]

4.2.4. Snc families. — A family of nowhere dense closed subschemes {X;}ic1 is called snc (resp. Z-snc) at a
point x if X is regular at x and there exists a regular family of parameters t; € &  such that in a neighborhood
of x each X; (resp. and each irreducible component Zy of Z) passing through x is given by the vanishing of a
subfamily t;,,...,t;,. Note that the family {Xi}ic1 is Z-snc if and only if the union {X;} U{Zy} is snc. A family
is snc if it is so at any point of X (in particular, X is regular).

Remark 4.2.5. — (i) It is easy to see that the family {X"}};-¢ is snc whenever G is abelian. Indeed, it suffices
to show that for any point x there exists a basis of T, X such that each T, (X") is given by vanishing of some of
the coordinates. But this is so because the action of G on T, X is (geometrically) diagonalizable and T, (X") =
(T«X)". In general, the family {X"};;-g does not have to be snc, as the example of a dihedral group D, with
n > 3 acting on the plane shows.

(ii) If Z—X is an snc divisor with components Z; and V—X is a closed subscheme then the family {Z;, V} is
snc if and only if V has normal crossings with Z.

The transversal case of the following lemma can be deduced from [EGA 1v4 §19.1], but we could not find
the general case in the literature (although it seems very probable that it should have appeared somewhere).

Lemma 4.2.6. — Any weakly snc family with |I| = 2 is snc.

Proof. — We should prove that if X = Spec(A) is a regular local scheme and Y, Z are regular closed subschemes
such that T =Y xx Z is regular then there exists a regular family of parameters t1,...,t, € A such that Y and
Z are given by vanishing of some set of these parameters. Let m be the maximal ideal of A, and let I, ] and
K = I + ] be the ideals defining Y, Z and T, respectively. By T*X = m/ m2, T*Y, etc., we denote the cotangent
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spaces at the closed point of X. Note that I/mI — Ker(T*X — T*Y), and similar formulas hold for J/m] and
K/mK. Indeed, we can choose the parameters so that Y = V(t1,..., 1) and then the images of ti,...,t; form
a basis both of I/mI and Ker(T*X — T*Y).

Now, let us prove the lemma. Assume first that Y and Z are transversal, i.e. T*X—T*Y & T*Z. Choose
elements tq,...,t1.x such that Y = V(tq,...,t1), Z = V(ti41,...,t1ax), L = codim(Y) and k = codim(Z).
Then the images dt; € T*X of t; are linearly independent because dty,...,dt; span Ker(T*X — T*Y) and
dti41,...,dtiyx span Ker(T*X — T*Z). Hence we can complete t;’s to a regular family of parameters by
choosing ti4x+1,..., tn such that dty,...,dt, is a basis of T*X. This proves the transversal case, and to es-
tablish the general case it now sulffices to show that if Y and Z are not transversal then there exists an element
t; € m\ m? which vanishes both on Y and Z. (The we can replace X with X; = V/(t;) and repeat this process
until Y and Z are transversal in Xq = V(t1,...,1q).) Tensoring the exact sequence0 - INJ] = 1®] —-K =0
with A/m we obtain an exact sequence

(In])/m(IN]) = I/mlaJ/mJ 3 K/mK — 0

The failure of transversality is equivalent to non-injectivity of ¢, hence there exists an element f € INJ with a
non-zero image in I/mI @ J/m]J. Thus, f € m \ m? and we are done. O

4.2.7. Blowing up the minimal strata of a weakly snc family. — Given a weakly snc family {Xi}ic1, we say that
a scheme Xj with J C I is minimal if it is non-empty and any X;» C Xj is empty. Also, we will need the
following notation: if Z—Xis a closed subscheme and D—X is a Cartier divisor with the corresponding ideals
Jz,Ip C Ox, then Z + D is the closed subscheme defined by the ideal .77 .%p.

Proposition 4.2.8. — Assume that X is reqular, Z—X is an snc divisor with irreducible components Z,...,Z,, and
{Xilier is a Z-snc (resp. weakly Z-snc) family of subschemes. Let V be the union of all non-empty minimal subschemes
Xy, f: X' =Bly(X) = X, X] = f4(X;) and Z' = £~ (ZU V). Then

(i) X" is regular and Z' is snc.

(ii) The family {X{}ic1 is Z'-snc (resp. weakly Z'-snc).

(iii) For any | C 1, the scheme-theoretical intersection Xf = ﬂje ] Xj’ coincides with ft(Xy).

(iv) For any ] C 1 the total transform Xy xx X' is of the form X; + Dj where Dy is the divisor consisting of all
connected components of E' = £~ 1(V) contained in £~ (Xj).

Proof. — We start with the following lemma.

Lemma 4.2.9. — Assume that X is regular, Z is an snc divisor and V=Y are closed subschemes having normal crossings
with Z. Let f: X" — X be the blow up along V,Y' = f*(Y), Z' = f"Y(ZUV),and €' = (V). Then Z' is snc, Y’ has
normal crossings with Z' and Y xx X' =Y’ +E'.

Proof. — The proof is a usual local computation with charts. Take any point u € V and choose a regular
family of parameters t1,...,t, atusuch that Y (resp. V, resp. Z) are given by the vanishing of t1, ..., tm (resp.
t1y...,ty, resp. [ i ti), where0 <m <1 <mnand I C{l,...,n}. Locally over u the blow up is covered by 1
charts, and the local coordinates on the i-th chart are t{ such that t; = t; forj > lorj = iand tj = % otherwise.
On this chart, Y xx X’ (resp. Y/, resp. E’, resp. Z’) is given by the vanishing of t1,...,tym (resp. t{,...,t5,
resp. t{, resp. | [;c1 1) tj), hence the lemma follows. O

The lemma implies (i). In addition, it follows from the lemma that f*(Xj) has normal crossings with Z’
and Xj xx X' = f*(X;) + Dj. Thus, (iii) implies (iv), and (iii) implies (ii) in the case when the family {Xi}ie
is weakly Z-snc. Note also that if this family is Z-snc then locally at any point x € X there exists a family of
regular parameters t = {t1,...,tn} such that each Xj and each component of Z is given by the vanishing of a
subfamily of t locally in a neighborhood of x. Then the same local computation as was used in the proof of
Lemma 4.2.9 proves also claims (ii) and (iii) of the proposition. So, it remains to prove (iii) when the family is
weakly snc. It suffices to prove that if (iii) holds for Xj and X then it holds for Xj k. Moreover, (iii) does not
involve the boundary so we can assume that Z = @. It remains to note that {Xj, Xs} is an snc family by Lemma
4.2.6, hence our claim follows from the snc case. O

4.2.10. Blow up tower of a weakly Z-snc family. — Let X be a regular scheme, Z be an snc divisor and {Xi}ic1
be a weakly Z-snc family. By the blow up tower fx,; of {Xi} we mean the following tower: the first blow up
h1 : X3 = Xo = X is along the union of all non-empty minimal schemes of the form Xj for @ # ] C I, the
second blow up is along the union of all non-empty minimal schemes of the form h5'(Xy) for @ # J C I, etc.
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Proposition 4.2.11. — Keep the above notation. Then the tower fx.y is permissible with respect to Z and its length
equals to the maximal length of chains @ # Xy, C --- C Xy, with @ # Ja C --- € J1 C L Furthermore, the strict

=

transform of any scheme Xj is empty and the total transform of Xy is a Cartier divisor.

Proof. — The claim about the length is obvious. Let f(x,} : Xq --» Xo = X and let h,, : X;; --» Xo = X be its n-
th truncation. For each i € I'set X;,,; = h${(X;) and for each ] C I'set X, j = ﬂie] Xn,i- Using Proposition 4.2.8
and straightforward induction on length, we obtain that the family {Xy, i }ie1 is weakly Z,,-snc, Xy,j = h$(Xj),
the blow up X, 11 — X, is along the union of non-empty minimal X, j’s, and Xj xx Xn, = Xy,7 + D} n, where
Dy, is a divisor. So, the tower is permissible, and since X4,; = @ we also have that Xj xx Xq is a divisor. [

Remark 4.2.12. — We will not need this, but it is easy to deduce from the proposition that on the level of
morphisms the modification Xq — X is isomorphic to the blow up along [ ], ;-1 ;-

4.2.13. Justification of Step 3. — The blow up tower fixny: X’ --» X from Step 3 is G-equivariant in an obvious
way, and it is permissible by Proposition 4.2.11. In addition, Z' = f~'(Z) U f~ (|, ZHCG X") and, since G
acts freely on X \ f~! (Urzice X = X\ Uy 2pce X', it also acts freely on X'\ Z’. Tt remains to show that
applying f;x1; we decrease all non-abelian inertia groups. Namely, for any x” € X’ mapped to x € X we want
to show that either Gx is abelian or the inclusion Gx: C Gk is strict.

Let H C G be any non-abelian subgroup with commutator K = [H,H]. Since X¥ xx X’ is a divisor by
Proposition 4.2.11, the universal property of blow ups implies that X’ — X factors through Y = Blx« (X). On
the other hand, it is proved in exp. VI, 4.8 that Y — X is an H-equivariant blow up, and if a geometric point
X — X with Gy = H lifts to a geometric point § — Y then Gy € H. Therefore, the same is true for the
G-equivariant modification X’ — X, and we are done.

5. Proof of Theorem 1.1 — abelian inertia

5.1. Conventions. — Throughout §5 we assume that (X, Z) and G satisfy all conditions achieved at Steps 1, 2,
3, and our aim is to construct a modification f(g x,z): X" — X as in Theorem 1.1. Unless specially mentioned,
we do not assume that X is ge. This is done in order to isolate the only place where this assumption is needed
(existence of rigidifications).

5.2. Outline of our method and other approaches. —

5.2.1. Combinatorial nature of the problem. — On the intuitive level it is natural to expect that "everything rele-
vant to our problem" should be determined by the following "combinatorial" data: the log structure of X, the
inertia stratification of X by Xy := X"\ J,;,c;y X and the representations of the inertia groups on the tangent
spaces (which are essentially constant along X};). This combinatorial nature is manifested in both approaches
to the problem that we describe below.

5.2.2. Combinatorial algorithm. — A natural approach is to seek for a "combinatorial algorithm" that iteratively
blows up disjoint unions of a few closures of connected components of log-inertia strata (i.e. intersections of
a log stratum with an inertia stratum). For example, our (very simple) algorithms in §4 were of this type. The
choice of the centers should be governed by the following combinatorial data: the number of components of Z
through a point x and the history of their appearance (similarly to the desingularization algorithms), and the
representation of Gx on Ty plus the history of representations (i.e. the list of representations for all predecessors
of x in the blow up tower).

It is natural to expect that building such an algorithm would lead to a relatively simple proof of Theorem
1.1. In particular, it would be non-sensitive to quasi-excellence issues. Unfortunately, despite partial positive
results, we could not construct such an algorithm. Thus, the question whether it exists remains open. )

5.2.3. Our method. — A general plan of our method is as follows. In §5.3 we will show that such a modification
f exists étale locally on the base if X is qe. A priori, our construction will be canonical up to an auxiliary choice,
but then we will prove in §5.5 that actually it is independent of the choice and hence descends to a modification
f as required. To prove independence we will show in §5.4 that the construction is functorial with respect to
strict inert morphisms (i.e. morphisms that preserve both the log and the inertia structures, see 5.3.6). The
latter is a manifestation of the "combinatorial nature" of our algorithm.

5.3. Local construction. —

(DF. Pop told the second author that he has a plan for constructing such a combinatorial algorithm.
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5.3.1. Very tame action and Zariski topology. — Note that the log structure on (X, Z) is Zariski since Z is snc.
Thus, it will be convenient to describe very tame action in terms of Zariski topology. We say that the action
of G is very tame at a point x € X if for any geometric point X over x the action is very tame at x. Clearly, the
Gx-equivariant log scheme Spec(0x x) is independent of the choice of X up to an isomorphism. In particular,
the action is very tame at x if and only if it is very tame at a single geometric point X above x.

Lemma 5.3.2. — Assume that (G, X, Z)isasin §5.1, x € X is a point, and T is the set of points of X at which the action
is very tame. Then

(i) T is open,

(ii) x € T if and only if the local log stratification of X (see Remark 3.3.2) is finer than the inertia stratification in a
neighborhood of x.

Proof. — The first assertion follows from exp. VI, 3.9. To prove the second claim we note that the conditions
(i) and (ii) from exp. VI, 3.1 are automatically satisfied at x. Indeed, (i) is satisfied because the action is tame
by assumption of 1.1 and (ii) is satisfied because Z is snc and G-strict. Since log and inertia stratifications are
compatible with the strict henselization morphism, condition (iii) from exp. VI, 3.1 is satisfied at X if and only
if the local log stratification is finer than the inertia stratification at x. This proves (ii). O

5.3.3. Admissibility. — In the sequel, by saying that X is admissible we mean that the action of G on X is
admissible in the sense of [SGA 1 v 1.7] (e.g. X is affine). This is needed to ensure that X/G exists as a scheme.
An alternative would be to allow X/G to be an algebraic space (and (X/G, Z/G) to be a log algebraic space).

5.3.4. Rigidification. — By a rigidification of X we mean a G-equivariant normal crossings divisor Z that con-
tains Z and such that the action of G on the log regular log scheme X = (X, Z) is very tame. If Z is snc then we
say that the rigidification is strict. Sometimes, by a rigidification of X = (X, Z) we will mean the log scheme X
itself. Our construction of a modification f uses a rigidification, so let us first establish local results on existence
of the latter.

In the sequel, we say that py is split over a scheme X if it is isomorphic to the discrete group (Z/NZ)*
over X. This happens if and only if X admits a morphism to Spec(Z[;, un]), where we use the notation

Z[%) HN] - Z[%,X]/(Xn - ])

Lemma 5.3.5. — Let X,Z, G be as in §5.1. Assume that X = Spec(A) is a local scheme with closed point x, and pn is
split over X, where N is the order of G = Gx. Then X possesses a strict rigidification.

Proof. — Choose ti,...,tn € A such that Z; = (t;) are the components of Z. By G-strictness of Z, for any
g € G we have that Z; = (gt;) locally at x, in particular, the tangent space to each Z; at x is G-invariant.
Now, we can use averaging by the G-action to make the parameters G-equivariant. Namely, G acts on dt; by
a character x; and replacing t; with |é—‘ > e % we do not change dt; and achieve that gt; = xi(g)t;.

The action of G on the cotangent space at x is diagonalizable because G is abelian and uy is split over k(x).
In particular, we can complete the family dti,...,dt, to a basis dty,...,dt; such that t; € Ox «x and G acts
on each dt; by a character x;. Then t;,...,1t; is a regular family of parameters of Ox x and using the same
averaging procedure as above we can make them G-equivariant. Take now Z to be the union of all divisors
(ti) with 1 <1i < 1. The action of G on (X, Z) is very tame at x because it is the only point of its log stratum and
so Lemma 5.3.2 applies. O

5.3.6. Inert morphisms. — Let (X, Z) and G be as in §5.1. Our next aim is to find an étale cover f : (Y, T) — (X, Z)
which "preserves" the log-inertia structure of (X, Z) and such that (Y, T) admits a rigidification. The condition
on the log structure is obvious: we want f to be strict, i.e. f~'(Z) = T. Let us introduce a restriction related to
the inertia groups.

Assume that (Y, T) with an action of H is another such triple, and let A : H — G be a homomorphism. A
A-equivariant morphism f: (Y, T) — (X, Z) will be called inert if for any point y € Y with x € X the induced
homomorphism of inertia groups Hy — Gx is an isomorphism. In particular, the inertia stratification of Y is
the preimage of the inertia stratification of X.

Remark 5.3.7. — When A is an identity, inert morphisms are usually called "fixed point reflecting". We prefer
to change the terminology since "inert" is brief and adequate.

Lemma 5.3.8. — Let X, Z and G be as above, and assume that X is ge. Then there exists a G-equivariant surjective étale
inert strict morphism h: (Y, T) — (X, Z) such that Y is affine and (Y, T) possesses a strict rigidification.
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Proof. — First, we note that the problem is local on X. Namely, it suffices for any point x € X to find a Gx-
equivariant étale inert strict morphism h: (Y, T) — (X, Z) such that Y is affine, x € h(Y), any point x’ € h(Y)
satisfies Gx» C Gx, and (Y, T) admits a strict rigidification. Indeed, h can be extended to a G-equivariant
morphism Y xx (X x G/Gx) = [[4cg/6. Yo — X, where each Y is isomorphic to Y and the morphism Y4 — X
is obtained by composing Y — X with g: X — X. Clearly, the latter morphism is étale, inert, and strict, and by
quasi-compactness of X we can combine finitely many such morphism to obtain a required cover of (X, Z).
Now, fix x € X and consider the Gx-invariant neighborhood X’ = X'\ UHQGY XH of x. We will work over
X', so the condition Gx» C Gx will be automatic. Let N be the order of Gk, and consider the Gx-equivariant
morphism f: Y =X’ x Spec(Z[%, unJ) — X (with Gy acting trivially on the second factor). Let T = f~'(Z) and
lety be any lift of x. It suffices to show that (Y, T) admits a rigidification in an affine Gx-invariant neighborhood
of y (such neighborhoods form a fundamental family of neighborhoods of y). By Lemma 5.3.5, the localization
Yy = Spec(&y,y) with the restriction T, of T possesses a strict rigidification T,. Clearly, T, extends to a divisor
T with TT—Y and we claim that it is a rigidification in a neighborhood of y. Indeed, T is snc at y, hence it is
snc in a neighborhood of y by Remark 4.2.2, and it remains to use Lemma 5.3.2. O

5.3.9. Main construction. — Assume, now, that X = (X, Z) is admissible and admits a rigidification Z. We are
going to construct a G-equivariant modification

flex.z7): (X',2") — (X, 2)

such that G acts very tamely on the target and f 5 x 7 7 is independent of the rigidification. The latter is a
subtle property (missing in the obvious modification (X, Z) — (X, Z)), and it will take us a couple of pages to
establish it. B B B

The quotient log scheme Y = (Y, T) = (X/G, Z/G) is log regular by Theorem exp. VI, 3.2, hence by Theorem
3.3.16 there exists a functorial saturated log blow up tower h = F8(Y): Y = (Y, T') = Ywitha regular and
log regular source. Let f: X' = (X’,Z") — X be the pullback of T (as a saturated log blow up tower, see 3.3.11),
then o’: X' — Y is a Kummer étale G-cover because a: X — Y is so by exp. VI, 3.2 as the square

!/

(X,Z') = (X,2)

ok
(Y, T) ——(V,T)
is cartesian in the category of fs log schemes.

Since G acts freely on U = X — Z, V = U/G is regular and T|y is snc. In particular, h is an isomorphism over
V and hence f is an isomorphism over U. We claim that the Weil divisor T = Z/G of Y is Q-Cartier (it does not
have to be Cartier, as the orbifold case with X = A%, Z = A and G = {41} shows). Indeed, it suffices to check
this étale locally at a point y € Y. In particular, we can assume that py is split over ,,;, where N = |G|. Then,
as we showed in the proof of Lemma 5.3.5, Z can be locally defined by equivariant parameters, in particular,
Z = V(f) where G acts on f by characters. Therefore, fN is G-fixed, and we obtain that T is the reduction of the
Cartier divisor C of Y given by fN = 0. (The same argument applied to T xy X shows that NT is Cartier, so T
is Q-Cartier.) So, C' = C xy Y’ is a Cartier divisor whose reductionis T' = ' (T). Since Y’ is regular and T’
lies in the snc divisor T/, we obtain that T’ is itself an snc divisor.

Let Z’ denote the divisor o/~ (T') = 7 (Z). Since X' — Y’ is étale over V = Y’ — T/, the morphism
of log schemes (X’,Z’) — (Y',T’) is a Kummer étale G-cover. This follows from a variant of the classical
Abhyankar’s lemma (exp. IX, 2.1), which is independent of the results of the present exposé.

In particular, X’ = (X', Z’) is log regular and it follows that the action of G on X’ is very tame. We define
f(G.x,z,7) to be the modification X" — X.

Remark 5.3.10. — (i) Note that X’ — X satisfies all conditions of Theorem 1.1 because the action is very tame
and G acts freely on X’ \ f~'(Z). So, we completed the proof in the case when (X, Z) admits a rigidification Z.
Our last task will be to get rid of the rigidification.

(ii) The only dependence of our construction on the rigidification is when we construct the resolution of
(Y, T). Conjecturally, it depends only on the scheme Y, and then (Y’, T’), and hence also (X', Z’), would depend
only on (X, Z). Recall that we established in Theorem 3.4.15 the particular case of this conjecture when all
maximal points of the log strata of (Y, T) are of characteristic zero. Hence independence of the rigidification is
unconditional in this case, and, fortunately, this will suffice.
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5.3.11. Finer structure of f ¢ x ;7). — Obviously, the saturated log blow up tower f: (X/, Z') = (X,Z) de-
pends on the r1g1d1f1cat10n and this is the reason why we prefer to consider the modification f g x 7 7): (X, Z') —
(X, Z) instead. However, there is an additional structure on fi6.x.2.2) that has a chance to be 1ndependent of
Z, and which should be taken into account. By §3.4.8, the modification of schemes f: X’ — X has a natural
structure of a normalized blow up tower X, with X = Xo and X’ = X,,. Note also that the tower contains no
empty blow ups because this is true for F1%8(X/G,Z/G) and f (G.x,z,Z) 18 its strict transform with respect to
the surjective morphism X — X/G.

Note also that the log structure on (X', Z’) is reconstructed uniquely from f because Z’ = f~'(Z) and (X', Z’)
is saturated and log regular. Therefore, it is safe from now on to view f g y ; 7 as a normalized blow up tower
of X, but the modification of log schemes (X’,Z") — (X, Z) will also be denoted as f (G.X,Z.Z)"

Remark 5.3.12. — Although we do not assume that X is ge, all normalizations in the tower f ¢  ; 7, are finite.
This happens because they underly saturations of fine log schemes, which are always finite morphisms.

5.4. Functoriality. — Clearly, the construction of f depends canonically on (G, X,Z,Z), i.e. is compatible
with any automorphism of such quadruple. Our next aim is to establish functoriality with respect to strict
inert A-equivariant morphisms ¢: (H,Y,T,T) — (G, X, Z,Z) (i.e. morphisms that "preserve the combinatorial
structure”). For this one has first to study the quotient morphism of log schemes $ (YYH,T/H) = (X/G,Z/G).
5.4.1. Log structure of the quotients. — Recall the following facts from Proposition exp. VI, 3.4(b) and its proof.
Assume that X = (X, Mx) is an fs log scheme provided with a very tame action of a group G. After replacing
X with its strict localization at a geometric point X, it admits an equivariant chart X — Spec(A[Q]), where
A = Z[1/N, un] for the order N of Gx, Q is an fs monoid and the action of G, is via a pairing x: Gx® Q — un.
Moreover, if P C Q is the maximal submonoid with x(Gx ® P) = 1 then Spec(A[Q]) — Spec(A[P]) is a chart of
X — X/Gx. Now, let us apply this description to the study of ¢.

Proposition 5.4.2. — Assume that fs log schemes X, Y are provided with admissible very tame actions of groups G
and H, respectively, \: H — G is a homomorphism, and &: Y — X is a strict inert A-equivariant morphism. Then the

quotient morphism (T): Y/H — X/G is strict.

Proof. — Fix a geometric point § of Y and let X be its image in X. It suffices to show that ¢ is strict at the image
of ¥ in Y/H. The morphism Y/Hy — Y/H is strict (and étale) over the image of yj, and the same is true for

X. Therefore we can replace H and G with Hy — Gg, and then we can also replace X and Y with their strict

localizations at X and . Now, the morphism X — X = X/Gyx admits an equivariant chart h: Spec(A[Q]) —
Spec(A[P]) as explained before the proposition. Since ¢ is strict, the induced morphism Y — Spec(A[Q]) is
also a chart and hence h is also a chart of Y — Y/Gy. Thus, ¢ is strict. O

5.4.3. An application to functoriality of f,. — Assume that (G, X, Z, Z) is as earlier, and let (H, Y, T, T) be another
such quadruple (i.e. (Y, T) with the action of H satisfies conditions of Steps 1,2, 3 and (Y, T) is its rigidification).

Corollary 5.4.4. — Assume that \: H — G is a homomorphism and ¢: Y — X is a A-equivariant inert morphism
underlying strict morphisms of log schemes \: (Y, T) — (X, Z) and ¥: (Y, T) — (X, Z). Then f, is compatible with ¢
in the sense that Ty, 7T) is the contraction ofcb“( (G.X.2,7) ) In addztzon OSH(F G‘X’Z‘Z)) =f6.x,2,7) XX Y.

Proof. — Since 1 is strict its quotient is strict by Proposition 5.4.2, and by functonahty of saturated monoidal
desingularization we obtain that .# Flog (Y/H,T/H) is the contracted pullback of .7 Flog (X/G,Z/G). So, both
v, and f(g x,z,7) are obtained as the contraction of the strict transform of .7 F198(X/G,Z/G). The first
claim of the Corollary follows.

Furthermore, f (G.X.2,Z) underlies a logi blow up tower of (X, Z) which is the strict transform of .7 log(X/G,Z/G),
and the same is true for f (H,Y,TT)" Since 1 is strict it follows from Lemma 3.4.6(ii) that the strict transform is a
pullback, i.e. o*(f g x 7 7)) = fg.x.z.7) Xx Y- O

5.4.5. Localizations and completions. — In particular, it follows that the construction of f, is compatible with
localizations and completions. Namely, if x € X is a point, X, = Spec(Ox x), Zx =Z XX Xy and Z,=27 XX Xy,
then f(GY,XX,Zz,Zx) is the contraction of f(G,X‘Z,Z) xx Xx. Similarly, if Xy Spec(ﬁx ), Zx = Z xx X and

~

Z, =7 xx 5(\,(, then f(G %,.5.5.) is the contraction of f(G,x,z,Z) X X 5(\,(.

XXy Xy
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5.5. Globalization. — To complete the proof of Theorem 1.1 it suffices to show that f; y ; 7 is indepen-

dent of Z, and hence the local constructions glue to a global normalized blow up tower. The main idea is to
simultaneously lift two rigidifications to characteristic zero and apply Theorem 3.4.15.

5.5.1. Independence of rigidification. — We start with the case of complete local rings. Then the problem is
solved by lifting to characteristic zero and referencing to 3.4.15. The general case will follow rather easily.

Lemma 5.5.2. — Keep assumptions on (X,Z) and G as in §5.1 and assume, in addition, that X = LIIL Spec(Ai)
where each A is a complete noetherian regular local ring with a separably closed residue field. Then for any pair of

rigidifications Z and Z' the equality flax.27) = f(c.x.z.z) Molds.

Proof. — Almost the whole argument runs independently on each irreducible component, so assume first
that X = Spec(A) is irreducible. Set k = A/ma. By Remark 5.3.10(ii), it suffices to consider the case when
char(k) = p > 0, so let C(k) be a Cohen ring of k. Note that we can work with H = Gx instead of G because
fiux.z7z) = f(e,x,z,z) by Corollary 5.4.4. Since H acts trivially on k, for any element t € A its H-averaging is
an element of A™ with the same image in the residue field. Hence k is the residue field of A" and the usual
theory of Cohen rings provides a homomorphism C(k) — AM that lifts C(k) — AH"/mau. Note that Z and
Z' are snc because each A; is strictly henselian. Using averaging on the action of H again, we can find regular
families of H-equivariant parameters z z = (z1,.. zd) and z’ = (z{,...,z}) such that Z = V(H 1zi),z{ =z
for1 <i<1l,Z=V([;z)and zZ' = V(H1 1 z1). Explicitly, the action on z; (resp. z/) is by a character
Xi: H— pn (resp. x{: H — un).

Since the image of z is a basis of the cotangent space at x, we obtain a surjective homomorphism f: B =
C(k)[[t1,...,tal] — A taking t; to z;. Provide B with the action of H which is trivial on C(k) and acts on t;
via xj, in particular, f is H-equivariant. Let us also lift each z{ to an H-equivariant parameter t{ € B. Fori <1
we take t{ = ti, and for i > 1 we first choose any lift and then replace it with its Xi—weighted H-averaging.
Consider the regular scheme Y = Spec(B) with H-equivariant snc divisors T = V(Hi ), T =V, t)
and T = V([T t)).

Since H acts vary tamely on (X, Z), it acts trivially on V(z1,...,zn) = Spec(kllzn+1,...,z4]]) and we obtain
that x; = 1 for i > n. Therefore, H also acts trivially on Spec(B/(t1,...,tn)) = Spec(C(k)[[tn+1,...,tql]) and
we obtain that the action on (Y, T) is very tame. Since the closed immersion j : X — Y is H-equivariant and
strict,and Z =T xvy X, Corollary 5.4.4 implies that f, is compatible with j, i.e., (H.X.2.Z) is the contracted strict

transform of f}, y ). The same argument applies to the rigidifications Z'and T', so it now suffices to show
that f Yy T =F (HY,TT')" For this we observe that maximal points of log strata of the log schemes (Y/H, T/H)
and (Y/H, T /H) are of characteristic zero, hence the latter equality holds by Theorem 3.4.15.

Finally, let us explain how one deals with the case of m > 1. First one finds an H-equivariant strict closed
immersion i : X — Y such that Z and Z' extend to rigidifications T and T’ of (Y,T), and the maximal points

of the log strata of (Y/H,T/H) and (Y/ H,T/ /H) are of characteristic zero. For this we apply independently
the above construction to the connected components of X. Once 1i is constructed, the same reference to 3.4.15
shows that ;v 1) = 1y y, 17y and hence f(,, x 7 7) =1 x 77/ O

Corollary 5.5.3. — Let (X,Z) and G be as in §5.1 and assume that the action is admissible. Then for any choice of
rigidifications Z and Z' we have that flex.z7) = fle.x.2.2))

Proof. — For apointx € Xlet ﬁSh denote the completion of the strict henselization of & . It suffices to check
that for any point x the normahzed blow up towers f ¢ v ; 7)and f; y ; 7, pull back to the same normalized

blow up towers of Xsh — Spec(ﬁf(hx) (with respect to the morphism Xsh 5 X). Indeed, any normalized blow up
cex Xi Xx X —
Xi is faithfully flat, hence V; is uniquely determined by Vi xx, Yi, which is the center of 2" xx [ [, cx Xsh,

By 5.4.5, f (G, K1, Z % x Ko, 7 5 5 K1) is the contracted pullback of f (G.X,Z.Z)’ and an analogous result is true for
f(G.x,z,z')- Thus the contracted pullbacks are equal by Lemma 5.5.2. We have, however, to worry also for the
synchronization, i.e. to establish equality of non-contracted pullbacks. For this we will use the following trick.
Consider the finite set S = Ass(f( x 7 7)) U Ass(f s  , 77)) (see 2.2.11). Set X =[], X, then the pull-

backs of f g x 7 7)and f 5\ , 7/ to )A(Ssh are already contracted. Now, in order to compare the pullbacks to Xsh,

tower 2 = (X, V.) is uniquely determined by its centers V;. For each i the morphism Y; = [ |

sES
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consider the pullbacks to X )A(fc,h They are contracted, so Lemma 5.5.2 (which covers disjoint unions) im-
plies that these pullbacks are equal. Restricting them onto X" we obtain equality of non-contracted pullbacks
to X5, O

Remark 5.5.4. — (i) The above corollary implies that the modification f (G,X.2,7) depends only on (G, X, Z), so
it will be denoted f (g x,z) in the sequel. At this stage, f(g x,z) is defined only when X is admissible and (X, Z)
admits a rigidification.

(ii) Corollaries 5.4.4 and 5.5.3 imply that f g x,z) is functorial with respect to equivariant strict inert mor-
phisms.

5.5.5. Theorem 1.1 — end of proof. — Let X = (X,Z) be as assumed in §5.1, and suppose that X is qe. By
Lemma 5.3.8 there exists a surjective étale inert strict morphism h: Xy — X such that X, is affine and possesses
a rigidification. Then X; = Xo xx Xo is affine and also admits a rigidification (e.g. the preimage of that of
Xo by one of the canonical projections). By Remark 5.5.4(i), Xo and X; possess normalized blow up towers
f(G,x0,20) and (g x,,z,), which are compatible with both projections X; — X, by Remark 5.5.4(ii). It follows
that (g x,,z,) is induced from a unique normalized blow up tower of X that we denote as f(g x,z). This
modification satisfies all assertions of Theorem 1.1 because f (g x,,z,) does so by Remark 5.3.10(i).

5.6. Additional properties of f(g x 7). — Finally, let us formulate an addendum to Theorem 1.1 where we
summarize additional properties of the constructed modification of (X, Z). At this stage we drop any assump-
tions on (X, Z) beyond the assumptions of 1.1. By f(g x,z) we denote below the entire modification from
Theorem 1.1 that also involves the modifications of Steps 1, 2, 3.

Theorem 5.6.1. — Keep assumptions of Theorem 1.1. In addition to assertions of the theorem, the modifications f (g x,z)
can be constructed uniformly for all triples (G, X, Z) such that the following properties are satisfied:

(i) Each f(g x,z) is provided with a structure of a normalized blow up tower and its centers are contained in the
preimages of ZUT.

(ii) For any homomorphism A : H — G the construction is functorial with respect to A-equivariant inert strict regular
morphisms (Y, T) — (X, Z).

Proof. — The total modification f(g,x,z) is obtained by composing four modifications f;, f;, f3 and f4: the
modifications from Steps 1, 2, 3 and the modification we have constructed in §5. Recall that f; and f4 are
constructed as normalized blow up towers. Modifications f, and f3 are permissible blow up towers, hence
they are also normalized blow up towers with the same centers. This establishes the first part of (i).

Concerning claim (ii), recall that normalized blow ups are compatible with regular morphisms by
Lemma 2.2.9, hence we should check that the centers of f(1y v 1) are the pullbacks of the centers of f g x,z)-
For fy, f, and f3 this is clear, so it remains to prove that if (G,X,Z) is as in §5.1 and (Y, T) — (X,Z) is
A-equivariant, inert, strict and regular then f(1y v 1) is the pullback of (g x,7z). We can work étale locally on X
(replacing Y with the base change). Thus, using Lemma 5.3.8 we can assume that X possesses a rigidification
Z. Since Y — X is regular and inert, the preimage T of Z is a rigidification of Y. Thus, f(14y,1) = f; y 17, and
fie,x,2) = f6,x,2,7) and it remains to use that LTRA RS is the pullback of fle.x.27) by Lemma 5.4.4.

To prove the second part of (i) we use (ii) to restrict f g x,z) onto U = X\ ZU T. Then U is a regular scheme
with a trivial log structure which is acted freely by G. It follows from the definitions of fq, f,, f3 and f4 that
they are trivial for such U. So, f(g u,z) is the trivial tower, and hence all centers of f(g x,z) are disjoint from
the preimage of U. O

Remark 5.6.2. — One may wonder if the functoriality in Theorem 5.6.1(ii) holds for A-equivariant strict inert
morphisms which are not necessarily regular. In this case, the normalized blow up tower of X does not have
to pullback to Y, but one can hope that f(; v 1) is the strict transform of f g x,z). We indicate without proofs
what can be done in this direction.

A careful examination of the argument shows that f; and f, are functorial with respect to all strict mor-
phisms, while f3 is functorial with respect to all schematically inert morphisms as defined below. A A-
equivariant morphism of separated schemes Y; — X is called schematically inert if for any subgroup G’ C G
the pullback X§' xx, Y1 of X§' is a disjoint union of Y1H * with A(H{) = G’. For example, if p1, acts on the coor-
dinate x of X; = Spec Q[x] by the non-trivial character then the p,-equivariant morphism X; — Xj sending x
to X3 is inert but not schematically inert.

It remains to examine the construction of f4. Note that we only used the regularity of h: Y — X to construct
compatible rigidifications of X and Y, since Lemma 5.4.4 holds for arbitrary strict inert morphisms. In fact, one
can formulate a necessary and sufficient criterion guaranteeing that étale locally on X there exist compatible
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rigidifications Z and T. Note that if Z and T exist then the inertia strata of X and Y are (set-theoretic) disjoint

unions of connected components of log-strata of Zand T. Since T' = Z' xxY, this implies that h is schematically
inert. ) )

In addition, Z' and T' are of the same codimension hence the following condition holds: (*) for any con-
nected component V of X&' with non-empty preimage in Y, the codimension of V in X equals to the codimen-
sion of V xx Y in Y. This motivates a further strengthening of the notion of inertness: a schematically inert
morphism h;: Y; — Xy is called derived inert if the morphisms h; and X1G/ — X; are Tor-independent for
any subgroup G’ C G. One can show that in the case of regular X; and Y; this happens if and only if (x) is
satisfied. For example, if p1, acts on the coordinates of X = Spec Q[x, y| by characters then the p,-equivariant
closed immersion Spec Q[x] — X is always schematically inert, and it is derived inert if and only if the action
on y is through the trivial character.

As we saw, existence of compatible rigidifications guarantees that h: Y — X is derived inert, and strengthen-
ing Lemma 5.3.8 one can show that, conversely, if h is derived inert then compatible rigidifications exist étale
locally. In particular, functoriality holds for arbitrary morphisms which are equivariant, strict and derived
inert.
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