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1. Introduction

The purpose of this paper is to present the results of [4], joint with M. C. Lopes
Filho and H. J. Nussenzveig Lopes, and some results of [9], which concern the two-
dimensional incompressible Euler equations on the full plane

∂tω + u · ∇ω = 0, div u = 0. (1)

Here u = u(t, x) : R+ × R2 → R2 is the transporting divergence-free velocity of the
fluid, and ω = ω(t, x) = curlu : R+×R2 → R is the vorticity. In the case of the full
plane, the velocity is determined by the vorticity by means of the Biot-Savart law

u(t, x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(t, y) dy ≡ K ∗ ω(t, ·)(x), (2)

where (a, b)⊥ = (−b, a).

Our aim here is to investigate global existence of special measure-valued solutions
to (1). In the setting of weak solutions to the Euler equations, a classical result by V.
I. Yudovich [13] provides global existence and uniqueness of a solution with bounded
vorticity ω ∈ L∞(L1 ∩ L∞). When the vorticity is bounded, the corresponding
velocity field is almost-Lipschitz (see (12) below), so that one may define its flow
φ = φ(t, x):

∂φ

∂t
(t, x) = u(t, φ(t, x)), φ(0, x) = x, (3)

and, since (1) is a transport equation with field u, one has

ω(t, φ(t, x)) = ω(0, x). (4)

In addition, the divergence-free condition on u implies that for all t, φ(t, ·) preserves
Lebesgue measure, so that all the norms ‖ω(t)‖Lp , 1 ≤ p ≤ +∞ are preserved. The
formulation (3)–(4) is called Lagrangian point of view.

One can also deal with weaker solutions, solving (1) in the sense of distributions
(Eulerian approach) but for which no Lagrangian description is available. For ex-
ample, global existence in the space of bounded Radon measuresM under sign and

1



2 EVELYNE MIOT

kinetic energy restrictions (i.e., ω ≥ 0 and ω ∈ L∞(M∩H−1)) is due to J.-M. Delort
[2] (see also [5, 3, 11]); but nothing is known about uniqueness in this class. These
solutions are called vortex sheets.

Another kind of special solution, referred to as point vortex dynamics, is obtained
assuming the vorticity is the superposition of Dirac masses centered at points called
point vortices

ω =
∑̀
i=1

αiδzi , αi ∈ R. (5)

Actually, point vortex dynamics is too singular to include in the usual weak formu-
lations, see [11]. Indeed, according to the Biot-Savart law (2), the corresponding
velocity field writes

u =
∑̀
i=1

αiK (· − zi) ,

it becomes singular at the point vortices and is not, even locally, square integrable.
One way to treat such solutions is to assume that each vortex moves with the speed
induced by the other vortices. Then (1) reduces formally to an Hamiltonian system
of ordinary differential equations for the vortex trajectories, known as point vortex
system in the literature

dzi
dt

=
∑
j 6=i

αjK(zi − zj), i = 1, . . . , `. (6)

Finally, in order to handle weaker solutions (including, for instance, point vortex
dynamics), F. Poupaud [10] proposed a generalized form of the Euler equations
(see (10)), taking into account an additional defect measure due to nonlinearity
defects, and obtained global existence of a solution belonging to L∞(M) under sign
restrictions.

Here we will be interested in special measure-valued solutions µ to (1) behav-
ing like the superposition of a finite number of point vortices and a non atomic,
compactly supported vorticity background

µ = ω +
∑̀
i=1

αiδzi . (7)

More precisely, we will study separately the following situations:

I) ω is a function belonging to L∞(Lp), p > 2, without sign conditions, and
αi ≥ 0 for all i ;

II) ω is a positive measure belonging to L∞(H−1), as in J.-M. Delort’s theorem,
and αi ≥ 0 for all i.

For any vorticity µ0 given by (7), the existence result by F. Poupaud [10] provides
at least one global solution µ(t) to the generalized Euler equations such that µ(0) =
µ0. However, nothing more is known about the defect measure and about the
structure of µ(t) at positive times. Here we will construct a global weak solution
µ(t), without defect measure, and such that µ(t) satisfies (7) for t ≥ 0.

The situation I) was introduced and formulated by C. Marchioro and M. Pulvirenti
[7, 8] in the early 90s. The resulting system, called vortex-wave system, was obtained
by separating the evolution for the continuous component ω, evolved using the Euler
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equations, and the evolution for the atomic part on the other hand, evolved through
the point vortex system, coupling these equations by means of the Biot-Savart law:

∂tω +

(
v +

∑̀
i=1

αiK(· − zi)

)
· ∇ω = 0, v = K ∗ ω,

dzi
dt

= v(t, zi) +
∑
j 6=i

αjK(zi − zj), i = 1, . . . , `.

(8)

In particular one retrieves the point vortex system (6) whenever ω ≡ 0.
In [7], C. Marchioro and M. Pulvirenti proved a global existence result for the

vortex-wave system (8) for p = +∞ and for single signed vortices. Uniqueness for
(8) in the general case is still an open issue, but was achieved under additional
assumptions on the behavior of ω0 near the point vortices [12, 1].

The purpose of Section 3 below is to extend the global existence result of [7] to
the case where 2 < p < +∞ (see Theorem 3.1 or Theorem 1 in [4]).

In the second situation II), the transport equation for ω in the vortex-wave system
does not make sense anymore, because the velocity v = K ∗ ω is too singular.
Therefore we have to go back to the generalized formulation introduced in [11, 10]
for the whole vorticity µ(t) = ω(t) +

∑
i αiδzi(t). This formulation relies on the

following basic observation: assume that ω is bounded. Then we have, using the
Biot-Savart law and the symmetry properties of K,∫

(u · ∇ϕ)ω dx =
1

2

∫∫
[∇ϕ(x)−∇ϕ(y)] · K̂(x− y)ω(x)ω(y) dx dy (9)

for all test function ϕ, where we have set

K̂(x) = K(x) for x 6= 0 and K̂(0) = 0.

Now, introducing

Hϕ(x, y) =
1

2
[∇ϕ(x)−∇ϕ(y)] · K̂(x− y),

we realize that Hϕ is defined and bounded on R2 × R2, vanishes at infinity, and
is continuous outside the diagonal {(x, x), x ∈ R2}. In particular, the right-hand
side of (9) is well-defined whenever ω ∈M(R2) is a bounded Radon measure. This
motivates the following definition:

Let µ0 ∈ M(R2). We say that µ ∈ L∞loc
(
R+,M(R2)

)
is a global solution of the

Euler equations with initial condition µ0 if for all function ϕ ∈ C∞c (R+ × R2), we
have ∫ ∫

∂tϕ(t, x)µ(t, x) dx dt+

∫ ∫∫
Hϕ(x, y)µ(t, x)µ(t, y) dx dy dt

=−
∫
ϕ(0, x)µ0(x) dx.

(10)

Section 4 will be devoted to the proof of global existence of a solution to (10)
behaving like (7) (see Theorem 4.1 or Théorème 4.1 in [9]).

Before stating Theorems 3.1 and 4.1 we will present in Section 2 some basic
properties of the Euler equations for later use.

Notations. We will set

ln−(r) = max(0,− ln(r)), ln+(r) = max(0, ln(r)), for r > 0.
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We will use the smooth, cut-off function χ0 : R2 → R defined by

χ0 ≡ 1 on B(0, 1), χ0 ≡ 0 on B(0, 2)c, 0 ≤ χ0 ≤ 1. (11)

2. Some useful properties of the Euler equations

First we collect some useful properties of the Biot-Savart Kernel:

K(−x) = −K(x) (antisymmetry), |K(x)| ≤ 1

|x|
,

|K(x)−K(y)| = 1

2π

|x− y|
|x||y|

(regularity away from the origin).

Next we present some preserved quantities by the flow of the Euler equations.
Assume that (ω, u = K ∗ ω), with ω ∈ L∞(L∞c ), is a solution to (1). Then

‖ω(t)‖Lp = ‖ω(0)‖Lp for all 1 ≤ p ≤ ∞,
∫
ω(t, x) dx =

∫
ω(0, x) dx.

Moreover we have the conservation of the momentum of inertia

I(ω)(t) =

∫
|x|2ω(t, x) dx = I(ω)(0),

and of the pseudo-energy

H(ω)(t) =

∫∫
ln |x− y|ω(t, x)ω(t, y) dx dy = H(ω)(0).

In Section 3 and 4, where we assume that ω +
∑

i αiδzi , with ω ∈ L∞(L∞c ), is a
solution to the vortex-wave system (8), the previous properties translate into

I(ω, {zi})(t) =

∫
|x|2ω(t, x) dx+

∑
i

αi|zi(t)|2 = I(ω, {zi})(0),

H(ω, {zi})(t) =

∫∫
ln |x− y|ω(t, x)ω(t, y) dx dy +

∑
i 6=j

αiαj ln |zi(t)− zj(t)|

+ 2
∑
i

αi

∫
ln |x− zi(t)|ω(t, x) dx = H(ω, {zi})(0).

3. The vortex-wave system (with M. C. Lopes Filho and H. J.
Nussenzveig Lopes)

3.1. Presentation and main result. This section is devoted to the vortex-wave
system (8). As already mentionned, there are two kinds of solutions to (1) or (8),
namely the Lagrangian and the Eulerian solutions.

Let p ≥ 1 and ω0 ∈ Lpc . We say that (ω, {zi}) is a Lagrangian solution to (8) on
[0, T ] with initial condition (ω0, {zi0}) if

ω ∈ L∞
(
[0, T ], Lpc(R2)

)
, zi ∈ C1([0, T ]), φ(·, x) ∈ C1([0, T ]) ∀x 6= zi0,
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where for t ∈ [0, T ]

ω(t, φ(t, x)) = ω0(x), v = K ∗ ω,
dzi
dt

= v(t, zi) +
∑
j 6=i

αjK (zi − zj) , zi(0) = zi0,

∂φ

∂t
(t, x) = v(t, φ(t, x)) +

∑̀
j=1

αjK (φ(t, x)− zj(t)) ,

φ0(x) = x, x 6= zi0.

(ODE)

Additionally, for all t, φt(·) = φ(t, ·) is a homeomorphism from R2 \ {z10, . . . , z`0}
into R2 \ {z1(t), . . . , z`(t)} preserving Lebesgue’s measure. Of course, due to the
divergence of K at the origin, the ordinary differential equations make sense only if
the fluid particles φ(t, x) do not intersect the vortex trajectories zi(t) and if there is
no collapse among the vortex trajectories on [0, T ].

In order to allow the singular fields to become infinite, one can also define another
notion of solution without involving the flow φ: solutions to the PDE in the sense of
distributions. More precisely, we say that (ω, {zi}) is an Eulerian solution if v = K∗ω
and żi = v(t, zi) +

∑
j 6=i αjK (zi − zj); moreover for all ϕ ∈ C∞c ([0, T )× R2)

∫ T

0

∫
R2

ω
(
∂tϕ+ (v +

∑̀
i=1

αiK(· − zi)) · ∇ϕ
)
dx dt

= −
∫
R2

ω0(x)ϕ(0, x) dx,

(PDE)

Such a formulation requires to give sense to the products ωv and ωK(· − zi). Since
K belongs to Lqloc for all q < 2, then ωK(· − zi) belongs to L1

loc provided p > 2. On
the other hand, the velocity v = K ∗ ω is uniformly bounded for all p > 2 (see (14)
below); hence ωv belongs to L1

loc. It is therefore natural to focus on the case where
p > 2.

In [7], C. Marchioro and M. Pulvirenti obtained a global existence result for the
vortex-wave system (8), in Lagrangian formulation, for p = +∞ and for single signed
vortices. The single sign assumption on the αi implies that the the vortices cannot
collide in finite time. Since ω is bounded, the velocity v = K ∗ω is almost-Lipschitz
[7, 8]: for all x, y ∈ R2,

|v(t, x)− v(t, y)| ≤ C(‖ω(t)‖L1 , ‖ω(t)‖L∞) |x− y|(1 + ln− |x− y|). (12)

In particular, for fixed v all ordinary differential equations involved in (ODE) are lo-
cally well-posed. Using again the almost-Lipschitz regularity for the velocity enables
to establish a priori positive lower bounds on the distances

|φ(t, x)− zi(t)| ≥ F(|x− zi(0)|), i = 1, . . . , `, (13)

for a positive function F vanishing only at the origin. It follows that there is no
collapse among the fluid trajectories and the vortex trajectories, so that the solution
is global in time.

Finally, for p = +∞ it has been established in [1] that both Lagrangian and
Eulerian formulations are equivalent.
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Assume now that 2 < p <∞ and ω ∈ L∞(Lpc). Then the corresponding velocity
v = K ∗ ω is bounded

‖v(t)‖L∞ ≤ C(p)‖ω(t)‖1−p
′/2

L1 ‖ω(t)‖p
′/2
Lp , (14)

where p′ denotes the conjugate exponent of p. Furthermore, v is Hölder continuous:

|v(t, x)− v(t, y)| ≤ C(‖ω(t)‖L1 , ‖ω(t)‖Lp) |x− y|1−2/p, ∀x, y ∈ R2.

Thus for fixed ω ∈ L∞(Lpc), there exist local in time solutions (zi(t), φt(x)) to the
ordinary differential equations in (ODE). However, in the present case the lower
bound (13) translates into

|φ(t, x)− zi(t)|1−2/p ≥ |x− zi(0)|1−2/p − Ct.

Hence one cannot exclude possible collapse in finite time between the fluid trajecto-
ries and the vortices and we do not hope to establish global existence of a Lagrangian
solution to (8). Nevertheless, as already mentionned all terms involved in the weak
formulation (PDE) are well-defined. The main result of this section is the following

Theorem 3.1. Let p > 2 and let ω0 ∈ Lp(R2) have compact support. Let {zi0}, i =
1, . . . , ` be ` distinct points in R2, and let αi, i = 1, . . . , `, be positive numbers. Then
there exists a global weak solution of the vortex-wave system with this initial data.

Remark 3.2. Without the sign restriction on the intensities αi we cannot hope for
a global existence theorem, since, even in the absence of the continuous vorticity,
collisions in finite time are known to exist (see [8]). However, for αi ∈ R one can
prove local existence of a solution to the vortex-wave system [4].

3.2. Some elements for the proof of Theorem 3.1. We sketch now the proof of
Theorem 3.1. First, we regularize the initial vorticity by introducing ωδ0 = ρδ ∗ ω0 ∈
L∞c (R2), where {ρδ}0<δ<1 is a standard mollifier, and we consider a resulting global
solution (ωδ, {zδi }, φδ) of the vortex-wave system provided by C. Marchioro and M.
Pulvirenti’s result. We then establish uniform estimates with respect to δ to obtain
compactness and a weak limit (ω, {zi}), and finally we show that (ω, {zi}) is a weak
solution to (8).

We set

vδ = K ∗ ωδ, Kδ(t, x) =
∑̀
i=1

αiK
(
x− zδi (t)

)
=
∑̀
i=1

αiK
δ
i (t, x).

Uniform estimates and compactness. By Section 2 and (14), {ωδ} is uni-
formly bounded in L∞(L1 ∩ Lp) and {vδ} is uniformly bounded in L∞. Moreover,
the following bounds hold

Proposition 3.3. We have

max
i
|zδi (t)| ≤ C(1 + t), |φδt (x)| ≤ C(1 + t), ∀x ∈ supp (ω0), ∀t ≥ 0.

Proof. We consider the momentum of inertia

Iδ(t) =
∑̀
i=1

αi|zδi (t)|2.

For the point vortex system (6) it is constant in time. For the vortex-wave system
this quantity is no longer conserved, but we can obtain some control of its growth.
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Indeed, symmetry properties of the kernel K and the sign assumption on the αi
yield

dIδ

dt
(t) = 2

∑̀
i=1

αiz
δ
i (t) · vδ(t, zδi (t)) ≤ C

∑̀
i=1

αi|zδi (t)| ≤ C
√
Iδ(t),

whence the control on the vortex trajectories. To control the support of ωδ, we
consider x 6= zi0 ∈ supp (ω0). Then, if the flow φδt (x) is close to one of the point
vortices, it lies in B(C(1 + t)) in view of the previous bounds. Otherwise it is far
from all of them; but then its total velocity vδ + Kδ is bounded. One can then
conclude. �

Proposition 3.4. There exists a positive and continuous function t 7→ d(t) > 0
such that

min
i 6=j
|zδi (t)− zδj (t)| ≥ d(t), ∀t ≥ 0.

Proof. Set

Hδ(t) =
∑
i 6=j

αiαj ln− |zδi (t)− zδj (t)|,

so that

Hδ(t) ≤−H(ωδ, {zδi })(0) +

∣∣∣∣∫∫ ln |x− y|ωδ(t, x)ωδ(t, y) dx dy

∣∣∣∣
+ 2

∑̀
i=1

αi

∣∣∣∣∫ ln |x− zδi (t)|ωδ(t, x) dx

∣∣∣∣+
∑
i 6=j

αiαj ln+ |zδi (t)− zδj (t)|.

Using various uniform bounds for {ωδ} and the estimates of Proposition 3.3 we infer
that

Hδ(t) ≤ C (1 + ln(1 + t))

and the conclusion follows, since all the αi are positive.
�

Passing to the limit1. Invoking the previous estimates and standard compact-
ness arguments, we are in position to find (ω, {zi}) such that, up to a subsequence
still denoted by δ, we have

1) ωδ(t) ⇀ ω(t) weakly in Lp for all t ≥ 0.
2) vδ = K ∗ ωδ → v = K ∗ ω locally uniformly on R+ × R2.
3) zδi → zi locally uniformly on R+, ∀i, therefore
4) Kδ

i → Ki = K(· − zi) locally uniformly away from zi, ∀i.
It remains to show that (ω, {zi}) is a weak solution to the vortex-wave system. In

view of 2), 3) and 4), and using Proposition 3.4 it is straightforward to establish the
ordinary differential equations satisfied by the {zi}, since {vδ(zδi ) +

∑
j 6=i αjK

δ
j (zδi )}

converge locally uniformly. Next we want to prove that

∂tω + div ((v +K)ω) = 0 in D′(R+ × R2),

where K =
∑

i αiKi. In fact, given 1) and 2) we only have to worry about the

convergence of the non linear term ωδKδ, given in the following

Proposition 3.5. We have ωδKδ → ωK in D′(R+ × R2).

1[4] presents a slightly different proof, based on the symmetry properties of K.
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Proof. As a matter of fact, by 1) it suffices to show that

ωδ(Kδ −K)→ 0 in D′(R+ × R2). (15)

By virtue of 1), 3) and 4) we already know that (15) holds away from the vortices.
Let ϕ be a test function such that supp (ϕ) ⊂ [0, T ]×R2. We introduce a parameter
0 < ε < 1 and we set

χiε(t, z) = χ0

(
z − zi(t)

ε

)
, χε =

∑̀
i=1

χiε,

where χ0 is defined in (11). By Proposition 3.4, one can choose ε small enough so

that χiε(t, ·) and χjε(t, ·) have disjoint supports on [0, T ] for i 6= j and

χε(t, ·) ≡ 1 on
⋃̀
i=1

B
(
zi(t),

ε

2

)
.

Then, we set

ϕ = ϕ(1− χε) +
∑̀
i=1

ϕχiε.

Fixing ε and letting δ → 0, we readily obtain by definition of χε and 1), 4)∫∫
ωδ

(Kδ −K) · ϕ(1− χε) +
∑̀
i=1

∑
j 6=i

(
Kδ
j −Kj

)
· ϕχiε

 dx dt→ 0. (16)

On the other hand, Cauchy-Schwarz inequality yields for all i∣∣∣∣∫∫ ωδ(Kδ
i −Ki) · ϕχiε dx dt

∣∣∣∣
≤ C‖ω0‖Lp‖ϕ‖L∞ sup

t∈[0,T ]

(∥∥∥∥ 1

|x− zδi (t)|

∥∥∥∥
Lp′ (B(zi(t),2ε))

+

∥∥∥∥ 1

|x− zi(t)|

∥∥∥∥
Lp′ (B(zi(t),2ε))

)
.

One may chose δ sufficiently small so that supt∈[0,T ] |zi(t)− zδi (t)| ≤ ε. Therefore∣∣∣∣∫∫ ωδ(Kδ
i −Ki) · ϕχiε dx dt

∣∣∣∣ ≤ C‖|x|−1‖Lp′ (B(0,3ε)) ≤ Cε
2/p′−1. (17)

In conclusion, (16) and (17) yield

lim sup
δ→0

∣∣∣∣∫∫ ωδ(Kδ −K) · ϕdx dt
∣∣∣∣ ≤ Cε2/p′−1,

and (15) follows by letting finally ε→ 0.
�

4. Vortex sheets and point vortices

4.1. Presentation and main result. The main result of this section is the follow-
ing

Theorem 4.1. Let ω0 be a positive, compactly supported Radon measure belonging
to H−1(R2). Let z0 ∈ R2 not belonging to the support of ω0. Let α ≥ 0 and set
µ0 = ω0 + αδz0. There exists a global solution of the Euler equations µ, in the
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sense of Definition (10), such that µ ≥ 0, t 7→
∫
ϕ(t, x)µ(t, x) dx is continuous

∀ϕ ∈ C0
0 (R2), and µ(0) = µ0. Moreover, we have

µ(t) = ω(t) + αδz(t), ∀t ≥ 0,

where z ∈ C1/2(R+,R2) and ω ∈ L∞
(
R+, H

−1(R2)
)
.

Remark 4.2. Using suitable test functions in the formulation (10), one can show
that if µ = ω+αδz is a solution of (10) and if moreover ω ∈ L∞(Lpc) for some p > 2,
then z ∈W 1,∞ and (ω, z) is a solution of the vortex-wave system (8).

Remark 4.3. Theorem 4.1 easily extends to the case of several point vortices having
all positive intensities. Moreover, the same conclusion holds replacing the assump-
tion z0 /∈ supp (ω0) by the assumption ln |z0 − ·|ω0 ∈M(R2).

Without loss of generality, we will further assume that α = 1.

4.2. Sketch of the proof of Theorem 4.1. In order to establish Theorem 4.1,
we will adapt the result obtained by A. J. Majda [5] for vorticites without atomic
part (α = 0) to the present case (α = 1). In particular, we will exploit as in [5] the
notion of pseudo-energy, which has been already defined in Section 2 for bounded
vorticities:

H(ω) =

∫∫
ln |x− y|ω(x)ω(y) dx dy.

In fact, this definition extends to positive, compactly supported measures belonging
to H−1; one has (see e.g. [5] or [6]):

|H(ω)| ≤ C, (18)

where C depends only on
∫
ω, ‖ω‖H−1 and supp (ω).

One has also the converse estimate

‖ω‖H−1 ≤ C ′, (19)

where C ′ depends only on
∫
ω, |H(ω)| and

∫
|x|2ω. It should be mentionned that,

in contrary to estimate (18), estimate (19) does not involve the size of the support
of ω.

We proceed as in the proof of Theorem 3.1, considering a sequence of global
solutions (ωδ, zδ), with ωδ ∈ L∞, to the vortex-wave system (8). Introducing the
full vorticity µδ = ωδ + δzδ , we obtain a sequence of global solutions to (10). We
then establish uniform estimates and pass to the limit in (10).

Uniform estimates and compactness. For t ≥ 0 and 0 < δ < 1, ωδ(t) is
positive, bounded and compactly supported. By assumption on µ0 we get uniform
bounds on the full momentum of inertia and on the full pseudo-energy

I(ωδ, zδ)(t) = I(ωδ, zδ)(0) ≤ C (20)

and

|H(ωδ, zδ)(t)| = |H(ωδ, zδ)(0)| ≤ C. (21)

We next establish some compactness for {µδ}. It is uniformly bounded in L∞(M).
Moreover, since µδ satisfies (10) we have for all ϕ ∈ C∞c and s, t ≥ 0∣∣∣∣∫

R2

ϕ(x)µδ(t, x) dx−
∫
R2

ϕ(x)µδ(s, x) dx

∣∣∣∣ ≤ C‖D2ϕ‖L∞ |t− s|, (22)
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hence t 7→
∫
ϕ(x)µδ(t, x) dx is uniformly bounded and equicontinuous. By a stan-

dard density argument and Ascoli’s theorem we conclude that there exists µ ≥ 0
such that, up to a subsequence, µδ(t) converges to µ(t) and µδ(t)⊗µδ(t) to µ(t)⊗µ(t)
vaguely, locally uniformly with respect to t ≥ 0.

The next step is to show that ωδ does not concentrate in the limit δ → 0. For
this the sign assumption on µ0 plays a crucial role.

Lemma 4.4. There exists a constant C depending only on µ0 such that for 0 < r <
1/2 we have

sup
t≥0

sup
0<δ<1

sup
x0∈R2

∫
B(x0,r)

ωδ(t, x) dx ≤ C| ln r|−1/2.

Proof. Recall that ωδ ≥ 0; therefore, by virtue of a result of [5] (page 932), in order
to prove Lemma 4.4 it suffices to obtain a uniform bound for the pseudo-energy
H(ωδ)(t) associated to ωδ. We have by direct computations∣∣H(ωδ)(t)

∣∣ ≤ |H(ωδ, zδ)(t)|

+ C

(∫∫
ln+ |x− y|ωδ(t, x)ωδ(t, y) dx dy +

∫
ln+ |zδ(t)− x|ωδ(t, x) dx

)
.

Using the basic inequality ln+ |x − y| ≤ |x|2 + |y|2 for x, y ∈ R2 and the estimates
(20) and (21) we obtain a uniform bound on |H(ωδ)(t)|, as we wanted. �

Lemma 4.5. There exists z ∈ C1/2(R+,R2) such that, up to a subsequence, zδ

converges to z uniformly on compact sets of R+.

Proof. The sequence {zδ} is uniformly bounded on R+ by (20). It is also uniformly
equicontinuous. Indeed, let ϕ ∈ C∞c (R2). By (22) we have∣∣∣ϕ(zδ(t))− ϕ(zδ(s))

∣∣∣ ≤ C‖D2ϕ‖∞|t− s|+
∫
R2

ωδ(t, x)|ϕ(x)| dx+

∫
R2

ωδ(s, x)|ϕ(x)| dx.

Let 0 < η < 1 and K > 1 be two constants, depending only on µ0, to be determined
later. For t, s satisfying |t− s| ≤ η, we assume by contradiction that

|zδ(t)− zδ(s)| > K|t− s|1/2.

Set

r =
K|t− s|1/2

2
;

decreasing η if necessary, we may assume that r < 1/4. Next, we choose

ϕ(x) = χ0

(
x− zδ(s)

r

)
,

where χ0 is the cut-off function defined by (11). Clearly we have ϕ(zδ(t)) = 0, while
ϕ(zδ(s)) = 1. On the other hand, Lemma 4.4 implies that∫

R2

ωδ(s, x)ϕ(x) dx ≤
∫
B(zδ(s),2r)

ωδ(s, x) dx ≤ C| ln r|−1/2,

and the same estimate holds true for ωδ(t). Finally, using the fact that ‖D2ϕ‖∞ ≤
Cr−2 we find

1 ≤ C| ln r|−1/2 +
C

r2
|t− s| ≤ C

(
| ln r|−1/2 +K−2

)
, (23)
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where C depends only on µ0. One may choose K large enough, then η sufficiently
small, so that the right-hand side of (23) is smaller than 1. We are led to a contra-

diction, therefore {zδ} is uniformly equicontinuous on R+. The existence of z ∈ C1/2

such that zδ converges to z (up to a subsequence) uniformly on compact sets follows
from Ascoli’s theorem. �

Lemma 4.6. There exists a positive ω ∈ L∞
(
R+,M∩H−1(R2)

)
such that, up to a

subsequence, ωδ(t) converges to ω(t) vaguely, locally uniformly with respect to t ≥ 0.
The estimate of Lemma 4.4 holds for ω.

Proof. Setting ω(t) = µ(t) − δz(t), the only point to check is the fact that ω ∈
L∞

(
H−1

)
. We already know that |H(ωδ)(t)| is uniformly bounded. Thanks to (19)

and (20), we obtain that {ωδ} is uniformly bounded in L∞
(
H−1

)
. The conclusion

follows. �

Passing to the limit. We finally show that µ satisfies the formulation (10). As
a matter of fact, in view of the weak convergence of µδ to µ, we only have to prove
that for all T > 0, for all ψ ∈ C∞c ([0, T )) and ϕ ∈ C∞c (R2) the non linear term∫ ∫∫

ψ(t)Hϕ(x, y)µδ(t, x)µδ(t, y) dx dy dt

passes to the limit as δ tends to zero. Observe that, since Hϕ(·, ·) vanishes on the
diagonal, we have

Hϕ(x, y)µδ(x)µδ(y) = Hϕ(x, y)ωδ(x)ωδ(y) +Hϕ(x, zδ)ωδ(x) +Hϕ(zδ, y)ωδ(y).

Hence it suffices to establish that∫∫∫
ψHϕ(x, y)ωδ(t, x)ωδ(t, y) dx dy dt→

∫∫∫
ψHϕ(x, y)ω(t, x)ω(t, y) dx dy dt

(24)

and ∫∫
ψHϕ(x, zδ(t))ωδ(t, x) dx dt→

∫∫
ψHϕ(x, z(t))ω(t, x) dx dt. (25)

In doing this, the major difficulty is due to the discontinuity of Hϕ on the diagonal,

therefore the weak convergences of ωδ and ωδ ⊗ ωδ to ω and ω ⊗ ω do not allow
to pass to the limit in (24) and (25). However, the crucial observation in [2, 5, 11]
is the fact that, since ωδ does not concentrate on the diagonal (see Lemma 4.4),
the contribution of Hϕ(x, y)ωδ ⊗ ωδ on {(x, y) : |x − y| ≤ ε} or Hϕ(x, zδ)ωδ on

{x : |x− zδ| ≤ ε}, for a small parameter ε, is small uniformly with respect to δ.

First, (24) directly follows from the by now standard arguments of [2, 5, 11], since
{ωδ} satisfies all required assumptions.

We next establish (25) by similar arguments. We introduce a small ε > 0 and the
cut-off function χε(t, x) = χ0((x− z(t))/ε), where χ0 is defined in (11).

We will first show that for fixed ε we have as δ → 0∫ ∫
ψ(t)(1− χε)Hϕ(x, zδ)ωδ dx dt→

∫ ∫
ψ(t)(1− χε)Hϕ(x, z)ω dx dt. (26)

Indeed, in view of the definition of Hϕ we have∫ ∫
ψ(t)(1− χε)Hϕ(x, zδ)ωδ dx dt = Iδ + Jδ +Kδ,
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where

Iδ =

∫ ∫
ψ(t)(1− χε)Hϕ(x, z)ωδ dx dt,

Jδ =

∫ ∫
ψ(t)(1− χε)

1

2

[
∇ϕ(z)−∇ϕ(zδ)

]
·K(x− z)ωδ dx dt,

Kδ =

∫ ∫
ψ(t)(1− χε)

1

2

[
∇ϕ(x)−∇ϕ(zδ)

]
·
[
K(x− zδ)−K(x− z)

]
ωδ dx dt.

First, using the regularity of K away from zero, the fact that 1 − χε vanishes in
a neighborhood of z(t) and Lemma 4.5 we obtain

lim sup
δ→0

(
|Jδ|+ |Kδ|

)
≤ lim sup

δ→0

(
C(ε, ϕ) sup

t∈[0,T ]
|z(t)− zδ(t)|

)
= 0.

On the other hand, since ψ(1−χε)Hϕ(·, z) belongs to L1
(
C0
0

)
we have, using the

convergence of ωδ to ω,

lim
δ→0

Iδ =

∫ ∫
ψ(t)(1− χε)Hϕ(x, z)ω dx dt.

Hence we obtain (26).
Finally, invoking Lemma 4.4 we can estimate the remaining contribution to the

integral as follows

sup
0<δ<1

∣∣∣∣∫ ∫ ψ(t)χεHϕ(x, zδ)ωδ dx dt

∣∣∣∣ ≤ C| ln ε|−1/2, (27)

and the same estimate holds replacing ωδ by ω.
Letting eventually ε go to zero, (26) and (27) lead to (25) and the proof of Theorem

4.1 is complete.

Acknowledgments. The author warmly thanks Didier Smets and Franck Sueur
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[9] E. Miot, Quelques problèmes relatifs à la dynamique des points vortex dans les équations
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