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Poisson algebra - An algebra, usually over the field of real or complex numbers, equipped with a
bilinear mapping satisfying the properties of the usual Poisson bracket of functions. Let A be an associative
commutative algebra over a commutative ring, R. A Poisson algebra structure on A is defined by an R-
bilinear, skew-symmetric mapping, { , } : A×A → A such that (i) (A, { , }) is a Lie algebra over R, (ii) the
Leibniz rule is satisfied, namely, {a, bc} = {a, b}c + b{a, c}, for all a, b, c ∈ A. The element {a, b} is called
the Poisson bracket of a and b. The main example is that of the algebra of smooth functions on a Poisson

manifold [5].
On a Poisson algebra, one can define [12] a skew-symmetric, A-bilinear map, P , which generalizes

the Poisson bivector on Poisson manifolds, mapping a pair of Kähler (or formal) differentials on A to the
algebra A itself. There exists a unique R-bilinear bracket, [ , ]P on the A-module, Ω1(A), of Kähler
differentials satisfying [da, db]P = d{a, b} and lending it the structure of a Lie-Rinehart algebra, [da, fdb]P =
f [da, db]P + P ](da)(f)db, for all a, b, f in A. (Here P ] is the adjoint of P , mapping the Kähler differentials
into the derivations of A.) The Poisson cohomology of A is then defined and, when Ω1(A) is projective as
an A-module, is equal to the cohomology of the complex of alternating A-linear maps on Ω1(A) with values
in A, with the differential [1] defined by the Lie-Rinehart algebra structure. In the case of the algebra of
functions on a smooth manifold, the Poisson cohomology coincides with the cohomology of the complex of
multivectors, with differential dP = [P, .], where P is the Poisson bivector and [ , ] is the Schouten bracket.

In a canonical ring [4], the Poisson bracket is defined by a given mapping P ]. Dirac structures [13] on
complexes over Lie algebras are a generalization of the Poisson algebras, adapted to the theory of infinite-
dimensional Hamiltonian systems, where the ring of functions is replaced by the vector space of functionals.

In the category of Z-graded algebras, there are even and odd Poisson algebras, called graded Poisson

algebras and Gerstenhaber algebras, respectively. Let A = ⊕Ai be an associative, graded commutative
algebra. A graded Poisson (resp., Gerstenhaber) algebra structure on A is a graded Lie algebra structure
{ , } (resp., where the grading is shifted by 1), such that a graded version of the Leibniz rule holds: for each
a ∈ Ai, {a, .} is a derivation of degree i (resp., i+1) of the graded commutative algebra A = ⊕Ai. Examples
of Gerstenhaber algebras are: the Hochschild cohomology of an associative algebra [2], in particular, the
Schouten algebra of multivectors on a smooth manifold [3], the exterior algebra of a Lie algebra, the algebra
of differential forms on a Poisson manifold [9], the space of sections of the exterior algebra of a Lie algebroid,
the algebra of functions on an odd Poisson supermanifold of type (n|n) [7]. Batalin-Vilkovisky or BV-algebras

are exact Gerstenhaber algebras, i. e., their Lie bracket is a coboundary in the graded Hochschild cohomology
of the algebra. Such structures arise on the BRST cohomology of topological field theories [14].
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