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Abstract

J. Sekiguchi determined the semisimple symmetric pairs (g, h), called nice symmetric pairs, on
which there is no non-zero invariant eigendistribution with singular support. On such pairs, we
study regularity of invariant distributions annihilated by a polynomial of the Casimir operator.
We deduce that invariant eigendistributions on (gl(4,R), gl(2,R)×gl(2,R)) are locally integrable
functions.
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Introduction

Let G be a reductive group such that Ad(G) is connected. Let σ be an involutive automor-
phism of G. We denote by the same letter σ the corresponding involution on the Lie algebra g

of G. Let g = h⊕ q be the decomposition into +1 and −1 eigenspaces with respect to σ. Then
(g, h) is called a reductive symmetric pair (or semisimple when g is semisimple). Let H be the
group of fixed points of σ in G.

In [7], J. Sekiguchi describes semisimple symmetric pairs on which there is no non-zero
invariant eigendistribution with support in q − qreg where qreg is the set of semisimple regular
elements of q. These pairs, called nice symmetric pairs, are characterized by a property on
distinguished nilpotent elements and we can generalize this notion to reductive pairs (Definition
4.1). Our main result is the following . Let ω be the Casimir polynomial of q and ∂(ω) the
corresponding differential operator on q.

Theorem 0.1. Let (g, h) be a nice reductive symmetric pair. Let V be an H- invariant open
subset of q. Let Θ be an H-invariant distribution on V such that

1. There exists P ∈ C[X] such that P
(
∂(ω)

)
Θ = 0,

2. There exists F ∈ L1
loc(V)H such that Θ = F on V ∩ qreg.

Then Θ = F as distribution on V.

In [2], E. Galina and Y. Laurent obtained stronger results on invariant distributions on nice
symmetric pairs by different methods based on algebraic properties of D-modules. They proved
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that any invariant distribution on a nice pair which is annihilated by a finite codimensional ideal
of the algebra of H-invariant differential operators with constant coefficients on q is a locally
integrable function ([2] Corollary 1.7.6).

Our approach uses properties of distributions. Assuming that S = Θ−F is non-zero, we are
led to a contradiction. By the work of G. van Dijk ([8]) and J. Sekiguchi ([7] ), we can adapt the
descent method of Harish-Chandra. Thus, we construct a non-zero distribution S̃ defined on a
neighborhood W of 0 in Rr×Rm with support in ({0}×Rm)∩W such that there exist a locally
integrable function F̃ on W and a differential operator D, which is obtained from radial parts
of ∂(ω) near semisimple elements and nilpotent elements, satisfying P (D)S̃ = P (D)F̃ . Using
the method developed by M. Atiyah in [1], one studies the degree of singularity along {0}×Rm
of different distributions in this equation. One deduces that S̃ = 0 and thus a contradiction.

In the last section, we complete the results of [3] on the nice symmetric pair (gl(4,R), gl(2,R)×
gl(2,R)) and deduce that any invariant eigensdistribution for a regular character on this pair is
given by a locally integrable function.

1 Notation

Let M be a smooth variety. Let C∞(M) be the space of smooth functions on M , D(M)
the subspace of compactly supported smooth functions, L1

loc(M) the space of locally integrable
functions on M , endowed with their standard topology and D′(M) the space of distributions on
M .

For a group G acting on M , one denotes by FG the points of F fixed by G for each space F
defined as above.

If N ⊂M and if f is a function defined on M , one denotes by f/N its restriction to N .
If V is a finite dimensional real vector space then V ∗ is its algebraic dual and VC is its

complexified vector space.The symmetric algebra S[V ] of V can be identified to the space R[V ∗]
of polynomial functions on V ∗ with real coefficients and to the space of differential operators
with real constant coefficients on V . Similary, one has S[VC] = C[V ∗] and this algebra can
be identified to the space of differential operators with complex constant coefficients on VC. If
u ∈ S[V ] (resp. S[VC]), then ∂(u) will denote the corresponding differential operator.

Let G be a reductive group such that Ad(G) is connected, and σ an involution on G. This
defines an involution, denoted by the same letter σ on the Lie algebra g of G. Let g = h ⊕ q

be the direct decomposition of g into the +1 and −1 eigenspaces of σ. Then (g, h) is called a
reductive symmetric pair. Let H be the subgroup of fixed points of σ in G.

Let cg be the center of g and gs its derived algebra. We set

cq = cg ∩ q and qs = gs ∩ q.

If x is an element of g and r is a subspace of g, we denote by rx the centralizer of x in r.

We fix a non-degenerate bilinear form B on g which is equal to the Killing form on gs. Then
ω(X) = B(X,X) is the Casimir polynomial of q.
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2 Transfer of distributions and differential operators

We recall results of ([8] sections 2 and 3) and ([7] section (3.2)) on restriction of distributions
and radial parts of differential operators. Their proofs are similar to ([4] or [10] Part I, chapter
2 ).

Let x0 ∈ qs. Let U be a linear subspace of q such that q = U ⊕ [x0, h] and V be a linear
subspace of h such that h = V ⊕hx0 . Consider the open subset 8U = {Z ∈ U ;U+[x0 +Z, h] = q}
containing 0. Then the map Ψ from H×8U to q defined by Ψ(h, u) = h ·(x0 +u) is a submersion.
In particular, Ω = Ψ(H ×8 U) is an open H-invariant subset of q containing x0. We fix an Haar
measure dh on H and we denote by du (respectively dx) the Lebesgue measure on U (respectively
q). The submersion Ψ induces a continuous surjective map Ψ? from D(H ×8 U) onto D(Ω) such
that, for any F ∈ L1

loc(q) and any f ∈ D(H ×8 U), one has∫
H×U

F ◦Ψ(h, u)f(h, u)dh du =
∫

q
F (x)Ψ?(f)(x)dx.

Theorem 2.1. For T ∈ D′(Ω)H there exists a unique distribution ResUT defined on 8U , called
the restriction of T to 8U with respect to Ψ, such that for any f ∈ D(H ×8 U), one has

< T,Ψ?(f) >=< ResUT, p?(f) >

where p?(f) ∈ D(U) is defined by p?(f)(u) =
∫
H
f(h, u)dh.

This restriction satisfies the following properties:

1. If U is stable under the action of a subgroup H0 of H then ResUT is H0-invariant.

2. x0 + supp (ResUT ) ⊂ supp (T ) ∩ (x0 +8 U).

3. If F ∈ L1
loc(Ω)H then ResUF is the locally integrable function on 8U defined by ResUF (u) =

F (x0 + u) .

4. If ResUT = 0 then T = 0 on Ω.

Theorem 2.2. Let D be a H-invariant differential operator on q. Then there exists a differential
operator RadU (D), called the radial part of D with respect to Ψ, defined on 8U such that for any
f ∈ D(Ω)H , one has (D · f)(x0 + u) = RadU (D) · ResUf(u) for u ∈8 U .

Morever, for any T ∈ D′(Ω)H , one has

ResU (D · T ) = RadU (D) · ResU (T ).

3 Semisimple elements

We recall that a Cartan subspace of q is a maximal abelian subspace of q consisting of
semisimple elements.

If r = q or qs, we denote by S(r) the set of semisimple elements of r.

Let a be a Cartan subspace of q. If λ ∈ g∗C, we set

gλC = {X ∈ gC; [A,X] = λ(A)X for any A ∈ aC}
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and
Σ(a) = {λ ∈ g∗C; gλC 6= {0}}.

Then Σ(a) is the root system of (gC, aC).
An element X of S(q) is q-regular (or regular) if its centralizer qX in q is a Cartan subspace. If
X ∈ a then X is regular if and only if λ(X) 6= 0 for all λ ∈ Σ(a). We denote by qreg the open
dense subset of semisimple regular elements of q.

Let A0 ∈ S(q). Its centralizer z = gA0 in g is a reductive σ-stable Lie subalgebra of g. We
denote by c its center and by zs its derived algebra. We set

c− = c ∩ q, c+ = c ∩ h, z−s = zs ∩ q and z+
s = zs ∩ h.

The pair (zs, z+
s ) is a semisimple symmetric subpair of (gs, hs) which is equal to (gs, hs) if A0 ∈ cq

. Let H+
s be the analytic subgroup of H with Lie algebra z+

s .

We assume that A0 /∈ cq. We take a Cartan subspace a of q containing A0 and consider the
corresponding root system Σ = Σ(a). We fix a positive system Σ+ of Σ. For any λ ∈ Σ+, we
choose a C-basis Xλ,1, . . . Xλ,mλ of gλC such that B(Xλ,i, σ(Xλ,j)) = −δi,j for i, j ∈ {1, . . . ,mλ}.
Let Σ+

1 = {λ ∈ Σ+;λ(A0) 6= 0}. We set

V ±C =
∑
λ∈Σ+

1

mλ∑
j=1

(
Xλ,j ± σ(Xλ,j)

)
, V + = V +

C ∩ h, V − = V −C ∩ q.

We have the decompositions h = z+ ⊕ V + and q = z− ⊕ V −, with dim V + = dim V − and
[A0, h] = V −.

If Z0 ∈ z−, we define the map ηZ0 from V + × z− to q by ηZ0(v, Z) = Z + [v,A0 + Z0]. Then
η0 is a bijective map. We set ξ(Z0) = det(ηZ0 ◦ η−1

0 ) and 8z− = {Z ∈ z−; ξ(Z) 6= 0}. Then 8z− is
invariant under H+

s .
Thus the map γ from H ×8 z− to q defined by γ(h, Z) = h · (A0 + Z) is a submersion.

By Theorem 2.1, for any H-invariant distribution Θ on q, there exists a unique H+
s -invariant

distribution Resz−Θ defined on 8z− such that, for any f ∈ D(H ×8 z−), one has < Θ, γ?(f) >=<
Resz−Θ, p?(f) >.

Let ωz− be the restriction of ω to z−. Then, one has:

Lemma 3.1. ([7]) Lemma 4.4). Let Radz−(∂(ω)) be the radial part of ∂(ω) with respect to γ
(Theorem 2.2). Then

Radz−(∂(ω)) = ξ−1/2∂(ωz−) ◦ ξ1/2 − µ

where µ(Z) = ξ(Z)−1/2
(
∂(ωz−)ξ1/2

)
(Z) is an analytic function on 8z−.

4 Nilpotent and distinguished elements

Let Z0 ∈ q. Let Z0 = A0 +X0 be its Jordan decomposition ([7] Lemma 1.1). We construct
the symmetric pair (zs, z+

s ) related to A0 as in 3.

We assume that X0 is different from zero. From ([7] Lemma 1.7), there exists a normal
sl2-triple (B0, X0, Y0) of (zs, z+

s ) containing X0, i.e. satisfying B0 ∈ z+
s and Y0 ∈ z−s such that

[B0, X0] = 2X0, [B0, Y0] = −2Y0 and [X0, Y0] = B0 .
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We set z0 = RB0 +RX0 +RY0. The Cartan involution θ0 of z0 defined by θ0 : (B0, X0, Y0)→
(−B0,−Y0,−X0) extends to a Cartan involution of zs, denoted by θ, which commutes with σ.
([8] Lemma 1). The bilinear form (X,Y ) 7→ −B(θ(X), Y ) defines a scalar product on zs.

We can decompose zs in an orthogonal sum zs =
∑

i zi of irreducible representations zi
under the adjoint action of z0. One can choose a suitable ordering of the zi such that (z−s )Y0 =∑r

i=1 zi ∩ (z−s )Y0 = θ((z−s )X0) with z1 = z0 and dim zi ∩ (z−s )Y0 = 1. We set ni + 1 = dim zi.

Hence, there exists an orthonormal basis (w1, . . . , wr) of (z−s )Y0 such that w1 =
Y0

‖Y0‖
and

[B0, wi] = −niwi for i ∈ {1, . . . , r}. In particular, one has n1 = 2.

We set

δq(Z0) = δz−s (X0) =
r∑
i=1

(ni + 2)− dim (z−s ).

Let N (z−s ) be the set of nilpotent elements of z−s .

Definition 4.1. ([7] Definitions 1.11 and 1.13)

1. An element X0 of N (z−s ) is a z−s -distinguished nilpotent element if (z−s )X0 contains no
non-zero semisimple element.

2. An element Z0 of q with Jordan decomposition Z0 = A0 + X0 is called q-distinguished if
X0 is a z−s -distinguished nilpotent element of z−s .

Definition 4.2. The symmetric pair (g, h) is nice if for any q-distinguished element Z, one has
δq(Z) > 0.

Let ωs be the restriction of ω to z−s . Though ωs is not the Casimir polynomial on z−s , one
has the following result:

Lemma 4.3. ([8] Lemma 4) The following assertions are equivalent:

1. X0 is a z−s -distinguished nilpotent element.

2. ωs(X) = 0 for all X ∈ (z−s )X0.

3. ωs(X) = 0 for all X ∈ (z−s )Y0.

4. ni > 0.

5. (z−s )X0 ∩ (z−s )Y0 = {0}.

Thus, if X0 is a z−s -distinguished nilpotent element then one has ω(X0 +X) = 2B(X0, X) =
2‖Y0‖x1 for all X ∈ (z−s )Y0 , where x1 is the first coordinate of X in the basis (w1, . . . , wr) of
(z−s )Y0 .

For any X0 ∈ N (z−s ), one has z−s = (z−s )Y0 ⊕ [z+
s , X0] and z+

s = (z+
s )X0 ⊕ [z−s , Y0]. From now on,

we set
U = (z−s )Y0 .

For X ∈ U , we consider the map ψX from [z−s , Y0]×U to z−s defined by ψX(v, z) = z+[v,X0+X].
The map ψ0 is bijective.

5



We set κ(X) = det(ψX ◦ ψ−1
0 ) and 8U = {X ∈ U ;κ(X) 6= 0}. Hence, the map π from H+

s ×8 U
to z−s defined by π(h,X) = h · (X0 +X) is a submersion.

We precise now some properties of π related to N (z−s ).

By ([9] Theorem 23]), we can write N (z−s ) = O1 ∪ . . .Oν where the Oj are disjoints H+
s -

orbits with Oν = {0} and each Oj is open in the closed set Nj = Oj ∪ . . .Oν . One assumes that
Oj = H+

s ·X0.

Lemma 4.4. ([8] Lemma 17 and 18). There exists a neighborhood U0 of 0 in U such that

1. π is a submersion on H+
s × U0,

2. Ω0 = π(H+
s × U0) is an open neighborhood of X0 in z−s and Ω0 ∩Nj = Oj,

3. Oj ∩ (X0 + U0) = {X0}

4. Let Θ be an H+
s -invariant distribution on Ω0. Let ResUΘ be its restriction to U with

respect to π.

If supp (Θ) ⊂ Nj then supp (ResUΘ) ⊂ {0}.

We denote by ωc− and ωs the restrictions of ω to c− and z−s respectively. One has ωz− =
ωc− + ωs. We precise now the radial part RadU (∂(ωs)) of ∂(ωs) with respect to π. We denote
by RadU,X(∂(ωs)) its local expression at X ∈ U0.

Lemma 4.5. ([8] Lemma 13) The homogeneous part of degree 2 of RadU,0(∂(ωs)) is zero if and
only if X0 is z−s -distinguished.

Theorem 4.6. ([8] Theorem 14) Let X0 be a z−s -distinguished nilpotent element and c0 = ‖X0‖.
Then, there exist analytic functions ai,j (2 ≤ i, j ≤ r) and ai (2 ≤ i ≤ r) on U0 satisfying
ai,j(0) = 0 such that, for any H+

s -invariant distribution T on Ω0, one has

ResU (∂(ωs)T ) = RadU ((∂(ωs))ResU (T )

=
1
c0

(
2x1

∂2

∂x2
1

+ (dim z−s )
∂

∂x1
+

r∑
i=2

(ni + 2)xi
∂2

∂x1∂xi

+
∑

2≤i≤j≤r
ai,j(X)

∂2

∂xj∂xi
+

r∑
i=2

ai(X)
∂

∂xi

)
ResU (T )

where x1, . . . , xr are the coordinates of X in the basis (w1, . . . , wr).

5 The main Theorem

Our goal is to prove the following Theorem:

Theorem 5.1. Let (g, h) be a nice reductive symmetric pair. Let V an H- invariant open subset
of q. Let Θ be an H-invariant distribution on V such that

1. There exists P ∈ C[X] such that P
(
∂(ω)

)
Θ = 0
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2. There exists F ∈ L1
loc(V)H such that Θ = F on V ∩ qreg.

Then Θ = F as distribution on V.

We will use the method developed by M. Atiyah in [1]. First we recall some facts about
distributions on Rr ×Rm. Let N be the set of non-negative integers. For α = (α1, . . . , αr) ∈ Nr,
we set |α| = α1 + . . .+ αr and

xα = xα1
1 . . . xαrr , ∂αx =

∂|α|

∂xα1
1 . . . ∂xαrr

.

For ϕ ∈ D(Rr × Rm) and ε > 0, we set ϕε(x, y) = ϕ(xε , y) for (x, y) ∈ Rr × Rm. For
T ∈ D′(Rr × Rm) we denote by Tε the distribution defined by < Tε, ϕ >=< T,ϕε >.

Definition 5.2. Let V = {0} × Rm ⊂ Rr × Rm and T ∈ D′(Rr × Rm).

1. The distribution T is regular along V if lim
ε→0

Tε = 0.

2. The distribution T has a degree of singularity along V smaller than k if for all α ∈ Nr
with |α| = k, the distribution xαT is regular.

We denote by d◦sT the degree of singularity of T along V and we omit in what follows to
precise ”along V ”. Regularity corresponds to a degree of singularity equal to 0.

3. The degree of singularity of T is equal to k if d◦sT ≤ k and d◦sT � k − 1.

Lemma 5.3. 1. If F ∈ L1
loc(Rr+m) then d◦sF = 0.

2. If d◦sT = k ≥ 1 then d◦s(xiT ) = k − 1 for i ∈ {1, . . . r}.

3. If d◦sT ≤ k then
∂

∂xi
T ≤ k + 1 for i ∈ {1, . . . r}.

4. Let δ0 be the Dirac measure at 0 ∈ Rr and δ(α)
0 = ∂αx δ0. If S ∈ D′(Rm) then the degree of

singularity of δ(α)
0 ⊗ S is equal to |α|+ 1.

Proof. 1. Let F ∈ L1
loc(Rr+m) and φ ∈ D(Rr+m) with supp(φ) ⊂ K1×K2 where K1 (resp., K2)

is a compact subset of Rr (resp., Rm). One has

|
∫

Rr×Rm
F (x, y)φ(

x

ε
, y)dxdy| ≤ sup

(x,y)∈Rr+m
|φ(x, y)|

∫
(εK1)×K2

|F (x, y)|dxdy

and the first assertion follows.
2. is clear.
3. Let α ∈ Nn such that |α| = k + 1. If αj ≥ 1 for some j ∈ {1, . . . , r}, we set ᾱj =
(α1, . . . , αj−1, αj − 1, αj+1, . . . , αr). Let ϕ ∈ D(Rr+m).

If αi ≥ 1, one has

< xα
∂

∂xi
T, ϕε >= − < T,αix

ᾱiϕε +
xα

ε
(
∂

∂xi
ϕ)ε >

= −αi < xᾱ
i
T, ϕε > − < xᾱ

i
T, (xi

∂

∂xi
ϕ)ε >
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thus (xαT )ε converges to 0 since d◦sT ≤ k.

If αi = 0, we choose j such that αj ≥ 1. One has < xα
∂

∂xi
T, ϕε >= − < xᾱ

j
T, (xj

∂

∂xi
ϕ)ε >

which tends to 0 as before.
4. We recall that for i ∈ {1, . . . , r}, one has

xliδ
(α)
0 =

{
(−1)l (αi)!

(αi−l)!δ
(α1,...,αi−l,...αn)
0 if αi ≥ l
0 if αi < l.

Hence, one has xαδ(α)
0 = (−1)|α|α!δ0 and for all β ∈ Nr with |β| = |α| + 1, one has xβδ(α)

0 = 0.
The assertion follows.

Definition 5.4. Let Γ = xβ∂αxD where D is a differential operator on Rm. Then Γ increases
the degree of singularity at most |α| − |β|. The integer |α| − |β| is called the total degree of Γ in
x.

We can define the homogeneous part of highest total degree (in x) of an analytic differential
operator developing its coefficients in Taylor series.

Proof of the Theorem. Let Θ ∈ D′(V)H and F ∈ L1
loc(V)H such that P (∂(ω))Θ = 0 for a

unitary polynomial P ∈ C[X] and Θ = F on Vreg = V ∩ qreg. We write Θ = F + S where S is
an H-invariant distribution with support contained in V − Vreg. We want to prove that S = 0,
which is equivalent to supp (S) = ∅.

Assuming S is non-zero, we are led to a contradiction. We will study S near an element
Z0 ∈ supp (S) chosen as follows:

For Z0 ∈ supp (S) with Jordan decomposition Z0 = A0 + X0, we construct the symmetric
subpair (zs, z+

s ) related to A0 and we set qA0 = z− = c− ⊕ z−s as in section 3. Let Sk be the set
of Z0 in the support of S such that rank(z−s ) = k. Since supp (S) ⊂ V − Vreg, if Z0 = A0 +X0

belongs to supp (S) then A0 is not q-regular. One deduces that S0 = ∅. Let k0 > 0 such that
S0 = S1 = . . . = Sk0−1 = ∅ and Sk0 6= ∅.

For Z0 = A0 + X0 in Sk0 , we denote by N (z−s ) = O1 ∪ . . .Oν the set of nilpotent elements
in z−s as in section 4. Since supp (S) ∩ (A0 +N (z−s )) 6= ∅, one can choose j0 ∈ {1, . . . , ν} such
that supp (S) ∩ (A0 +Oi) = ∅ for i ∈ {1, . . . j0 − 1} and supp (S) ∩ (A0 +Oj0) 6= ∅.

From now on, we fix Z0 = A0 +X0 in Sk0 such that X0 ∈ Oj0 .

For ε > 0, we denote by Wε the set of x in z−s such that, for any eigenvalue λ of adgx, one
has |λ| < ε. The choice of k0 implies that there exists ε > 0 such that supp(S) ∩ (Z0 +Wε) ⊂
supp(S) ∩ (Z0 + c− +N (z−s )). Hence, we can choose an open neighborhood Wc of 0 in c− and

an open neighborhood Ws of X0 in z−s such that

supp(S) ∩ (A0 +Wc +Ws) ⊂ supp (S) ∩ (A0 +Wc +N (z−s )). (5.1)

First case. A0 /∈ cq and X0 6= 0.
We keep the notation of section 4. We fix a normal sl2-triple (B0, Y0, X0) in (zs, z+

s ). We
choose an open neighborhood U0 of 0 in U , the centralizer of Y0 in z−s , as in Lemma 4.4. We
keep the notation of this lemma. We recall that the map γ from H ×8 z− to q defined by
γ(h, Z) = h · (A0 + Z) is a submersion. Reducing U0, Wc and Ws if necessary, we may assume
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that Wc + Ω0 ⊂ Wc +Ws ⊂8 z− and that V0 = γ(H × (Wc + Ω0)) is an open neighborhood of
Z0 contained in V.

If T is an H-invariant distribution on V, we denote by T0 its restriction to V0. By theorem
2.1, one can consider its restriction T1 = Resz−T0 to Wc + Ω0 with respect to γ. One has
A0 + supp (T1) ⊂ supp (T ) ∩ (A0 +Wc + Ω0).

We set T2 = ξ1/2T1 where ξ1/2 is the analytic function on Wc + Ω0 defined in section 3.
Now, we consider the submersion π0 from H+

s × U0 × Wc to z− defined by π0(h,X,C) =
h · (X0 +X) + C. One denotes by T3 the restriction on U0 ×Wc of T2 with respect to π0 . We
have X0 + supp(T3) ⊂ supp(T2) ∩ (X0 + U0).

Since F is a locally integrable function, the distribution F3 is the locally integrable function
on U0 ×Wc defined by F3(X,C) = ξ1/2(C +X)F (C +X).

By assumption, the distribution S3 is non-zero. By (5.1) and Lemma 4.4 (2.), one has
supp (S2) = supp (S1) ⊂ Wc + Ω0 ∩ Nj0 = Wc + Oj0 . We deduce from Lemma 4.4 (3.) that
supp (S3) ⊂ {0} × Wc. By ([6], Lemma 3), there exists a family (Sα)α of D′(Wc) such that
S3 =

∑
α∈Nr;|α|≤l

δ
(α)
0 ⊗ Sα where δ0 is the Dirac measure at 0 of U0 and for α ∈ Nr , the Sα with

|α| = l are not all zero.

By assumption, the distribution Θ satisfies P
(
∂(ω)

)
Θ = 0. By Lemma 3.1, one has

P
(

(∂(ωs) + ∂(ωc))− µ(Z)
)

Θ2 = 0 on Wc + Ω0.

Using the restriction with respect to π0, one obtains

P
(
RadU (∂(ωs)) + ∂(ωc)− µ̃

)
Θ3 = 0 on U0 ×Wc

where µ̃(X,C) = µ(C +X) for X ∈ U0 and C ∈ Wc.

Let D0 be the homogeneous part of highest total degree d of RadU (∂(ωs)). We set

P
(
RadU (∂(ωs)) + ∂(ωc)− µ̃

)
= DN

0 +D1

where N is the degree of P and D1 is a differential operator with total degree in X strictly
smaller than Nd. Since Θ3 = F3 + S3 with S3 =

∑
a∈Nr;α1≤l

δ
(α)
0 ⊗ Sα, we obtain the following

relation on U0 ×Wc:

(DN
0 +D1)S3 = (DN

0 +D1)(
∑

α∈Nr;|α|≤l

δ
(α)
0 ⊗ Sα) = −(DN

0 +D1)F3 (5.2)

We study now the degree of singularity along {0} ×Wc of the two members of (5.2).

IfX0 is not a z−s -distinguished nilpotent element then by Lemma 4.5, the homogeneous part of
degree 2 of RadU,0(∂(ωs) does not vanish and is a differential operator with constant coefficients
of degree 2. Hence the total degree of D0 is equal to d = 2. Since F3 is a locally integrable
function, it follows from Lemma 5.3 that one has d◦sF3 = 0 and d◦s((D

N
0 +D1)F3) ≤ 2N . By the

same Lemma, one has d◦s((D
N
0 +D1)S3) = l + 1 + 2N . Hence, we have a contradiction.
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Assume that X0 is a z−s -distinguished nilpotent element. Lemma 4.6 gives c0D0 = 2x1
∂2

∂x2
1

+

(dim z−s )
∂

∂x1
+

r∑
i=2

(ni + 2)xi
∂2

∂x1∂xi
+

∑
2≤i≤j≤r

ai,j(X)
∂2

∂xj∂xi
+

r∑
i=2

ai(X)
∂

∂xi
) where c0 = ‖X0‖

. Since ai,j(0) = 0, the total degree of D0 is equal to 1.

For α = (α1, . . . , αr) ∈ Nr, we set α̃i = (α1, . . . , αi−1, αi+1, αi+1 . . . αr) and ᾱi = (α1, . . . , αi−1, αi−
1, αi+1 . . . αr). The relation xiδ

(α)
0 = −αiδ(ᾱi)

0 and the above expression of D0 give

c0D0 · δ(α)
0 ⊗ Sα = λαδ

(α̃1) ⊗ Sα +
∑

2≤i≤j≤r
ai,j(X)δ(α̃i,j) ⊗ Sα +

r∑
i=2

ai(X)δ(α̃i) ⊗ Sα

where

λα = −2(α1 + 2) + dim z−s −
r∑
i=2

(ni + 2)(αi + 1).

Since n1 is equal to 2 and (g, h) is a nice pair, we obtain

λα = −δq(Z0)−
[
2α1 +

r∑
i=2

(ni + 2)αi
]
< 0 for all α ∈ Nr.

Consider α0 = (α1, . . . , αr) ∈ Nr such that |α0| = l, Sα0 6= 0 and α1 is maximal for these
properties. One deduces that the coefficient of δ(fα0

1) ⊗ Sα0 in D0 · (
∑

α∈Nr;|α|=l δ
(α)
0 ⊗ Sα) is

non-zero. Thus, the degree of singularity of (DN
0 + D1)S3 is equal to 1 + l + N . Since F3 is

locally integrable and the total degree of D0 is equal to 1, we have d◦s(D
N
0 +D1)F3 ≤ N . This

gives a contradiction in (5.2)

Second case. A0 ∈ cq and X0 6= 0.
The symmetric pair (zs, z+

s ) is equal to (gs, hs). We just consider the submersion π0 from
H × U0 ×Wc to q defined by π0(h,X,C) = h · (X0 + X) + A0 + C where U0 is defined as in
Lemma 4.4 for the symmetric pair (gs, hs).

For T ∈ D′(q)H , we denote by T1 the restriction of T to U0 ×Wc with respect to π0. As in
the first case, we have Θ1 = F1 + S1 where F1 is a locally integrable function on U0 ×Wc and
S1 is a non-zero distribution such that supp (S1) ⊂ {0} × Wc. Moreover the distribution Θ1

satisfies the relation

P
(
RadU (∂(ωs)) + ∂(ωc)

)
Θ1 = 0 on U0 ×Wc.

The same arguments as in the first case lead to the contradiction S1 = 0.

Third case. X0 = 0.
The open setsWc andWs satisfy supp (S)∩(A0+Wc+Ws) ⊂ supp (S)∩(A0+Wc+N (z−s )).

By the choice of j0, we deduce that supp (S) ∩ (A0 +Wc +Ws) ⊂ supp (S) ∩ (A0 +Wc).

If A0 ∈ cq, then V0 = A0 +Wc +Ws is an open neighborhood of A0 in q. We identify q

with qs × cq. Thus, the restriction S0 of S to V0 is different from zero and satisfies supp(S0) ⊂
{0} × (A0 +Wc). On the other hand, one has P (∂(ω))S0 = −P (∂(ω))F|V0

. Since ∂(ω) is a
second order operator with constant coefficients, we obtain a contradiction as above.
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If A0 /∈ cq, we may assume that Wc +Ws ⊂8 z−. We denote by T1 the restriction of an
H-invariant distribution T to Wc +Ws with respect to the submersion γ from H ×8 z− to q and
we consider T2 = ξ1/2T1 as distribution on Ws ×Wc. Thus, we have S2 6= 0 and supp (S2) =
{0} ×Wc. Moreover, the distribution Θ2 = F2 + S2 satisfies P

(
(∂(ωs) + ∂(ωc))− µ(Z)

)
Θ2 = 0

on Ws ×Ws by Lemma 3.1. This is equivalent to

P
(

(∂(ωs) + ∂(ωc))− µ(Z)
)
S2 = −P

(
(∂(ωs) + ∂(ωc))− µ(Z)

)
F2.

Since ∂(ωs) is a second order operator with constant coefficients, we obtain a contradiction as
above.

This achieves the proof of the Theorem.

6 Application to
(
gl(4,R), gl(2,R)× gl(2,R)

)
On G = GL(4,R) and its Lie algebra g = gl(4,R), we consider the involution σ defined by

σ(X) =
(
I2 0
0 −I2

)
X

(
I2 0
0 −I2

)
where I2 is the 2× 2 identity matrix. We have g = h⊕ q

with

h =
{(

A 0
0 B

)
;A,B ∈ gl(2,R)

}
and q =

{(
0 Y
Z 0

)
;Y,Z ∈ gl((2,R)

}
.

By ([7] Theorem 6.3), the symmetric pair
(
gl((4,R), gl((2,R)× gl((2,R)

)
is a nice pair.

We first recall some results of [3]. Let κ(X,X ′) =
1
2
tr(XX ′). The restriction of κ to the

derived algebra of g is a multiple of the Killing form. Let S(qC)HC be subalgebra of S(qC) of all
elements invariant under HC. We identify S(qC)HC with the algebra of HC-invariant differential
operators on qC with constant coefficients. Using κ, we identify S(qC)HC with the algebra

C[qC]HC of HC-invariant polynomials on qC. A basis of C[qC]HC is given by Q(X) =
1
2
tr(X2)

and S(X) = det(X). The Casimir polynomial is just a multiple of Q.

By ([3] Lemma 1.3.1), the H-orbit of a semisimple element X =
(

0 Y
Z 0

)
of q is charac-

terized by (Q(X), S(X)) or by the set {ν1(X), ν2(X)} of eigenvalues of Y Z, where the functions
ν1 and ν2 are defined as follows: let Y be the Heaviside function. Let S0 = Q2 − 4S and
δ = ιY (−S0)

√
|S0|. We set

ν1 = (Q+ δ)/2 and ν2 = (Q− δ)/2.

Regular elements of q are semisimple elements with 2 by 2 distinct eigenvalues or equivalently,
semisimple elements X of q such that ν1(X)ν2(X)(ν1(X)− ν2(X)) 6= 0 ([3] Remarque 1.3.1).

Let χ be the character of C[qC]HC defined by χ(Q) = λ1 +λ2 and χ(S) = λ1λ2 where λ1 and
λ2 are two complex numbers satisfying λ1λ2(λ1 − λ2) 6= 0.

For an open H-invariant subset V in q, we denote by D′(V)Hχ the set of H-invariant distri-
butions T with support in V such that ∂(P )T = χ(P )T for all P ∈ C[qC]HC . Let N be the
set of nilpotent elements of q and U = q − N its complement. In [3], we describe a basis of

11



the subspace of D′(U)Hχ consisting of locally integrable functions. More precisely, we obtain the
following result.

We consider the Bessel operator Lc = 4
(
z ∂2

∂z2
+ ∂

∂z

)
on C and its analogous L = 4

(
t d

2

dt2
+ d

dt

)
on R. Let Sol(Lc, λ) (resp., Sol(L, λ)) be the set of holomorphic (resp., real analytic ) functions
f on C− R− (resp., R∗) such that Lcf = λf (resp., Lf = λf). For λ ∈ C∗, we set

Φλ(z) =
∑
n≥0

(λz)n

4n(n!)2
and wλ(z) =

∑
n≥0

a(n)(λz)n

4n(n!)2
,

where a(x) = −2Γ′(x+1)
Γ(x+1) . Then (Φλ,Wλ = wλ+log(·)Φλ) form a basis of Sol(Lc, λ) , where log is

the principal determination of the logarithm function on C−R− and (Φλ,W
r
λ = wλ + log | · |Φλ)

form a basis of Sol(L, λ).

For two functions f and g defined over C, we set

S+(f, g)(X) = f(ν1(X))g(ν2(X)) + f(ν2(X))g(ν1(X))

and
[f, g](X) = f(ν1(X))g(ν2(X))− f(ν2(X))g(ν1(X)).

We define the following functions on qreg:

1.
Fana =

[Φλ1 ,Φλ2 ]
ν1 − ν2

2.
Fsing =

[Φλ1 , wλ2 ] + [wλ1 ,Φλ2 ] + log |ν1ν2|[Φλ1 ,Φλ2 ]
ν1 − ν2

3. For (A,B) ∈ {(Φλ1 ,Φλ2), (Φλ1 ,W
r
λ2

), (W r
λ1
,Φλ2), (W r

λ1
,W r

λ2
)}, we set

F+
A,B = Y (S0)

S+(A,B)
|ν1 − ν2|

where S0 = Q2 − 4S ∈ C[qC]HC and Y is the Heveaside function.

Theorem 6.1. ([3] Theorem 5.2.2 and Corollary 5.3.1).

1. The functions Fana and Fsing are locally integrable on q.

2. For (A,B) ∈ {(Φλ1 ,Φλ2), (Φλ1 ,W
r
λ2

), (W r
λ1
,Φλ2), (W r

λ1
,W r

λ2
)}, the functions F+

A,B, are
locally integrable on U .

3. The family Fana, Fsing and F+
A,B, with (A,B) as above form a basis B of the subspace of

D′(U)Hχ consisting of distributions given by a locally integrable function.

Corollary 6.2. Any invariant distribution of D′(U)Hχ is given by a locally integrable function
on U . In particular, the family B defined in the previous Theorem is a basis of D′(U)Hχ .
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Proof. Let T ∈ D′(U)Hχ . We denote by F its restriction to Ureg. By ([7] Theorem 5.3 (i)), F is
an analytic function on Ureg satisfying (∗) ∂(P )F = χ(P )F on Ureg for all P ∈ C[qC]HC .

In ([3] section 4.), we describe the analytic solutions of (∗) in terms of Φλ, Wλ and W r
λ

for λ = λ1 and λ2. By the asymptotic behaviour of orbital integrals near non-zero semisimple
elements ([3] Theorems 3.3.1 and 3.4.1), and the Weyl integration formula ([3] Lemma 3.1.2),
one deduces that F ∈ L1

loc(U)H . Theorem 5.1 gives the result.

Corollary 6.3. Any invariant distribution of D′(q)Hχ is given by a locally integrable function on
q.

Proof. Let T ∈ D′(q)Hχ . By Corollary 6.2, the restriction of T to U is a linear combination of
elements of B. By Theorem 5.1 and Theorem 6.1, it is enough to prove that the functions F+

A,B,
with (A,B) ∈ {(Φλ1 ,Φλ2), (Φλ1 ,W

r
λ2

), (W r
λ1
,Φλ2), (W r

λ1
,W r

λ2
)} are locally integrable on q or

equivalently, that the integral
∫

q
|F+
A,B(X)f(X)|dX is finite for all positive function f ∈ D(q).

For this, we will use the Weyl integration formula ([5] Proposition 1.8 and Theorem 1.27).

For ε = (ε1, ε2) with εj = ±, we define

aε =

Xε(u1, u2) =

 0
u1 0
0 u2

ε1u1 0
0 ε2u2

0

 ; (u1, u2) ∈ R2

 .

and

a2 =


 0

τ −θ
θ τ

τ −θ
θ τ

0

 ; (θ, τ) ∈ R2


By ([3], Lemma 1.2.1), the subspaces a++, a+−, a−− and a2 form a system of representatives
of H-conjugaison classes of Cartan subspaces in q. By ([3] Remark 1.3.1), an element X ∈ q

satisfies S0(X) ≥ 0 if and only if X is H-conjugate to an element of aε for some ε. Furthermore,
one has {ν1(Xε(u1, u2)), ν2(Xε(u1, u2))} = {ε1u

2
1, ε2u

2
2}.

Let f be a positive function in D(q). We define the orbital integral of f on qreg by

M(f)(X) = |ν1(X)− ν2(X)|
∫
H/ZH(X)

f(h.X)dX

where ZH(X) is the centralizer of X in H and dh is an invariant measure on H/ZH(X).

By ([5] Theorem 1.23), the orbital integralM(f) is a smooth function on qreg and there exists
a compact subset Ω of q such that M(f)(X) = 0 for all regular element X in the complement
of Ω.

Since F+
A,B is zero on a

reg
2 , one deduces from the Weyl integration formula that there exist

positive constants Cε (only depending of the choice of measures), such that one has
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∫
q
F+
A,B(X)f(X)dX =

∑
ε∈{(++),(+−),(−−)}

Cε

∫
R2

F+
A,B(Xε(u1, u2))

×M(f)(Xε(u1, u2))|u1u2(ε1u
2
1 − ε2u

2
2)|du1du2.

By definition of F+
A,B, there exist positive constants C,C1 and C2 such that, for allXε(u1, u2) ∈

Ωreg, one has

|(ε1u
2
1 − ε2u

2
2)F+

A,B(Xε(u1, u2))| ≤ C(C1 + | log |u1||)(C2 + | log |u2||).

One deduces easily the corollary from the following Lemma.

Lemma 6.4. Let f ∈ D(q). Then there exist positive contants C ′, C ′1, C
′
2 such that, for all

Xε(u1, u2) ∈ qreg one has

|M(f)(Xε(u1, u2))| ≤ C ′(C ′1 +
∣∣ log |u1|

∣∣)(C ′2 +
∣∣ log |u2|

∣∣).
Proof. Let H = KNA be the Iwasawa decomposition of H with K = O(2) × O(2), N =
N0 × N0 where N0 consists of 2 by 2 unipotent upper triangular matrices and A is the set of
diagonal matrices in H. It is easy to see that the centralizer of X in H is the set of diagonal
matrices diag((α, β, α, β) with (α, β) ∈ (R∗)2. Hence H/ZH(X) is isomorphic to K × N ×
{diag(ex, ey, 1, 1);x, y ∈ R}.

For ξ ∈ R, we set nξ =
(

1 ξ
0 1

)
. We define the function f̃ by f̃(X) =

∫
K f(k ·X)dk. Then,

one has

M(f)(Xε(u1, u2)) = |ε1u
2
1 − ε2u

2
2|
∫

R2

( ∫
R2

f̃(Y (u, ε, x, y, ξ, η))dξdη
)
dxdy

with

Y (u, ε, x, y, ξ, η) =
(( nξ 0

0 nη

)
diag(ex, ey, 1, 1)

)
·Xε,u.

Writing Y (u, ε, x, y, ξ, η) =
(

0 Y
Z 0

)
, one has

Y =
(
u1e

x −ηu1e
x + eyξu2

0 u2e
y

)
and Z =

(
ε1u1e

−x −ξε1u1e
−x + ηε2u2e

−y

0 ε2u2e
−y

)
.

Since f ∈ D(q), the function f̃ has compact support in q. Identify q with R8, there exists
T > 0 such that supp(f̃) ⊂ [−T, T ]8. If f̃(Y (u, ε, x, y, ξ, η)) 6= 0 then we have the following
inequalities:

1. |u1e
±x| ≤ T and |u2e

±y| ≤ T ,

2. | − ηu1e
x + eyξu2| ≤ T ,

3. | − ξε1u1e
−x + ηε2u2e

−y| ≤ T .
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Changing the variables (ξ, η) in (r, s) = (ξu2e
y − ηu1e

x,−ξε1u1e
−x + ηε2u2e

−y), we obtain the
result.

Remark. By ([3] Corollary 5.3.1), the function Fana defines an invariant eigendistribution on q.
At this stage, we don’t know if it is the case for the functions Fsing and F+

A,B. Indeed, the proof
of Theorem 6.1 of [3] is based on integration by parts using estimates of orbital integrals and
some of their derivates near non-zero semisimple elements of q. To determine if Fsing and F+

A,B

are eingendistributions using the same method, we have to know the behavior of derivates of
orbital integrals near 0.
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