# Regularity of some invariant distributions on nice symmetric pairs 

Pascale Harinck*


#### Abstract

J. Sekiguchi determined the semisimple symmetric pairs $(\mathfrak{g}, \mathfrak{h})$, called nice symmetric pairs, on which there is no non-zero invariant eigendistribution with singular support. On such pairs, we study regularity of invariant distributions annihilated by a polynomial of the Casimir operator. We deduce that invariant eigendistributions on $(\mathfrak{g l}(4, \mathbb{R}), \mathfrak{g l}(2, \mathbb{R}) \times \mathfrak{g l}(2, \mathbb{R}))$ are locally integrable functions.


Mathematics Subject Classification 2000:MSC classification 22E30
Keywords and phrases: Nice symmetric pairs, invariant distributions, eigendistributions, transfer of distributions, radial part of differential operators.

## Introduction

Let $G$ be a reductive group such that $\operatorname{Ad}(G)$ is connected. Let $\sigma$ be an involutive automorphism of $G$. We denote by the same letter $\sigma$ the corresponding involution on the Lie algebra $\mathfrak{g}$ of $G$. Let $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{q}$ be the decomposition into +1 and -1 eigenspaces with respect to $\sigma$. Then $(\mathfrak{g}, \mathfrak{h})$ is called a reductive symmetric pair (or semisimple when $\mathfrak{g}$ is semisimple). Let $H$ be the group of fixed points of $\sigma$ in $G$.

In [7], J. Sekiguchi describes semisimple symmetric pairs on which there is no non-zero invariant eigendistribution with support in $\mathfrak{q}-\mathfrak{q}^{\text {reg }}$ where $\mathfrak{q}^{\text {reg }}$ is the set of semisimple regular elements of $\mathfrak{q}$. These pairs, called nice symmetric pairs, are characterized by a property on distinguished nilpotent elements and we can generalize this notion to reductive pairs (Definition 4.1). Our main result is the following . Let $\omega$ be the Casimir polynomial of $\mathfrak{q}$ and $\partial(\omega)$ the corresponding differential operator on $\mathfrak{q}$.

Theorem 0.1. Let $(\mathfrak{g}, \mathfrak{h})$ be a nice reductive symmetric pair. Let $\mathcal{V}$ be an $H$-invariant open subset of $\mathfrak{q}$. Let $\Theta$ be an $H$-invariant distribution on $\mathcal{V}$ such that

1. There exists $P \in \mathbb{C}[X]$ such that $P(\partial(\omega)) \Theta=0$,
2. There exists $F \in L_{\text {loc }}^{1}(\mathcal{V})^{H}$ such that $\Theta=F$ on $\mathcal{V} \cap \mathfrak{q}^{\text {reg }}$.

Then $\Theta=F$ as distribution on $\mathcal{V}$.
In [2], E. Galina and Y. Laurent obtained stronger results on invariant distributions on nice symmetric pairs by different methods based on algebraic properties of $\mathcal{D}$-modules. They proved

[^0]that any invariant distribution on a nice pair which is annihilated by a finite codimensional ideal of the algebra of $H$-invariant differential operators with constant coefficients on $\mathfrak{q}$ is a locally integrable function ([2] Corollary 1.7.6).

Our approach uses properties of distributions. Assuming that $S=\Theta-F$ is non-zero, we are led to a contradiction. By the work of G. van Dijk ([8]) and J. Sekiguchi ([7] ), we can adapt the descent method of Harish-Chandra. Thus, we construct a non-zero distribution $\tilde{S}$ defined on a neighborhood $W$ of 0 in $\mathbb{R}^{r} \times \mathbb{R}^{m}$ with support in $\left(\{0\} \times \mathbb{R}^{m}\right) \cap W$ such that there exist a locally integrable function $\tilde{F}$ on $W$ and a differential operator $D$, which is obtained from radial parts of $\partial(\omega)$ near semisimple elements and nilpotent elements, satisfying $P(D) \tilde{S}=P(D) \tilde{F}$. Using the method developed by M. Atiyah in [1], one studies the degree of singularity along $\{0\} \times \mathbb{R}^{m}$ of different distributions in this equation. One deduces that $\widetilde{S}=0$ and thus a contradiction.

In the last section, we complete the results of $[3]$ on the nice symmetric pair $(\mathfrak{g} l(4, \mathbb{R}), \mathfrak{g l}(2, \mathbb{R}) \times$ $\mathfrak{g l}(2, \mathbb{R}))$ and deduce that any invariant eigensdistribution for a regular character on this pair is given by a locally integrable function.

## 1 Notation

Let $M$ be a smooth variety. Let $C^{\infty}(M)$ be the space of smooth functions on $M, \mathcal{D}(M)$ the subspace of compactly supported smooth functions, $L_{l o c}^{1}(M)$ the space of locally integrable functions on $M$, endowed with their standard topology and $\mathcal{D}^{\prime}(M)$ the space of distributions on $M$.

For a group $G$ acting on $M$, one denotes by $\mathcal{F}^{G}$ the points of $\mathcal{F}$ fixed by $G$ for each space $\mathcal{F}$ defined as above.

If $N \subset M$ and if $f$ is a function defined on $M$, one denotes by $f_{/ N}$ its restriction to $N$.
If $V$ is a finite dimensional real vector space then $V^{*}$ is its algebraic dual and $V_{\mathbb{C}}$ is its complexified vector space. The symmetric algebra $S[V]$ of $V$ can be identified to the space $\mathbb{R}\left[V^{*}\right]$ of polynomial functions on $V^{*}$ with real coefficients and to the space of differential operators with real constant coefficients on $V$. Similary, one has $S\left[V_{\mathbb{C}}\right]=\mathbb{C}\left[V^{*}\right]$ and this algebra can be identified to the space of differential operators with complex constant coefficients on $V_{\mathbb{C}}$. If $u \in S[V]$ (resp. $S\left[V_{\mathbb{C}}\right]$ ), then $\partial(u)$ will denote the corresponding differential operator.

Let $G$ be a reductive group such that $\operatorname{Ad}(G)$ is connected, and $\sigma$ an involution on $G$. This defines an involution, denoted by the same letter $\sigma$ on the Lie algebra $\mathfrak{g}$ of $G$. Let $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{q}$ be the direct decomposition of $\mathfrak{g}$ into the +1 and -1 eigenspaces of $\sigma$. Then $(\mathfrak{g}, \mathfrak{h})$ is called a reductive symmetric pair. Let $H$ be the subgroup of fixed points of $\sigma$ in $G$.

Let $\mathfrak{c}_{\mathfrak{g}}$ be the center of $\mathfrak{g}$ and $\mathfrak{g}_{s}$ its derived algebra. We set

$$
\mathfrak{c}_{\mathfrak{q}}=\mathfrak{c}_{\mathfrak{g}} \cap \mathfrak{q} \text { and } \mathfrak{q}_{s}=\mathfrak{g}_{s} \cap \mathfrak{q}
$$

If $x$ is an element of $\mathfrak{g}$ and $\mathfrak{r}$ is a subspace of $\mathfrak{g}$, we denote by $\mathfrak{r}_{x}$ the centralizer of $x$ in $\mathfrak{r}$.
We fix a non-degenerate bilinear form $B$ on $\mathfrak{g}$ which is equal to the Killing form on $\mathfrak{g}_{s}$. Then $\omega(X)=B(X, X)$ is the Casimir polynomial of $\mathfrak{q}$.

## 2 Transfer of distributions and differential operators

We recall results of ([8] sections 2 and 3 ) and ( $[7]$ section (3.2)) on restriction of distributions and radial parts of differential operators. Their proofs are similar to ([4] or [10] Part I, chapter 2 ).

Let $x_{0} \in \mathfrak{q}_{s}$. Let $U$ be a linear subspace of $\mathfrak{q}$ such that $\mathfrak{q}=U \oplus\left[x_{0}, \mathfrak{h}\right]$ and $V$ be a linear subspace of $\mathfrak{h}$ such that $\mathfrak{h}=V \oplus \mathfrak{h}_{x_{0}}$. Consider the open subset ${ }^{`} U=\left\{Z \in U ; U+\left[x_{0}+Z, \mathfrak{h}\right]=\mathfrak{q}\right\}$ containing 0 . Then the map $\Psi$ from $H \times^{\prime} U$ to $\mathfrak{q}$ defined by $\Psi(h, u)=h \cdot\left(x_{0}+u\right)$ is a submersion. In particular, $\Omega=\Psi\left(H \times{ }^{\prime} U\right)$ is an open $H$-invariant subset of $\mathfrak{q}$ containing $x_{0}$. We fix an Haar measure $d h$ on $H$ and we denote by $d u$ (respectively $d x$ ) the Lebesgue measure on $U$ (respectively $\mathfrak{q})$. The submersion $\Psi$ induces a continuous surjective map $\Psi_{\star}$ from $\mathcal{D}\left(H \times^{\prime} U\right)$ onto $\mathcal{D}(\Omega)$ such that, for any $F \in L_{l o c}^{1}(\mathfrak{q})$ and any $f \in \mathcal{D}\left(H \times^{\prime} U\right)$, one has

$$
\int_{H \times U} F \circ \Psi(h, u) f(h, u) d h d u=\int_{\mathfrak{q}} F(x) \Psi_{\star}(f)(x) d x .
$$

Theorem 2.1. For $T \in \mathcal{D}^{\prime}(\Omega)^{H}$ there exists a unique distribution $\mathcal{R}{ }^{4} s_{U} T$ defined on ' $U$, called the restriction of $T$ to ' $U$ with respect to $\Psi$, such that for any $f \in \mathcal{D}\left(H x^{\prime} U\right)$, one has

$$
<T, \Psi_{\star}(f)>=<\mathcal{R} e s_{U} T, p_{\star}(f)>
$$

where $p_{\star}(f) \in \mathcal{D}(U)$ is defined by $p_{\star}(f)(u)=\int_{H} f(h, u) d h$.
This restriction satisfies the following properties:

1. If $U$ is stable under the action of a subgroup $H_{0}$ of $H$ then $\mathcal{R} e s_{U} T$ is $H_{0}$-invariant.
2. $x_{0}+\operatorname{supp}\left(\mathcal{R e s}_{U} T\right) \subset \operatorname{supp}(T) \cap\left(x_{0}+{ }^{\prime} U\right)$.
3. If $F \in L_{\text {loc }}^{1}(\Omega)^{H}$ then $\mathcal{R} e s_{U} F$ is the locally integrable function on ' $U$ defined by $\operatorname{Res}{ }_{U} F(u)=$ $F\left(x_{0}+u\right)$.
4. If $\mathcal{R e} s_{U} T=0$ then $T=0$ on $\Omega$.

Theorem 2.2. Let $D$ be a $H$-invariant differential operator on $\mathfrak{q}$. Then there exists a differential operator $\mathcal{R} d_{U}(D)$, called the radial part of $D$ with respect to $\Psi$, defined on ' $U$ such that for any $f \in \mathcal{D}(\Omega)^{H}$, one has $(D \cdot f)\left(x_{0}+u\right)=\operatorname{Rad}_{U}(D) \cdot \operatorname{Res} s_{U} f(u)$ for $u \in^{\prime} U$.

Morever, for any $T \in \mathcal{D}^{\prime}(\Omega)^{H}$, one has

$$
\mathcal{R e}_{U}(D \cdot T)=\mathcal{R} a d_{U}(D) \cdot \operatorname{Res}_{U}(T)
$$

## 3 Semisimple elements

We recall that a Cartan subspace of $\mathfrak{q}$ is a maximal abelian subspace of $\mathfrak{q}$ consisting of semisimple elements.

If $\mathfrak{r}=\mathfrak{q}$ or $\mathfrak{q}_{s}$, we denote by $\mathcal{S}(\mathfrak{r})$ the set of semisimple elements of $\mathfrak{r}$.
Let $\mathfrak{a}$ be a Cartan subspace of $\mathfrak{q}$. If $\lambda \in \mathfrak{g}_{\mathbb{C}}^{*}$, we set

$$
\mathfrak{g}_{\mathbb{C}}^{\lambda}=\left\{X \in \mathfrak{g}_{\mathbb{C}} ;[A, X]=\lambda(A) X \text { for any } A \in \mathfrak{a}_{\mathbb{C}}\right\}
$$

and

$$
\Sigma(\mathfrak{a})=\left\{\lambda \in \mathfrak{g}_{\mathbb{C}}^{*} ; \mathfrak{g}_{\mathbb{C}}^{\lambda} \neq\{0\}\right\}
$$

Then $\Sigma(\mathfrak{a})$ is the root system of $\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{a}_{\mathbb{C}}\right)$.
An element $X$ of $\mathcal{S}(\mathfrak{q})$ is $\mathfrak{q}$-regular (or regular) if its centralizer $\mathfrak{q}_{X}$ in $\mathfrak{q}$ is a Cartan subspace. If $X \in \mathfrak{a}$ then $X$ is regular if and only if $\lambda(X) \neq 0$ for all $\lambda \in \Sigma(\mathfrak{a})$. We denote by $\mathfrak{q}^{\text {reg }}$ the open dense subset of semisimple regular elements of $\mathfrak{q}$.

Let $A_{0} \in \mathcal{S}(\mathfrak{q})$. Its centralizer $\mathfrak{z}=\mathfrak{g}_{A_{0}}$ in $\mathfrak{g}$ is a reductive $\sigma$-stable Lie subalgebra of $\mathfrak{g}$. We denote by $\mathfrak{c}$ its center and by $\mathfrak{z}_{s}$ its derived algebra. We set

$$
\mathfrak{c}^{-}=\mathfrak{c} \cap \mathfrak{q}, \quad \mathfrak{c}^{+}=\mathfrak{c} \cap \mathfrak{h}, \quad \mathfrak{z}_{s}^{-}=\mathfrak{z}_{s} \cap \mathfrak{q} \quad \text { and } \quad \mathfrak{z}_{s}^{+}=\mathfrak{z}_{s} \cap \mathfrak{h} .
$$

The pair $\left(\mathfrak{z}_{s}, \mathfrak{z}_{s}^{+}\right)$is a semisimple symmetric subpair of $\left(\mathfrak{g}_{s}, \mathfrak{h}_{s}\right)$ which is equal to $\left(\mathfrak{g}_{s}, \mathfrak{h}_{s}\right)$ if $A_{0} \in \mathfrak{c}_{\mathfrak{q}}$ . Let $H_{s}^{+}$be the analytic subgroup of $H$ with Lie algebra $\mathfrak{z}_{s}^{+}$.

We assume that $A_{0} \notin \mathfrak{c}_{\mathfrak{q}}$. We take a Cartan subspace $\mathfrak{a}$ of $\mathfrak{q}$ containing $A_{0}$ and consider the corresponding root system $\Sigma=\Sigma(\mathfrak{a})$. We fix a positive system $\Sigma^{+}$of $\Sigma$. For any $\lambda \in \Sigma^{+}$, we choose a $\mathbb{C}$-basis $X_{\lambda, 1}, \ldots X_{\lambda, m_{\lambda}}$ of $\mathfrak{g}_{\mathbb{C}}^{\lambda}$ such that $B\left(X_{\lambda, i}, \sigma\left(X_{\lambda, j}\right)\right)=-\delta_{i, j}$ for $i, j \in\left\{1, \ldots, m_{\lambda}\right\}$. Let $\Sigma_{1}^{+}=\left\{\lambda \in \Sigma^{+} ; \lambda\left(A_{0}\right) \neq 0\right\}$. We set

$$
V_{\mathbb{C}}^{ \pm}=\sum_{\lambda \in \Sigma_{1}^{+}} \sum_{j=1}^{m_{\lambda}}\left(X_{\lambda, j} \pm \sigma\left(X_{\lambda, j}\right)\right), \quad V^{+}=V_{\mathbb{C}}^{+} \cap \mathfrak{h}, \quad V^{-}=V_{\mathbb{C}}^{-} \cap \mathfrak{q}
$$

We have the decompositions $\mathfrak{h}=\mathfrak{z}^{+} \oplus V^{+}$and $\mathfrak{q}=\mathfrak{z}^{-} \oplus V^{-}$, with $\operatorname{dim} V^{+}=\operatorname{dim} V^{-}$and $\left[A_{0}, \mathfrak{h}\right]=V^{-}$.

If $Z_{0} \in \mathfrak{z}^{-}$, we define the map $\eta_{Z_{0}}$ from $V^{+} \times \mathfrak{z}^{-}$to $\mathfrak{q}$ by $\eta_{Z_{0}}(v, Z)=Z+\left[v, A_{0}+Z_{0}\right]$. Then $\eta_{0}$ is a bijective map. We set $\xi\left(Z_{0}\right)=\operatorname{det}\left(\eta_{Z_{0}} \circ \eta_{0}^{-1}\right)$ and $\mathfrak{z}^{-}=\left\{Z \in \mathfrak{z}^{-} ; \xi(Z) \neq 0\right\}$. Then $\mathfrak{z}^{-}$is invariant under $H_{s}^{+}$.

Thus the map $\gamma$ from $H \times^{\prime} \mathfrak{z}^{-}$to $\mathfrak{q}$ defined by $\gamma(h, Z)=h \cdot\left(A_{0}+Z\right)$ is a submersion. By Theorem 2.1, for any $H$-invariant distribution $\Theta$ on $\mathfrak{q}$, there exists a unique $H_{s}^{+}$-invariant distribution $\mathcal{R} e s_{\mathfrak{z}}-\Theta$ defined on $\mathfrak{z}^{-}$such that, for any $f \in \mathcal{D}\left(H \times^{\prime} \mathfrak{z}^{-}\right)$, one has $<\Theta, \gamma_{\star}(f)>=<$ $\mathcal{R e s}_{\mathfrak{z}^{-}}-\Theta, p_{\star}(f)>$.

Let $\omega_{\mathfrak{z}^{-}}$be the restriction of $\omega$ to $\mathfrak{z}^{-}$. Then, one has:
Lemma 3.1. ([7]) Lemma 4.4). Let $\mathcal{R} \mathrm{ad}_{\mathfrak{z}^{-}}(\partial(\omega))$ be the radial part of $\partial(\omega)$ with respect to $\gamma$ (Theorem 2.2). Then

$$
\mathcal{R} a d_{\mathfrak{z}^{-}}(\partial(\omega))=\xi^{-1 / 2} \partial\left(\omega_{\mathfrak{z}^{-}}\right) \circ \xi^{1 / 2}-\mu
$$

where $\mu(Z)=\xi(Z)^{-1 / 2}\left(\partial\left(\omega_{\mathfrak{z}^{-}}\right) \xi^{1 / 2}\right)(Z)$ is an analytic function on $\mathfrak{z}^{-}$.

## 4 Nilpotent and distinguished elements

Let $Z_{0} \in \mathfrak{q}$. Let $Z_{0}=A_{0}+X_{0}$ be its Jordan decomposition ([7] Lemma 1.1). We construct the symmetric pair $\left(\mathfrak{z}_{s}, \mathfrak{z}_{s}^{+}\right)$related to $A_{0}$ as in 3 .

We assume that $X_{0}$ is different from zero. From ([7] Lemma 1.7), there exists a normal sl $l_{2}$-triple $\left(B_{0}, X_{0}, Y_{0}\right)$ of $\left(\mathfrak{z}_{s}, \mathfrak{z}_{s}^{+}\right)$containing $X_{0}$, i.e. satisfying $B_{0} \in \mathfrak{z}_{s}^{+}$and $Y_{0} \in \mathfrak{z}_{s}^{-}$such that $\left[B_{0}, X_{0}\right]=2 X_{0},\left[B_{0}, Y_{0}\right]=-2 Y_{0}$ and $\left[X_{0}, Y_{0}\right]=B_{0}$.

We set $\mathfrak{z}_{0}=\mathbb{R} B_{0}+\mathbb{R} X_{0}+\mathbb{R} Y_{0}$. The Cartan involution $\theta_{0}$ of $\mathfrak{z}_{0}$ defined by $\theta_{0}:\left(B_{0}, X_{0}, Y_{0}\right) \rightarrow$ $\left(-B_{0},-Y_{0},-X_{0}\right)$ extends to a Cartan involution of $\mathfrak{z}_{s}$, denoted by $\theta$, which commutes with $\sigma$. ([8] Lemma 1). The bilinear form $(X, Y) \mapsto-B(\theta(X), Y)$ defines a scalar product on $\mathfrak{z}_{s}$.

We can decompose $\mathfrak{z}_{s}$ in an orthogonal sum $\mathfrak{z}_{s}=\sum_{i} \mathfrak{z}_{i}$ of irreducible representations $\mathfrak{z}_{i}$ under the adjoint action of $\mathfrak{z}_{0}$. One can choose a suitable ordering of the $\mathfrak{z}_{i}$ such that $\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}=$ $\sum_{i=1}^{r} \mathfrak{z}_{i} \cap\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}=\theta\left(\left(\mathfrak{z}_{s}^{-}\right)_{X_{0}}\right)$ with $\mathfrak{z}_{1}=\mathfrak{z}_{0}$ and $\operatorname{dim} \mathfrak{z}_{i} \cap\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}=1$. We set $n_{i}+1=\operatorname{dim} \mathfrak{z}_{i}$. Hence, there exists an orthonormal basis $\left(w_{1}, \ldots, w_{r}\right)$ of $\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}$ such that $w_{1}=\frac{Y_{0}}{\left\|Y_{0}\right\|}$ and $\left[B_{0}, w_{i}\right]=-n_{i} w_{i}$ for $i \in\{1, \ldots, r\}$. In particular, one has $n_{1}=2$.

We set

$$
\delta_{\mathfrak{q}}\left(Z_{0}\right)=\delta_{\mathfrak{z}_{s}}\left(X_{0}\right)=\sum_{i=1}^{r}\left(n_{i}+2\right)-\operatorname{dim}\left(\mathfrak{z}_{s}^{-}\right) .
$$

Let $\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)$be the set of nilpotent elements of $\mathfrak{z}_{s}^{-}$.
Definition 4.1. ([7] Definitions 1.11 and 1.13)

1. An element $X_{0}$ of $\mathcal{N}\left(\mathfrak{\mathfrak { z }}_{s}^{-}\right)$is $a \mathfrak{\mathfrak { z }}_{s}^{-}$-distinguished nilpotent element if $\left(\mathfrak{z}_{s}^{-}\right)_{X_{0}}$ contains no non-zero semisimple element.
2. An element $Z_{0}$ of $\mathfrak{q}$ with Jordan decomposition $Z_{0}=A_{0}+X_{0}$ is called $\mathfrak{q}$-distinguished if $X_{0}$ is $a \mathfrak{z}_{s}^{-}$-distinguished nilpotent element of $\mathfrak{z}_{s}^{-}$.

Definition 4.2. The symmetric pair $(\mathfrak{g}, \mathfrak{h})$ is nice if for any $\mathfrak{q}$-distinguished element $Z$, one has $\delta_{\mathfrak{q}}(Z)>0$.

Let $\omega_{s}$ be the restriction of $\omega$ to $\mathfrak{z}_{s}^{-}$. Though $\omega_{s}$ is not the Casimir polynomial on $\mathfrak{\mathfrak { z }}_{s}^{-}$, one has the following result:

Lemma 4.3. ([8] Lemma 4) The following assertions are equivalent:

1. $X_{0}$ is $a \mathfrak{z}_{s}^{-}$-distinguished nilpotent element.
2. $\omega_{s}(X)=0$ for all $X \in\left(\mathfrak{z}_{s}^{-}\right)_{X_{0}}$.
3. $\omega_{s}(X)=0$ for all $X \in\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}$.
4. $n_{i}>0$.
5. $\left(\mathfrak{z}_{s}^{-}\right)_{X_{0}} \cap\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}=\{0\}$.

Thus, if $X_{0}$ is a $\mathfrak{\mathfrak { z }}_{s}^{-}$-distinguished nilpotent element then one has $\omega\left(X_{0}+X\right)=2 B\left(X_{0}, X\right)=$ $2\left\|Y_{0}\right\| x_{1}$ for all $X \in\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}$, where $x_{1}$ is the first coordinate of $X$ in the basis $\left(w_{1}, \ldots, w_{r}\right)$ of $\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}}$.

For any $X_{0} \in \mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)$, one has $\mathfrak{z}_{s}^{-}=\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}} \oplus\left[\mathfrak{z}_{s}^{+}, X_{0}\right]$ and $\mathfrak{z}_{s}^{+}=\left(\mathfrak{z}_{s}^{+}\right)_{X_{0}} \oplus\left[\mathfrak{z}_{s}^{-}, Y_{0}\right]$. From now on, we set

$$
U=\left(\mathfrak{z}_{s}^{-}\right)_{Y_{0}} .
$$

For $X \in U$, we consider the map $\psi_{X}$ from $\left[\mathfrak{z}_{s}^{-}, Y_{0}\right] \times U$ to $\mathfrak{z}_{s}^{-}$defined by $\psi_{X}(v, z)=z+\left[v, X_{0}+X\right]$. The map $\psi_{0}$ is bijective.

We set $\kappa(X)=\operatorname{det}\left(\psi_{X} \circ \psi_{0}^{-1}\right)$ and ${ }^{\prime} U=\{X \in U ; \kappa(X) \neq 0\}$. Hence, the map $\pi$ from $H_{s}^{+} \times^{\prime} U$ to $\mathfrak{z}_{s}^{-}$defined by $\pi(h, X)=h \cdot\left(X_{0}+X\right)$ is a submersion.

We precise now some properties of $\pi$ related to $\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)$.
By ([9] Theorem 23]), we can write $\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)=\mathcal{O}_{1} \cup \ldots \mathcal{O}_{\nu}$ where the $\mathcal{O}_{j}$ are disjoints $H_{s}^{+}$ orbits with $\mathcal{O}_{\nu}=\{0\}$ and each $\mathcal{O}_{j}$ is open in the closed set $\mathcal{N}_{j}=\mathcal{O}_{j} \cup \ldots \mathcal{O}_{\nu}$. One assumes that $\mathcal{O}_{j}=H_{s}^{+} \cdot X_{0}$.

Lemma 4.4. ([8] Lemma 17 and 18). There exists a neighborhood $U_{0}$ of 0 in $U$ such that

1. $\pi$ is a submersion on $H_{s}^{+} \times U_{0}$,
2. $\Omega_{0}=\pi\left(H_{s}^{+} \times U_{0}\right)$ is an open neighborhood of $X_{0}$ in $\mathfrak{z}_{s}^{-}$and $\Omega_{0} \cap \mathcal{N}_{j}=\mathcal{O}_{j}$,
3. $\mathcal{O}_{j} \cap\left(X_{0}+U_{0}\right)=\left\{X_{0}\right\}$
4. Let $\Theta$ be an $H_{s}^{+}$-invariant distribution on $\Omega_{0}$. Let $\mathcal{R} e s_{U} \Theta$ be its restriction to $U$ with respect to $\pi$.

$$
\text { If } \operatorname{supp}(\Theta) \subset \mathcal{N}_{j} \text { then } \operatorname{supp}\left(\mathcal{R} e s_{U} \Theta\right) \subset\{0\}
$$

We denote by $\omega_{\mathfrak{c}^{-}}$and $\omega_{s}$ the restrictions of $\omega$ to $\mathfrak{c}^{-}$and $\mathfrak{z}_{s}^{-}$respectively. One has $\omega_{\mathfrak{z}^{-}}=$ $\omega_{\mathfrak{c}^{-}}+\omega_{s}$. We precise now the radial part $\mathcal{R} a d_{U}\left(\partial\left(\omega_{s}\right)\right)$ of $\partial\left(\omega_{s}\right)$ with respect to $\pi$. We denote by $\mathcal{R} a d_{U, X}\left(\partial\left(\omega_{s}\right)\right)$ its local expression at $X \in U_{0}$.

Lemma 4.5. ([8] Lemma 13) The homogeneous part of degree 2 of $\mathcal{R} a d_{U, 0}\left(\partial\left(\omega_{s}\right)\right)$ is zero if and only if $X_{0}$ is $\mathfrak{z}_{s}^{-}$-distinguished.

Theorem 4.6. ([8] Theorem 14) Let $X_{0}$ be $a \mathfrak{z}_{s}^{-}$-distinguished nilpotent element and $c_{0}=\left\|X_{0}\right\|$. Then, there exist analytic functions $a_{i, j}(2 \leq i, j \leq r)$ and $a_{i}(2 \leq i \leq r)$ on $U_{0}$ satisfying $a_{i, j}(0)=0$ such that, for any $H_{s}^{+}$-invariant distribution $T$ on $\Omega_{0}$, one has

$$
\begin{gathered}
\mathcal{R e s}_{U}\left(\partial\left(\omega_{s}\right) T\right)=\mathcal{R} a d_{U}\left(\left(\partial\left(\omega_{s}\right)\right) \mathcal{\mathcal { R e s } _ { U }}(T)\right. \\
=\frac{1}{c_{0}}\left(2 x_{1} \frac{\partial^{2}}{\partial x_{1}^{2}}+\left(\operatorname{dim} \mathfrak{z}_{s}^{-}\right) \frac{\partial}{\partial x_{1}}+\sum_{i=2}^{r}\left(n_{i}+2\right) x_{i} \frac{\partial^{2}}{\partial x_{1} \partial x_{i}}\right. \\
\left.+\sum_{2 \leq i \leq j \leq r} a_{i, j}(X) \frac{\partial^{2}}{\partial x_{j} \partial x_{i}}+\sum_{i=2}^{r} a_{i}(X) \frac{\partial}{\partial x_{i}}\right) \mathcal{R} e s_{U}(T)
\end{gathered}
$$

where $x_{1}, \ldots, x_{r}$ are the coordinates of $X$ in the basis $\left(w_{1}, \ldots, w_{r}\right)$.

## 5 The main Theorem

Our goal is to prove the following Theorem:
Theorem 5.1. Let $(\mathfrak{g}, \mathfrak{h})$ be a nice reductive symmetric pair. Let $\mathcal{V}$ an $H$-invariant open subset of $\mathfrak{q}$. Let $\Theta$ be an $H$-invariant distribution on $\mathcal{V}$ such that

1. There exists $P \in \mathbb{C}[X]$ such that $P(\partial(\omega)) \Theta=0$
2. There exists $F \in L_{\text {loc }}^{1}(\mathcal{V})^{H}$ such that $\Theta=F$ on $\mathcal{V} \cap \mathfrak{q}^{\text {reg }}$.

Then $\Theta=F$ as distribution on $\mathcal{V}$.
We will use the method developed by M. Atiyah in [1]. First we recall some facts about distributions on $\mathbb{R}^{r} \times \mathbb{R}^{m}$. Let $\mathbb{N}$ be the set of non-negative integers. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{r}$, we set $|\alpha|=\alpha_{1}+\ldots+\alpha_{r}$ and

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{r}^{\alpha_{r}}, \quad \partial_{x}^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{r}^{\alpha_{r}}} .
$$

For $\varphi \in \mathcal{D}\left(\mathbb{R}^{r} \times \mathbb{R}^{m}\right)$ and $\varepsilon>0$, we set $\varphi_{\varepsilon}(x, y)=\varphi\left(\frac{x}{\varepsilon}, y\right)$ for $(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{m}$. For $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{r} \times \mathbb{R}^{m}\right)$ we denote by $T_{\varepsilon}$ the distribution defined by $\left\langle T_{\varepsilon}, \varphi\right\rangle=\left\langle T, \varphi_{\varepsilon}\right\rangle$.

Definition 5.2. Let $V=\{0\} \times \mathbb{R}^{m} \subset \mathbb{R}^{r} \times \mathbb{R}^{m}$ and $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{r} \times \mathbb{R}^{m}\right)$.

1. The distribution $T$ is regular along $V$ if $\lim _{\epsilon \rightarrow 0} T_{\epsilon}=0$.
2. The distribution $T$ has a degree of singularity along $V$ smaller than $k$ if for all $\alpha \in \mathbb{N}^{r}$ with $|\alpha|=k$, the distribution $x^{\alpha} T$ is regular.
We denote by $d_{s}^{\circ} T$ the degree of singularity of $T$ along $V$ and we omit in what follows to precise "along $V$ ". Regularity corresponds to a degree of singularity equal to 0 .
3. The degree of singularity of $T$ is equal to $k$ if $d_{s}^{\circ} T \leq k$ and $d_{s}^{\circ} T \not \leq k-1$.

Lemma 5.3. 1. If $F \in L_{l o c}^{1}\left(\mathbb{R}^{r+m}\right)$ then $d_{s}^{\circ} F=0$.
2. If $d_{s}^{\circ} T=k \geq 1$ then $d_{s}^{\circ}\left(x_{i} T\right)=k-1$ for $i \in\{1, \ldots r\}$.
3. If $d_{s}^{\circ} T \leq k$ then $\frac{\partial}{\partial x_{i}} T \leq k+1$ for $i \in\{1, \ldots r\}$.
4. Let $\delta_{0}$ be the Dirac measure at $0 \in \mathbb{R}^{r}$ and $\delta_{0}^{(\alpha)}=\partial_{x}^{\alpha} \delta_{0}$. If $S \in \mathcal{D}^{\prime}\left(\mathbb{R}^{m}\right)$ then the degree of singularity of $\delta_{0}^{(\alpha)} \otimes S$ is equal to $|\alpha|+1$.

Proof. 1. Let $F \in L_{l o c}^{1}\left(\mathbb{R}^{r+m}\right)$ and $\phi \in \mathcal{D}\left(\mathbb{R}^{r+m}\right)$ with $\operatorname{supp}(\phi) \subset K_{1} \times K_{2}$ where $K_{1}$ (resp., $\left.K_{2}\right)$ is a compact subset of $\mathbb{R}^{r}$ (resp., $\mathbb{R}^{m}$ ). One has

$$
\left|\int_{\mathbb{R}^{r} \times \mathbb{R}^{m}} F(x, y) \phi\left(\frac{x}{\varepsilon}, y\right) d x d y\right| \leq \sup _{(x, y) \in \mathbb{R}^{r+m}}|\phi(x, y)| \int_{\left(\varepsilon K_{1}\right) \times K_{2}}|F(x, y)| d x d y
$$

and the first assertion follows.
2. is clear.
3. Let $\alpha \in \mathbb{N}^{n}$ such that $|\alpha|=k+1$. If $\alpha_{j} \geq 1$ for some $j \in\{1, \ldots, r\}$, we set $\bar{\alpha}^{j}=$ $\left(\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j}-1, \alpha_{j+1}, \ldots, \alpha_{r}\right)$. Let $\varphi \in \mathcal{D}\left(\mathbb{R}^{r+m}\right)$.

If $\alpha_{i} \geq 1$, one has

$$
\begin{gathered}
<x^{\alpha} \frac{\partial}{\partial x_{i}} T, \varphi_{\varepsilon}>=-<T, \alpha_{i} x^{\bar{\alpha}^{i}} \varphi_{\varepsilon}+\frac{x^{\alpha}}{\varepsilon}\left(\frac{\partial}{\partial x_{i}} \varphi\right)_{\varepsilon}> \\
=-\alpha_{i}\left\langle x^{\bar{\alpha}^{i}} T, \varphi_{\varepsilon}>-<x^{\bar{\alpha}^{i}} T,\left(x_{i} \frac{\partial}{\partial x_{i}} \varphi\right)_{\varepsilon}>\right.
\end{gathered}
$$

thus $\left(x^{\alpha} T\right)_{\varepsilon}$ converges to 0 since $d_{s}^{\circ} T \leq k$.
If $\alpha_{i}=0$, we choose $j$ such that $\alpha_{j} \geq 1$. One has $<x^{\alpha} \frac{\partial}{\partial x_{i}} T, \varphi_{\varepsilon}>=-<x^{\bar{\alpha}^{j}} T,\left(x_{j} \frac{\partial}{\partial x_{i}} \varphi\right)_{\varepsilon}>$ which tends to 0 as before.
4. We recall that for $i \in\{1, \ldots, r\}$, one has

$$
x_{i}^{l} \delta_{0}^{(\alpha)}=\left\{\begin{array}{cc}
(-1)^{l} \frac{\left(\alpha_{i}\right)!}{\left(\alpha_{i}-l\right)!} \delta_{0}^{\left(\alpha_{1}, \ldots, \alpha_{i}-l, \ldots \alpha_{n}\right)} & \text { if } \alpha_{i} \geq l \\
0 & \text { if } \alpha_{i}<l
\end{array}\right.
$$

Hence, one has $x^{\alpha} \delta_{0}^{(\alpha)}=(-1)^{|\alpha|} \alpha!\delta_{0}$ and for all $\beta \in \mathbb{N}^{r}$ with $|\beta|=|\alpha|+1$, one has $x^{\beta} \delta_{0}^{(\alpha)}=0$. The assertion follows.

Definition 5.4. Let $\Gamma=x^{\beta} \partial_{x}^{\alpha} D$ where $D$ is a differential operator on $\mathbb{R}^{m}$. Then $\Gamma$ increases the degree of singularity at most $|\alpha|-|\beta|$. The integer $|\alpha|-|\beta|$ is called the total degree of $\Gamma$ in $x$.

We can define the homogeneous part of highest total degree (in x) of an analytic differential operator developing its coefficients in Taylor series.

Proof of the Theorem. Let $\Theta \in \mathcal{D}^{\prime}(\mathcal{V})^{H}$ and $F \in L_{l o c}^{1}(\mathcal{V})^{H}$ such that $P(\partial(\omega)) \Theta=0$ for a unitary polynomial $P \in \mathbb{C}[X]$ and $\Theta=F$ on $\mathcal{V}^{r e g}=\mathcal{V} \cap \mathfrak{q}^{r e g}$. We write $\Theta=F+S$ where $S$ is an $H$-invariant distribution with support contained in $\mathcal{V}-\mathcal{V}^{r e g}$. We want to prove that $S=0$, which is equivalent to $\operatorname{supp}(S)=\emptyset$.

Assuming $S$ is non-zero, we are led to a contradiction. We will study $S$ near an element $Z_{0} \in \operatorname{supp}(S)$ chosen as follows:

For $Z_{0} \in \operatorname{supp}(S)$ with Jordan decomposition $Z_{0}=A_{0}+X_{0}$, we construct the symmetric subpair $\left(\mathfrak{z}_{s}, \mathfrak{z}_{s}^{+}\right)$related to $A_{0}$ and we set $\mathfrak{q}_{A_{0}}=\mathfrak{z}^{-}=\mathfrak{c}^{-} \oplus \mathfrak{z}_{s}^{-}$as in section 3. Let $\mathcal{S}_{k}$ be the set of $Z_{0}$ in the support of $S$ such that $\operatorname{rank}\left(\mathfrak{z}_{s}^{-}\right)=k$. Since $\operatorname{supp}(S) \subset \mathcal{V}-\mathcal{V}^{\text {reg }}$, if $Z_{0}=A_{0}+X_{0}$ belongs to $\operatorname{supp}(S)$ then $A_{0}$ is not $\mathfrak{q}$-regular. One deduces that $S_{0}=\emptyset$. Let $k_{0}>0$ such that $S_{0}=S_{1}=\ldots=\mathcal{S}_{k_{0}-1}=\emptyset$ and $\mathcal{S}_{k_{0}} \neq \emptyset$.

For $Z_{0}=A_{0}+X_{0}$ in $\mathcal{S}_{k_{0}}$, we denote by $\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)=\mathcal{O}_{1} \cup \ldots \mathcal{O}_{\nu}$ the set of nilpotent elements in $\mathfrak{z}_{s}^{-}$as in section 4. Since $\operatorname{supp}(S) \cap\left(A_{0}+\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)\right) \neq \emptyset$, one can choose $j_{0} \in\{1, \ldots, \nu\}$ such that $\operatorname{supp}(S) \cap\left(A_{0}+\mathcal{O}_{i}\right)=\emptyset$ for $i \in\left\{1, \ldots j_{0}-1\right\}$ and $\operatorname{supp}(S) \cap\left(A_{0}+\mathcal{O}_{j_{0}}\right) \neq \emptyset$.

From now on, we fix $Z_{0}=A_{0}+X_{0}$ in $\mathcal{S}_{k_{0}}$ such that $X_{0} \in \mathcal{O}_{j_{0}}$.
For $\varepsilon>0$, we denote by $\mathcal{W}_{\varepsilon}$ the set of $x$ in $\mathfrak{z}_{s}^{-}$such that, for any eigenvalue $\lambda$ of $\operatorname{ad}_{\mathfrak{g}} x$, one has $|\lambda|<\varepsilon$. The choice of $k_{0}$ implies that there exists $\varepsilon>0$ such that $\operatorname{supp}(S) \cap\left(Z_{0}+\mathcal{W}_{\varepsilon}\right) \subset$ $\operatorname{supp}(S) \cap\left(Z_{0}+\mathfrak{c}^{-}+\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)\right)$. Hence, we can choose an open neighborhood $\mathcal{W}_{c}$ of 0 in $\mathfrak{c}^{-}$and an open neighborhood $\mathcal{W}_{s}$ of $X_{0}$ in $\mathfrak{z}_{s}^{-}$such that

$$
\begin{equation*}
\operatorname{supp}(S) \cap\left(A_{0}+\mathcal{W}_{c}+\mathcal{W}_{s}\right) \subset \operatorname{supp}(S) \cap\left(A_{0}+\mathcal{W}_{c}+\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)\right) \tag{5.1}
\end{equation*}
$$

First case. $A_{0} \notin \mathfrak{c}_{\mathfrak{q}}$ and $X_{0} \neq 0$.
We keep the notation of section 4 . We fix a normal $s l_{2}$-triple $\left(B_{0}, Y_{0}, X_{0}\right)$ in $\left(\mathfrak{z}_{s}, \mathfrak{z}_{s}^{+}\right)$. We choose an open neighborhood $U_{0}$ of 0 in $U$, the centralizer of $Y_{0}$ in $\mathfrak{z}_{s}^{-}$, as in Lemma 4.4. We keep the notation of this lemma. We recall that the map $\gamma$ from $H \times^{\prime} \mathfrak{z}^{-}$to $\mathfrak{q}$ defined by $\gamma(h, Z)=h \cdot\left(A_{0}+Z\right)$ is a submersion. Reducing $U_{0}, \mathcal{W}_{c}$ and $\mathcal{W}_{s}$ if necessary, we may assume
that $\mathcal{W}_{c}+\Omega_{0} \subset \mathcal{W}_{c}+\mathcal{W}_{s} \subset^{\prime} \mathfrak{z}^{-}$and that $V_{0}=\gamma\left(H \times\left(\mathcal{W}_{c}+\Omega_{0}\right)\right)$ is an open neighborhood of $Z_{0}$ contained in $\mathcal{V}$.

If $T$ is an $H$-invariant distribution on $\mathcal{V}$, we denote by $T_{0}$ its restriction to $V_{0}$. By theorem 2.1, one can consider its restriction $T_{1}=\mathcal{R e s}_{\mathfrak{z}}-T_{0}$ to $\mathcal{W}_{c}+\Omega_{0}$ with respect to $\gamma$. One has $A_{0}+\operatorname{supp}\left(T_{1}\right) \subset \operatorname{supp}(T) \cap\left(A_{0}+\mathcal{W}_{c}+\Omega_{0}\right)$.

We set $T_{2}=\xi^{1 / 2} T_{1}$ where $\xi^{1 / 2}$ is the analytic function on $\mathcal{W}_{c}+\Omega_{0}$ defined in section 3.
Now, we consider the submersion $\pi_{0}$ from $H_{s}^{+} \times U_{0} \times \mathcal{W}_{c}$ to $\mathfrak{z}^{-}$defined by $\pi_{0}(h, X, C)=$ $h \cdot\left(X_{0}+X\right)+C$. One denotes by $T_{3}$ the restriction on $U_{0} \times \mathcal{W}_{c}$ of $T_{2}$ with respect to $\pi_{0}$. We have $X_{0}+\operatorname{supp}\left(T_{3}\right) \subset \operatorname{supp}\left(T_{2}\right) \cap\left(X_{0}+U_{0}\right)$.

Since $F$ is a locally integrable function, the distribution $F_{3}$ is the locally integrable function on $U_{0} \times \mathcal{W}_{c}$ defined by $F_{3}(X, C)=\xi^{1 / 2}(C+X) F(C+X)$.

By assumption, the distribution $S_{3}$ is non-zero. By (5.1) and Lemma 4.4 (2.), one has $\operatorname{supp}\left(S_{2}\right)=\operatorname{supp}\left(S_{1}\right) \subset \mathcal{W}_{c}+\Omega_{0} \cap \mathcal{N}_{j_{0}}=\mathcal{W}_{c}+\mathcal{O}_{j_{0}}$. We deduce from Lemma 4.4 (3.) that $\operatorname{supp}\left(S_{3}\right) \subset\{0\} \times \mathcal{W}_{c}$. By $\left([6]\right.$, Lemma 3), there exists a family $\left(S_{\alpha}\right)_{\alpha}$ of $\mathcal{D}^{\prime}\left(\mathcal{W}_{c}\right)$ such that $S_{3}=\sum_{\alpha \in \mathbb{N}^{r} ;|\alpha| \leq l} \delta_{0}^{(\alpha)} \otimes S_{\alpha}$ where $\delta_{0}$ is the Dirac measure at 0 of $U_{0}$ and for $\alpha \in \mathbb{N}^{r}$, the $S_{\alpha}$ with $|\alpha|=l$ are not all zero.

By assumption, the distribution $\Theta$ satisfies $P(\partial(\omega)) \Theta=0$. By Lemma 3.1, one has

$$
P\left(\left(\partial\left(\omega_{s}\right)+\partial\left(\omega_{\mathfrak{c}}\right)\right)-\mu(Z)\right) \Theta_{2}=0 \text { on } \mathcal{W}_{c}+\Omega_{0}
$$

Using the restriction with respect to $\pi_{0}$, one obtains

$$
P\left(\mathcal{R} a d_{U}\left(\partial\left(\omega_{s}\right)\right)+\partial\left(\omega_{\mathbf{c}}\right)-\tilde{\mu}\right) \Theta_{3}=0 \text { on } U_{0} \times \mathcal{W}_{c}
$$

where $\tilde{\mu}(X, C)=\mu(C+X)$ for $X \in U_{0}$ and $C \in \mathcal{W}_{c}$.
Let $D_{0}$ be the homogeneous part of highest total degree $d$ of $\mathcal{R} a d_{U}\left(\partial\left(\omega_{s}\right)\right)$. We set

$$
P\left({\mathcal{R} a d_{U}}\left(\partial\left(\omega_{s}\right)\right)+\partial\left(\omega_{\mathbf{c}}\right)-\tilde{\mu}\right)=D_{0}^{N}+D_{1}
$$

where $N$ is the degree of $P$ and $D_{1}$ is a differential operator with total degree in $X$ strictly smaller than $N d$. Since $\Theta_{3}=F_{3}+S_{3}$ with $S_{3}=\sum_{a \in \mathbb{N}^{r} ; \alpha_{1} \leq l} \delta_{0}^{(\alpha)} \otimes S_{\alpha}$, we obtain the following relation on $U_{0} \times \mathcal{W}_{c}$ :

$$
\begin{equation*}
\left(D_{0}^{N}+D_{1}\right) S_{3}=\left(D_{0}^{N}+D_{1}\right)\left(\sum_{\alpha \in \mathbb{N}^{r} ;|\alpha| \leq l} \delta_{0}^{(\alpha)} \otimes S_{\alpha}\right)=-\left(D_{0}^{N}+D_{1}\right) F_{3} \tag{5.2}
\end{equation*}
$$

We study now the degree of singularity along $\{0\} \times \mathcal{W}_{c}$ of the two members of (5.2).
If $X_{0}$ is not a $\mathfrak{z}_{s}^{-}$-distinguished nilpotent element then by Lemma 4.5, the homogeneous part of degree 2 of $\mathcal{R} a d_{U, 0}\left(\partial\left(\omega_{s}\right)\right.$ does not vanish and is a differential operator with constant coefficients of degree 2 . Hence the total degree of $D_{0}$ is equal to $d=2$. Since $F_{3}$ is a locally integrable function, it follows from Lemma 5.3 that one has $d_{s}^{\circ} F_{3}=0$ and $d_{s}^{\circ}\left(\left(D_{0}^{N}+D_{1}\right) F_{3}\right) \leq 2 N$. By the same Lemma, one has $d_{s}^{\circ}\left(\left(D_{0}^{N}+D_{1}\right) S_{3}\right)=l+1+2 N$. Hence, we have a contradiction.

Assume that $X_{0}$ is a $\mathfrak{z}_{s}^{-}$-distinguished nilpotent element. Lemma 4.6 gives $c_{0} D_{0}=2 x_{1} \frac{\partial^{2}}{\partial x_{1}^{2}}+$ $\left.\left(\operatorname{dim} \tilde{\mathfrak{z}}_{s}^{-}\right) \frac{\partial}{\partial x_{1}}+\sum_{i=2}^{r}\left(n_{i}+2\right) x_{i} \frac{\partial^{2}}{\partial x_{1} \partial x_{i}}+\sum_{2 \leq i \leq j \leq r} a_{i, j}(X) \frac{\partial^{2}}{\partial x_{j} \partial x_{i}}+\sum_{i=2}^{r} a_{i}(X) \frac{\partial}{\partial x_{i}}\right)$ where $c_{0}=\left\|X_{0}\right\|$ . Since $a_{i, j}(0)=0$, the total degree of $D_{0}$ is equal to 1 .

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{r}$, we set $\tilde{\alpha}^{i}=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}+1, \alpha_{i+1} \ldots \alpha_{r}\right)$ and $\bar{\alpha}^{i}=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}-\right.$ $1, \alpha_{i+1} \ldots \alpha_{r}$ ). The relation $x_{i} \delta_{0}^{(\alpha)}=-\alpha_{i} \delta_{0}^{\left(\bar{\alpha}^{i}\right)}$ and the above expression of $D_{0}$ give

$$
c_{0} D_{0} \cdot \delta_{0}^{(\alpha)} \otimes S_{\alpha}=\lambda_{\alpha} \delta^{\left(\tilde{\alpha}^{1}\right)} \otimes S_{\alpha}+\sum_{2 \leq i \leq j \leq r} a_{i, j}(X) \delta^{\left(\tilde{\alpha}^{i}, j\right)} \otimes S_{\alpha}+\sum_{i=2}^{r} a_{i}(X) \delta^{\left(\tilde{\alpha}^{i}\right)} \otimes S_{\alpha}
$$

where

$$
\lambda_{\alpha}=-2\left(\alpha_{1}+2\right)+\operatorname{dim}{\underset{\mathfrak{z}}{s}}_{-}-\sum_{i=2}^{r}\left(n_{i}+2\right)\left(\alpha_{i}+1\right) .
$$

Since $n_{1}$ is equal to 2 and $(\mathfrak{g}, \mathfrak{h})$ is a nice pair, we obtain

$$
\lambda_{\alpha}=-\delta_{\mathfrak{q}}\left(Z_{0}\right)-\left[2 \alpha_{1}+\sum_{i=2}^{r}\left(n_{i}+2\right) \alpha_{i}\right]<0 \text { for all } \alpha \in \mathbb{N}^{r} .
$$

Consider $\alpha_{0}=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{r}$ such that $\left|\alpha_{0}\right|=l, S_{\alpha_{0}} \neq 0$ and $\alpha_{1}$ is maximal for these properties. One deduces that the coefficient of $\delta^{\left({\widetilde{\alpha_{0}^{1}}}^{1}\right)} \otimes S_{\alpha_{0}}$ in $D_{0} \cdot\left(\sum_{\alpha \in \mathbb{N}^{r} ;|\alpha|=l} \delta_{0}^{(\alpha)} \otimes S_{\alpha}\right)$ is non-zero. Thus, the degree of singularity of $\left(D_{0}^{N}+D_{1}\right) S_{3}$ is equal to $1+l+N$. Since $F_{3}$ is locally integrable and the total degree of $D_{0}$ is equal to 1 , we have $d_{s}^{\circ}\left(D_{0}^{N}+D_{1}\right) F_{3} \leq N$. This gives a contradiction in (5.2)
Second case. $A_{0} \in \mathfrak{c}_{\mathfrak{q}}$ and $X_{0} \neq 0$.
The symmetric pair $\left(\mathfrak{z}_{s}, \mathfrak{z}_{s}^{+}\right)$is equal to $\left(\mathfrak{g}_{s}, \mathfrak{h}_{s}\right)$. We just consider the submersion $\pi_{0}$ from $H \times U_{0} \times \mathcal{W}_{c}$ to $\mathfrak{q}$ defined by $\pi_{0}(h, X, C)=h \cdot\left(X_{0}+X\right)+A_{0}+C$ where $U_{0}$ is defined as in Lemma 4.4 for the symmetric pair $\left(\mathfrak{g}_{s}, \mathfrak{h}_{s}\right)$.

For $T \in \mathcal{D}^{\prime}(\mathfrak{q})^{H}$, we denote by $T_{1}$ the restriction of $T$ to $U_{0} \times \mathcal{W}_{c}$ with respect to $\pi_{0}$. As in the first case, we have $\Theta_{1}=F_{1}+S_{1}$ where $F_{1}$ is a locally integrable function on $U_{0} \times \mathcal{W}_{c}$ and $S_{1}$ is a non-zero distribution such that $\operatorname{supp}\left(S_{1}\right) \subset\{0\} \times \mathcal{W}_{c}$. Moreover the distribution $\Theta_{1}$ satisfies the relation

$$
P\left(\mathcal{R} a d_{U}\left(\partial\left(\omega_{s}\right)\right)+\partial\left(\omega_{\mathbf{c}}\right)\right) \Theta_{1}=0 \text { on } U_{0} \times \mathcal{W}_{c}
$$

The same arguments as in the first case lead to the contradiction $S_{1}=0$.
Third case. $X_{0}=0$.
The open sets $\mathcal{W}_{c}$ and $\mathcal{W}_{s}$ satisfy $\operatorname{supp}(S) \cap\left(A_{0}+\mathcal{W}_{c}+\mathcal{W}_{s}\right) \subset \operatorname{supp}(S) \cap\left(A_{0}+\mathcal{W}_{c}+\mathcal{N}\left(\mathfrak{z}_{s}^{-}\right)\right)$. By the choice of $j_{0}$, we deduce that $\operatorname{supp}(S) \cap\left(A_{0}+\mathcal{W}_{c}+\mathcal{W}_{s}\right) \subset \operatorname{supp}(S) \cap\left(A_{0}+\mathcal{W}_{c}\right)$.

If $A_{0} \in \mathfrak{c}_{\mathfrak{q}}$, then $V_{0}=A_{0}+\mathcal{W}_{c}+\mathcal{W}_{s}$ is an open neighborhood of $A_{0}$ in $\mathfrak{q}$. We identify $\mathfrak{q}$ with $\mathfrak{q}_{s} \times \mathfrak{c}_{\mathfrak{q}}$. Thus, the restriction $S_{0}$ of $S$ to $V_{0}$ is different from zero and satisfies $\operatorname{supp}\left(S_{0}\right) \subset$ $\{0\} \times\left(A_{0}+\mathcal{W}_{c}\right)$. On the other hand, one has $P(\partial(\omega)) S_{0}=-P(\partial(\omega)) F_{\mid V_{0}}$. Since $\partial(\omega)$ is a second order operator with constant coefficients, we obtain a contradiction as above.

If $A_{0} \notin \mathfrak{c}_{\mathfrak{q}}$, we may assume that $\mathcal{W}_{c}+\mathcal{W}_{s} \subset^{\prime} \mathfrak{z}^{-}$. We denote by $T_{1}$ the restriction of an $H$-invariant distribution $T$ to $\mathcal{W}_{c}+\mathcal{W}_{s}$ with respect to the submersion $\gamma$ from $H \times^{\prime} \mathfrak{z}^{-}$to $\mathfrak{q}$ and we consider $T_{2}=\xi^{1 / 2} T_{1}$ as distribution on $\mathcal{W}_{s} \times \mathcal{W}_{c}$. Thus, we have $S_{2} \neq 0$ and $\operatorname{supp}\left(S_{2}\right)=$ $\{0\} \times \mathcal{W}_{c}$. Moreover, the distribution $\Theta_{2}=F_{2}+S_{2}$ satisfies $P\left(\left(\partial\left(\omega_{s}\right)+\partial\left(\omega_{\mathfrak{c}}\right)\right)-\mu(Z)\right) \Theta_{2}=0$ on $\mathcal{W}_{s} \times \mathcal{W}_{s}$ by Lemma 3.1. This is equivalent to

$$
P\left(\left(\partial\left(\omega_{s}\right)+\partial\left(\omega_{\mathfrak{c}}\right)\right)-\mu(Z)\right) S_{2}=-P\left(\left(\partial\left(\omega_{s}\right)+\partial\left(\omega_{\mathfrak{c}}\right)\right)-\mu(Z)\right) F_{2}
$$

Since $\partial\left(\omega_{s}\right)$ is a second order operator with constant coefficients, we obtain a contradiction as above.

This achieves the proof of the Theorem.

## $6 \quad$ Application to $(\mathfrak{g l}(4, \mathbb{R}), \mathfrak{g l}(2, \mathbb{R}) \times \mathfrak{g l}(2, \mathbb{R}))$

On $G=G L(4, \mathbb{R})$ and its Lie algebra $\mathfrak{g}=\mathfrak{g l}(4, \mathbb{R})$, we consider the involution $\sigma$ defined by $\sigma(X)=\left(\begin{array}{cc}I_{2} & 0 \\ 0 & -I_{2}\end{array}\right) X\left(\begin{array}{cc}I_{2} & 0 \\ 0 & -I_{2}\end{array}\right)$ where $I_{2}$ is the $2 \times 2$ identity matrix. We have $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{q}$ with

$$
\mathfrak{h}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) ; A, B \in \mathfrak{g l} l(2, \mathbb{R})\right\} \text { and } \mathfrak{q}=\left\{\left(\begin{array}{cc}
0 & Y \\
Z & 0
\end{array}\right) ; Y, Z \in \mathfrak{g} l((2, \mathbb{R})\}\right.
$$

By ([7] Theorem 6.3), the symmetric pair $(\mathfrak{g l}((4, \mathbb{R}), \mathfrak{g l}((2, \mathbb{R}) \times \mathfrak{g l}((2, \mathbb{R}))$ is a nice pair.
We first recall some results of [3]. Let $\kappa\left(X, X^{\prime}\right)=\frac{1}{2} \operatorname{tr}\left(X X^{\prime}\right)$. The restriction of $\kappa$ to the derived algebra of $\mathfrak{g}$ is a multiple of the Killing form. Let $S\left(\mathfrak{q}_{\mathbb{C}}\right)^{H_{\mathbb{C}}}$ be subalgebra of $S\left(\mathfrak{q}_{\mathbb{C}}\right)$ of all elements invariant under $H_{\mathbb{C}}$. We identify $S\left(\mathfrak{q}_{\mathbb{C}}\right)^{H_{\mathbb{C}}}$ with the algebra of $H_{\mathbb{C}}$-invariant differential operators on $\mathfrak{q}_{\mathbb{C}}$ with constant coefficients. Using $\kappa$, we identify $S\left(\mathfrak{q}_{\mathbb{C}}\right)^{H_{\mathbb{C}}}$ with the algebra $\mathbb{C}\left[\mathfrak{q}_{\mathbb{C}}\right]^{H_{\mathbb{C}}}$ of $H_{\mathbb{C}}$-invariant polynomials on $\mathfrak{q}_{\mathbb{C}}$. A basis of $\mathbb{C}\left[\mathfrak{q}_{\mathbb{C}}\right]^{H_{\mathbb{C}}}$ is given by $Q(X)=\frac{1}{2} \operatorname{tr}\left(X^{2}\right)$ and $S(X)=\operatorname{det}(X)$. The Casimir polynomial is just a multiple of $Q$.

By ([3] Lemma 1.3.1), the $H$-orbit of a semisimple element $X=\left(\begin{array}{ll}0 & Y \\ Z & 0\end{array}\right)$ of $\mathfrak{q}$ is characterized by $(Q(X), S(X))$ or by the set $\left\{\nu_{1}(X), \nu_{2}(X)\right\}$ of eigenvalues of $Y Z$, where the functions $\nu_{1}$ and $\nu_{2}$ are defined as follows: let $Y$ be the Heaviside function. Let $S_{0}=Q^{2}-4 S$ and $\delta=\iota^{Y\left(-S_{0}\right)} \sqrt{\left|S_{0}\right|}$. We set

$$
\nu_{1}=(Q+\delta) / 2 \quad \text { and } \quad \nu_{2}=(Q-\delta) / 2
$$

Regular elements of $\mathfrak{q}$ are semisimple elements with 2 by 2 distinct eigenvalues or equivalently, semisimple elements $X$ of $\mathfrak{q}$ such that $\nu_{1}(X) \nu_{2}(X)\left(\nu_{1}(X)-\nu_{2}(X)\right) \neq 0$ ([3] Remarque 1.3.1).

Let $\chi$ be the character of $\mathbb{C}\left[\mathfrak{q}_{\mathbb{C}}\right]^{H_{\mathbb{C}}}$ defined by $\chi(Q)=\lambda_{1}+\lambda_{2}$ and $\chi(S)=\lambda_{1} \lambda_{2}$ where $\lambda_{1}$ and $\lambda_{2}$ are two complex numbers satisfying $\lambda_{1} \lambda_{2}\left(\lambda_{1}-\lambda_{2}\right) \neq 0$.

For an open $H$-invariant subset $\mathcal{V}$ in $\mathfrak{q}$, we denote by $\mathcal{D}^{\prime}(\mathcal{V})_{\chi}^{H}$ the set of $H$-invariant distributions $T$ with support in $\mathcal{V}$ such that $\partial(P) T=\chi(P) T$ for all $P \in \mathbb{C}\left[\mathfrak{q}_{\mathbb{C}}\right]^{H_{\mathbb{C}}}$. Let $\mathcal{N}$ be the set of nilpotent elements of $\mathfrak{q}$ and $\mathcal{U}=\mathfrak{q}-\mathcal{N}$ its complement. In [3], we describe a basis of
the subspace of $\mathcal{D}^{\prime}(\mathcal{U})_{\chi}^{H}$ consisting of locally integrable functions. More precisely, we obtain the following result.

We consider the Bessel operator $L_{c}=4\left(z \frac{\partial^{2}}{\partial z^{2}}+\frac{\partial}{\partial z}\right)$ on $\mathbb{C}$ and its analogous $L=4\left(t \frac{d^{2}}{d t^{2}}+\frac{d}{d t}\right)$ on $\mathbb{R}$. Let $\mathcal{S o l}\left(L_{c}, \lambda\right)$ (resp., $\mathcal{S}$ ol $(L, \lambda)$ ) be the set of holomorphic (resp., real analytic ) functions $f$ on $\mathbb{C}-\mathbb{R}_{-}\left(\right.$resp., $\left.\mathbb{R}^{*}\right)$ such that $L_{c} f=\lambda f$ (resp., $L f=\lambda f$ ). For $\lambda \in \mathbb{C}^{*}$, we set

$$
\Phi_{\lambda}(z)=\sum_{n \geq 0} \frac{(\lambda z)^{n}}{4^{n}(n!)^{2}} \quad \text { and } \quad w_{\lambda}(z)=\sum_{n \geq 0} \frac{a(n)(\lambda z)^{n}}{4^{n}(n!)^{2}}
$$

where $a(x)=-2 \frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}$. Then $\left(\Phi_{\lambda}, W_{\lambda}=w_{\lambda}+\log (\cdot) \Phi_{\lambda}\right)$ form a basis of $\mathcal{S}$ ol $\left(L_{c}, \lambda\right)$, where log is the principal determination of the logarithm function on $\mathbb{C}-\mathbb{R}_{-}$and $\left(\Phi_{\lambda}, W_{\lambda}^{r}=w_{\lambda}+\log |\cdot| \Phi_{\lambda}\right)$ form a basis of $\operatorname{Sol}(L, \lambda)$.

For two functions $f$ and $g$ defined over $\mathbb{C}$, we set

$$
S^{+}(f, g)(X)=f\left(\nu_{1}(X)\right) g\left(\nu_{2}(X)\right)+f\left(\nu_{2}(X)\right) g\left(\nu_{1}(X)\right)
$$

and

$$
[f, g](X)=f\left(\nu_{1}(X)\right) g\left(\nu_{2}(X)\right)-f\left(\nu_{2}(X)\right) g\left(\nu_{1}(X)\right)
$$

We define the following functions on $\mathfrak{q}^{\text {reg }}$ :
1.

$$
F_{a n a}=\frac{\left[\Phi_{\lambda_{1}}, \Phi_{\lambda_{2}}\right]}{\nu_{1}-\nu_{2}}
$$

2. 

$$
F_{\text {sing }}=\frac{\left[\Phi_{\lambda_{1}}, w_{\lambda_{2}}\right]+\left[w_{\lambda_{1}}, \Phi_{\lambda_{2}}\right]+\log \left|\nu_{1} \nu_{2}\right|\left[\Phi_{\lambda_{1}}, \Phi_{\lambda_{2}}\right]}{\nu_{1}-\nu_{2}}
$$

3. For $(A, B) \in\left\{\left(\Phi_{\lambda_{1}}, \Phi_{\lambda_{2}}\right),\left(\Phi_{\lambda_{1}}, W_{\lambda_{2}}^{r}\right),\left(W_{\lambda_{1}}^{r}, \Phi_{\lambda_{2}}\right),\left(W_{\lambda_{1}}^{r}, W_{\lambda_{2}}^{r}\right)\right\}$, we set

$$
F_{A, B}^{+}=Y\left(S_{0}\right) \frac{S^{+}(A, B)}{\left|\nu_{1}-\nu_{2}\right|}
$$

where $S_{0}=Q^{2}-4 S \in \mathbb{C}\left[\mathfrak{q}_{\mathbb{C}}\right]^{H_{\mathbb{C}}}$ and $Y$ is the Heveaside function.
Theorem 6.1. ([3] Theorem 5.2.2 and Corollary 5.3.1).

1. The functions $F_{\text {ana }}$ and $F_{\text {sing }}$ are locally integrable on $\mathfrak{q}$.
2. $\operatorname{For}(A, B) \in\left\{\left(\Phi_{\lambda_{1}}, \Phi_{\lambda_{2}}\right),\left(\Phi_{\lambda_{1}}, W_{\lambda_{2}}^{r}\right),\left(W_{\lambda_{1}}^{r}, \Phi_{\lambda_{2}}\right),\left(W_{\lambda_{1}}^{r}, W_{\lambda_{2}}^{r}\right)\right\}$, the functions $F_{A, B}^{+}$, are locally integrable on $\mathcal{U}$.
3. The family $F_{\text {ana }}, F_{\text {sing }}$ and $F_{A, B}^{+}$, with $(A, B)$ as above form a basis $\mathcal{B}$ of the subspace of $\mathcal{D}^{\prime}(\mathcal{U})_{\chi}^{H}$ consisting of distributions given by a locally integrable function.

Corollary 6.2. Any invariant distribution of $\mathcal{D}^{\prime}(\mathcal{U})_{\chi}^{H}$ is given by a locally integrable function on $\mathcal{U}$. In particular, the family $\mathcal{B}$ defined in the previous Theorem is a basis of $\mathcal{D}^{\prime}(\mathcal{U})_{\chi}^{H}$.

Proof. Let $T \in \mathcal{D}^{\prime}(\mathcal{U})_{\chi}^{H}$. We denote by $F$ its restriction to $\mathcal{U}^{\text {reg }}$. By ([7] Theorem 5.3 (i)), $F$ is an analytic function on $\mathcal{U}^{\text {reg }}$ satisfying $(*) \quad \partial(P) F=\chi(P) F$ on $\mathcal{U}^{\text {reg }}$ for all $P \in \mathbb{C}\left[\mathfrak{q}_{\mathbb{C}}\right]^{H_{\mathbb{C}}}$.

In ([3] section 4.), we describe the analytic solutions of $(*)$ in terms of $\Phi_{\lambda}, W_{\lambda}$ and $W_{\lambda}^{r}$ for $\lambda=\lambda_{1}$ and $\lambda_{2}$. By the asymptotic behaviour of orbital integrals near non-zero semisimple elements ([3] Theorems 3.3.1 and 3.4.1), and the Weyl integration formula ([3] Lemma 3.1.2), one deduces that $F \in L_{l o c}^{1}(\mathcal{U})^{H}$. Theorem 5.1 gives the result.

Corollary 6.3. Any invariant distribution of $\mathcal{D}^{\prime}(\mathfrak{q})_{\chi}^{H}$ is given by a locally integrable function on $\mathfrak{q}$.

Proof. Let $T \in \mathcal{D}^{\prime}(\mathfrak{q})_{\chi}^{H}$. By Corollary 6.2, the restriction of $T$ to $\mathcal{U}$ is a linear combination of elements of $\mathcal{B}$. By Theorem 5.1 and Theorem 6.1, it is enough to prove that the functions $F_{A, B}^{+}$, with $(A, B) \in\left\{\left(\Phi_{\lambda_{1}}, \Phi_{\lambda_{2}}\right),\left(\Phi_{\lambda_{1}}, W_{\lambda_{2}}^{r}\right),\left(W_{\lambda_{1}}^{r}, \Phi_{\lambda_{2}}\right),\left(W_{\lambda_{1}}^{r}, W_{\lambda_{2}}^{r}\right)\right\}$ are locally integrable on $\mathfrak{q}$ or equivalently, that the integral $\int_{\mathfrak{q}}\left|F_{A, B}^{+}(X) f(X)\right| d X$ is finite for all positive function $f \in \mathcal{D}(\mathfrak{q})$. For this, we will use the Weyl integration formula ([5] Proposition 1.8 and Theorem 1.27).

For $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$ with $\varepsilon_{j}= \pm$, we define

$$
\mathfrak{a}_{\varepsilon}=\left\{X_{\varepsilon}\left(u_{1}, u_{2}\right)=\left(\begin{array}{cc|cc}
0 & u_{1} & 0 \\
0 & 0 & u_{2} \\
\hline \varepsilon_{1} u_{1} & 0 & 0 \\
0 & \varepsilon_{2} u_{2} & 0
\end{array}\right) ;\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}\right\}
$$

and

By ([3], Lemma 1.2.1), the subspaces $\mathfrak{a}_{++}, \mathfrak{a}_{+-}, \mathfrak{a}_{--}$and $\mathfrak{a}_{2}$ form a system of representatives of $H$-conjugaison classes of Cartan subspaces in $\mathfrak{q}$. By ([3] Remark 1.3.1), an element $X \in \mathfrak{q}$ satisfies $S_{0}(X) \geq 0$ if and only if $X$ is $H$-conjugate to an element of $\mathfrak{a}_{\varepsilon}$ for some $\varepsilon$. Furthermore, one has $\left\{\nu_{1}\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right), \nu_{2}\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right)\right\}=\left\{\varepsilon_{1} u_{1}^{2}, \varepsilon_{2} u_{2}^{2}\right\}$.

Let $f$ be a positive function in $\mathcal{D}(\mathfrak{q})$. We define the orbital integral of $f$ on $\mathfrak{q}^{\text {reg }}$ by

$$
\mathcal{M}(f)(X)=\left|\nu_{1}(X)-\nu_{2}(X)\right| \int_{H / Z_{H}(X)} f(h \cdot X) d X
$$

where $Z_{H}(X)$ is the centralizer of $X$ in $H$ and $d h$ is an invariant measure on $H / Z_{H}(X)$.
By ([5] Theorem 1.23), the orbital integral $\mathcal{M}(f)$ is a smooth function on $\mathfrak{q}^{\text {reg }}$ and there exists a compact subset $\Omega$ of $\mathfrak{q}$ such that $\mathcal{M}(f)(X)=0$ for all regular element $X$ in the complement of $\Omega$.

Since $F_{A, B}^{+}$is zero on $\mathfrak{a}_{2}^{r e g}$, one deduces from the Weyl integration formula that there exist positive constants $C_{\varepsilon}$ (only depending of the choice of measures), such that one has

$$
\begin{gathered}
\int_{\mathfrak{q}} F_{A, B}^{+}(X) f(X) d X=\sum_{\varepsilon \in\{(++),(+-),(--)\}} C_{\varepsilon} \int_{\mathbb{R}^{2}} F_{A, B}^{+}\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right) \\
\times \mathcal{M}(f)\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right)\left|u_{1} u_{2}\left(\varepsilon_{1} u_{1}^{2}-\varepsilon_{2} u_{2}^{2}\right)\right| d u_{1} d u_{2}
\end{gathered}
$$

By definition of $F_{A, B}^{+}$, there exist positive constants $C, C_{1}$ and $C_{2}$ such that, for all $X_{\varepsilon}\left(u_{1}, u_{2}\right) \in$ $\Omega^{\text {reg }}$, one has

$$
\left|\left(\varepsilon_{1} u_{1}^{2}-\varepsilon_{2} u_{2}^{2}\right) F_{A, B}^{+}\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right)\right| \leq C\left(C_{1}+|\log | u_{1}| |\right)\left(C_{2}+|\log | u_{2}| |\right)
$$

One deduces easily the corollary from the following Lemma.

Lemma 6.4. Let $f \in \mathcal{D}(\mathfrak{q})$. Then there exist positive contants $C^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}$ such that, for all $X_{\varepsilon}\left(u_{1}, u_{2}\right) \in \mathfrak{q}^{\text {reg }}$ one has

$$
\left|\mathcal{M}(f)\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right)\right| \leq C^{\prime}\left(C_{1}^{\prime}+|\log | u_{1}| |\right)\left(C_{2}^{\prime}+|\log | u_{2}| |\right)
$$

Proof. Let $H=K N A$ be the Iwasawa decomposition of $H$ with $K=O(2) \times O(2), N=$ $N_{0} \times N_{0}$ where $N_{0}$ consists of 2 by 2 unipotent upper triangular matrices and $A$ is the set of diagonal matrices in $H$. It is easy to see that the centralizer of $X$ in $H$ is the set of diagonal matrices $\operatorname{diag}\left((\alpha, \beta, \alpha, \beta)\right.$ with $(\alpha, \beta) \in\left(\mathbb{R}^{*}\right)^{2}$. Hence $H / Z_{H}(X)$ is isomorphic to $K \times N \times$ $\left\{\operatorname{diag}\left(e^{x}, e^{y}, 1,1\right) ; x, y \in \mathbb{R}\right\}$.

For $\xi \in \mathbb{R}$, we set $n_{\xi}=\left(\begin{array}{ll}1 & \xi \\ 0 & 1\end{array}\right)$. We define the function $\tilde{f}$ by $\tilde{f}(X)=\int_{K} f(k \cdot X) d k$. Then, one has

$$
\mathcal{M}(f)\left(X_{\varepsilon}\left(u_{1}, u_{2}\right)\right)=\left|\varepsilon_{1} u_{1}^{2}-\varepsilon_{2} u_{2}^{2}\right| \int_{\mathbb{R}^{2}}\left(\int_{\mathbb{R}^{2}} \tilde{f}(Y(u, \varepsilon, x, y, \xi, \eta)) d \xi d \eta\right) d x d y
$$

with

$$
Y(u, \varepsilon, x, y, \xi, \eta)=\left(\left(\begin{array}{cc}
n_{\xi} & 0 \\
0 & n_{\eta}
\end{array}\right) \operatorname{diag}\left(e^{x}, e^{y}, 1,1\right)\right) \cdot X_{\varepsilon, u}
$$

Writing $Y(u, \varepsilon, x, y, \xi, \eta)=\left(\begin{array}{cc}0 & Y \\ Z & 0\end{array}\right)$, one has

$$
Y=\left(\begin{array}{cc}
u_{1} e^{x} & -\eta u_{1} e^{x}+e^{y} \xi u_{2} \\
0 & u_{2} e^{y}
\end{array}\right) \text { and } Z=\left(\begin{array}{cc}
\varepsilon_{1} u_{1} e^{-x} & -\xi \varepsilon_{1} u_{1} e^{-x}+\eta \varepsilon_{2} u_{2} e^{-y} \\
0 & \varepsilon_{2} u_{2} e^{-y}
\end{array}\right)
$$

Since $f \in \mathcal{D}(\mathfrak{q})$, the function $\tilde{f}$ has compact support in $\mathfrak{q}$. Identify $\mathfrak{q}$ with $\mathbb{R}^{8}$, there exists $T>0$ such that $\operatorname{supp}(\tilde{f}) \subset[-T, T]^{8}$. If $\tilde{f}(Y(u, \varepsilon, x, y, \xi, \eta)) \neq 0$ then we have the following inequalities:

1. $\left|u_{1} e^{ \pm x}\right| \leq T \quad$ and $\quad\left|u_{2} e^{ \pm y}\right| \leq T$,
2. $\left|-\eta u_{1} e^{x}+e^{y} \xi u_{2}\right| \leq T$,
3. $\left|-\xi \varepsilon_{1} u_{1} e^{-x}+\eta \varepsilon_{2} u_{2} e^{-y}\right| \leq T$.

Changing the variables $(\xi, \eta)$ in $(r, s)=\left(\xi u_{2} e^{y}-\eta u_{1} e^{x},-\xi \varepsilon_{1} u_{1} e^{-x}+\eta \varepsilon_{2} u_{2} e^{-y}\right)$, we obtain the result.

Remark. By ([3] Corollary 5.3.1), the function $F_{\text {ana }}$ defines an invariant eigendistribution on $\mathfrak{q}$. At this stage, we don't know if it is the case for the functions $F_{\text {sing }}$ and $F_{A, B}^{+}$. Indeed, the proof of Theorem 6.1 of [3] is based on integration by parts using estimates of orbital integrals and some of their derivates near non-zero semisimple elements of $\mathfrak{q}$. To determine if $F_{\text {sing }}$ and $F_{A, B}^{+}$ are eingendistributions using the same method, we have to know the behavior of derivates of orbital integrals near 0 .

## References

[1] M. Atiyah, Characters of semi-simple Lie groups, (lecture given in Oxford), Mathematical Institute, Oxford, (1976).
[2] E. Galina, Y. Laurent, D-modules and characters of semisimple Lie groups, Duke Math. J. Volume 123, Number 2 (2004), 265-309.
[3] P. Harinck et N. Jacquet, Distributions propres invariantes sur la paire symtrique $(\mathfrak{g l}(4, \mathbb{R}), \mathfrak{g l}(2, \mathbb{R}) \times \mathfrak{g l}(2, \mathbb{R}))$, Journal of Funct. Anal. 261 (2011), 2362-2436.
[4] Harish-Chandra, Invariant distributions on Lie Algebras, Am. J. Math. 86, (1964), 271-309.
[5] J. Orloff, Orbital integrals on symmetric spaces, Noncommutative harmonic analysis and Lie groups" (Marseille-Luminy, 1985), Lecture Notes in Math., Vol 1243, Springer, Berlin, 1987, p. 198-239.
[6] L. Schwartz, Thorie des distributions, Hermann, (1950).
[7] J. Sekiguchi, Invariant spherical hyperfunctions on the tangent space of a symmetric space, Algebraic groups and related topics, Advanced Studies in Pure Mathematics, vol. 6, (1985), 83-126.
[8] G. Van Dijk, Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space I, Math. Ann., Vol. 268, (1984), p. 405-416.
[9] G. Van Dijk, Orbits on real affine symmetric spaces, I. Proc. Kon. Ned. Ak. Wet. A86, (1983) 51-66.
[10] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Mathematics, Vol 576, Springer-Verlag, Berlin/Heidelberg/New York, 1977.


[^0]:    *Ecole Polytechnique, CMLS - CNRS UMR 7640, Route de Saclay 91128 Palaiseau Cédex, harinck@math.polytechnique.fr

