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ABSTRACT. Let SpXq be the Schwartz space of compactly supported smooth
functions on the p-adic points of a spherical variety X , and let C pXq be
the space of Harish-Chandra Schwartz functions. Under assumptions on
the spherical variety, which are satisfied when it is symmetric, we prove
Paley–Wiener theorems for the two spaces, characterizing them in terms
of their spectral transforms. As a corollary, we get relative analogs of the
smooth and tempered Bernstein centers — rings of multipliers for SpXq
and C pXq. When X “ a reductive group, our theorem for C pXq special-
izes to the well-known theorem of Harish-Chandra, and our theorem for
SpXq corresponds to a first step — enough to recover the structure of the
Bernstein center — towards the well-known theorems of Bernstein [Ber]
and Heiermann [Hei01].
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1. INTRODUCTION

The goal of this paper is to characterize the spectral transform of the
spaces of Schwartz (i.e. smooth, compactly supported) and Harish-Chandra
Schwartz functions on the points of a homogeneous spherical variety over
a p-adic field, and produce rings of multipliers, that is, G-endomorphisms,
which generalize the (tempered and smooth) Bernstein centers. We do it
under some assumptions on the variety, the main one being that the variety
and its associated “Levi varieties” are “factorizable” — this is a condition
that allows one to continuously vary the central character of a representa-
tion appearing in the space of functions on the variety by multiplying by
characters of the group. This condition restricts us to a slightly larger set-
ting than that of symmetric spaces. (In the non-symmetric case, there are
some other conditions for which we have no general proof, and have to be
checked “by hand” in each case; but we expect them to hold in general.)
Our assumptions are explained in §2.1, and the range of their validity is
discussed in detail, including some examples, in Appendix A.

Let X be a spherical variety for a group G over a non-Archimedean local
field F , satisfying those assumptions. We will be denoting XpF q simply by
X (and similarly for other varieties), when this causes no confusion. We
assume that X “ XpF q is endowed with a G-eigenmeasure, and normalize
the action of G on L2pXq (and other spaces of functions on X) so that it
is unitary. The maximal split torus ZpXq of G-automorphisms of X is the
(split) center of X . To X one associates some “simpler” spherical G-spaces
XΘ with more symmetries, called the boundary degenerations, parametrized
by standard Levi subgroups in the “dual group” of X , whose Weyl group
we denote by WX . When G is not split then we demand that X is symmet-
ric, and these symbols refer to their “relative” versions, cf. §2.5.

1.1. Paley–Wiener for the Harish-Chandra Schwartz space. The defini-
tion of the Harish-Chandra Schwartz space C pXΘq (including the caseXΘ “

X) is recalled in §2.6. It is a topological vector space (more precisely: an
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LF-space, i.e. countable strict direct limit of Fréchet spaces) of functions
which plays a central role in the derivation of the Plancherel formula for
the group by Harish-Chandra, cf. [Wal03]. On the other hand, the method
of proof of the Plancherel formula introduced in [SV] and adopted in [Del]
directly leads to the L2-Plancherel formula, without having to characterize
the spectral transform of Harish-Chandra Schwartz functions; thus, this
problem remained open.

In §5 it is shown that C pXΘq has a direct summand, the intersection with
the “discrete-modulo-center” part L2pXΘqdisc of L2pXΘq, which we will de-
note by C pXΘqdisc. That carries an action of a ring of multipliers zdiscpXL

Θq,
the “discrete center” ofXΘ, which is isomorphic to the ring ofC8 functions

on the “discrete spectrum” yXL
Θ

disc
of XΘ (to be explained below):

zdiscpXL
Θq :“ C8pyXL

Θ

disc
q.

By [SV, Del], for each Θ one has a canonical “Bernstein map”:

ιΘ : L2pXΘq Ñ L2pXq.

Moreover, for each w P WXpΩ,Θq, i.e. each element of WX which takes a
standard Levi Θ of the dual group to a standard Levi Ω, there is a canonical
“scattering map”

Sw : L2pXΘq
„
ÝÑ L2pXΩq,

which is w-equivariant with respect to the “centers” (i.e. G-automorphism
groups) of these spaces and such that we have a decomposition:

ι˚ΩιΘ “
ÿ

wPWXpΩ,Θq

Sw. (1.1)

Notice that, despite the notation, the scattering operators are not parametrized
by elements of WX , but by triples pΘ,Ω, w PWXpΩ,Θqq.

The main theorem [SV, Theorem 7.3.1], [Del, Theorem 6] on the Plancherel
decomposition of L2pXq states:

1.2. Theorem. Let ι˚Θ,disc denote the map ι˚Θ composed with projection to the dis-
crete spectrum. The sum:

ι˚ :“
ÿ

Θ

ι˚Θ,disc
a

cpΘq
: L2pXq Ñ

à

Θ

L2pXΘqdisc, (1.2)

where cpΘq is the number of “Weyl chambers” associated to Θ (“ #tw PWX |wΘ Ă

∆Xu), is an isometric isomorphism of L2pXq onto
˜

à

Θ

L2pXΘqdisc

¸inv

,

the subspace consisting of collections pfΘqΘ such that for all triples pΘ,Ω, w P

WXpΩ,Θqq we have: SwfΘ “ fΩ.
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Our first version of the Paley–Wiener theorem for the Harish-Chandra
Schwartz space reads:

1.3. Theorem (cf. Theorem 13.5). The scattering maps Sw restrict to zdiscpXL
Θq-

equivariant isomorphisms (of LF-spaces) on the discrete part of the Harish-Chandra
Schwartz spaces:1

Sw : C pXΘqdisc
„
ÝÑ C pXΩqdisc, (1.3)

where zdiscpXL
Θq acts on C pXΩqdisc via the isomorphism:

zdiscpXL
Θq

„
ÝÑ zdiscpXL

Ωq (1.4)

induced by w.
The sum (1.2) restricts to an isomorphism of topological G-modules:

ι˚ : C pXq
„
ÝÑ

˜

à

Θ

C pXΘqdisc

¸inv

. (1.5)

There is also a more explicit version of this theorem, in terms of “nor-
malized Eisenstein integrals” and “normalized constant terms”. Let π be
an irreducible smooth representation of G. One defines the space of π-
coinvariants SpXqπ, the largest π-isotypic quotient of SpXq; equivalently:

SpXqπ “ HomGpSpXq, πq
˚ b π.

Its smooth dual can be identified with a canonical submodule C8pXqπ of
C8pXq. One defines various subspaces C8discpXq

π, C8cusppXq
π correspond-

ing to the condition of square integrability, resp. compact support modulo
center, and denotes the sets of unitary irreducible representations which
appear discretely, resp. cuspidally, by X̂disc, resp. X̂cusp. Dually, we have
the corresponding quotients:

SpXqπ � SpXqπ,disc � SpXqπ,cusp.

The same definitions can be given for any boundary degeneration XΘ,
but taking into account that this space is “parabolically induced” from a
“Levi spherical variety” XL

Θ for a Levi subgroup LΘ, i.e.:

XΘ » XL
Θ ˆ

P´Θ G,

The corresponding coinvariants are also parabolically induced, and indexed
by representations of LΘ.

As σ varies over the set yXL
Θ

disc
of those representations which appear

discretely-mod-center, the spaces LΘ,σ :“ SpXΘqσ,disc are the fibers of a
complex algebraic vector bundle (actually, a countable direct limit of such) LΘ

1In Theorem 13.8 we extend this statement to the whole Harish-Chandra Schwartz space,
but this is not necessary for formulating the Paley–Wiener theorem and only comes as a
corollary of it.
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over the complexification of yXL
Θ

disc
, and the canonical quotient maps give

rise to a surjective morphism:

SpXΘq� CryXL
Θ

disc
,LΘs, (1.6)

where Cr‚, ‚s denotes regular (polynomial) sections of the given vector
bundle. In Theorem 5.2 we show that this extends continuously to an
isomorphism (via the orthogonal quotient map C pXq Ñ C pXqdisc) of LF
spaces:

C pXΘqdisc
„
ÝÑ C8pyXL

Θ

disc
,LΘq (1.7)

(smooth sections). The aforementioned action of the discrete center zdiscpXL
Θq

on the left is, by definition, the natural action of C8pyXL
Θ

disc
q on the right.

It follows from their zdiscpXL
Θq-equivariance that the operators Sw act

fiberwise on these vector bundles; more precisely, it turns out that there
are elements:

Sw P Γ

ˆ

yXL
Θ

disc
,HomGpLΘ, w

˚LΩq

˙

,

where Γ denotes rational sections whose poles do not meet the unitary set
(cf. §3.2), such that the following diagram of isomorphisms commutes:

C pXΘqdisc
„ //

Sw
��

C8pyXL
Θ

disc
,LΘq

Sw
��

C pXΩqdisc
„ // C8pyXL

Ω

disc
,LΩq.

Similarly, the Bernstein maps ιΘ are explicitly given by normalized Eisen-
stein integrals associated to discrete data, which are explicitly defined maps:

EΘ,σ,disc : ĆLΘ,σ “ C8pXΘq
σ̃
disc Ñ C8pXq

(where˜denotes smooth dual), varying rationally with σ. If f P L2pXΘq
8
disc

admits the decomposition:

f “

ż

yXL
Θ

disc f
σ̃pxqdσ

with f σ̃ P C8pXΘq
σ̃
disc, then its image under the Bernstein map is the wave

packet:

ιΘf “

ż

yXL
Θ

disc EΘ,σ,discf
σ̃dσ, (1.8)

cf. [SV, Theorem 15.6.1], [Del, Theorem 7]. We use the L2-continuity of ιΘ to
prove that the normalized Eisenstein integrals (which are a priori rational
in σ) have no poles on the imaginary axis, thus dually we get normalized
constant terms (often called normalized Fourier transforms in the literature on
symmeric spaces):
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E˚Θ,disc : SpXq Ñ ΓpyXL
Θ

disc
,LΘq, (1.9)

representing ι˚Θ,disc, where by Γp‚, ‚qwe denote again rational sections whose
poles do not meet the unitary set. Combining all of this with Theorem
1.3 we get the following explicit Paley–Wiener theorem for the Harish-
Chandra Schwartz space:

1.4. Theorem (cf. Theorem 13.6). The normalized constant terms (1.9) extend
to an isomorphism of LF-spaces:

C pXq
„
ÝÑ

˜

à

Θ

C8pyXL
Θ

disc
,LΘq

¸inv

, (1.10)

where inv here denotes Sw-invariants, i.e. collections of sections pfΘqΘ such that
for all triples pΘ,Ω, w PWXpΩ,Θqq we have: SwfΘ “ fΩ.

In the group case, this theorem is part of the Plancherel formula of Harish-
Chandra, appearing in Waldspurger [Wal03]. However, our proof is new,
starting from a priori knowledge of the L2-maps (1.2) and their properties.

We remark that (1.8), in combination with the fact that ι˚ι is the iden-
tity on Sw-invariants, provide an explicit way to invert this map by means
of normalized Eisenstein integrals. Notice that we do not explicitly iden-
tify the scattering maps; this can be the object of further research, with a
number-theoretic flavor since their poles are often related to L-functions.
We only describe their relation to normalized Eisenstein integrals in (10.19),
and give a few examples of those scattering operators in §15.

A corollary of this theorem (or its previous version 1.3) is the existence
of a ring of multipliers on C pXq. Notice that each w PWXpΩ,Θq induces the
isomorphism (1.4) between discrete centers. Let:

ztemppXq “

˜

à

Θ

zdiscpXL
Θq

¸inv

(1.11)

denote the invariants of these isomorphisms, for all triples pΘ,Ω, w PWXpΩ,Θqq.
One can call this ring the tempered center of X — it is the relative analog of
the tempered center of Schneider and Zink [SZ08] (whose structure can
also be inferred directly from the Plancherel theorem of Harish-Chandra
[Wal03]).

1.5. Corollary (s. Corollary 13.7). There is a canonical action of ztemppXq by
continuous G-endomorphisms on C pXq.

This action, by definition, corresponds to the obvious action of ztemppXq
on the right hand sides of (1.3), (1.10).
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1.6. Paley–Wiener for the Schwartz space. We now come to a Paley–Wiener
theorem for the Schwartz space SpXq of compactly supported smooth func-
tions on X . In analogy with the previous case, this has a distinguished di-
rect summand SpXqcusp, its “cuspidal part”, consisting of those functions
f P SpXq such that for any open compact subgroup J , the Hecke module
HpG, Jq ¨ f is a finitely generated module under ZpXq (s. section 6). The
(orthogonal) complement of SpXqcusp in SpXq consists of those functions
which are orthogonal to any of the spaces C8cusppXq

π introduced before.
The same definitions hold for the boundary degenerations XΘ, and the

space SpXΘqcusp comes equipped with the action of a “cuspidal center”
zcusppXL

Θq, identified with the ring of polynomial functions on the subset
yXL

Θ

cusp
ĂyXL

Θ

disc
:

zcusppXq :“ CryXL
Θ

cusp
s. (1.12)

Here we have the “equivariant exponential maps”:

eΘ : SpXΘq Ñ SpXq, (1.13)

whose transposes:
e˚Θ : C8pXq Ñ C8pXΘq

are a convenient way to generalize the classical theory of asymptotics of
matrix coefficients (see [SV, §5]). The name “exponential maps” is due to
the fact that the space XΘ can be identified with the open G-orbit in a nor-
mal bundle to some orbit 8Θ in a compactification of X , and on charac-
teristic functions of sets close to 8Θ the map eΘ coincides with a physical
“exponential” map, that is, a p-adic analytic map whose differential is the
identity, cf. [SV, §5]. For an explicit formula for the maps eΘ, cf. (1.19) be-
low. The space SpXq is the sum of all eΘSpXΘqcusp:

1.7. Theorem (s. Theorem 14.1). We have:

SpXq “
ÿ

ΘĂ∆X

eΘSpXΘqcusp.

We note that this fails to be true without the assumption thatX is strongly
factorizable, cf. Remark 14.2; interesting phenomena await the researcher
who will work on the general case!

A basic element in our analysis is a similar to the unitary case decompo-
sition into “smooth scattering maps” when Θ and Ω are conjugate:2

e˚ΩeΘ|SpXΘqcusp
“

ÿ

wPWXpΩ,Θq

Sw, (1.14)

where the maps Sw : SpXΘqcusp Ñ C8pXΩqcusp are zcusppXL
Θq-equivariant

when this ring acts on C8pXΩqcusp via the isomorphism:

zcusppXL
Θq

„
ÝÑ zcusppXL

Ωq (1.15)

2Again, these maps are initially defined only on cuspidal summands, but a posteriori
extended to the whole space, cf. Theorem 14.7.
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induced by w. Note that in this case neither the scattering maps nor the
isomorphisms between cuspidal spectra ofXL

Θ andXL
Ω are provided by the

L2-theory: all these are results that we need to establish.
The adjoint e˚Ω (“smooth asymptotics map”) of eΩ does not preserve com-

pact support, therefore the mapsSw have image in some subspace ofC8pXΩq.
If we let S`pXΩq denote the space generated by the images of thoseSw (for
all associates Θ of Ω and all w P WXpΩ,Θq), then (cf. Theorem 9.2) each
scattering map Sw extends canonically to an isomorphism:

Sw : S`pXΘq
„
ÝÑ S`pXΩq.

The first version of our Paley–Wiener theorem for the Schwartz space
reads:

1.8. Theorem (cf. Theorem 14.4). Let e˚Θ,cusp denote the map e˚Θ composed with
projection to the cuspidal summand. The sum:

e˚ :“
ÿ

Θ

e˚Θ,cusp : SpXq Ñ
à

Θ

S`pXΘqcusp (1.16)

is an isomorphism into the pSwqw-invariants of the space on the right, i.e. the sub-
space consisting of collections pfΘqΘ such that for all triples pΘ,Ω, w PWXpΩ,Θqq
we have: SwfΘ “ fΩ.

Again there is a more explicit version of this theorem. Consider the bun-
dle LΘ whose fibers are the cuspidal coinvariants LΘ,σ :“ SpXΘqσ,cusp; it
is a (countable direct limit of) complex algebraic vector bundle(s) over the

complexification of the subset yXL
Θ

cusp
ĂyXL

Θ

disc
where these spaces are non-

zero.
In analogy to (1.7), the canonical quotient maps give rise to isomor-

phisms:

SpXΘqcusp
„
ÝÑ CryXL

Θ

cusp
,LΘs. (1.17)

The action of the cuspidal center zcusppXL
Θq is nothing but the action of

CryXL
Θ

cusp
s on the right hand side.

For the space S`pXΘqcusp this extends to an identification with a “frac-
tional ideal” (i.e. a subspace of the space of rational sections which, when

multiplied by a suitable element of CryXL
Θ

cusp
s, becomes regular):

S`pXΘqcusp
„
ÝÑ C`ryXL

Θ

cusp
,LΘs Ă CpyXL

Θ

cusp
,LΘq, (1.18)

but this identification needs some explanation. The “fractional ideal” will
not be identified (except in specific examples); this seems to be a number-
theoretic question, as in all known examples it involves L-functions. We
only know that it is obtained by inverting “linear polynomials” (see §3.4
for the definition of “linear”). Despite the notation, it does not only depend
on the isomorphism class of XΘ, but it actually depends on X itself. It can,
in principle, be computed by (10.19) whenever the normalized Eisenstein
integrals can.
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Using the isomorphism (1.18), the smooth scattering maps Sw can be
expressed in terms of the same fiberwise scattering maps Sw as before (but
restricted, of course, to the subbundle LΘ of LΘ which they turn out to
preserve). Namely, the isomorphism (1.18) fits into a commuting diagram:

S`pXΘqcusp
„ //

Sw
��

C`ryXL
Θ

cusp
,LΘs

Sw
��

S`pXΩqcusp
„ // C`ryXL

Ω

cusp
,LΩs.

Although the fiberwise scattering maps Sw are the same as before, the
inversion of (1.18) is not given by the same fiberwise formula as the inver-
sion of (1.7): the latter is inverted by an integral over the unitary spectrum,
and the former as an integral over a translate of the unitary spectrum, cf.
(9.4) and (9.5). Thus, the smooth scattering maps Sw do not coincide, as
maps between spaces of functions, with the unitary scattering maps Sw,
despite the fact that their spectral transforms are expressed in terms of the
same operators Sw.

Similarly, the explicit version of the equivariant exponential map eΘ is
given by normalized Eisenstein integrals (as was the case for the Bernstein
map ιΘ), but using shifted wave packets this time. More precisely, if we fix

a Haar-Plancherel measure dσ on yXL
Θ

cusp
and use it to write f P SpXΘqcusp

as:

f “

ż

yXL
Θ

cusp f
σ̃pxqdσ

with f σ̃ P C8pXΘq
σ̃
cusp “

ĆLΘ,σ, then by (1.17) f σ̃ extends polynomially to
non-unitary σ’s and we have:

eΘfpxq “

ż

ω´1yXL
Θ

cusp EΘ,σ,cuspf
σ̃pxqdσ. (1.19)

for every “sufficiently positive” character ω, cf. Theorem 7.4. (For symmet-
ric spaces, the fact that shifted wave packets are compactly supported can
also be proved using the results of [CD14] and a technique due to Heier-
mann in the group case [Hei01].)

Dually, this gives an expression of e˚Θ,cusp as a normalized constant term:

SpXq Ñ ΓpyXL
Θ

cusp
,LΘq, (1.20)

which is the same map as (1.9) composed with the natural quotient LΘ Ñ

LΘ.
The explicit version of our Paley–Wiener theorem for the Schwartz space

reads:
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1.9. Theorem (cf. Theorem 14.5). The morphisms (1.20) give rise to an isomor-
phism:

SpXq „ÝÑ

˜

à

Θ

C`ryXL
Θ

cusp
,LΘs

¸inv

, (1.21)

where inv here denotes Sw-invariants.

A corollary of this theorem (or its previous version (1.8)) is the existence
of a ring of multipliers on SpXq. Notice that each w PWXpΩ,Θq induces the
isomorphism (1.15) between cuspidal centers. Let:

zsmpXq “

˜

à

Θ

zcusppXL
Θq

¸inv

denote the invariants of these isomorphisms, for all triples pΘ,Ω, w PWXpΩ,Θqq.
One can call this ring the smooth center of X — it is the relative analog of
the Bernstein center (cf. §16.1). Then:

1.10. Corollary (s. Corollary 14.6). There is a canonical action of zsmpXq by
G-endomorphisms on SpXq.

This action, by definition, corresponds to the obvious action of zsmpXq on
the right hand sides of (1.16), (1.21). Note that this ring of multipliers is, in
general, larger than the ring induced by the Bernstein center. Indeed, there
are many known examples of relatively cuspidal representations which are
not cuspidal for the group, cf. [Mur]; the simplest example is the Steinberg
representation for the variety X “ T zPGL2, where T is a split torus.

In section 16 we discuss the example of X “ a reductive group H un-
der the G “ H ˆ H-action by left and right multiplication. We show that
the multiplier ring zsmpXq that we described above provides an alternative
proof for the structure of the Bernstein center as the algebra of polynomi-
als on the “space” of cuspidal supports. We also discuss the relationship
of our Paley–Wiener theorem with those of Bernstein [Ber] and Heiermann
[Hei01]: in this case, our work is analogous to part A of [Hei01], and one
needs to apply part B, which is the hardest part of that paper, to obtain the
usual Paley–Wiener theorem. This is a good point to reflect on what our
theorem really represents: It represents a reduction of the study of smooth
functions on X to (relatively) cuspidal spectra plus the study of scattering
operators; it does not, however, reveal much about the nature of these op-
erators, which can be the object of further research.

However, this reduction is not straightforward, as there are facts that are
“obvious” in the case of a group, but not in the relative case. The most im-
portant of those is to show why a relatively supercuspidal representation
for a boundary degeneration XΘ “scatters” as a relatively supercuspidal in
an associate direction XΩ. (In the group this is obvious by the description
of cuspidality in terms of coinvariants under unipotent subgroups.) This
is one of the goals of the scattering theorems described in Section 9, and
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its proof is based on one of the main technical results of the paper, Propo-
sition 12.1. If we may try to encode its proof in one sentence, we would
say that “a priori knowledge that the asymptotics maps eΘ preserve com-
pact support does not allow the scattering maps to break the cuspidality
condition”. This proposition generalizes results of Carmona and Delorme
[CD14] in the symmetric case, which used a completely different proof ex-
ploiting the structure of symmetric spaces.

We now come a more detailed description of the contents of this paper,
and the main steps in our proofs.

1.11. Proofs. After introducing the necessary structure theory of spherical
varieties in section 2 and the bundles of discrete and cuspidal coinvariants
in sections 3 and 4, the first step is to show that the discrete, resp. cuspidal
summand of C pXq, resp. SpXq, is a direct summand. This is relatively easy
to do, and is done in sections 5 and 6.

The spectral characterization of C pXqdisc (1.7) and SpXqcusp (1.17) is the
next step, and the basis for those is the surjection (1.6); this follows from
the definition of the bundle LΘ, and an application of Nakayama’s lemma
(Proposition 4.5). After this, (1.7) follows from the analogous statement for
abelian groups (we use here the assumption that X , and later XL

Θ, are all
factorizable, cf. §2), and (1.17) is immediate by projection from discrete to
cuspidal.

The unitary scattering operators Sw were introduced in [SV], but here we
need to prove that they preserve Harish-Chandra Schwartz spaces (at least
their discrete summands). The explicit expression (1.8) for ιΘ allows us to
relate the fiberwise versions Sw of the scattering maps to the asymptotics
of normalized Eisenstein integrals and normalized constant terms, hence
deducing their rationality in the parameter by a linear algebra argument,
Proposition 10.16. Essentially, the operator Sw, for w P WXpΩ,Θq, is the
“w-equivariant part” of the asymptotics e˚Ω of the normalized Eisenstein
integral EΘ,disc. A priori knowledge of L2-boundedness of the operators
Sw, together with the “linear” form of the poles of Eisenstein integrals 8.5,
cf. also [BD08], allow us to show that their poles do not meet the unitary
spectrum, Theorem 9.3, and since they are unitary it follows from (1.7) that
Sw, for w PWXpΩ,Θq, maps C pXΘqdisc isomorphically onto C pXΩqdisc.

Using this fact, and a characterization of the Bernstein maps ιΘ from
[SV], we are able to prove that ιΘ maps C pXΘqdisc into C pXq (Proposition
13.1). This is essentially the fact that some wave packets are in the Harish-
Chandra Schwartz space (cf. [DH14] for a result of this type for symmetric
spaces). Vice versa, the description of ιΘ in terms of normalized Eisenstein
integrals (1.8), together with the regularity of normalized Eisenstein inte-
grals on the unitary spectrum, proves that ι˚Θ,disc continuously sends the
space C pXq into C pXΘqdisc (Proposition 13.2), and this is enough to prove
the Paley–Wiener theorems 1.3, 1.4 for the Harish-Chandra Schwartz space.
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To construct the smooth scattering operatorsSw one needs to study prop-
erties of the compositions e˚ΩeΘ restricted to cuspidal summands, and more
precisely that the restriction of this composition to SpXΘqcusp is zero if Ω
does not contain an associate of Θ, has cuspidal image if Ω is associate to Θ
and has image in the orthogonal complement of the cuspidal summand if Ω
strictly contains an associate of Θ, Theorem 9.2. The proofs of these facts are
accomplished in section 12. The proof relies in a crucial way on a theorem
in [SV] (which in turn was based on a theorem of Bezrukavnikov and Kazh-
dan [BK15]) which says that the support of e˚Ωf for f P SpXq, is bounded,
i.e. of compact closure in a (fixed) affine embedding of XΘ; this allows to
prove the vanishing of certain “exponents” of the normalized Eisenstein
integrals which by (1.19) spectrally decompose the maps eΘ. By totally dif-
ferent methods these results were obtained by Carmona-Delorme [CD14]
for symmetric spaces, via an explicit description of the constant term of
Eisenstein integrals, starting from cuspidal data, in terms of “C-functions”.

As was mentioned in Proposition 1.7, the space SpXq is the sum of all
“shifted cuspidal wave packets”, i.e. the sum of all eΘSpXΘqcusp. Then
(1.14) can be understood as a decomposition of the asymptotics of shifted
wave packets. The proof of Theorem 1.9 rests mainly on (1.14).

1.12. Acknowledgments. We are very grateful to the referee for numer-
ous corrections and suggestions. The first author has been supported by
a grant of Agence Nationale de la Recherche with reference ANR-13-BS01-
0012 FERPLAY, and by the Institut Universitaire de France. The third au-
thor was supported by NSF grants DMS-1101471 and DMS-1502270. He
would like to thank David Kazhdan for a very motivating conversation.

Part 1. Structure, notation and preliminaries

2. BOUNDARY DEGENERATIONS, EXPONENTS, SCHWARTZ AND
HARISH-CHANDRA SCHWARTZ SPACES

2.1. Assumptions. We let X be a homogeneous, quasi-affine spherical va-
riety for a reductive groupG over a non-Archimedean local field F in char-
acteristic zero. We will generally denote the points of a variety Y over our
fixed non-Archimedean field F simply by Y , when this creates no confu-
sion. The assumption on characteristic is in order to use the results of [SV]
which freely applied the structure theory of spherical varieties in charac-
teristic zero. With minor modifications, those results should work in pos-
itive characteristic, and then the results of the current paper will directly
extend. We notice that for symmetric spaces, [Del] only required that the
characteristic of the field be different than 2; thus, we can already relax the
assumption on the characteristic in that case.

We will make the following assumptions on X :
If G is not split, X is symmetric. The symmetric condition (whether
G is split or not) subsumes all the conditions that follow, but should
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be considered as a provisional assumption in order to use the non-
split analogs of spherical root systems used in [Del] (cf. §2.5). Our
methods do not depend otherwise on the structure of symmetric
spaces, and once the analogs of [Del] are extended to the broader
setting of spherical varieties satisfying the assumptions below, our
results immediately extend.

If G is split, we assume:
(wf) X is wavefront;
(sf) X is strongly factorizable (cf. below for both of these notions);
(gi) X satisfies a strong version of the “generic injectivity” condition

(cf. §10.7).
Up to now, our assumptions guarantee the validity of the full

Plancherel decomposition of [SV, Theorem 7.3.1], [Del, Theorem 6].
Finally, we require the validity of the explicit Plancherel formula in
terms of normalized Eisenstein integrals:

(ep) The explicit Plancherel formula of [SV, Theorem 15.6.2], [Del,
Theorem 8] holds; this is the case, for instance, if the “small Mackey
restriction” of [SV, §15.5] is generically injective.

We repeat that all these conditions are satisfied if X is symmetric; for
the strong version of the generic injectivity assumption in the symmetric
case, which was not used in the aforementioned references, we prove this
in §10.7. We expect condition (sf) to be the only crucial condition for the
methods of this paper to work. (Without it, results for the Schwartz space
have to be modified, cf. Remark 14.2.) Condition (wf) is used because we
need the theory of asymptotics of [SV] (which should hold without this
condition), and we expect conditions (gi) and (ep) to hold in general (but
for now they have to be checked “by hand” in any non-symmetric case
that one is interested in). In Appendix A we check those assumptions for a
couple of non-symmetric examples.

2.2. Whittaker-induction. Our results also hold for a “variety” that is “Whittaker-
induced” from one as above, at least when G is split, where the necessary
results on which this paper is based have been proven in [SV]. That is, in a
certain setting one can consider, instead of the spaces of functions that we
will encounter, also spaces of sections of a line bundle defined by a charac-
ter of a unipotent group. The precise setting was explained in loc.cit. §2.6,
and we repeat it here:

Let P´ be a parabolic subgroup of G, with a Levi decomposition P´ “
L˙ UP´ . Suppose that XL is a spherical L-variety which, for the purposes
of this paper, we will assume to satisfy the assumptions of the previous
subsection. Let V “ HompUP´ ,Gaq, and assume that we are given an L-
equivariant morphism Λ : XL Ñ V with Zariski open image. Finally, let
ψ : F Ñ Cˆ be a non-trivial unitary character.
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We let X “ XL ˆP
´

G be the corresponding “parabolically induced”
variety, and denote by C8pX,LΨq the space of smooth functions on the F -
points of XLˆLG which satisfy fpx, ugq “ Ψxpuqfpx, gq for every u P UP´ ,
where Ψx is the composition of ψ with Λpxq.

The contents of the present paper apply to the space C8pX,LΨq (and the
subspaces SpX,Lψq, C pX,Lψq) without modification, once one has the cor-
rect notion of “Weyl group”. This Weyl group is explained in [SV, §2.6], and
is different from the Weyl group of X viewed as a G-variety; for example,
for the Whittaker model of a split group G this is the full Weyl group of G.
For notational simplicity, we will not be writing C8pX,LΨq anywhere —
the notation in the paper is referring to sections of the trivial line bundle,
and the immediate reformulations necessary to cover this case are left to
the reader.

2.3. The split case. We start by giving definitions when the group G is
split. We will then modify them for non-split G, when the space X is sym-
metric (following [Del]).

Given a spherical variety X for a group G, we define the (connected)
center of X as the connected component of its G-automorphism group:

ZpXq :“ AutGpXq
0.

It is known to be a torus, and we assume throughout (as we may, with-
out loss of generality, by enlarging G if necessary), that the natural map is
surjective:

ZpGq0 � ZpXq, (2.1)
where ZpGq0 denotes the connected center of G. For any fixed Borel sub-
group, we denote by X̊ the open Borel orbit on X .

Our varieties will be homogeneous, X “ HzG, and we let Xab be the
homogeneous variety under the abelianization Gab of G which is obtained
by dividing X by the action of the commutator group rG,Gs. If we choose
a point x P X with stabilizer H and let Hab be the image of H in Gab, then
as algebraic varieties: Xab “ Gab{Hab.

We call X factorizable if dimXab “ dimZpXq; all symmetric varieties
have this property. If X is factorizable then as algebraic varieties (but not
necessarily in terms of their F -points):

X » ZpXq ¨X 1,
where X 1 “ H X rG,GszrG,Gs. This, of course, depends on the choice
of base point definining the isomorphism X » HzG, and if we choose
different such points x1, x2, . . . we get different subvarieties X 11, X

1
2, . . . .

Then, at the level of F -points, there are a finite number of points xi such
that X is the disjoint union of open-closed subsets:

XpF q “
n
ğ

i“1

ZpXqpF q ¨X 1ipF q. (2.2)
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The non-canonical subvarieties X 1i will never appear in the statements, but
will sometimes be used in the proofs.

The group of unitary complex characters of the F -points of the torusXab

will be denoted by X̂ab, and its complexification (which can be identified
with the group of not necessarily unitary characters) by X̂ab

C . The identity
component of X̂ab, i.e. the group of unramified unitary characters, will be
denoted by X̂unr, and this notation ( unr) will be used more generally to
denote groups of unramified characters.

To every spherical variety X one associates its set of (simple) spherical
roots ∆X and the “little Weyl group” WX , cf. [SV, §2]. The spherical roots
live in the lattice X pXq of characters of a Borel subgroup which are trivial
on stabilizers of generic points, and WX acts by automorphisms on X pXq.
There are actually various normalizations for the spherical roots, depend-
ing on the application that one has in mind; for a certain normalization,
they are part of the root data of the “dual group” ǦX of X ; for another
(the standard one in the theory of spherical varieties), they determine the
structure of certain compactifications. These two normalizations were re-
ferred to as “normalized” and “unnormalized” roots in [SV, §2.1, 2.2], and
both of them define a root system in the usual sense. The precise choice
of normalization will not be of particular concern to us, in general, and
when does matters we will clarify which definition we are referring to. In
any case, the action of WX on X pXq, together with the dominant chamber
determined by those sets of simple spherical roots, is independent of the
chosen normalization of their lengths.

What is important for us is that one has the following set of data:
‚ Boundary degenerations: For every subset Θ Ă ∆X , a spherical G-

variety XΘ of the same dimension, with the property that

dim pZpXΘqq “ dim pZpXqq ` |∆X r Θ|.

We interchangeably denote:

AX,Θ :“ ZpXΘq.

Under the convention that ZpGq0 � ZpXq that we are using,
X is called wavefront if for every Θ the variety XΘ is parabolically
induced from a spherical varietyXL

Θ (called Levi variety) for the Levi
quotient LΘ of a parabolic P´Θ :

XΘ » XL
Θ ˆ

P´Θ G (2.3)

such that the action of ZpXΘq is induced from the action of the con-
nected center of LΘ onXL

Θ. Only the conjugacy class of P´Θ is canon-
ically defined (and then XL

Θ is the fixed point set of its unipotent
radical on XΘ); thus, whenever we use those Levi varieties we will
be careful that no non-canonical choice of a representative for P´Θ
affects our statements. The isomorphism (2.3) shows that XL

Θ can
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also be identified as the quotient of the open PΘ-orbit onXΘ (where
PΘ is in the class of parabolics opposite to P´Θ ) by the (free) action of
the unipotent radical UΘ of PΘ. Since X̊PΘ{UΘ » X̊ΘPΘ{UΘ canon-
ically [SV, Lemma 2.8.1], the Levi variety is also identified with the
analogous quotient for X (the quotient of its open PΘ-orbit by the
UΘ-action).

A wavefront spherical variety is called strongly factorizable if all of
its Levi varieties are factorizable. Symmetric varieties are strongly
factorizable [SV, Proposition 9.4.2], and these are the main source
of examples. In Appendix A we characterize strongly factorizable
varieties in terms of combinatorial data attached to the spherical
variety, and give a few examples of non-symmetric, strongly factor-
izable spherical varieties.

2.4. Remark. Note that the Levi variety attached to the whole set
of spherical roots is not equal to X , if X is parabolically induced.
For example, if X “ N1zG1, where N1 is maximal unipotent in G1,
under the G “ A1 ˆ G1-action (where A1 “ B1{N1, with B1 the
Borel subgroup normalizing N1), then X is wavefront, ∆X “ H,
but XL

∆X
“ XL

H “ A1 under an A1 ˆ A1-action. This creates the
paradox that some varieties (such as this example) are “strongly
factorizable” without being “factorizable”, but this is only a mi-
nor nuisance, since for a parabolically induced variety all spaces of
functions that we are interested in are parabolically induced, s. §2.6
— thus, one can work directly with the Levi variety XL

∆X
, which is

factorizable. To avoid extra notation, however, instead of writing
XL

∆X
we will at several points in this paper assume, implicitly, that

X is factorizable.

For Θ “ H the variety XΘ is horospherical, i.e. stabilizers con-
tain maximal unipotent subgroups of G. More precisely, stabilizers
contain the commutator subgroup of a parabolic in the class of P´

H
,

which in this case we denote by P pXq´. Its opposite P pXq is the
parabolic which stabilizes the open Borel orbit on X . (Again, of
course, only its class is defined.) We denote AX,H simply by AX —
it is the “universal Cartan” of X ; its character group has a canonical
identification with X pXq. For every Θ, AX,Θ is canonically iden-
tified with the connected kernel of Θ in AX , and we denote by
A`X,Θ the monoid of elements a P AX,ΘpF q with the property that
|eγpaq| ď 1 for all γ P ∆X , and by Å`X,Θ the subset of those elements
with |eγpaq| ă 1 for all γ P ∆X rΘ. (We use the exponential symbol
in order to use additive notation for the group X pXq).

‚ Exponential map: For every open compact subgroup J ofG, a system
of J-stable subsets NΘ of X “ XpF q, with NΘ Ă NΩ if Θ Ă Ω, and
for each Θ a J ˆ A`X,Θ-stable subset NΘ

Θ of XΘ, which generates all
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XΘ under the action of AX,Θ, together with identifications:

NΘ{J “ NΘ
Θ {J, (2.4)

characterized by their compatibility with certain p-adic analytic “ex-
ponential maps” (s. [SV, §5]) and by the fact that the induced map
on characteristic functions extends to an equivariant map, that will
be explained in §7. Such a set NΘ will be called a “J-good neigh-
borhood of Θ-infinity”, and from now on we will not distinguish
in notation between NΘ and NΘ

Θ , i.e. we will be denoting the latter
also by NΘ. (This constitutes abuse of notation, since only J-orbits
on these sets are identified, but it will only be used for statements
that depend only on the identification of the J-orbits, not the sets
themselves.) The above identifications clearly also identify NΩ{J ,
for all Ω Ă Θ, with subsets of XΘ{J , and the set:

N 1Θ “ NΘ r
ď

ΩĹΘ

NΩ

is stable under the action of J ˆ A`X,Θ and has compact image in
XΘ{AX,Θ. We note the decomposition:

X “
ğ

Θ

N 1Θ. (2.5)

We have N∆X
“ X , hence the complement of

Ť

ΘĹ∆X
NΘ is com-

pact modulo the action of ZpXq.
The modular character of PΘ, i.e. the inverse of the modular character

of P´Θ , will be denoted by δΘ. (Our convention is that a modular character
is the quotient of right by left Haar measure.) The functor of normalized
induction from PΘ, resp. P´Θ , will be denoted by IΘ, resp. IΘ´ :

IΘV :“ tf : GÑ V smooth|fppgq “ δ
1
2
Θfpgq for all p P PΘu,

IΘ´V :“ tf : GÑ V smooth|fppgq “ δ
´ 1

2
Θ fpgq for all p P P´Θ u.

We similarly denote, for every representation π ofG, the normalized Jacquet
modules with respect to PΘ, resp. P´Θ , by πΘ, resp. πΘ´ . These are, by def-
inition, the coinvariants of the corresponding unipotent radicals, tensored
by the inverse square root of the corresponding modular character, so that
we have canonical LΘ-morphisms:

pIΘV qΘ � V, pIΘ´V qΘ´ � V.

Actions of Weyl groups will always be defined to be left actions. We con-
sider the Weyl groupW ofG as an automorphism group of its universal Car-
tan A “ B{N (where B is any Borel subgroup, with unipotent radicalN , so
that the universal Cartan is a unique torus up to unique isomorphism). For
subset S of the positive simple roots of A in G, corresponding to a class of
parabolics PS , any element w which maps S into the positive simple roots
gives rise to an isomorphism between the Levi quotients LS and LwS of the
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corresponding parabolics, unique up to inner conjugacy. In particular, this
is true for the Levi quotients LΘ, LΩ (where Θ,Ω Ă ∆X ) and an element

w PWXpΩ,Θq :“ tw PWX |wΘ “ Ωu ĂWX ĂW.

Finally, the notation Θ „ Ω will mean that Θ and Ω are associates, i.e.
WXpΩ,Θq ‰ H.

2.5. The general symmetric case. In the general symmetric case (when G
is not necessarily split), the boundary degenerationsXΘ are defined in [Del,
§3.1]. They are denoted there by XP , while the Levi varieties XL

Θ are de-
noted by XM .

For consistency of notation with the split case, we will make a small
modification to the definitions of [Del]. Namely, in §2 of loc.cit. the tori AP
are defined as certain central split subtori of Levi subgroups; thus, they do
not need to act faithfully on the boundary degenerations XP . (More pre-
cisely, their action might have finite kernel.) Here, we will denote by AP
(or, rather, AX,Θ) the quotient by which these tori act on XP ; equivalently,
AP for us will be a quotient of the identity component ZpMq0 of the maxi-
mal split torus in the center of the Levi quotientM . (For a groupM , we will
use the notation ZpMq0 for the maximal split torus in its center; the nota-
tion ZpMq, without the exponent 0, will not be used, again for consistency
with the split case.)

These tori correspond to the maximal split tori of what, over the algebraic
closure, is ZpXq or ZpXΘq under the definitions of the previous subsection.
While it is not very good to have notation which is not stable under base
change, it is convenient here that the emphasis is not on geometry but on
harmonic analysis, and we will adopt it. Similarly, for the definition of WX

in the general symmetric case, cf. [Del, §7.5], denoted there W pAHq.

2.6. Normalized action and the various Schwartz spaces. We assume that
XpF q carries a GpF q-eigenmeasure3 with eigencharacter η, and any choice
of such measure endows all the spaces XΘpF q with GpF q-eigenmeasures
with the same eigencharacter which make the identifications (2.4) of neigh-
borhoods of the form NΘ{J measure-preserving, cf. [SV, §4.1], [Del, The-
orem 2]. This measure on XΘpF q is also an AX,ΘpF q-eigenmeasure, and
whenever a group acts on a space Y endowed with an eigenmeasure with
eigencharacter χ, we normalize the action of the group on functions on Y so
that it is an L2-isometry:

pg ¨ fqpyq “
a

χpgqfpygq. (2.6)

This also identifies the space C8pY q (uniformly locally constant functions
on Y ) with the smooth dual of SpY q :“ C8c pY q.

3In fact, under our assumption of factorizability it is possible to twist such a measure
and make it invariant; however, even if we do this for X it will not be the natural choice for
the Levi varieties XL

Θ, as we will see, so one ends up working with eigenmeasures anyway.
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On the Levi varieties XL
Θ “ X̊PΘ{UΘ the measure on X gives rise to an

LΘ-eigenmeasure for which the following is true:
ż

X̊PΘ

fpxqdx “

ż

XL
Θ

ż

UΘ

fpuxqdudx.

This depends on the choice of Haar measure onUΘ. The character by which
LΘ acts on this measure is δΘη (recall that η is the eigencharacter of the
measure on X). Thus, we need to twist the unnormalized action of LΘ on
functions by pηδΘq

1
2 in order to obtain a unitary representation.

Another way to describe this twisting is the following: if we identify XL
Θ

as a subvariety of XΘ fixed by the parabolic P´Θ , and g P P´Θ with image
l P LΘ, then for a function f a function on XΘ we have:

l ¨ pf |XL
Θ
q :“ δ

1
2
Θplqpg ¨ fq|XL

Θ
. (2.7)

(The twist by
?
η is already contained in theG-action onXΘ.) An important

observation is that, by introducting this twisted action for LΘ, the action of
the connected center of LΘ on f |XL

Θ
coincides with the action of ZpXΘq

on C8pXΘq, under the identification of ZpXΘq “ AX,Θ as a quotient of

ZpLΘq
0. Indeed, the twist by δ

1
2
Θ is contained in (2.6), by taking into account

the eigencharacter of the measure under the action of ZpXΘq.
We caution the reader that this may not be the most natural-looking action; for

instance, if X has a G-invariant measure and we consider the Levi variety
XL
H » AX , the usual action of A on C8pAXq is twisted by the square root

of the modular character of P pXq. However, this definition is such that the
space of L2-functions on XΘ is unitarily induced from the analogous space
on XL

Θ:
L2pXΘq “ IΘ´L

2pXL
Θq, (2.8)

The Schwartz space SpXq is, by definition, the space C8c pXq of compactly
supported smooth functions on X (and similarly for any homogeneous
space). The twist (2.7) on functions on XL

Θ allows us to write, using again
the functor of normalized induction from P´Θ :

SpXΘq “ IΘ´SpXL
Θq, (2.9)

Moreover, if X is a direct product:

X “ ZpXq ˆX 1,

where X 1 is a rG,Gs-spherical variety, we clearly have a decomposition:

SpXq “ SpZpXqq b SpX 1q.

In the general factorizable case, using a decomposition such as (2.2) and
pulling back functions by the action map:

ZpXq ˆX 1i Ñ ZpXq ¨X 1i,
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it is immediate to identify SpXqwith:

à

i

`

SpZpXqq b SpX 1iq
˘pZpGq0XrG,Gsqdiag

, (2.10)

i.e. invariants under the simultaneous action of the finite subgroup ZpGq0X
rG,Gs on both factors. (Recall that ZpGq0 � ZpXq under our conventions.)

For any function on XΘ which is AX,Θ-finite (i.e. its translates under the
normalized action (2.6) of AX,Θ span a finite-dimensional space) we call
exponents its generalizedAX,Θ-characters, considered as a multiset (i.e. each
character appears with a certain multiplicity).

We say that a function f P C8pXq (invariant, say, by an open compact
subgroup J) is tempered if for every Θ Ă ∆X there is a J-good neighbor-
hood of Θ-infinity where |f | is bounded by an AX,Θ-finite function with triv-
ial exponents (equivalently: by the absolute value of an AX,Θ-finite function
with unitary exponents).

The Harish-Chandra Schwartz space C pXq is the space of those functions
f P C8pXq such that for every tempered function F we have:

ρF pfq :“

ż

X
|f ¨ F |dx ă 8. (2.11)

For example, in the abelian case X “ ZpXq (by choosing a base point),
any smooth function descends to a function on a finitely generated abelian
group » R (torsion) ˆ Zr, and it is in the Harish-Chandra Schwartz space
iff its restriction to any Zr-orbit is bounded by the multiple of the inverse
of any polynomial in the coordinates n1, n2, . . . , nr.

We similarly define this notion for the spaces XΘ. Again, the twisted
action (2.7) allows us to write the Harish-Chandra Schwartz space of XΘ as
the normalized induction of the Harish-Chandra Schwartz space of XL

Θ:

C pXΘq “ IΘ´C pXL
Θq, (2.12)

Indeed, the action of G is clearly the correct one as was the case for L2pXΘq

and SpXΘ); and the notion of “unitary exponents” used to define tempered
functions and, by duality, the Harish-Chandra Schwartz space coincides for
the action of AX,Θ on functions on XΘ and XL

Θ.
The J-invariants of each of those Harish-Chandra Schwartz spaces have

a natural Fréchet space structure, defined by a system of seminorms ρF
as above for F belonging in any sequence pFnqn of tempered, J-invariant
functions with the property: for every tempered function F 1 there is an n
and a positive scalar c such that |F 1| ď c ¨ |Fn|. (In fact, this is a nuclear
Fréchet space.) Thus, the space C pXq is an LF-space, i.e. a countable strict
inductive limit of Fréchet spaces.

In case X is a direct product:

X “ ZpXq ˆX 1,
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where X 1 is a rG,Gs-spherical variety, we have a decomposition:

C pXq “ C pZpXqqb̂C pX 1q,

where the completed tensor product is defined as a strict inductive limit
over the corresponding spaces of invariants under compact open subgroups,
and for each such subgroup it is uniquely defined by nuclearity. In simple
terms, this means the following: We may choose the sequence as above
of tempered functions Fn to consist of product functions: Fij “ F

p1q
i b

F
p2q
j , where F p1qi and F

p2q
j denote, respectively, similar sequences on ZpXq

and X 1. Then C pXqJ is the completion of SpXqJ “ SpZpXqqJXZpGq0 b
SpX 1qJXrG,Gs with respect to the corresponding seminorms.

In the general factorizable case, using a decomposition such as (2.2) and
pulling back functions by the action map:

ZpXq ˆX 1i Ñ ZpXq ¨X 1i,
it is immediate to identify:

C pXq »
à

i

`

C pZpXqqb̂C pX 1iq
˘pZpGq0XrG,Gsqdiag

. (2.13)

Notice that we also have:

L2pXq »
à

i

`

L2pZpXqqb̂L2pX 1iq
˘pZpGq0XrG,Gsqdiag

, (2.14)

where the completed tensor product here is the Hilbert space tensor prod-
uct.

2.6.1. Comparison with alternative definitions. Since the definition of Harish-
Chandra Schwartz space is sometimes phrased differently in the literature,
we would like to verify that the one we gave coincides with other versions.
We start from the general definition given in [Ber88, §3.5]; according to it,
the Harish-Chandra Schwartz subspace of C8pXqJ is the one defined by
the norms of L2pX, p1` rqdµXq

J , for all d ě 1. Here r is a radial function on
X , and the measure µX is a G-invariant measure. (We leave the case of an
eigenmeasure to the reader — cf. §3.7 of loc.cit.)

We remind that a radial function r : X Ñ R` is a locally bounded proper
function such that for every compact subsetB Ă G there is a constantC ą 0
with

|rpgxq ´ rpxq| ă C (2.15)
for all g P B, x P X . The definition of the Harish-Chandra Schwartz space
using radial functions generally depends on the radial function chosen up
to the equivalence relation:

r „ r1 ðñ DC ą 0 s.t. C´1p1` rq ď 1` r1 ď Cp1` rq.

However, for a homogeneous space X there is a “natural” class of radial
functions on X , described in [Ber88, §4.2]. It admits the following explicit
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description, whose verification we leave to the reader, using a (weak) Car-
tan decomposition for X .

By a (weak) Cartan decomposition for X we mean that there exists a
subvariety Y Ă X , which (over the algebraic closure) is an orbit of a Cartan
subgroup T of G, such that:

XpF q “ Y `U (2.16)

for some large enough compact subset U of GpF q, where Y ` denotes a
certain notion of “dominant” elements of Y pF q, cf. [BO07, DS11] for the
symmetric case and [SV, Lemma 5.3.1] for the general split case. If we
fix a natural radial function R on Y pF q of the form R “ }ω}, where we
choose a base point to identify Y as a quotient of the Cartan subgroup T
and ω : Y pF q Ñ V is a homomorphism with compact kernel to a finite-
dimensional real normed space V , the following is a radial function on X ,
representing the natural class of radial functions:

rpxq :“ mintRpaq|a P Y `, x P aUu.

In fact, as the proof of [SV, Lemma 5.3.1] shows, the subvariety Y of
the above decomposition can be identified with the torus AX defined in
§2.3, in a way compatible with the A`X,Θ-actions on good neighborhoods
of infinity, i.e.: Considering a decomposition X “

Ů

ΘN
1
Θ as in (2.5), the

action of A`X,Θ Ă ZpXΘq on Y ` XN 1Θ coincides with its action on AX » Y ,
restricted to Y ` XN 1Θ.

Thus, the above radial function is equivalent to the following one: Fix,
for every Θ, a J-invariant compact subset MΘ Ă NΘ such that A`X,ΘMΘ “

NΘ, and let, for each x P NΘ:

r1pxq “ mintRpaq|a P A`X,Θ, x P aMΘu,

where Rpaq is the fixed radial function on AX,Θ Ă AX .
Returning to functions, observe that the functions

Fdpxq “ p1` r
1pxqq

d
2µXpxJq

´ 1
2

form a basis of tempered functions such as the ones used in our present
definition (2.11) of the Fréchet structure of the Harish-Chandra Schwartz
space. Thus, the system of norms of the spaces L2pX, p1`rqdµXq

J is equiv-
alent to the system of norms ρFd defined using those functions. This shows
the equivalence of our definition with Bernstein’s.

Finally, we also have [DH14, Definition 3] in the case of a symmetric
space, which defines the Harish-Chandra Schwartz space in terms of bounds
of the form:

|fpxq| ! ΘGpxqpNdpxqq
´1

with d ą 0. The function Nd is of the form p1 ` rqd, for an algebraic radial
function r; namely, X is realized as a closed subvariety of affine space, and
the function r is the maximum of the absolute values of the coordinates.
Such a radial function can easily be seen to be equivalent to the ones used
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above, cf. also [Ber88, §4.5]. The function ΘG is a nonvanishing positive
smooth function, which up to a power of p1 ` rq and a constant coincides
with the function x ÞÑ µXpxJq

´ 1
2 , by a result of Lagier [DH14, (2.27)] and

an estimate of the volumes in [KT10, Proposition 2.6]. Thus, this definition
of C pXq also coincides with the above ones.

3. BUNDLES OVER TORI

3.1. Bundles with flat connections over complex tori. Let T be a complex
algebraic torus, and let V be a finite-dimensional complex vector space.
Let Γ Ă T be a finite subgroup, and let ρ : Γ Ñ GLpV q be a representation.
Thus, Γ acts on the total space of the vector bundle T ˆV , and the quotient
Vρ is a vector bundle over the quotient torus Y “ T {Γ.

By the following argument, one can see that this vector bundle is trivi-
alizable; however, we will not fix such a trivialization. The representation
ρ always extends to a complex algebraic homomorphism ρ̃ : T Ñ GLpV q.
Indeed, ρ decomposes into a finite sum of characters of Γ; viewing Γ as
the points of a finite algebraic group, each character is algebraic. The co-
ordinate ring CrT s of T , which is spanned by its characters, surjects onto
the coordinate ring of Γ, and hence for every character χ of Γ, the pΓ, χq-
equivariant part of CrT s is non-zero. Thus, χ extends to a complex alge-
braic character of T , and ρ extends to ρ̃. Then, once we choose a basis
pv1, . . . , vnq of V , the trivialization of the bundle Vρ is given by the sections:
pt, viptqq, where viptq “ ρ̃ptqvi.

In this paper, we will apply this construction to T “ X̂unr
C , T {Γ “a con-

nected component of X̂disc
C (and the corresponding tori for “boundary de-

generations” — see §4 for the definitions). The vector bundle will come
from certain spaces of coinvariants of SpXq.

We want to endow the vector bundle Vρ with a flat connection, hence an
action (on its sections) of the ring DpY q of differential operators on Y “

T {Γ. There are two obvious choices for doing that: One is to choose a
trivialization by sections viptq as before and require that the viptq’s are flat
sections;

this is not the action that we will use. Rather, we consider the natural
connection on the trivial vector bundle T ˆ V :

Dp
ÿ

i

ciptqviq “
ÿ

i

pDciptqqvi pD P DpT qq.

This descends to a connection on the quotient vector bundle pT ˆ V q{Γ over
Y . Indeed, we have

DpY q “ DpT qΓ,
and moreover the action of DpT q on sections of T ˆ V commutes with the
action of GLpV q. Thus, the subring DpY q preserves Γ-invariant sections
over T , which are precisely the sections of Vρ over Y . This is the action that
we will be using.
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For convenience we introduce a notion of flat functional on the vector
bundle with total spaceE “ pT ˆV q{Γ. A flat functional will be an element
of the dual vector space V ˚, thought of as a flat section of the dual of the pull-
back of E to T . It is by abuse of language that we call it a “flat functional
on E” since it is really a flat section of the dual vector bundle over the étale
cover T of Y “ T {Γ, not a section over Y . Any section y ÞÑ fy of Vρ, together
with a flat functional v˚, give rise to a function F pfy, v˚q : t ÞÑ 〈ft, v˚〉 on T
(not on Y “ T {Γ). The action of differential operators was defined in such
a way that for every section fy, every flat section v˚ and every differential
operator D P DpY qwe have:

F pDfy, v
˚q “ DF pfy, v

˚q.

3.2. Various spaces of sections. Let T now denote the maximal compact
subtorus (considered as a real form) of a complex torus TC; or, more gen-
erally, let T be a torsor (principal homogeneous space) for a compact real
torus, and TC its complexification. Let L be a finite dimensional, complex
algebraic vector bundle over TC. We introduce the following notation for
sections of L:

‚ We denote by CrT, Ls the regular sections of L over T — that is, over
TC.

‚ We denote by CpT, Lq the rational sections.
‚ We denote by ΓpT, Lq the rational sections which are regular on the

real subset T ; by “regular” we mean that their polar divisors do not
intersect T ; however, with an extra restriction on the poles which
we will introduce, this will turn out to be equivalent to the weaker
condition that they extend to C8, or even L2, sections (see Lemma
3.5).

‚ Thinking of (the set of real points of) T as a smooth manifold and
of L as a smooth vector bundle over T , we denote by C8pT, Lq the
smooth sections over T ; it carries a canonical structure of a Fréchet
space.

If L is trivializable, we have a canonical isomorphism:

C8pT, Lq “ CrT, Ls bCrT s C
8pT q.

‚ We now come to hermitian forms. The bundle of sesquilinear forms
on L is the (smooth) complex vector bundle L˚ b L̄˚ over TC. How-
ever, for the purposes of this paper, where T will parametrize uni-
tary representations, it is more meaningful to start with sesquilinear
forms over T , view them as bilinear pairings between a representa-
tion π and its dual π̃, by identifying π̃ with π̄, and extend them as
such to TC.

Therefore, we will not adopt the common notation where L̄ de-
notes the complex conjugate of L, but L̄ will denote the complex
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algebraic bundle which is obtained by L via base change by com-
plex conjugation with respect to the compact real form T :

ResC{RpTCq Ñ ResC{RpTCq.

In other words, the vector space of sections of L̄ over an open U Ă
TC will coincide with the conjugate vector space of sections of L
over the complex conjugate Ū , and the coordinate ring of Ū will act
on them via complex conjugation:

CrŪ s Ñ CrU s.

Of course, over the real form T this canonically induces the same
smooth complex bundle as the complex conjugate of L. But, one of
the benefits of our definition of L̄ is that now L˚ b L̄˚ is a complex
algebraic vector bundle over TC.

A hermitian metric onL (over T ) is a smooth section ofL˚bL̄˚ over
T which corresponds to a positive definite hermitian form on every
fiber. A hermitian metric, together with a Haar measure on T , give
rise to the Hilbert space of L2 sections of L. Since T is compact, all
hermitian metrics and Haar measures give isomorphic topological
vector spaces of L2-sections, although of course the Hilbert norm
will depend on the choices.

The following easy lemma will be useful:

3.3. Lemma. Let T be a real torus and Γ a finite subgroup. The natural map:

CrT s bCrT {Γs C
8pT {Γq Ñ C8pT q

is an isomorphism.

Proof. As in the beginning of §3.1, we can extend each complex character χ
of Γ to a character χ̃ of T (χ̃ P CrT s), then write each f P C8pT q as a linear
combination of its χ-equivariant parts:

f “
ÿ

χ

fχ, where fχptq “
1

|Γ|

ÿ

γ

χ´1pγqfpγtq,

and finally fχ “ χ̃ ¨
fχ
χ̃ , with the last factor an element of C8pT {Γq. This

shows surjectivity. Vice versa, for any sum
ř

i Pi b fi P CrT s bCrT {Γs
C8pT {Γq, we can similarly decompose the Pi’s in terms of characters of
Γ, and then the χ-equivariant part of the sum can be written as χ̃bfχ, with
fχ P C

8pT {Γq. For the sum
ř

χ χ̃ b fχ to be zero, each fχ has to be zero,
proving injectivity. �

3.4. Linear poles. We continue assuming thatL is a complex algebraic vec-
tor bundle over a complex torus TC, whose compact real form we denote
by T or, more generally, over a torsor T for a compact real torus. A linear
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divisor on T will be the scheme-theoretic zero set of a polynomial of the
form:

ź

i

pχi ´ riq (3.1)

where:
‚ the ri’s are non-zero scalars;
‚ the χi’s are “characters” of TC — more precisely: non-zero eigen-

functions for the torus acting on TC.
In particular, a linear divisor is always principal. The word “linear” stems
from the fact that under an exponential map: t Ñ T (and its complexifica-
tion tC Ñ TC) their preimages are unions of affine hyperplanes — in fact,
affine hyperplanes associated to the real functionals

?
´1 ¨ dχi.

We say that a rational section f P CpT, Lq has linear poles if:
ź

i

pχi ´ riqf P CrT, Ls (regular sections)

for a finite set of characters χi and complex numbers ri as above. A very
crucial lemma will be the following:

3.5. Lemma. If f P CpT q has linear poles and belongs to L1pT q, then it belongs
to ΓpT q, i.e. its poles do not meet the real locus T .

The notion of L1pT q is defined with respect to any Haar measure on T .

Proof. Using the exponential map, we can pull back the function to a holo-
morphic function F on the complexification tC of the Lie algebra, with poles
along complex hyperplanes and locally integrable on the real subspace t.
Thus, locally around any point on t which without loss of generality we
may assume to be the point 0, the pullback is equal to:

h ¨
ź

i

l´nii ,

where the li’s are real linear functionals, the ni’s are positive integers, and
h is a holomorphic function which does not identically vanish on the zero
set of any of the li’s. If such a function is locally integrable, the same is true
a fortiori when the denominator is replaced by a single linear functional l1,
thus we may assume that F “ h ¨ l´1

1 , where h is not divisible by l1.
There is a (real) point of t in any neighborhood of zero which is in the

kernel of l1 but not on the zero set of h (otherwise, h would be divisible
by l1). Thus, in a neighborhood of that point the function is bounded by a
constant times l´1

1 , and cannot be integrable. �

Finally, if L1, L2 are two vector bundles as above, then HompL1, L2q is
also such a vector bundle, and we can talk about its rational sections, and
linear poles for those sections. In particular, we have the following easy
corollary of the previous lemma:
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3.6. Corollary. Suppose that M P CpT,HompL1, L2qq has linear poles and in-
duces a bounded map:

L2pT, L1q Ñ L2pT, L2q

(with respect to hermitian metrics on L1, L2 and a Haar measure on T — as re-
marked, all choices give isomorphic spaces ofL2 sections). ThenM P ΓpT,HompL1, L2qq,
i.e. its poles do not meet the real locus.

Proof. Locally on T we may trivialize the bundles and bound the hermitian
metric from below by a constant hermitian metric (with respect to the triv-
ialization). Thus, the square of the absolute value of the fiberwise Hilbert-
Schmidt norms:

T Q t ÞÑ }Mt}
2

is bounded below, locally, by a rational function with linear poles, no fewer
than those ofM . The norm ofM as a bounded map: L2pT, L1q Ñ L2pT, L2q

is theL1-norm of this function, and the previous lemma (or rather, its proof)
shows that the poles cannot meet the real locus. �

4. COINVARIANTS AND THE BUNDLES OF X -DISCRETE AND X -CUSPIDAL
REPRESENTATIONS

4.1. Coinvariants. For an irreducible representation π of G, the space of
π-coinvariants of SpXq is the quotient of SpXq by the common kernel of all
morphisms: SpXq Ñ π. They can be canonically identified with:

SpXqπ “ pHomGpSpXq, πqq˚ b π. (4.1)

This is a finite direct sum of copies of π, by [SV, Theorem 9.2.1], [Del, The-
orem 4].

A subspace of HomGpSpXq, πq corresponds to a quotient of the space
SpXqπ of X-coinvariants. Let π have unitary central character χπ; recall
here that by (2.1) (cf. also §2.5 for the meaning of ZpGq0 in the general case)
we assume that the maximal split torus in the center of G surjects onto the
“center of X”. We call an element of HomGpSpXq, πq “cuspidal” if π has
unitary central character and the dual:

π̃ Ñ C8pXq

has image in the space of compactly supported functions modulo the cen-
ter. We call it “discrete” if the dual has image in L2pX{ZpXq, χπ̃q, where
χπ̃ is the central character. We call it “tempered” if the dual has image in
the space of tempered functions or, equivalently, if the morphism extends
continuously to the Harish-Chandra Schwartz space C pXq. The “contin-
uous” assumption will be implicit whenever we write homomorphisms
from C pXq.

Thus, we have natural surjections:

SpXqπ � SpXqπ,temp � SpXqπ,disc � SpXqπ,cusp, (4.2)
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where the second corresponds to tempered morphisms. The second, third
and fourth are also coinvariants for the Harish-Chandra Schwartz space,
i.e. the canonical quotient map from SpXq extends continuously to:

C pXq� SpXqπ,temp. (4.3)

If π does not have unitary central character, we will still be using the no-
tation SpXqπ, SpXqπ,temp, SpXqπ,disc and SpXqπ,cusp for quotients of SpXq
such that the corresponding morphisms:

SpXq Ñ π or π̃ Ñ C8pXq

have the aforementioned properties up to a twist by a character of the
group.

4.2. X-discrete and X-cuspidal components. Assume X to be factoriz-
able. We let X̂cusp denote the set of irreducible representations π with uni-
tary central character such that SpXqπ,cusp ‰ 0; we let X̂disc denote the
set of irreducible representations π with unitary central character such that
SpXqπ,disc ‰ 0. Thus, X̂cusp Ă X̂disc.

Both sets have a natural topology, and split into disjoint, possibly infi-
nite, unions of compact components which can naturally be identified with
the real points of real algebraic varieties of the same dimension, each of
which is a principal homogeneous space for a torus. This structure arises
as follows:

Recall from §2 that Xab is a quotient variety of X , which is a torsor for
the torus Gab{Hab, and that we denote by X̂unr the real torus of unitary
unramified characters of this torus.

By our assumption that X is factorizable, the torus X̂unr acts (with finite
stabilizers) on X̂disc and X̂cusp. Indeed, any morphism M : SpXq Ñ π can
be “twisted” by any element ω P X̂unr by fixing a base point x0 P X

ab to
identify this space with the abelian quotient of G of which it is a torsor, and
considering ω as a function onX . We then defineMω P HomGpSpXq, πbωq
by:

MωpΦq “MpΦ ¨ ωq. (4.4)

It is clear that Mω is discrete (resp. cuspidal) iff M is.
By [SV, Theorem 9.2.1], [Del, Theorem 4], we have:

4.3. Proposition. For each open compact subgroup J of G, the set of X̂unr-orbits
on elements of X̂disc with non-zero J-fixed vectors is finite.

In particular, the set of X̂unr-orbits on X̂disc is countable, and the action
endows the latter with a real algebraic structure. We denote by X̂cusp

C , X̂disc
C ,

X̂unr
C the complex points of these varieties.
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4.4. The bundles Lπ, Lπ. Consider the associations:

X̂cusp
C Q π ÞÑ Lπ :“ SpXqπ,cusp,

X̂disc
C Q π ÞÑ Lπ :“ SpXqπ,disc.

The twisting (4.4) allows us to consider these spaces as fibers of com-
plex algebraic vector bundles L, L over X̂cusp

C , resp. X̂disc
C endowed with

(slightly noncanonical) flat connections, following the formalism of §3.1.
More precisely, we will use this formalism for the J-coinvariants LJ , L J

(where J is any compact open subgroup), which will be vector bundles
supported over a finite number of connected components by Proposition
4.3 and with finite-dimensional fibers, and then we will define the space of
sections of L, L to be direct limits over all J of J-invariant sections.

For notational simplicity, we only discuss the case of L J (X-discrete
series); the other is identical and, after all, it is just a quotient of L J (and,
as we shall see later, also a direct summand).

We will exhibit the vector bundle L J over X̂disc as a vector bundle of
the form Vρ in the notation of §3.1, with T “ X̂unr

C and Y “ a connected
component of X̂disc

C . To identify Y with a quotient of T , we need to fix a
base point π in this connected component, which we take in the unitary set
X̂disc.

The vector space V will be the coinvariant space SpXqJπ,disc, identified as
a linear space (not equivariantly) with Vω :“ SpXqJπbω,disc, for any ω P X̂unr

C .
The way to perform this linear identification:

βω : V “ SpXqJπ,disc
„
ÝÑ SpXqJπbω,disc “ Vω (4.5)

is by fixing a point x0 P X
ab, as before, giving rise to the twisting M ÞÑMω

of (4.4), viewed here as a linear isomorphism:

HomGpSpXq, πqdisc Ñ HomGpSpXq, π b ωqdisc.

Moreover, the underlying vector space of the representation π b ω is natu-
rally identified with the vector space of π, thus we get linear isomorphisms
between the spaces of discrete coinvariants:

SpXqπ,disc “ pHomGpSpXq, πqdiscq
˚
b π. (4.6)

This shows that the association:

X̂unr
C Q ω ÞÑ SpXqJπbω,disc, (4.7)

has the structure of an almost canonically (depending on the choice of
x0) trivial vector bundle, thus also an algebraic vector bundle (indepen-
dently of x0) with total space T ˆ V over T “ X̂unr

C . (We remind that
V “ SpXqJπ,disc.)

Now notice that SpXqπ,disc is a canonical quotient of SpXqwhich depends
only on the isomorphism class of π and not on its realization. In particular,



30 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

if π » π b ω for some character ω of G then we have a canonical isomor-
phism:

αω : V “ SpXqJπ,disc » SpXqJπbω,disc “ Vω. (4.8)

(This is obvious if we think of SpXq as the quotient by the common kernel
of all morphisms SpXq Ñ π; to explain it in terms of the isomorphism (4.6),
we notice that the difference between any two choices of isomorphisms:
π
„
ÝÑ πbω is a scalar which gets cancelled when we tensor π with the linear

dual of HomGpSpXq, πqdisc.) This isomorphism, in general, is not the same
as the linear isomorphism βω defined above for every ω. The composition
β´1
ω ˝ αω defines a representation ρ of the stabilizer in X̂unr of π on V .

Now we endow L J with the structure of a complex algebraic vector
bundle over X̂disc

C , by declaring that the bundle (4.7) is simply its pull-back
under the orbit map ω ÞÑ π b ω. In the notation of §3.1 we have L J “ Vρ,
where V “ SpXqJπ,disc, T “ X̂unr

C , Γ “ is the subgroup of those ω such that
π b ω » π, and ρpωq “ β´1

ω ˝ αω.
Hence, L J is the vector bundle over Y “ T {Γ with total space pT ˆ

V q{Γ, and, by repeating the same process for each connected component,
a vector bundle over X̂disc

C . The algebraic structure does not depend on
the choice of basepoint π for our representations, or base point x0 on X .
However, the corresponding flat connection, and hence the notion of flat
functionals of §3.1 depends on the choice of base point x0 up to a character
of the torus X̂unr

C . More precisely, the “flat functionals” are the functionals
fω ÞÑ 〈pMωqpfωq, w

˚〉, with w˚ P V ˚. This dependence will not play any
role in our statements.

It is clear from the definitions that the natural map:

SpXqJ Ñ SpXqJπ,disc

gives rise to regular sections of L J , as π varies, i.e. it gives a canonical map:

SpXq Ñ CrX̂disc,L s. (4.9)

(Similarly, by composing with the quotient map L Ñ L we get a canonical
map:

SpXq Ñ CrX̂cusp,Ls.q (4.10)

We have:

4.5. Proposition. The vector bundles L J , LJ over X̂disc
C , resp. X̂cusp

C , are trivi-
alizable (over each connected component).

The global (regular) sections of L J over X̂disc
C (resp. LJ over X̂cusp

C ) are pre-
cisely the images of elements of SpXqJ under (4.9).

Proof. The two cases are identical, so we work with L J . The fact that it is
trivializable follows from the generalities discussed in §3, but it will also be
seen explicitly by the argument that follows.
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The map SpXqJ Ñ SpXqJπ,disc is surjective for any irreducible π, hence
(4.9), composed with evaluation at each fiber, is surjective. Choose a finite
number fi of characteristic functions on J-orbits xiJ on X such that their
images form a basis of SpXqJπ , for some fixed π. If f̂ipωq denotes the im-
age of fi in SpXqπbω, with all those vector spaces identified with the same
vector space V as above, it is immediate from the above definitions that, in
this common vector space, f̂ipωq “ ωpxiq ¨ f̂ip1q. Hence, the images of the
fi’s form a basis for every fiber of (4.7). Since X̂disc

C is affine, these global
sections trivialize the bundle.

To see that all global sections come from SpXqJ , we can use Nakayama’s
lemma. Let Z be a finitely generated subgroup of ZpXq that surjects onto
ZpXq{pZpXq X Jq. Its group ring can be identified with CrẐs, the ring of
regular functions on the character group of Z. We have a restriction map
X̂disc Ñ Ẑ, hence both sides of (4.9) (restricted to J-invariants) are CrẐs-
modules. For every point χ of ẐC (i.e. for every maximal ideal of CrẐs) the
fiber of L J over χ is:

‘π ÞÑχ SpXqJπ,disc, (4.11)
where the map π ÞÑ χ is the restriction of the central character. This sum
is finite (there are finitely many X-discrete series with given central char-
acter and non-zero J-fixed vectors), and SpXqJ surjects on it, because it
surjects on every summand and the representations indexing the sum are
irreducible and non-isomorphic.

By Nakayama’s lemma, the CrẐs-modules SpXqJ and CrX̂disc
C ,L s coin-

cide.
�

We let:
L “ lim

Ñ
J

L J ,

L “ lim
Ñ
J

LJ

as direct limits of sheaves, i.e. the corresponding sections will be, by defi-
nition, sections of the finite-dimensional vector bundle of J-invariants for
some open compact subgroup J .

Now we will endow the bundles L , L with hermitian structures, coming
from the Plancherel formula for X .

The Hilbert space L2pXq has an orthogonal direct sum decomposition
L2pXq “ L2pXqdisc ‘ L2pXqcont, where L2pXqdisc has a Plancherel decom-
position in terms of discrete morphisms from irreducible representations:
π Ñ C8pXq, in the sense of §4.1, i.e. with unitary central characters and in
L2 modulo the center.

The hermitian structure on L is a canonical measure on X̂disc valued in the
space of hermitian forms on C pXq, that will be denoted

〈 , 〉π dπ, (4.12)
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characterized by the following properties:
(1) for almost every π, the hermitian form 〈 , 〉π isG-invariant, positive

semi-definite, and factors through C pXqπ,disc “ SpXqπ,disc “ Lπ;
(2) for Φ1,Φ2 P C pXq,

〈Φ1,Φ2〉L2pXqdisc
“

ż

X̂disc

〈Φ1,Φ2〉π dπ. (4.13)

Of course, this measure is absolutely continuous with respect to Haar
measure on X̂disc. Choosing dπ to be a Haar measure we obtainG-invariant
hermitian forms 〈 , 〉π on the fibers of L over X̂disc. These forms are actu-
ally positive definite, and “flat” in the following sense:

Recall the conventions of §3.2 for the vector bundle L ; it is a complex
vector bundle over X̂disc

C , that only over X̂disc is equal to the complex dual
of L . Since π̄ » π̃ (the smooth dual) over X̂disc, the fiber of L over an
arbitrary π P X̂disc

C can be identified with Lπ̃, the “discrete” π̃-coinvariants.
The hermitian forms 〈 , 〉π can be seen as linear functionals:

Lπ bL π Ñ C, (4.14)

for π P X̂disc. We claim that these are restrictions to X̂disc of flat functionals
in the sense of §3.1.

Indeed, this is just another way to say the following: Fix a base point
π P X̂disc, and consider the non-equivariant isomorphisms βω of (4.5).
The claim is that, with respect to these isomorphisms, the hermitian form
〈 , 〉πbω pulls back to the hermitian form 〈 , 〉π, for any fixed π P X̂disc.
This is easy to see, since X is factorizable; indeed, for every representation
π appearing discreetly mod center, the contribution of the family π b ω,
ω P X̂unr, to L2pXq is given by:

〈Φ1,Φ2〉tπbωuω “
ż

X̂unr

〈
Φ1 ¨ ω

´1,Φ2 ¨ ω
´1
〉
π
dω, (4.15)

for the Haar measure dω whose push-forward to (the given connected com-
ponent of) X̂disc is the measure dπ. Notice that we have identified ω with a
function on X , depending on the choice of a base point, as in the construc-
tion of βω.

The forms pΦ1,Φ2q ÞÑ
〈
Φ1 ¨ ω

´1,Φ2 ¨ ω
´1
〉
π

are the forms 〈Φ1,Φ2〉πbω
appearing in (4.13). To view them as restrictions to X̂disc of flat functionals
of the form (4.14) (defined for arbitrary π P X̂disc

C ), we need to view them
as bilinear forms on SpXq:

Φ1 b Φ2 ÞÑ
〈
Φ1 ¨ ω

´1,Φ2 ¨ ω
〉
π
,

a formula which makes sense (for Φ1,Φ2 P SpXq) even when ω is not uni-
tary. It is clear from the definitions that these are indeed flat functionals
in the sense of §3.1. Moreover, our ability to extend them off the tempered
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spectrum means that we can view the product

〈 , 〉 dπ (4.16)

as a volume form on X̂disc
C valued in the dual of the complex vector bundle Lπ b

L π. It is completely canonical once the measure on X is fixed. This will
be a useful point of view in order to shift integrals such as (4.13) off the
unitary locus.

Finally, the hermitian forms for π unitary induce a splitting of the canon-
ical quotient from discrete to cuspidal: Lπ Ñ Lπ. This is, of course, just the
orthogonal projection to the cuspidal subspace of L2pX{ZpXq, χqdisc, for
every unitary character χ. The flatness of the hermitian forms with respect
to the vector space identifications βω shows that is induced by an injection
of algebraic vector bundles over X̂disc

C :

L ãÑ L (4.17)

splitting the canonical quotient map L Ñ L.

4.6. The case of boundary degenerations. We have a similar decomposi-
tion for the analogous spaces ofXΘ, not in terms of representations ofG but
in terms of representations of a Levi subgroup. Recall the isomorphisms
(2.9), (2.12):

SpXΘq “ IΘ´SpXL
Θq,

C pXΘq “ IΘ´C pXL
Θq.

For each irreducible representation σ of LΘ, by inducing the quotient
SpXL

Θqσ,disc of SpXL
Θqwe get a representation:

SpXΘqσ,disc :“
`

HomLΘ
pσ̃, C8pXL

Θqqdisc

˘˚
b IΘ´σ,

together with a canonical map:

SpXΘq Ñ SpXΘqσ,disc.

(This is the “discrete” quotient of the space SpXΘqσ defined in §15.2.6 of
[SV].) Similarly, we define the cuspidal σ-coinvariants: SpXΘqσ,cusp. In
other words, the spaces of discrete and cuspidal σ-coinvariants are the quo-
tients corresponding to morphisms:

IΘ´ σ̃ Ñ C8pXL
Θq

which are induced by Frobenius reciprocity from morphisms (of the respective
type):

σ̃ Ñ C8pXL
Θq.

The spaces SpXΘqσ,disc form a trivializable complex vector bundle over
yXL

Θ

disc
, which we will denote by LΘ (again as a direct limit over J-invariants,

to be precise). The spaces SpXΘqσ,cusp form a trivializable complex vector

bundle over yXL
Θ

cusp
, which we will denote by LΘ. Again, the definition of

the algebraic structure of these vector bundles is obtained by pulling back
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to yXL
Θ

unr
, and they are endowed with the flat connections described in §3

(depending on the choice of a base point on XL
Θ).

Although the isomorphism (2.3), and the subsequent isomorphisms (2.12),
(2.9), depend on the choice of parabolic P´Θ in its class, it is clear that the
spaces SpXΘqσ,disc, SpXΘqσ,cusp can be considered as canonical quotients of
SpXΘq, and hence the vector bundles LΘ,LΘ do not depend on choices. In-
deed, the kernels of the maps SpXΘq Ñ SpXΘqσ,disc, SpXΘq Ñ SpXΘqσ,cusp

do not depend on the choice of parabolic. As in (4.9), (4.10), these quotient
maps give rise to canonical surjections:

SpXΘq� CryXL
Θ

disc
,L s� CryXL

Θ

cusp
,LΘs. (4.18)

As in the previous subsection, the Plancherel decomposition forL2pXΘqdisc

gives a canonical volume form on yXL
Θ

disc

C valued in (Gdiag-invariant) linear
functionals on LΘ bLΘ:

〈 , 〉σ dσ, (4.19)

and a splitting LΘ ãÑ LΘ of the canonical quotient map of vector bundles.

Part 2. Discrete and cuspidal summands

5. DISCRETE SUMMAND OF THE HARISH-CHANDRA SCHWARTZ SPACE

The Hilbert space L2pXq has an orthogonal direct sum decomposition
L2pXq “ L2pXqdisc ‘ L2pXqcont, where L2pXqdisc has a Plancherel decom-
position in terms of discrete morphisms from irreducible representations:
π Ñ C8pXq, in the sense of §4.1, i.e. with unitary central characters and in
L2 modulo the center. We let C pXqdisc “ C pXq X L2pXqdisc, and similarly
for the spaces XΘ.

5.1. Proposition. Let Y be a connected component of X̂disc; it corresponds to a
direct summand L2pXqY of L2pXqdisc by restriction of the Plancherel measure to
Y . The orthogonal projection of an element of C pXq to L2pXqY lies in C pXq. In
particular, the orthogonal projection of an element of C pXq to L2pXqdisc lies in
C pXq, and we have a direct sum decomposition:

C pXq “ C pXqdisc ‘ C pXqcont,

where C pXqdisc “ C pXq X L2pXqdisc and C pXqcont “ C pXq X L2pXqcont.

Since for every open compact subgroup J there is only a finite number of
connected components Y with L2pXqJY ‰ 0, the proposition actually gives
a finer decomposition of C pXqdisc:

C pXqdisc “ ‘Y C pXqY , (5.1)

where Y ranges over all connected components of X̂disc.
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Proof. Since X is assumed to be factorizable (cf. Remark 2.4), we may rep-
resent C pXq as in (2.13). Clearly, “projection to discrete” can be defined
only with respect to the action of rG,Gs, which reduces the statement to
the spaces C pX 1iq in the notation of (2.13), i.e. reduces the problem to the
case: ZpXq “ 1.

In this case, we recall that the space L2pXqJdisc is finite dimensional [SV,
Theorem 9.2.1], and its elements are AX,Θ-finite in a J-good neighborhood
of Θ-infinity, with strictly subunitary exponents (i.e. AX,Θ-eigencharacters
which are ă 1 in absolute value in Å`X,Θ). Thus, the elements of L2pXqJdisc

belong to C pXq, and the projection map: C pXq Ñ C pXqdisc is continuous.
Notice that this argument is a generalization of the usual criterion of Cas-

selman characterizing discrete series as those representations which appear
with subunitary exponents in all directions, s. Kato-Takano [KT10] for the
symmetric case. �

Similar decompositions hold for all the boundary degenerationsXΘ; this
is seen simply by inducing from the Levi varieties XL

Θ, i.e. it follows from
(2.12).

Now recall the vector bundle of XΘ-discrete series LΘ. We have seen
((4.18) and Proposition 4.5) that, through the canonical quotient maps to
coinvariants, elements of SpXΘq give all regular sections of LΘ, i.e. all ele-

ments of CryXL
Θ

disc
,LΘs.

Moreover, the Plancherel decomposition forL2pXΘqdisc endows the com-

plex vector bundle LΘ over yXL
Θ

disc
with the hermitian structure that was

discussed in §4.4, extending the above map to a canonical isomorphism:

L2pXΘqdisc
„
ÝÑ L2pyXL

Θ

disc
,LΘq. (5.2)

The spectral description of C pXΘqdisc is as follows:

5.2. Theorem. For every Θ, the canonical quotient maps: C pXΘq Ñ C pXΘqσ,disc

give rise to a canonical isomorphism:

C pXΘqdisc » C8pyXL
Θ

disc
,LΘq. (5.3)

The “isomorphism”, here and throughout the paper, is in the category of
G-representations on LF-spaces (countable strict inductive limits of Fréchet
spaces).

Proof of Theorem 5.2. The proof relies on the Payley-Wiener theorem for the
Harish-Chandra Schwartz space of finitely generated abelian groups.

By the isomorphism (2.12), it is enough to prove the theorem for C pXL
Θqdisc,

hence we are reduced to the case of XΘ “ X , assumed factorizable. We
need to show that the image of

C pXq Ñ L2pX̂disc,L q



36 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

lies in C8, and that the resulting map

C pXqdisc Ñ C8pX̂disc,L q (5.4)

is an isomorphism of topological G-modules.
We will first explain that it is enough to show this when G is replaced by

the group G1 “ ZpXq ˆ rG,Gs. Since the F -points of the latter map to a
subgroup of finite index in GpF q, it is immediate from the definitions that
the restriction map of representations is a finite covering X̂disc Ñ X̂ 1disc,
the latter being the space of discrete coinvariants for X under the action of
G1. Moreover, for any π1 P X̂ 1disc the fiber of the corresponding bundle L 1

of discrete coinvariants over π1 is just the direct sum of the spaces Lπ, with
π ranging over the fiber of π1, in such a way that the inclusions Lπ Ñ L 1

π1

and the projections in the opposite direction areC8, as π varies in any small
neighborhood in X̂disc locally isomorphic to its image in X̂ 1disc . Thus, there
is an isomorphism of topological G1-modules

C8pX̂disc,L q » C8pX̂ 1disc,L 1q,

and it is enough to consider the action of G1.
But then, using the decomposition (2.13), and the Paley–Wiener theorem

for finitely generated abelian groups:

C pZpXqq » C8p{ZpXqq
(depending on a choice of Haar measure on ZpXq), we get that C pXqdisc is
equal to the ZpGq0 X rG,Gs-invariant subspace of

à

i

C8p{ZpXqqb̂C pX 1iqdisc.

The second factor is the direct limit over all open compact subgroups J of
its J-invariants, which are finite-dimensional, hence the completion of the
tensor product here is immaterial. The space C pX 1iqdisc decomposes into a
direct sum of isotypic components for the rG,Gs-action, thus identifying
C p

Ů

iZpXqˆXiqdisc, as a topological G1-module, with the analogous space
à

i

C8p{ZpXq ˆ X̂disc
i ,Liq,

of which C8pX̂ 1disc,L 1q is simply the space of invariants under the diago-
nal ZpGq0 X rG,Gs-action.

This completes the proof, but we would like to mention another way of
showing that the map (5.4) is onto, without appealing to the artificial de-
composition (2.13). Let Z Ă ZpXq be a free abelian subgroup such that
ZpXq{Z is compact. Notice that the group ring of Z is canonically iso-
morphic to the (complexification of the) coordinate ring of Ẑ, the torus of
unitary characters of Z. Moreover, by elementary Fourier analysis, this ex-
tends to an isomorphism:

C pZq
„
ÝÑ C8pẐq. (5.5)
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By restriction of central characters we get embeddings:

CrẐs Ñ CrX̂unrs.

and:
C8pẐq Ñ C8pX̂unrq.

Recall the surjection of Proposition 4.5:

SpXq� CrX̂disc,L s (5.6)

The action of the Harish-Chandra Schwartz algebra of Z on SpXq:
C pZq b SpXq Ñ C pXq

translates on the right hand side of (5.6) as multiplication by C8pẐq. Fi-
nally, by Lemma 3.3 the multiplication map is surjective:

C8pẐq bCrẐs CrX̂
disc,L s� C8pX̂disc,L q.

This shows surjectivity of (5.4). The kernel is, essentially by definition,
the subspace C pXqcont, and thus the map induces an isomorphism of C pXqdisc

with C8pX̂disc,L q. �

5.3. The discrete center of X . From Theorem 5.2 we deduce that the ring

C8pyXL
Θ

disc
q of smooth functions on yXL

Θ

disc
actsG-equivariantly on the Harish-

Chandra Schwartz space C pXΘqdisc; we extend this action to the whole
space C pXΘq by demanding that it acts as zero on C pXΘqcont. We will call
this ring the discrete center of XL

Θ, and denote it by:

C8pyXL
Θ

disc
q “: zdiscpXL

Θq.

In the case of XΘ “ X , we can think of this as the relative analog of
the discrete part of the center of the Harish-Chandra Schwartz algebra, i.e.
the discrete part of the “tempered Bernstein center” of Schneider and Zink
[SZ08].

5.4. Remark. Maybe from the point of view of the “relative Langlands pro-
gram” this is not quite the full “center”. Notice that if, for π P X̂disc, the
space SpXqπ,disc has multiplicity n ą 1 as a G-representation, then there is
a larger ring of G-automorphisms on the direct summand of C pXq corre-
sponding to the connected component of π in X̂disc (call Y this connected
component). However, this ring of G-automorphisms is non-commutative:
it is, noncanonically, the ring C8pY,Matnq, i.e. Matn-valued smooth func-
tions. The philosophy of the relative Langlands program proposed in [SV]
suggests that this multiplicity should be related to the number of lifts of
the Langlands parameter of π to a suitable “X-distinguished parameter”
into the L-group LGX of X ; a more precise statement involves Arthur pa-
rameters and packets, and we won’t get into that. That suggests that there
might be a distinguished decomposition of SpXqπ,disc into a direct sum of
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multiplicity-free spaces, each corresponding to a lift of the Langlands pa-
rameter of π to LGX . As π varies in a family, this would give a decomposi-
tion of the corresponding direct summand of C pXqdisc, and the elements of
the G-automorphism ring which preserve this decomposition would form
a commutative ring, isomorphic to as many copies of C8pY q as the multi-
plicity of π in the discrete spectrum. This is not important for our analysis,
but we mention it in order to relate the version of “center” that we are using
here with that suggested by the Langlands picture.

6. CUSPIDAL PART OF THE SCHWARTZ SPACE

6.1. Main result. We have the following analog of Proposition 5.1 and The-
orem 5.2. We start by giving a definition for the cuspidal direct summand
SpXqcusp of SpXq.

Recall the canonical quotients: LΘ,σ “ SpXΘqσ,disc � LΘ,σ “ SpXΘqσ,cusp.
We have seen that the Plancherel hermitian form-valued measure (4.19) on
yXL

Θ

disc
splits these quotients canonically; the resulting embedding of vector

bundles LΘ ãÑ LΘ gives rise, by the Plancherel formula, to a subspace of
L2pXΘqcusp of L2pXΘqdisc.

Let HpG, Jq be the Hecke algebra of J-biinvariant measures on G.

6.2. Proposition. For a function f P SpXq, invariant under a compact open
subgroup J , the following are equivalent:

(1) f P L2pXqcusp;
(2) the HpG, Jq-module generated by f is finitely generated over ZpXq;
(3) the HpG, Jq-module generated by f consists of functions that are zero on

every J-good neighborhood of Θ-infinity, for every Θ ‰ ∆X .

Proof. We first prove that the first statement implies the third.
An f P L2pXqJcusp has pointwise Plancherel decomposition:

fpxq “

ż

X̂cusp

f π̃pxqdπ (6.1)

with f π̃ P C8pXqπ̃cusp, the space spanned by the images of all those mor-
phisms: π̃ Ñ C8pXq with image in the space of functions that are com-
pactly supported modulo ZpXq. The theory of asymptotics, that we will
recall in the next section, implies that all f π̃ vanish in any J-good neigh-
borhood of Θ-infinity, for Θ ‰ ∆X , hence so does f .

The third statement implies the second, because the space of J-invariant,
compactly supported functions that are supported in the complement of
all those J-good neighborhoods is obviously finitely generated over ZpXq,
since this complement is compact modulo ZpXq, and ZpXq is Noetherian.

To show that the second statement implies the first, we may without
loss of generality assume that J is “good”, i.e. such that the functor of
J-invariants is an equivalence of categories between representations with
non-zero J-fixed vectors, and HpG, Jq-modules (cf. [Ber84, Corollaire 3.9]).
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Indeed, if f is invariant under some bigger subgroup K, and its HpG,Kq-
module is finitely generated over ZpXq, then the same holds for its HpG, Jq-
module, which is of the form

ř

i hiHpG,Kq ¨ f , for a finite number of ele-
ments hi P HpG, Jq.

Hence, we assume that J is such, and that the space S :“ HpG, Jq ¨ f
is finitely generated over ZpXq. In the case where ZpXq “ 1, this im-
mediately implies that S is of finite length as a HpG, Jq-module, hence
that f generates a G-module of finite length. Since this module belongs to
SpXq Ă L2pXq, it is completely reducible, with its irreducible summands
obviously in L2pXqcusp.

In the general case, recalling that X is factorizable, and writing it as in
(2.2):

XpF q “
n
ğ

i“1

ZpXqpF q ¨X 1ipF q,

we notice first of all that the restriction of the space of functions HpG, Jq¨z¨f
to (a certain) X 1i is independent of the element z P ZpXq. Thus, this restric-
tion is a finite-dimensional vector space which is an HprG,Gs, rG,Gs X Jq-
module, which implies by the above argument that it belongs to L2pXiqcusp

(the latter defined as before, replacing the group G by rG,Gs). The restric-
tion of the pointwise Plancherel decomposition (6.1) to Xi is the pointwise
Plancherel decomposition for f |Xi . Hence, z ¨ f π̃|Xi is supported on a fixed
compact subset of Xi for all i, z and almost all π, which means that f π̃

is compactly supported modulo ZpXq, for almost all π. This proves that
f P L2pXqcusp.

�

The space SpXq X L2pXqcusp of functions satisfying either of the above
equivalent conditions is the cuspidal part of SpXq and will be denoted by
SpXqcusp. The same definitions hold for a Levi variety XL

Θ, and by (2.9) this
defines a subspace SpXΘqcusp “ IΘ´SpXL

Θqcusp of SpXΘq.

6.3. Theorem. For every connected component Y of yXL
Θ

cusp
, the orthogonal pro-

jection of an element of SpXΘq to L2pXΘqY,cusp lies in SpXΘq. In particular, the
orthogonal projection of an element of SpXΘq to L2pXΘqcusp lies in SpXΘq, and
we have a direct sum decomposition:

SpXΘq “ SpXΘqcusp ‘ SpXΘqnoncusp,

where SpXΘqcusp “ SpXΘq X L2pXΘqcusp and SpXΘqnoncusp “ SpXΘq X

L2pXΘq
K
cusp.

Finally, the natural map (4.10) from SpXΘq to sections of L over yXL
Θ

cusp
is the

composition of an isomorphism:

SpXΘqcusp
„
ÝÑ CryXL

Θ

cusp
,LΘs, (6.2)

with the orthogonal projection from SpXΘq to SpXΘqcusp.
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Proof. First of all, by (2.9) and the analogous isomorphism for the bundle
LΘ, the theorem is reduced to the case XΘ “ X , assumed factorizable.

Since our space is assumed to be factorizable, by (2.10) the problem is
reduced to the case ZpXq “ 1, in which case cuspidal morphisms: π Ñ
C8pXq have image in SpXq. The component L2pXqY,cusp, when ZpXq “ 1,
is spanned by the images of all those morphisms for a given π, and there-
fore orthogonal projection to (the finite-dimensional space) L2pXqJY,cusp, for
any fixed open compact subgroup J , preserves compact support. The di-
rect sum decomposition follows.

By the fact that L is a direct summand of L (both trivializable vector
bundles), and by Proposition 4.5, the image of the map SpXq into sec-
tions of L over X̂cusp is equal to CrX̂cusp,Ls; and the kernel is the space
SpXqnoncusp “ SpXq X L2pXqKcusp. This proves the last claim. �

For future reference, we note that since C8pXΘq is the smooth dual of
SpXΘq using the eigenmeasure that we have fixed (§2.6), there is a corre-
sponding direct sum decomposition:

C8pXΘq “ C8pXΘqcusp ‘ C
8pXΘqnoncusp,

whereC8pXΘqnoncusp is defined as the orthogonal complement of SpXΘqcusp

and vice versa. Of course, SpXΘqcusp belongs to C8pXΘqcusp.

6.4. The cuspidal center of X . The cuspidal center of XL
Θ is the ring:

zcusppXL
Θq :“ CryXL

Θ

cusp
s.

By Theorem 6.3, it acts naturally on SpXΘq, namely via the isomorphism
(6.2) on SpXqcusp and as zero on SpXΘqnoncusp.

Again, as in Remark 5.4, we could have a larger, noncommutative ring
acting on SpXqcusp byG-automorphisms, if we wanted to take into account
the multiplicity of the spaces SpXqπ,disc, but we will not consider that.

Part 3. Eisenstein integrals

7. SMOOTH AND UNITARY ASYMPTOTICS

The theory of asymptotics of smooth representations [SV, §4] provides
us with canonical morphisms (which in this paper we will call “equivariant
exponential maps”):

eΘ : SpXΘq Ñ SpXq, (7.1)
characterized by the property that for a J-good neighborhood NΘ Ă X of
Θ-infinity (s. (2.4)) the map eΘ restricts to the identification of characteristic
functions of J-orbits on NΘ induced by (2.4).

On the other hand, the theory of unitary asymptotics [SV, §11] provides
us with canonical morphisms (the “Bernstein maps”):

ιΘ : L2pXΘq Ñ L2pXq, (7.2)
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characterized by the fact that they are “asymptotically equal to eΘ” close to
Θ-infinity (cf. loc.cit. for details).

We can characterize the spaces L2pXqdisc, SpXqcusp using these maps:

7.1. Proposition. We have:

SpXqcusp “
č

Θ‰∆X

ker e˚Θ|SpXq ,

L2pXqdisc “
č

Θ‰∆X

ker ι˚Θ.

Proof. For L2pXqdisc this is part of the Plancherel formula of [SV], [Del].
For SpXqcusp, if an element f P SpXq is in the kernel of e˚Θ, for all

Θ ‰ ∆X , then the third condition of Proposition 6.2 is satisfied. Vice versa,
if that condition is satisfied, then e˚Θf “ 0 for all Θ ‰ ∆X , because, by
[SV, Lemma 5.2.7], there is no HpG, Jq-stable subspace of C8pXΘq whose
elements are zero on a J-good neighborhood of infinity. �

Under the assumptions of the present paper (in particular, in the case
of symmetric varieties), and conjecturally always, these smooth and uni-
tary asympotics have spectral expansions in terms of normalized Eisenstein
integrals.

Recall the spaces of discrete and cuspidal σ-coinvariants defined in sec-
tion 4; the normalized constant terms (restricted, here, to discrete and cusp-
idal spectra), whose definition will be recalled in the next subsection, are
certain explicitly defined morphisms:

E˚Θ,σ,disc : SpXq Ñ LΘ,σ “ SpXΘqσ,disc,

E˚Θ,σ,cusp : SpXq Ñ LΘ,σ “ SpXΘqσ,cusp,

the latter obtained from the former via the natural quotient maps: LΘ,σ Ñ

LΘ,σ, which vary rationally in σ, i.e. they are really the pointwise evalua-
tions of elements:

E˚Θ,disc P C
ˆ

yXL
Θ

disc
,HomGpSpXq,LΘq

˙

,

E˚Θ,cusp P C
´

yXL
Θ

cusp
,HomGpSpXq,LΘq

¯

,

Here HomGpSpXq,LΘq denotes the sheaf over yXL
Θ

disc

C whose sections
over an open subset U is the space of G-morphisms: SpXq Ñ CrU,LΘs

(and similarly for LΘ over yXL
Θ

cusp
).

7.2. Remark. The fiber of this sheaf over σ PyXL
Θ

disc
is a priori not identical to

HomGpSpXq,LΘ,σq, since, in principle, there may be morphisms that don’t
extend locally to an algebraic family.

A priori this sheaf could be infinite-dimensional, but we claim:



42 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

7.3. Lemma. HomGpSpXq,LΘq is a coherent, torsion-free sheaf over yXL
Θ

disc
.

Proof. Indeed, for every open compact subgroup J the space SpXqJ is a
finitely generated module for the Hecke algebra HpG, Jq [AAG12, Theorem
A], [SV, Remark 5.1.7]. Therefore,

HomGpSpXq,LΘq “ lim
Ð
J

HomHpG,JqpSpXqJ ,L J
Θ q,

and the individual Hom-spaces on the right are coherent sheaves over yXL
Θ

disc
.

Moreover, for every connected component Y of yXL
Θ

disc
there is a compact

open subgroup J such that

HomGpSpXq,LΘ|Y q “ HomHpG,JqpSpXqJ ,L J
Θ |Y q

[Ber84, Corollaire 3.9]. Therefore, HomGpSpXq,LΘq is a coherent sheaf over
yXL

Θ

disc
, and similarly for LΘ over yXL

Θ

cusp
. Moreover, for every Y and J as

above, it is a subsheaf of the locally free sheaf pL J
Θ |Y q

S , where S is a finite
set of generators of SpXqJ , and hence it is torsion-free. �

The definition of normalized constant terms and normalized Eisenstein
integrals will be recalled in the next subsection, where we will also prove
the important property of regularity on the unitary set. We will also re-

call there the notion of a character ω P yXL
Θ

unr

C being large, denoted ω " 0.
Here we will take them for granted, in order to recall how they are used to
express smooth and unitary asymptotics.

The normalized constant terms are adjoint to “normalized Eisenstein in-
tegrals”, which can be described as morphisms:

EΘ,σ,disc : ĆLΘ,σ Ñ C8pXq,

EΘ,σ,cusp : ĆLΘ,σ Ñ C8pXq,

varying rationally in σ. (By˜we denote smooth duals.)
Now we recall the way in which Eisenstein integrals can be used to ex-

plicate smooth and unitary asymptotics. To formulate it, start from the
Plancherel formula forXΘ, which canonically attaches to every f P L2pXΘq

8
disc

a C8pXΘq-valued measure f σ̃dσ on yXL
Θ

disc
. Explicitly, f σ̃ belongs to the

“discrete σ̃-equivariant eigenspace of C8pXΘq” (i.e. the dual of LΘ,σ), and
is characterized by the property that for every Φ P SpXΘqwe have:〈

f, Φ̄
〉
L2pXΘq

“

ż

yXL
Θ

disc

ż

XΘ

f σ̃pxqΦpxqdxdσ. (7.3)

When f P SpXΘq the measure f σ̃dσ extends to a C8pXΘq-valued differ-

ential form on yXL
Θ

disc

C , and another way to describe it is as follows. Recall the
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canonical map (4.9) (adapted to XΘ):

SpXΘq Ñ CryXL
Θ

disc
,LΘs,

f ÞÑ pσ ÞÑ fσ,discq

(where fσ,disc denotes the image of f in the discrete σ-coinvariants), and
the canonical volume form: 〈 , 〉σ dσ, valued in hermitian forms on LΘ

obtained from the discrete part of the Plancherel formula of XΘ, s. (4.19).
Then:

f σ̃dσ “
〈
‚, f̄σ,disc

〉
dσ

as differential forms valued in the smooth dual of SpXΘq.
We are particularly interested in the case when f P SpXΘqcusp Ă L2pXΘqdisc,

in which the form f σ̃dσ is valued in the dual of LΘ,σ and supported on
yXL

Θ

cusp

C .

Since the integrand in (7.3) is entire and supported on yXL
Θ

cusp
, we can

shift the contour of integration and write:〈
f, Φ̄

〉
L2pXΘq

“

ż

ω´1yXL
Θ

cusp

ż

XΘ

f σ̃pxqΦpxqdxdσ (7.4)

for any character ω of yXL
Θ

unr

C .

7.4. Theorem ([SV, Theorem 15.4.2]). For any ω " 0, if f P SpXΘqcusp admits
the decomposition (7.4) then:

eΘfpxq “

ż

ω´1yXL
Θ

cusp EΘ,σ,cuspf
σ̃pxqdσ. (7.5)

7.5. Theorem ([SV, Theorem 15.6.1], [Del, Theorem 7]). If f P L2pXΘq
8
disc

admits the decomposition (7.3), then:

ιΘfpxq “

ż

yXL
Θ

disc EΘ,σ,discf
σ̃pxqdσ. (7.6)

We need to extend the validity of Theorem 7.4 to the cases considered
in [Del]. The proof of Theorem 15.4.2 in [SV] carries over verbatim, up to
Proposition 5.4.5 which we need to prove in the setting of [Del]:

7.6. Proposition. There is an affine embedding XΩ ãÑ Y such that for every
Φ P SpXq, the support of e˚ΩΦ has compact closure in Y .

Proof. We choose a finite extension E of our field over which G splits, and
we let X̄ , Ḡ etc. denote points overE. Then, in [SV, §5.5] there is a filtration
of X̄ defined by certain subsets X̄ľµ indexed by points µ in a rational vector
space āX , and similarly for the spaces X̄Θ. (We point the reader to loc.cit.
for definitions and the notation.) By taking intersections with X , XΘ, we
have obtain filtrations for this space.

Similarly, there is a filtration H̄ěλ of the full Hecke algebra of Ḡ deter-
mined by the support of its elements, where λ lies in a rational vector space
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ā endowed with a surjective map: ā Ñ āX . We may analogously define a
filtration of the full Hecke algebra of G, by imposing the same conditions
on the support of its elements (considered as a subset of Ḡ).

The rest of the argument of [SV] (namely, [SV, Lemma 5.5.5], following
[BK15, Lemma 8.8] and [SV, Proposition 5.4.5]) now follow verbatim, prov-
ing Proposition 7.6. �

We complement this with a statement of moderate growth, that will be
used later:

7.7. Proposition. For any open compact subgroup J the image of SpXqJ under
e˚Θ is a space of functions of uniformly moderate growth on XΘ; i.e. there is a
finite number of rational functions Fi, whose sets of definition coverXΘ, such that
each f P e˚Θ

`

SpXqJ
˘

satisfies:

|f | ď Cf ¨min
i
p1` |Fi|q

on XΘ (for some constant Cf depending on f ).

This is [SV, Proposition 15.4.3], whose proof holds in the general case.

8. DEFINITION AND REGULARITY OF EISENSTEIN INTEGRALS

The normalized constant terms:

E˚Θ,σ : SpXq Ñ SpXΘqσ

are defined as the composition: T´1
Θ,σ ˝RΘ,σ, where RΘ,σ and TΘ,σ are oper-

ators — essentially: spectral decompositions of Radon transforms — fitting
in a diagram:

SpXq
RΘ,σ

&&
SpXh

Θ, δΘqσ

SpXΘqσ

TΘ,σ

88

(8.1)

The spaceXh
Θ is the space of (generic) Θ-horocycles ofX , classifying pairs

pQ,Oq, where Q is a parabolic in the conjugacy class opposite to that of P´Θ
(defined in §3) and O is an orbit for its unipotent radical UQ on the open
Q-orbit on X . Saying the same words about XΘ would produce a canon-
ically isomorphic variety [SV, Lemma 2.8.1], and the operators RΘ and TΘ

are defined in completely analogous ways as operators from SpXq, resp.
SpXΘq, to SpXh

Θ, δΘqσ. Thus, for notational simplicity, we only describe
below the definition of the former. (From the definition it will be clear
that TΘ factors through the quotient SpXΘqσ, which we noted in the dia-
gram above in order to make sense of the inverse of TΘ. The operator TΘ
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is essentially the standard intertwining operator between induction from two
opposite parabolics.)

Let Λ P HomLΘ
pSpXL

Θq, σq, where σ is an irreducible representation of
LΘ. Recall from §3 that the Levi variety XL

Θ can be identified with the quo-
tient of the open PΘ-orbit on X by its unipotent radical UΘ. We define a
PΘ-morphism:

Λ̃ : SpXq Ñ σ b δΘ (8.2)
formally (at least) as:

Λ̃pΦq “ Λ

ˆ

XL
Θ Q x ÞÑ

ż

UΘ

Φpxuqdu

˙

,

i.e. by integrating over UΘ-orbits in the open PΘ-orbit and then applying
the operator Λ. There are two difficulties here: First, integrating over UΘ-
orbits requires fixing a measure on them; secondly the result of this inte-
gration will not be compactly supported on XL

Θ.
Without fixing measures on UΘ-orbits, the operation (Radon transform)

of integrating over them canonically takes values in a line bundle over XL
Θ

whose smooth sections we denote by C8pXL
Θ, δΘq, and admits a noncanon-

ical isomorphism:

C8pXL
Θ, δΘq

„
ÝÑ C8pXL

Θq b δΘ, (8.3)

cf. [SV, §5.4.1]. The image of “integration over generic UΘ-orbits” will be
denoted by:

SpXq
RΘ
� C8pXL

Θ, δΘqX Ă C8pXL
Θ, δΘq. (8.4)

Inducing this PΘ-functional to G, we get a G-morphism (denoted by the
same symbol):

SpXq
RΘ
� C8pXh

Θ, δΘqX ,

where this notation stands for the corresponding line bundle over Xh
Θ.

For ease of presentation, let us now fix an isomorphism as in (8.3), and
denote byC8pXL

ΘqX the subspace ofC8pXL
Θq corresponding toC8pXL

Θ, δΘqX :

C8pXL
Θ, δΘqX » C8pXL

ΘqX b δΘ. (8.5)

We will extend the morphism Λ to C8pXL
ΘqX by the usual method of

meromorphic continuation: Let ṽ P σ̃, and consider the following distribu-
tion on XL

Θ:
SpXL

Θq Q Φ ÞÑ 〈ΛpΦq, ṽ〉 .
Consider also the invariant-theoretic quotient XΘ � UP “ spec krXΘs

UP .
It can be shown (cf. [SV, Lemma 15.3.1]) that it containsXL

Θ as an open orbit,
whose preimage is precisely the open PΘ-orbit in X . For a character ω P
yXL

Θ

unr

C , considered as a function on XL
Θ (this requires fixing a base point),

we write ω " 0 if it vanishes sufficiently fast around the complement of the
open orbit; the set of such characters contains an open subset of the whole
character group.
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Twisting by ω we get from Λ and ṽ functionals:

SpXL
Θq Q Φ ÞÑ 〈ΛpΦ ¨ ωq, ṽ〉 (8.6)

factoring through σ b ω´1-coinvariants.
Then, for ω " 0 (not depending on the choice of ṽ) and any f P C8pXL

ΘqX ,
the distributions (8.6) are in L1pX, fq — i.e., they are represented by mea-
sures ω ¨Λ˚pṽqwith

ş

XL
Θ
|f | ¨ |ω ¨Λ˚pṽq| ă 8 (where Λ˚ denotes the adjoint of

Λ with image in the space of smooth measures onXL
Θ). That gives a natural

way to extend them to C8pXL
ΘqX as the integral

Λ̃pfq “

ż

XL
Θ

f ¨ ω ¨ Λ˚pṽq. (8.7)

8.1. Lemma. For any f P C8pXL
ΘqX and ṽ P σ̃ the integral (8.7) is rational in

the variable ω PyXL
Θ

unr
, with linear poles.

Recall that the notion of “linear poles” was defined in §3.4.

Proof. This follows from the theory of Igusa integrals and the proof of [SV,
Proposition 15.3.6], where it is shown that this integral has the form:

Ipωq :“

ż

F ¨ |Ω| ¨
ź

i

|fi|
sipωq,

where, denoting by D the complement of the open PΘ-orbit in X :
— the fi’s are PΘ-eigenfunctions (hence regular and non-vanishing

away from D), and the exponents sipωq are such that the product
ś

i |fi|
sipωq has eigecharacter ω;

— F is the pull-back of a finite function (i.e., generalized eigenfunc-
tion) on pFˆqr, for some r, via an r-tuple of “local coordinates”
pg1, . . . , grq, which are rational functions whose divisor is contained
in D;

— Ω an algebraic volume form whose divisor is contained in D.
As in [SV, Proposition 15.3.6], we now refer to [Igu00] and [Den85, p.5]

for the fact that such an integral has rational continuation with linear poles.
�

8.2. Remark. For symmetric spaces, an alternative proof of rationality and
linearity of the poles was given by Blanc-Delorme in [BD08, Theorem 2.8(iv)
and Theorem 2.7(i)].

Composing this with the map RΘ of (8.4) we now get, for every Λ P

HomLΘ
pSpXL

Θq, σq, a rational family of PΘ-morphisms:

Λ̃ω : SpXq Ñ σ b ω´1δΘ,

whose specialization at ω “ 1 (if regular) is the operator Λ̃.
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If we let Λ vary, this defines a rational family of PΘ-morphisms from
SpXq to the coinvariant space SpXL

ΘqσbδΘ ; recall that

SpXL
Θqσ “ HomLΘ

pSpXL
Θq, σq

˚ b σ.

Inducing from PΘ, and forgetting the isomorphism (8.5), we land in the
coinvariant space:

SpXh
Θ, δΘqσ :“

`

HomLΘ
pSpXL

Θ, δΘq, σ b δΘ

˘˚
b IΘσ,

This completes the definition of the map RΘ,σ, and the definition of TΘ,σ

is completely analogous. Notice that TΘ,σ factors through the quotient
SpXΘq Ñ SpXΘqσ, and essentially coincides with the standard intertwin-
ing operator IΘ´pσq Ñ IΘpσq:

SpXΘqσ “ HomLΘ
pSpXL

Θq, σq
˚ b IΘ´σ

ÝÑ SpXh
Θ, δΘqσ “ HomLΘ

pSpXL
Θ, δΘq, σ b δΘq

˚ b IΘσ.

Notice that HomLΘ
pSpXL

Θq, σq “ HomLΘ
pSpXL

Θq b δΘ, σ b δΘq canonically,
and the non-canonical difference between SpXL

Θq b δΘ and SpXL
Θ, δΘq ac-

counts for the non-canonicity of the choice of measure on UΘ for the inter-
twining operator.

We have the following:

8.3. Lemma. For σ in general position (in a family of irreducible representations
of LΘ twisted by elements of yXL

Θ

unr
) the representation IΘ´pσq is irreducible and

the operator TΘ,σ is an isomorphism.

Proof. Indeed, this follows from the fact that yXL
Θ

unr
contains “PΘ-regular”

characters — i.e. characters which are non-trivial on the image of all coroots
corresponding to roots in the unipotent radical of PΘ (s. the proof of [SV,
Corollary 15.3.3]) — that TΘ,σ is always non-zero (wherever defined), and
that the points of reducibility are contained in divisors of the form tσ0bωuω,
where σ0 is some fixed point in this family and ω varies along unramified
characters of LΘ satisfying ω|α̌pFˆq “ 1 for some root α in the unipotent
radical of PΘ, cf. [Sau97, Théorème 3.2] and also Lemma 11.3 later in the
present paper. �

Hence, the inverses of the operators TΘ,σ form a meromorphic family of
operators, and we can define the normalized constant terms:

E˚Θ,σ “ T´1
Θ,σ ˝RΘ,σ : SpXq Ñ SpXΘqσ.

The normalized Eisenstein integrals are by definition their adjoints:

EΘ,σ : ČSpXΘqσ Ñ C8pXq. (8.8)

8.4. Lemma. The normalized constant terms E˚Θ,σ (equivalently, the normalized
Eisenstein integrals EΘ,σ) are rational in σ, with linear poles.
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Proof. The rationality and linear poles ofRΘ, TΘ follow from standard Igusa
theory, as we recalled in Lemma 8.1. The fact that the inverse T´1

Θ of the
standard intertwining operator has linear poles is also well-known, but we
recall an argument here, for the sake of completeness. By abuse of notation,
we will denote by TΘ the standard intertwining operator IΘ´pσq Ñ IΘpσq,
depending on a choice of Haar measure on UΘ. We also denote by TΘ´ the
corresponding operator when the roles of PΘ and PΘ´ are reversed.

The composition TΘ´ ˝ TΘ : IΘ´pσq Ñ IΘ´pσq is a scalar γpσq, varying
rationally as σ is twisted by unramified characters of PΘ. If that scalar is
zero, that representation is reducible. (This is [Cas, Theorem 6.6.2], which
is stated for σ cuspidal, but the argument in this direction works for any
σ.) As we saw in the proof of Lemma 8.3, the induced representation is
reducible along linear divisors. Thus, the zeros of γ and the poles of T´1

Θ
are linear divisors. �

Now we project normalized constant terms to discrete and cuspidal quo-
tients of SpXΘqσ, to obtain the morphisms used in the previous section:

E˚Θ,disc P C
ˆ

yXL
Θ

disc
,HomGpSpXq,LΘq

˙

,

E˚Θ,cusp P C
´

yXL
Θ

cusp
,HomGpSpXq,LΘq

¯

.

Linearity of the poles and their role in the Plancherel formula imply that
the poles actually do not meet the unitary set:

8.5. Proposition. Normalized Eisenstein integrals are regular on the subsets of
unitary representations, i.e.:

E˚Θ,disc P Γ
´

yXΘ
disc

,HomGpSpXq,LΘq

¯

,

and:

E˚Θ,cusp P Γ
´

yXΘ
cusp

,HomGpSpXq,LΘq

¯

.

Proof. Theorem 7.5 shows that for every Φ P SpXq, and every L2-section
σ ÞÑ vσ of LΘ, the inner product:〈

E˚Θ,discΦ, v
〉
σ
dσ

(see (4.19) for the unitary structure on LΘ) is integrable over yXL
Θ

disc
.

Dividing by a Haar measure dσ, and assuming that v is actually regular,
we get a function σ ÞÑ

〈
E˚Θ,discΦ, v

〉
σ

which has linear poles. By Lemma

3.5, these poles cannot meet the unitary spectrum yXL
Θ

disc
. �
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Part 4. Scattering

9. GOALS

This part is technically at the heart of our proof of Paley–Wiener the-
orems. The goal here is to prove Theorems 9.1, 9.2; before we formu-
late them, let us explain what we will mean by saying that for associates
Θ,Ω Ă ∆X , and w PWXpΩ,Θq, a morphism:

SpXΘqcusp Ñ C8pXΩqcusp (9.1)

is “w-equivariant with respect to the cuspidal center” zcusppXL
Θq (§6.4), and

similarly that a morphism:

C pXΘqdisc Ñ C pXΩqdisc

is “w-equivariant with respect to the discrete center” zdiscpXL
Θq (§5.3).

Conjugation by w induces an isomorphism between the Levi LΘ and the
Levi LΩ (unique up to conjugacy), and hence between their unitary duals.
It is not a priori clear that this preserves the discrete and cuspidal subsets:

yXL
Θ

disc
„
ÝÑyXL

Ω

disc
,

yXL
Θ

cusp
„
ÝÑyXL

Ω

cusp
,

however this will be implicit (and hence will be proven) whenever we say
that a morphism of the form (9.1) is “w-equivariant”. Recall from §6.4, 5.3
that the cuspidal, resp. discrete center of XΘ can be identified with regular,

resp. smooth functions on yXL
Θ

cusp
, resp. yXL

Θ

disc
. Thus, w induces isomor-

phisms:
zcusppXL

Θq
„
ÝÑ zcusppXL

Ωq

and:
zdiscpXL

Θq
„
ÝÑ zdiscpXL

Ωq,

and by saying that the map is “w-equivariant” we mean with respect to
this isomorphism. Notice that, by duality to SpXΩq, the space C8pXΩq

decomposes as a direct sum:

C8pXΩq “ C8pXΩqcusp ‘ C
8pXΩqnoncusp,

and the action of zcusppXL
Ωq on C8pXΩqcusp is defined by duality in such

a way that it extends the action on SpXΩqcusp: for Z P CryXL
Ω

cusp

C s we let
Z_ denote the dual element: Z_pπq “ Zpπ̃q and we define Z ¨ f , for each
f P C8pXΩqcusp by the property:

ż

XΩ

Φ ¨ pZ ¨ fq “

ż

XΩ

pZ_ ¨ Φqf

for all Φ P SpXΩqcusp.
Notice that Ω could be equal to Θ, but w ‰ 1, in which case the isomor-

phism between centers is not the identity map.
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Now we state the three main theorems of scattering theory, which will
be proven in the following sections.

9.1. Theorem. Consider the composition i˚Ω ˝ iΘ, restricted to L2pXΘqdisc. It is
zero unless Ω contains aWX -translate of Θ, and it has image inL2pXΩqcont unless
Ω is equal to a WX -translate of Θ, in which case it has image in L2pXΩqdisc. In
the last case, it admits a decomposition:

ι˚Ω ˝ ιΘ|L2pXΘqdisc
“

ÿ

wPWXpΩ,Θq

Sw,

where the morphism:

Sw : L2pXΘqdisc Ñ L2pXΩqdisc

is w-equivariant with respect to zdiscpXL
Θq, and is an isometry.

The operators Sw restrict to continuous morphisms between Harish-Chandra
Schwartz spaces:

Sw : C pXΘqdisc Ñ C pXΩqdisc,

and they satisfy the natural associativity conditions:

Sw1 ˝ Sw “ Sw1w for w PWXpΩ,Θq, w
1 PWXpΞ,Ωq. (9.2)

(In particular, since S1 “ 1, they are topological isomorphisms.)

The theorem is part of the main L2-scattering theorem [SV, Theorem
7.3.1], [Del, Theorem 6], except for two assertions: First, the condition on
equivariance with respect to zdiscpXL

Θq; indeed, the condition used in loc.cit.
to characterize the scattering maps Sw was w-equivariance with respect to
the action of A1X,Θ (via w : AX,Θ

„
ÝÑ AX,Ω on L2pXΩq), where A1X,Θ denotes

the image of the F -points of ZpLΘq via the quotient map: ZpLΘq Ñ AX,Θ.
This condition is slightly weaker than zdiscpXL

Θq-equivariance. Secondly
and most importantly, the fact that the scattering maps (continuously) pre-
serve Harish-Chandra Schwartz spaces. Both of these will be proven in
Section 11.

9.2. Theorem. Consider the composition e˚Ω ˝ eΘ, restricted to SpXΘqcusp. It is
zero unless Ω contains a WX -translate of Θ, and it has image in C8pXΩqnoncusp

unless Ω is equal to aWX -translate of Θ, in which case it has image inC8pXΩqcusp.
In the last case, it admits a decomposition:

e˚Ω ˝ eΘ|SpXΘqcusp
“

ÿ

wPWXpΩ,Θq

Sw,

where the morphism:

Sw : SpXΘqcusp Ñ C8pXΩqcusp

is w-equivariant with respect to zcusppXL
Θq.
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If we denote the subspace of C8pXΩqcusp spanned by the images of all opera-
tors Sw by S`pXΩqcusp, as Θ varies and w P WXpΩ,Θq, then there is a unique
extension of the operators Sw to the spaces S`, i.e.:

Sw : S`pXΘqcusp Ñ S`pXΩqcusp

satisfying the natural associativity conditions:

Sw1 ˝Sw “ Sw1w for w PWXpΩ,Θq, w
1 PWXpΞ,Ωq. (9.3)

Both types of scattering operators have spectral expressions, which should
be seen as the analogs of Theorems 7.4 and 7.5; to formulate them, let
w P WXpΩ,Θq and denote by w˚LΩ the pullback of the vector bundle LΩ

to yXL
Θ

disc
under the isomorphisms afforded by w: yXL

Θ

disc
ÑyXL

Ω

disc
. We will

not distinguish between sections of HomGpLΘ, w
˚LΩq over yXL

Θ

disc
and sec-

tions of HomGppw
´1q˚LΘ,LΩq over yXL

Ω

disc
; this allows us to compose such

sections for a sequence of maps:

yXL
Θ

disc
ÑyXL

Ω

disc
ÑyXL

Ξ

disc
.

9.3. Theorem. For each w P WXpΩ,Θq there is a rational family of operators,
with linear poles which do not meet the unitary set:

Sw P Γ

ˆ

yXL
Θ

disc
,HomGpLΘ, w

˚LΩq

˙

,

preserving the cuspidal direct summands LΘ,LΩ, such that the scattering opera-
tors of Theorems 9.1 and 9.2 admit the following decompositions:

‚ For any ω " 0, if f P SpXΘqcusp admits the decomposition (7.4) then:

Swfpxq “

ż

ω´1yXL
Θ

cusp S ˚
w´1f

σ̃pxqdσ. (9.4)

‚ If f P L2pXΘqdisc admits the decomposition (7.3), then:

Swfpxq “

ż

yXL
Θ

disc S ˚
w´1f

σ̃pxqdσ. (9.5)

The operators Sw satisfy the natural associativity conditions:

Sw1 ˝Sw “ Sw1w for w PWXpΩ,Θq, w
1 PWXpΞ,Ωq. (9.6)

9.4. Remark. The operator Sw´1 “ S ´1
w is a rational section of morphisms:

LΩ,wσ Ñ LΘ,σ as σ varies in yXL
Θ

disc
, and hence its adjoint S ˚

w´1 is a rational
section of morphisms: ĆLΘ,σ Ñ

ČLΩ,wσ.
The spaces ĆLΘ,σ Ñ

ČLΩ,w´1σ are considered as subspaces of C8pXΘq

and C8pXΩq, respectively, by duality with SpXΘq, resp. SpXΩq — recall
that f σ̃ P ĆLΘ,σ.

The proofs of the above theorems will occupy the rest of this part.
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10. EIGENSPACE DECOMPOSITION OF EISENSTEIN INTEGRALS

Recall that the (discrete part of the) normalized constant term gives the
morphisms (1.9):

E˚Θ,disc : SpXq Ñ CpyXL
Θ

disc
,LΘq.

If we compose with the equivariant exponential map eΩ (for some Ω Ă

∆X ), we get morphisms which we will denote by E˚,ΩΘ,disc:

E˚,ΩΘ,disc :“ E˚Θ,disc ˝ eΩ : SpXΩq Ñ CpyXL
Θ

disc
,LΘq (10.1)

These morphisms express the asymptotics, in the Ω-direction, of normal-
ized Eisenstein integrals. Their projection to the cuspidal part (i.e. the pro-
jection from LΘ to LΘ) will be denoted by E˚,ΩΘ,cusp.

We notice that we have an action of a torus AX,Ω on SpXΩq. If we fix

σ PyXL
Θ

disc
, any map:

SpXΩq Ñ LΘ,σ (10.2)

(= the fiber SpXΘqσ,disc of LΘ over σ) is finite under the AX,Ω-action, be-
cause LΘ,σ if of finite length, but we will prove a stronger statement which
takes into account the variation of σ. This has nothing to do with the Eisen-
stein integrals per se, and in fact we want to apply it to their derivatives
as well (in order to prove that the normalized constant term of the Harish-
Chandra space gives smooth sections over the spectrum), so we will dis-
cuss it in a more general setting.

We have already defined in §7 the sheaf HomGpSpXq,LΘq which by

Lemma 7.3 is a coherent, torsion-free sheaf over yXL
Θ

disc

C ; recall that its sec-
tions over an open subset U are, by definition, G-morphisms: SpXq Ñ
CrU,LΘs — cf. also Remark 7.2. By the same argument as in Lemma 7.3,
the sheaf:

M :“ HomG pSpXΩq,LΘq

is also coherent and torsion-free.
Let us fix a connected component Y ĂyXL

Θ. We let:

MY :“ C pY,HomG pSpXΩq,LΘqq “ HomG pSpXΩq,CpY,LΘqq (10.3)

denote the rational global sections of this sheaf over Y — they form a finite-
dimensional (by coherence) vector space over the field KY :“ CpY q.

This vector space carries a smoothAX,Ω-action via the action of this torus
on SpXΩq. Thus, over a finite extension of KY , it splits into a direct sum of
generalized eigenspaces. We will describe the eigencharacters.

Let T̂ denote the unitary dual of the “universal” split torus T , defined as
the maximal central split torus of the Levi quotient of the minimal parabolic
of G. In what follows, characters of a Levi LΘ are considered as characters
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of T via the embedding of the minimal parabolic into the parabolic PΘ.
Thus, we have restriction maps:

yXL
Θ

unr

C Ñ xLΘ
unr

C ãÑ T̂C, (10.4)

and recall that there is also a quotient map:

ZpLΩq
0 Ñ AX,Ω, (10.5)

whose image at the level of F -points we are denoting by A1X,Ω.
For a (not necessarily unitary) character χ P T̂C and an element w P W ,

it may happen that for all ω PyXL
Θ

unr

C the restrictions:
wpχωq|ZpLΩq

0

factor through the quotient map (10.5). For example, this is the case if χ
arises as the restriction of a character in (10.4), and w P WXpΩ,Θq. We will
then write:

wpχωq|A1X,Ω
,

and whenever we use this notation we will implicitly mean that the char-
acters do factor through A1X,Ω. This is also implicitly assumed for the char-
acters that appear in the following:

10.1. Proposition. Choose a base point σ P Y , and use it to construct the finite
cover: yXL

Θ

unr
Q ω ÞÑ σb ω P Y . Let rKY “ CpyXL

Θ

unr
q be the corresponding finite

field extension. Then all eigencharacters of A1X,Ω on MY are defined over rKY .

More precisely, if t̃ : LΘ Ñ CryXL
Θ

unr
sˆ Ă rKˆY denotes the tautological charac-

ter a ÞÑ pω ÞÑ ωpaqq, there is a character χ P T̂C, with restriction to ZpLΘq
0 equal

to the central character of σ, and a subset W1 ĂWLΩ
zW such that the operator:

ź

wPW1

pz ´ wpχt̃qpzqq (10.6)

annihilates MY bKY
rKY , for every z P A1X,Ω.

We used t̃ for the tautological character of LΘ into rKˆY in order to reserve
the symbol t for the tautological character:

t : A1X,Θ Ñ CrY sˆ Ă KˆY ,
a ÞÑ pσ ÞÑ χσpaqq, where χσ denotes the central character of σ.

Proof. Since LΘ is (non-canonically) a direct sum of a finite number of
copies of IΘ´p‚q (the sheaf over Y whose local sections are regular sections
σ1 ÞÑ φpσ1q P IΘ´pσ

1q), it is enough to prove the proposition for the module:

M1
Y :“ HomG pSpXΩq,CpY, IΘ´p‚qqq .

We have:

M1
Y bKY

rKY ĂM2
Y :“ HomG

´

SpXΩq,CpyXL
Θ

unr

C , IΘ´pσ b ‚qq
¯

,
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therefore it is enough to show that M2
Y decomposes into a direct sum of

generalized eigenspaces as in the statement of the proposition.
We can represent σ as a subrepresentation of a representation parabol-

ically induced from a supercuspidal τ , and then IΘ´pσ b ωq becomes a
subrepresentation of IP pτ b ωq, where P is a suitable parabolic, and τ is
a supercuspidal representation of its Levi quotient L.

Notice that:

HomG pSpXΩq, IP pτ b ωqq
p˚q
» HomG

`

IP pτ̃ b ω
´1q, C8pXΩq

˘

»

» HomLΩ

`

IP pτ̃ b ω
´1qΩ´ , C

8pXL
Ωq
˘

,

where we recall that the index Ω´ denotes normalized Jacquet module with
respect to the parabolic P´Ω .

The Jacquet module IP pτ̃ b ω´1qΩ´ is ZpLΩq-finite, and it is annihilated
for every z P ZpLΩq by the product:

ź

wPpWLΩ
zW pLÑLΩq{WLq

`

z ´ wpχτωq
´1pzq

˘

,

(corresponding to its canonical filtration in terms of P´Ω zG{P -orbits), where
W pL Ñ LΩq denotes the set of elements w P W with wL Ă LΩ, and χτ is
the central character of τ . (We have implicitly chosen here a maximal split
torus and hence a class of standard Levis, for the Weyl group to act on
them.) Moreover, for ω in general position, the statement will remain true
if we restrict the product to the subset pWLΩ

zW pL Ñ LΩq{WLq
‚ of those

cosets for which the restriction of elements of wpχτyXL
Θq to ZpLΩq

0 factors
through the quotient (10.5); indeed, ZpLΩq

0 acts on C8pXL
Ωq through the

quotient ZpLΩq
0 Ñ A1X,Ω, and therefore this has to be the case for any

generalized ZpLΩq
0-eigenspace of the Jacquet module IP pτ̃ b ω´1qΩ´ on

which a morphism IP pτ̃ b ω
´1qΩ´ Ñ C8pXL

Ωq is non-zero.
Notice that at the step p˚q we have used a duality which inverts charac-

ters of A1X,Ω, therefore the module HomG pSpXΩq, IP pτ b ωqq will be anni-
hilated by:

ź

wPpWLΩ
zW pLÑLΩq{WLq

‚

pz ´ wpχτωqpzqq .

(We could alternatively have used second adjointness from the begin-
ning, to analyze theA1X,Ω-action in terms of the Jacquet module IP pτbωqΩ.)

This essentially completes the proof of the proposition, except that the
proposition was formulated withw an element ofWLΩ

zW (instead ofWLΩ
zW {WL)

and χ a character of T (instead of χτ , a character of the center of the Levi
L of P ); this formulation was chosen for uniformity, since P and L depend
on choices, and the component of the spectrum under consideration. We
may arrive at the statement of the proposition by choosing representatives
in WLΩ

zW , and choosing a character χ of T which restricts to the character
χτ of the maximal split torus in the center of L. �
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10.2. Remark. As we have seen in the last sentence of the proof, there is some
choice involved in the subset W1 Ă WLΩ

zW . Notice, however, that for
cosets represented by elements wX PWXpΩ,Θq there is no choice involved,
since WLΩ

wXWLΘ
“ WLΩ

wX . Moreover, for those elements we have, by
construction:

wpχωq “ the LΩ-central character of wpσωq (10.7)

which, automatically, factors through A1X,Ω.

We can think of the eigencharacters described in the last proposition as
correspondences YC 99K zA1X,ΩC

:

ω PyXL
Θ

unr

2

yy

�

((

σ b ω P YC
wipχωq|A1X,Ω

P zA1X,ΩC
.

(10.8)

As a corollary of the proposition:

10.3. Corollary. The space MYbKY K̃Y decomposes in a direct sum of generalized
eigenspaces for the action of A1X,Ω, with eigencharacters wpχt̃q as in the statement
of Proposition 10.1.

Proof. Indeed, choose a finite number of elements of A1X,Ω so that they dis-
tinguish the distinct characters wpχt̃q. The space MY bKY K̃Y decomposes
in a direct sum of joint generalized eigenspaces of those elements, and by
the proposition those have to be generalized eigenspaces for A1X,Ω. �

10.4. Derivatives. Now recall from 4.4 that LΘ carries a flat connection,
which depends (in a very mild way) on choosing a base point x P X . The
resulting action of DpY q (the ring of differential operators on Y ) on ele-
ments of the space:

MY “ HomG pSpXΩq,CpY,LΘqq

does not preserve G-equivariance, but it does preserve eigencharacters up
to multiplicity:

Lemma. Let E PMY and let WE ĂW1, in the notation of (10.6), be any subset
such that the corresponding operator:

PEpzq :“
ź

wPWE

pz ´ wpχt̃qpzqq

annihilates E, for every z P A1X,Ω.
Let D P DpY q, so DE P Hom pSpXΩq,CpY,LΘqq. Then a power of PEpzq

(depending only on D) annihilates DE, for every z P A1X,Ω.
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Proof. For every fixed z, the polynomial:

PE,zpxq “
ź

wPWE

px´ wpχt̃qpzqq

is divided by the minimal polynomial of the operator z acting on E. The
ring DpY q acts on polynomials with coefficients in KY , simply by acting on
the coefficients. If D P DpY q is of degree n, then the commutator:

rD,Pn`1
E,z s

lies in the ideal generated by PE,z ; therefore, Pn`1
E,z pzq “ Pn`1

E pzq annihi-
lates DE. �

10.5. Weak tangent space of a family. In order to obtain more precise in-
formation about the characters wpχt̃q that appear in the annihilator of Eisen-
stein integrals and their constant terms, we need a way to encode represen-
tation-theoretic information on families of representations. This informa-
tion will be a “Lie algebra” version of the usual notion of supercuspidal
support.

Recall that an irreducible representation σ of G is a subquotient of a
parabolically induced supercuspidal representation τ of a Levi subgroup
L, and the pair pτ, Lq is called the supercuspidal support of σ. It is well de-
fined modulo G-conjugacy (we think of τ as an isomorphism class of rep-
resentations), and the set of G-conjugacy classes of such pairs has a natural
orbifold structure. Notationally, we can also write pτ, P q when P is a para-
bolic with Levi subgroup L.

Let us denote by SPG the space of supercuspidal pairs pτ, Lq and by SCG
the set of their equivalence classes, which we may consider either as an
orbifold or (by invariant-theoretic quotient) as an affine variety. The fiber
of SPG over a fixed L is acted upon with finite stabilizers by the character
group L̂unr

C , and therefore the tangent space of any point on the fiber can be
canonically identified with the Lie algebra of L̂unr

C .
A choice of parabolic P with Levi L gives an embedding L̂unr

C Ă Âunr
C ,

where A is the universal Cartan, and hence of the Lie algebra l˚C of the
former into the Lie algebra a˚C “ HompA,Gmq b C of the latter. For a pair
x “ pτ, Lq P SPG we will call weak tangent space WTG,x the image of l˚C in
the set-theoretic quotient a˚C{W . It does not depend on τ , neither on the
choice of parabolic P .

Any two points in SPG in the preimage of a point in SCG have the same
weak tangent space, thus this notion descends to the orbifold SCG. More-
over, if by “tangent space” Tx of a point x on an orbifold we mean the
quotient of the tangent space of a preimage on the covering manifold by
the finite stabilizer, there is a well defined map:

Tx ÑWTG,x

at every x P SCG.
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Now, consider a set I of finite-length representations of G. Let I 1 be
the set of isomorphism classes of irreducible subquotients of elements of
I 1, and let SCGpIq Ă SCG denote the set of supercuspidal supports of
elements of I 1. Then at every point x P SCGpIq we have a well-defined
subset:

WTG,xpIq ĂWTG,x Ă a˚C{W,

defined as the union of the weak tangent spaces at x of all embedded sub-
orbifolds: S Ă SCGpIq Ă SCG. We use “embedded suborbifold” to re-
fer to the image in SCG of a smooth embedded submanifold of a finite
(smooth manifold) cover of SCG. Equivalently, WTG,xpIq denotes the set
of images in the “tangent space” Tx of the derivatives at zero of all smooth
one-parameter families:

γ : p´ε, εq Ñ SPG

with rγp0qs “ x and rγpp´ε, εqqs Ă I 1, where r‚s denotes the quotient map
SPG Ñ SCG.

The union of the spaces WTG,xpIq over all x P SCGpIqwill be called, for
brevity, the “weak tangent space of I” instead of “weak tangent space of
the supercuspidal support of I”, and denoted WTGpIq.

In what follows, we will apply these notions to Levi subgroups, instead
of the groupG. Notice that for a Levi subgroupL, the corresponding notion
of weak tangent space for SCL gives a subset of a˚C{WL, where WL is the
Weyl group of L. If L “ LΩ for some Ω Ă ∆X we will be using the index Ω
instead of LΩ.

Let Ω Ă ∆X . Let J be a family of G-morphisms tSpXΩq Ñ πuπ, where
π varies over a set J0 of G-representations of finite length. Each such mor-
phism is equivalent, by second adjointness, to a morphism:

SpXL
Ωq Ñ πΩ, (10.9)

where πΩ denotes the Jacquet module of π with respect to PΩ — also of
finite length. Let I denote the union, over all π P J0, of the images of the
maps (10.9). We define:

SCΩpJ q :“ SCΩpIq
and

WTΩpJ q :“WTΩpIq,
the latter whenever SCΩpJ q is a suborbifold of SCΩ.

These definitions can also be given without appealing to second adjoint-
ness, of course; it suffices to dualize the morphisms:

π̃ Ñ C8pXΩq

and to use Frobenius reciprocity, as in the proof of the preceding proposi-
tion.

In the notation of the previous subsection (Y Ă yXL
Θ

disc
, etc), an element

E of HomGpSpXΩq,CpY,LΘqq will be considered as a family J as above
by considering the evaluations of its points wherever they are defined, and
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we will also be using SCpEq,WT pEq to denote the supercuspidal support,
resp. weak tangent space, of this family.

In this language, the proof of Proposition 10.1 shows:

10.6. Corollary. Let Y Ă yXL
Θ

disc
be a connected component and let E P MY “

HomGpSpXΩq,CpY,LΘqq.
Then:

SCΩpEq Ă
ď

gPGpx,LΩq

rg
´

x ¨yXL
Θ

unr

C

¯

s, (10.10)

WTΩpEq “
ď

wPW 1ĂWLΩ
zW

rw
`

a˚X,Θ,C
˘

s, (10.11)

where:
‚ x is a supercuspidal pair for LΘ (i.e. x P SPΘ);
‚ Gpx, LΩq denotes the set of elements in G carrying the Levi L of x into
LΩ;

‚ a˚X,Θ,C denotes the Lie algebra of yXL
Θ

unr

C , which can also be identified with
the Lie algebra of zAX,ΘC (hence the notation), inside of a˚C;

‚ r‚s denotes classes in SCΩ, resp. WTΩ;
‚ W 1 denotes some subset of the given set.

Proof. The proof of the corollary is essentially identical to that of Proposi-
tion 10.1, if we replace the action of ZpLΩq (or its quotient A1X,Ω) by that of
the Bernstein center zpLΩq. The reader should notice here that, although we are
going to use the structure of the Bernstein center of LΩ as the ring of polynomial
functions on the variety of supercuspidal supports, the present corollary will only
be used in the proof of Proposition 12.1 when Ω ‰ ∆X ; thus, we are not applying
a circular argument when reproving the structure of the Bernstein center in §16.1,
since one can establish it inductively on the size of the group.

In the notation of the proof of Proposition 10.1, with σ a base point in
Y , choosing a basis for HomLΘ

pSpXL
Θq, σqdisc we can identify the bundle

LΘ,σb‚ over yXL
Θ

unr

C with a subbundle of IP pτ b ‚qr, for some r, and hence
E with a rational section of the bundle:

HomGpSpXΩq, IP pτ b ‚q
rq. (10.12)

At each point ω where it is regular, we get a specialization Eω, whose
dual, E˚ω is an element of:

HomGpIP pτ̃ b ω
´1qr, C8pXΩqq “ HomLΩ

pIP pτ̃ b ω
´1qrΩ´ , C

8pXL
Ωqq.

The LΩ-supercuspidal support of the Jacquet module IP pτ̃bω´1qΩ´ con-
sists of the classes rpwpτ̃ b ω´1q,wLqs, where w ranges in WLΩ

zW pL Ñ

LΩq{WL.
If we recall that zpLΩq is the set of regular functions on the variety SCΩ,

each such w determines by pull-back a character:

tw : zpLΩq Ñ K̃Y ,
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and hence as in Proposition 10.1 and Corollary 10.3, E decomposes into its
generalized eigen-components with respect to the zpLΩq-action, with those
eigencharacters tw:

E “
ÿ

wPR

Ew, (10.13)

where by R we denote a minimal subset of representatives R Ă W , such
that the corresponding generalized eigensummands Ew are non-zero.

Thus, there is a (nonempty) Zariski open subset U ĂyXL
Θ

unr

C such that for
ω P U the supercuspidal support of EΩ,ω : SpXL

Ωq Ñ IP pτ bωq
r
Ω is precisely

equal to the set of classes rpwpτ b ωq,wLqswith w P R.
It is easy to see that the supercuspidal support ofEΩ,ω at all points where

it is defined is contained in this set of classes. Indeed, if E is regular at

ω P yXL
Θ

unr

C , and we group together the summands Ew of (10.13) for which
the specializations of the corresponding eigencharacters tw coincide at ω
(equivalently, the classes rwpτ b ωq,wLs coincide), then the elements of this
coarser decomposition of E are also regular at ω, and we get the same
set of supercuspidal supports. (However, the summands could vanish at
some points, which explains why “precisely equal” was replaced by “con-
tained”.)

The corollary now follows. �

10.7. Generic injectivity. We recall the notion of “generic injectivity of the
map: a˚X{WX Ñ a˚{W” in the language of [SV, §14.2] (for brevity we will
just say: “generic injectivity”), where a˚X “ HompAX ,Gmq b Q Ă a˚ “
HompB,Gmq b Q. We will also introduce a stronger version of this notion,
to be termed “strong generic injectivity”, and will show that it holds for
symmetric spaces.

For each Θ Ă ∆X we let:

a˚X,Θ :“ HompAX,Θ,Gmq bQ » HomppXL
Θq

unr,Gmq bQ,

which is embedded into a˚X “ a˚X,H by the map induced from:

pXL
Hq

unr Ñ pXL
Θq

unr.

We say that X satisfies the condition of generic injectivity if the following
holds:

Whenever the action of an element w of the full Weyl group
W on a˚ restricts to an isomorphism:

a˚X,Θ
„
ÝÑ a˚X,Ω

(for any Θ,Ω Ă ∆X , obviously of the same order, and pos-
sibly equal), there is an element of the little Weyl group WX

which induces the same isomorphism.
We will say that X satisfies the strong generic injectivity condition if the

following holds:
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Whenever an element w of the full Weyl group W on a˚ re-
stricts to an injection:

a˚X,Θ ãÑ a˚X,Ω

(for any Θ,Ω Ă ∆X , obviously with |Ω| ď |Θ|) there is an
element wX PWX such that:

wX |a˚X,Θ
“ w|a˚X,Θ

. (10.14)

Remember from §2 that we assume throughout that the strong generic
injectivity condition to hold for X , even though we will for emphasis re-
peat it in the main results of this subsection.

The condition holds for all symmetric varieties, essentially by [Del, Lemma
15]. Together with the wavefront and strong factorizability assumptions
(both of which hold for symmetric spaces), it guarantees the validity of the
full Plancherel decomposition [SV, Theorem 7.3.1], [Del, Theorem 6].

10.8. Lemma. (1) If X is a symmetric variety, then it satisfies the strong
generic injectivity assumption.

(2) If X satisfies the strong generic injectivity condition, the element w´1
X

in the definition of this condition can be taken to map the set of simple
spherical roots Ω into Θ.

Proof. By [Del, Lemma 15(iv)], for every Z P a˚X,Θ there is an element wZ P
WX such that:

wZpZq “ wpZq.

Since WX is finite, an element wX P WX will be equal to wZ for a Zariski
dense set of elements of a˚X,Θ, but then wX will actually work for all ele-
ments of a˚X,Θ.

The second claim follows from known root system combinatorics: Think-
ing of a˚X,Θ and a˚X,Ω as the orthogonal complements, in a˚X , of the sets Θ,
resp. Ω, for any element wX P WX which maps a˚X,Θ into a˚X,Ω we neces-
sarily have that w´1

X Ω is in the linear span of Θ. The set of elements in WX

which satisfy (10.14) is a union of WXΩ
zWX{WXΘ

-cosets. (It is actually a
single coset, but that doesn’t matter here.) If we choose a representative
wX of minimal length for one of these cosets, then:

wXΘ ą 0 and w´1
X Ω ą 0.

The second statement implies that w´1
X Ω belongs to the positive span of Θ,

since it is already known to belong to its linear span; the first statement,
then, implies that it actually belongs to Θ. �

10.9. Remark. The strong version of the generic injectivity condition will
only be used to prove that “scattering maps preserve cuspidality”, cf. Propo-
sition 12.1. This result has been proven in a different way for symmetric
varieties by [CD14], relying heavily on the structure of these varieties. In
each specific case, the strong generic injectivity condition is easy to check



PALEY–WIENER THEOREMS FOR A p-ADIC SPHERICAL VARIETY 61

once one knows the dual group of the spherical variety; of course, it would
be desirable to have a proof of this property in some more general setting.

For the following lemma we identify a˚X,Ω, as we did before, with a sub-
space of a˚Ω :“ HompP´Θ ,Gmq b Q Ă a˚; on the other hand, we have a
restriction map from characters of the Borel B to characters of the center
ZpLΩq of the Levi of P´Ω ; we will write:

CentΩ : a˚ Ñ a˚Ω » HompZpLΩq,Gmq bQ

for the corresponding map.

10.10. Lemma. Assume the strong generic injectivity condition for X . Then:

(1) For w P W we have w
´

a˚X,Θ,C

¯

Ă a˚X,Ω,C iff w is equivalent in W {WLΘ

to an element wX PWX with w´1
X Ω Ă Θ.

(2) For wX PWXpΩ,Θq and w PW we have:

CentΩ ˝ wX |a˚X,Θ,C
“ CentΩ ˝ w|a˚X,Θ,C

iff w ” wX in WLΩ
zW .

We prove the lemma below. If the meaning of the lemma is not imme-
diately obvious, the following corollary has a representation-theoretic con-
tent related to supercuspidal supports, more precisely their “weak tangent
spaces”. Recall that we denoted by t : A1X,Θ Ñ KˆY the tautological charac-
ter.

10.11. Corollary. (1) Let Y ĂyXL
Θ

disc
be a connected component, and define

MY as before. Then the only components on the right hand side of (10.11)
which are contained in a˚X,Ω,C are those indexed by classes of elements
wX PWX with w´1

X Ω Ă Θ.
(2) The eigencharacters wt, w PWXpΩ,Θq, appear in (10.6) with multiplicity

one. The same holds if we replace A1X,Ω by any subgroup of finite index.

Strictly speaking, the discussion up to this point implies that the eigen-
characters corresponding to elements ofWXpΩ,Θq appear with multiplicity
at most one. However, scattering theory implies that they do appear — al-
ready in the asymptotics of Eisenstein integrals. We omit the details, since
we will encounter this point later.

Proof of Lemma 10.10. For the first statement, we notice that if w
´

a˚X,Θ,C

¯

Ă

a˚X,Ω,C then, by strong generic injectivity, there is a wX P WX such that
w´1
X ¨ w fixes all points of a˚X,Θ.
However, it is known that a˚X,Θ contains strictly P´Θ -dominant elements

[SV, Proof of Corollary 15.3.2], i.e. elements that are positive on each coroot
corresponding to the unipotent radical of P´Θ . Therefore the only elements
of W which act trivially on it are the elements of WLΘ

. Hence, w P wXWLΘ
.
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Since wX takes a˚X,Θ into a˚X,Ω, its inverse must map Ω into Θ, by properties
of root systems.

For the second statement we notice that in terms of an orthogonal W -
invariant inner product on a˚, the operator CentΩ represents the orthogo-
nal projection onto a˚Ω. On the other hand, wX |a˚X,Θ,C already has image in
a˚X,Ω,C Ă a˚Ω,C, therefore the only way that

CentΩ ˝ wX |a˚X,Θ,C
“ CentΩ ˝ w|a˚X,Θ,C

is that w|a˚X,Θ,C also has image in a˚X,Ω. By the first statement, this implies
that w is equivalent to wX in WLΩ

zW . �

Combining Proposition 10.1 with Corollary 10.11, and observing that the
eigencharacters wt, w P WXpΩ,Θq, are already defined over KY , we arrive
at the following strengthening of Corollary 10.3:

10.12. Proposition. Assume the strong generic injectivity condition for X . The
A1X,Ω-module MY admits a decomposition:

MY “
à

wPWXpΩ,Θq

Mw
Y ‘ Mrest

Y , (10.15)

where Mw
Y is the (honest) eigenspace with eigencharacter wt, and the space Mrest

Y
contains none of these eigencharacters.

Of course, this proposition is vacuous unless Θ „ Ω.

10.13. Polynomial decomposition of morphisms. We now return to the
torsion-free sheaf

M :“ HomG pSpXΩq,LΘq ,

whose rational sections over a connected component Y Ă yXL
Θ

disc
we de-

noted before by MY . We also denote by MY the restriction of M to the
connected component YC.

Let us discuss to what extent the decomposition of Proposition 10.12 ex-
tends to a decomposition of this sheaf — the goal being to determine the
poles that might get introduced when decomposing an element of MY as
in (10.15). Our approach is similar to [DH14, Proposition 2], based on the
theory of the resultant, which in turn was inspired by the proof of Lemma
VI.2.1 in Waldspurger [Wal03], except that by considering all elements of
A1X,Ω simultaneously we can eliminate some unnecessary poles.

Namely, letW1 be as in (10.6), and consider only those pairswX PWXpΩ,Θq,
w PW1 for which the equality:

wX pχt̃q|A1X,Ω “
wpχt̃q|A1X,Ω , (10.16)

represents a divisor in yXL
Θ

unr

C . Notice that not all pairs pwX , wq as above
represent a divisor. For example, if Θ “ Ω “ H so that WXpΩ,Θq “ WX ,
and w “ 1, only the pairs pwX , 1q with wX a reflection in WX represent a
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divisor. The images of these divisors under the quotient map yXL
Θ

unr

C Q ω ÞÑ
σ b ω P YC are divisors on YC, and we let U denote their complement.

10.14. Proposition. Assume the strong generic injectivity condition for X . The
restriction MU of the sheaf M “ HomG pSpXΩq,LΘq over U decomposes as a
direct sum of subsheaves:

MU “
à

wPWXpΩ,Θq

Mw
U ‘ Mrest

U ,

where Mw
U denotes the subsheaf of A1X,Θ-equivariant morphisms with respect to

the map w : A1X,Θ Ñ A1X,Ω.

10.15. Remark. We can be more precise about the poles of the decomposition
(10.15). Let E be any rational section of MY (i.e. E PMY ), and for simplic-

ity let us consider its pull-back to yXL
Θ

unr

C (to be denoted by the same letter).
Let f be any function on Y whose scheme-theoretic zero locus contains the
divisors (10.16); for example, we could take f to be defined by any element
z P A1X,Ω as follows:

f “
ź

`

wX pχt̃qpzq ´ wpχt̃qpzq
˘

,

where the product ranges over all pairs pwX , wq defining divisors as above.

(Both sides are functions on yXL
Θ

unr

C .) Then the summands in the decompo-
sition 10.15 of f ¨ E have no more poles than E itself.

We will later see (Corollary 11.4) that for the objects that we are inter-
ested in, namely the normalized constant terms, the poles of the above form
where w is also in WXpΩ,Θq actually do not show up.

Proof. Clearly, by the previous section, the sheaf MY admits a direct sum
decomposition into a finite number of eigenspaces for the maximal com-
pact subgroup of A1X,Ω. Each eigencharacter defines a connected compo-

nent of zA1X,Ω. We fix such a component V and consider MY as a sheaf over
VC ˆ YC. (Elements of A1X,Ω now restrict to polynomials over VC.)

Set R :“ CrV ˆ Y s. The annihilator of MY in R is the ideal I generated
by the “minimal polynomials” (10.6), where z ranges over all elements of
A1X,Ω. (Clearly, a finite set of elements generatingA1X,Ω modulo its maximal
compact subgroup suffices.)

The spectrum of the ring R “ R{I has a finite number of irreducible
components, parametrized by orbits of the distinct factors of (10.6) under

the Galois group of the extension pyXL
Θ

unr
{Y q. We denote by Zw the compo-

nents corresponding to w P WXpΩ,Θq, and by Zrest the union of the rest of
the components; we use Pw, Prest for the corresponding prime ideals.

Let Y sing
C Ă YC denote the union of the images of all subvarieties given

by equations of the form (10.16), whether these equations represent divisors
or subvarieties of larger codimension. For any f P R which is not a zero
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divisor and vanishes on Y sing
C , consider the localization:

MY rf
´1s

which is a sheaf over the spectrum of Rrf´1s.
Notice that the components Z‚ Ă VC ˆ YC have no intersection lying

over the complement of Y sing
C ; therefore, Rrf´1s is a direct sum of integral

domains, and we have a corresponding decomposition of the identity ele-
ment:

1 “
ÿ

w

1w ` 1rest, (10.17)

where 1‚ P Rrf´1s. This gives a decomposition of MY over the comple-
ment of the zero set of f . Since the only requirement on f was that it van-
ishes on Y sing

C , we get a decomposition of M
YCrY sing

C
:

M
YCrY sing

C
“

à

wPWXpΩ,Θq

Mw
YCrY sing

C
‘ Mrest

YCrY sing
C

.

Finally, recall from the proof of Lemma 7.3 that M “ HomG pSpXΩq,LΘq

is a subsheaf of a locally free sheaf over YC. A section of LΘ defined in
a neighborhood of a subvariety of codimension ě 2 extends (uniquely) to
this subvariety. Therefore, the above decomposition of M

YCrY sing
C

extends

to the complement of all divisors contained in Y sing
C , i.e. to U . �

We return to the asympotics of the normalized constant terms introduced
in (10.1):

E˚,ΩΘ,disc “ E˚Θ,disc ˝ eΩ : SpXΩq Ñ CpyXL
Θ

disc
,LΘq.

10.16. Corollary. Let Ω „ Θ. There is a decomposition:

E˚,ΩΘ,disc “
ÿ

wPWXpΘ,Ωq

Sw `SSubunit, (10.18)

where all summands are elements of:

M “ HomG

ˆ

SpXΩq,CpyXL
Θ

disc
,LΘq

˙

with the following properties:
(1) The operator Sw is an eigenvector of A1X,Ω on M; more precisely, it is

w-equivariant with respect to the action of A1X,Ω, i.e. A1X,Ω acts via the
character wt.

(2) The operator SSubunit has no w-equivariant direct summand with respect
to the action of A1X,Ω, for any w PWXpΩ,Θq.

(3) The poles of all summands are linear; for each component Y Ă yXL
Θ

disc
,

they are contained in the union of the poles of E˚Θ,disc and the images of
divisors given by equations:

wX pχt̃q|A1X,Ω “
wpχt̃q|A1X,Ω ,
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for those pairs wX P WXpΩ,Θq, w P W1 in the notation of (10.6) for
which this equality represents a divisor in yXL

Θ

unr
.

The statements of this corollary will be strengthened in the next couple
of sections, in order to arrive at the results of §9. The notation SSubunit is
due to the fact that, as we will see in the next section using L2-theory, the

exponents of these morphisms over the unitary subset yXL
Θ

disc
are “subuni-

tary”.

10.17. Explication of the fiberwise scattering maps. Here we would like
to emphasize here that the fiberwise scattering maps Sw play the role of
“functional equations” between the normalized Eisenstein integrals. We
use the fact that these maps are equivariant with respect to discrete cen-
ters, which is a yet-unproven statement of Theorem 9.3, because we are not
going to use the following result anywhere.

10.18. Proposition. Let Θ,Ω be associates, and w P WXpΩ,Θq. The corre-

sponding fiberwise scattering map Sw P C
ˆ

yXL
Θ

disc
,HomGpLΘ, w

˚LΩq

˙

is the

unique rational family of maps making the following diagram commute (for almost

all σ PyXL
Θ

disc
):

SpXΘqσ,disc

Sw,σ

��

SpXq

E˚Θ,σ
88

E˚Ω,σ &&
SpXΩqwσ,disc

(10.19)

Proof. We have ιΘf “ ιΩSwf . By Theorem 7.5 and (9.5) this becomes:
ż

yXL
Θ

disc EΘ,σ,discf
σ̃dσ “

ż

yXL
Θ

disc EΩ,wσ,discS
˚
w´1f

σ̃dσ,

and disintegrating over σ we get that EΘ,σ,disc and EΩ,wσ,disc ˝S ˚
w´1 must

be equal for almost every σ, hence equal as rational functions of σ. Using
(9.2), the proposition follows by passing to adjoints. �

This proof is actually rather indirect, to avoid the discussion of “small
Mackey restriction” of [SV, §15.5]; it can be inferred directly from this dis-
cussion, when “injectivity of small Mackey restriction” is known (such as
in the case of symmetric varieties).

This result is essentially equivalent to the description of the constant
term of Eisenstein integrals in terms of “B-matrices” and intertwining inte-
grals in [CD14, Theorem 8.4]; that work can be considered as a qualitative
study of these functional equations in the case of symmetric spaces, which
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among other things gives some results that we prove here without rely-
ing so much on the structure of symmetric varieties, such as the fact that
“scattering maps preserve cuspidal summands” (Theorem 9.3).

11. SCATTERING: THE UNITARY CASE

The unitary asympotics (adjoints of Bernstein maps) were obtained in
[SV, §11.4] by filtering out the unitary exponents of the Plancherel decom-
position. More precisely, given a (smooth, say) function Φ P L2pXq with
Plancherel decomposition:

Φpxq “

ż

Ĝ
Φπpxqµpπq,

then it is known that e˚ΩΦπ is AX,Ω-finite with only unitary and subunitary
exponents (generalized eigencharacters) for µ-almost all π. We recall the
notion of subunitary exponents for a morphism from SpXΩq to a smooth rep-
resentation V : it means that the morphism is AX,Ω-finite, and the image of
its dual: V Ñ C8pXΩq has subunitary exponents under the action of AX,Ω,
i.e. generalized characters which are ă 1 on Å`X,Ω. (For the definition of
Å`X,Ω see §2.)

By construction we have:

ι˚ΩpΦq “

ż

Ĝ
pe˚ΩΦπq

unit µpπq, (11.1)

where pe˚ΩΦπq
unit refers to isolating the part of pe˚ΩΦπq with unitary gener-

alized exponents, cf. [SV, Proposition 11.4.2].
Moreover, [SV], [Del] have proven Theorem 9.1 restricted to L2pXΘqdisc

and with the modification that the condition ofw-equivariance with respect
to zdiscpXL

Θq be replaced by the weaker condition of w-equivariance with
respect to A1X,Θ. In other words,

ι˚Ω ˝ ιΘ|L2pXΘqdisc
“

ÿ

wPWXpΩ,Θq

Sw, (11.2)

with Sw being w-equivariant with respect to A1X,Θ.
Combining all the above with Theorem 7.5 and Corollary 10.16 we ob-

tain:

11.1. Proposition. Let Θ,Ω Ă ∆X . For every σ P yXL
Θ

disc
(hence unitary), the

AX,Ω-exponents of E˚,ΩΘ,disc are unitary or subunitary.
Let Θ „ Ω. Consider the operator SSubunit of Corollary 10.16. For every

σ P yXL
Θ

disc
(hence unitary) where this operator is defined (regular), the resulting

morphism:
SpXΩq Ñ LΘ,σ

has subunitary exponents.
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We have:
ι˚ΩιΘfpxq “

ÿ

wPWXpΩ,Θq

ż

yXL
Θ

disc S ˚
w´1f

σ̃pxqdσ. (11.3)

Proof. In the notation of Theorem 7.5:

e˚ΩιΘfpxq “

ż

yXL
Θ

disc e
˚
ΩEΘ,σ,discf

σ̃pxqdσ,

and therefore, by the above, e˚ΩEΘ,σ,disc can only have unitary or subunitary
AX,Ω-exponents (for almost all σ); hence, the same holds for SSubunit.

On the other hand, (11.1) together with the property of w-equivariance
with respect to A1X,Θ of the maps Sw of (11.2) implies that all unitary A1X,Ω-
exponents of e˚ΩEΘ,σ,disc are contained among the exponents of the Sw’s.

This proves (11.3), and it shows that SSubunit only has subunitary expo-
nents. �

This proves assertion (9.5) of Theorem 9.3: the scattering operator Sw :
L2pXΘq Ñ L2pXΩq, i.e. the w-equivariant part of ι˚ΩιΘf with respect to the
action of AX,Θ, is given by:

Swfpxq “

ż

yXL
Θ

disc S ˚
w´1f

σ̃pxqdσ.

The following proves the assertion on zdiscpXL
Θq-equivariance of Theo-

rem 9.1; assertion (9.6) of Theorem 9.3; and the regularity statement of The-
orem 9.3. The regularity statement, i.e. the fact that the operators Sw, and
hence also SSubunit by Proposition 8.5, are actually regular on the unitary
set, means that the condition “where this operator is defined” is superflu-
ous in Proposition 11.1.

11.2. Proposition. Let Θ „ Ω, w P WXpΘ,Ωq. For every σ PyXL
Θ

disc

C where the
operator Sw is defined, the resulting morphism:

SpXΩq Ñ LΘ,σ

factors through the discrete wσ-coinvariants SpXΩqwσ,disc “ LΩ,wσ and is gener-
ically an isomorphism between LΩ,wσ and LΘ,σ. In particular, w induces an

isomorphism: yXL
Θ

disc
„
ÝÑyXL

Ω

disc
.

Thus, Sw is a rational section of the sheaf HomGpw
˚LΩ,LΘq over yXL

Θ

disc

C . Its
poles do not meet the unitary set, i.e.:

Sw P Γ

ˆ

yXL
Θ

disc
,HomGpw

˚LΩ,LΘq

˙

. (11.4)

The operators Sw satisfy the natural associativity conditions:

Sw1 ˝Sw “ Sw1w for w PWXpΩ,Θq, w
1 PWXpΞ,Ωq.

The scattering map Sw is w-equivariant with respect to the discrete center
zdiscpXL

Θq.
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For the proof of the proposition we will need the following lemma:

11.3. Lemma. Suppose that τ1, τ2 are non-isomorphic, irreducible representations
of the Levi quotient of a parabolic P , and that X is a subtorus of the unramified
characters of P containing P -regular characters (i.e. those which are non-trivial
on the image of all coroots corresponding to roots in the unipotent radical of P ).

Then, for ω P X in general position, IP pτ1 b ωq and IP pτ2 b ωq are irreducible
and non-isomorphic.

Proof. The irreducibility statement is [Sau97, Théorème 3.2] — notice that
irreducibility of the induced representation is a Zariski open condition [Ren10,
VI.8.4, Proposition].

Suppose IP pτ1bωq » IP pτ2bωq for ω in some Zariski dense subset X 1 of
X , fix such an isomorphism for each such ω and denote this representation
by πω. Without loss of generality, we may assume that the trivial character
ω “ 1 belongs to X 1. From the two realizations of πω we deduce that its
(normalized) Jacquet module pπωqP with respect to P has an irreducible
quotient which is isomorphic to τ1 b ω, and an irreducible quotient which
is isomorphic to τ2 b ω. We will show that, if ω belongs to some fixed open
dense subset of X , these quotients have to coincide.

To see that, let M be the Levi quotient of P , and consider semisimplifica-
tions, to be denoted by rπs (or, alternatively, elements in the Grothendieck
group of admissible representations). We have rτ1 b ωs Ă rpπωqP s and
rτ2 b ωs Ă rpπωqP s as representations of M .

Now let pQ, ρq be a pair consisting of a parabolic Q Ă P and a supercus-
pidal representation ρ of its Levi quotient L such that π1 is a subquotient of
IQpρq. We will compute semisimplifications of Jacquet modules of πω with
respect to Q. As in the proof of [Sau97, Théorème 3.2], we have, from the
two realizations of πω:

rpπωqQs “
ÿ

wPW {WM

wMw´1ĄL

wrpτ1 b ωqMXw´1Qws, (11.5)

and
rpπωqQs “

ÿ

wPW {WM

wMw´1ĄL

wrpτ2 b ωqMXw´1Qws. (11.6)

Here, WM denotes the Weyl group of M .
Notice that the term of each of the above sums corresponding to the triv-

ial coset 1WM is the semi-simplicifaction of the Jacquet module of τi b ω
with respect toMXQ (i “ 1, 2). If the two irreducible quotients πω Ñ τ1bω
and πω Ñ τ2 b ω do not coincide (i.e. do not have the same kernel), since
τ1 and τ2 are irreducible, that means that all the irreducible summands of
rpτ1bωqMXQs should appear among the irreducible summands of the sub-
sum of (11.6) with w ‰ 1WM .

Let ρ1 be an irreducible (necessarily cuspidal) summand of rpτ1qMXQs—
so ρ1 b ω is an irreducible summand of rpτ1 b ωqMXQs. If we assume it to
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be isomorphic, for each ω P X 1, to some irreducible (cuspidal) summand of
the terms of (11.6) with w ‰ 1WM , and since X 1 is Zariski dense, there is a
w PW rWM , a Zariski dense subset X 2 Ă X 1 and an irreducible summand
ρ2 of wrpτ2qMXw´1Qwswith

ρ1 b ω » ρ2 b
wω

for all ω P X 2.
Let ω0 P X 2, so that the central characters of ρ1bω0 and ρ2b

wω0 coincide.
Thus, the restrictions of ω{ω0 and wω{wω0 to the center ofL have to coincide
for all ω P X 2. Since X 2 is Zariski dense in X , the restrictions of all ω and
wω to the center of L have to coincide, for all ω P X . But, having assumed
that X contains P -regular characters, this is only possible if w P WM , a
contradiction. �

Notice that, by the wavefront and strong factorizability assumption, yXL
Θ

unr

contains PΘ-regular (in fact: “strictly P -dominant”) elements for every Θ Ă

∆X — s. the proof of [SV, Corollary 15.3.3]. Therefore, the lemma applies

to families of irreducible representations of LΘ twisted by yXL
Θ

unr
.

Proof of Proposition 11.2. By w-equivariance with respect to A1X,Θ, it follows
that the specialization of Sw at σ factors through the A1X,Ω-coinvariant
space:

SpXΩqwχσ ,

where χσ is the central character of σ. Moreover, since Sw is a morphism:
L2pXΘqdisc Ñ L2pXΩqdisc, it follows that Sw is zero on the kernel of the
map:

SpXΩqwχσ Ñ L2pXΩ{A
1
X,Ω,

w χσqdisc

(for almost all, and hence for all σ where it is defined), and hence factors
through the discrete coinvariants SpXΩqwχσ ,disc. By the fact that Sw is an
isometry, we get that Sw is non-zero on every connected component of
yXL

Θ

disc
.

By definition, the space SpXΩqwχσ ,disc is equal to:
à

τ

LΩ,τ ,

where τ ranges over the fiber of the map: yXL
Ω

disc

C Ñ zA1X,ΩC
(central charac-

ter) over wχσ.
We claim that for σ in general position, the only such τ with the property

that IΘpσq and IΩpτq have a common subquotient is τ “ wσ. To see this,

let σ vary in a family of the form σ0 b χ, with σ0 P
yXL

Θ

disc
and χ varying

in yXL
Θ

unr
. Thus, wσ “ wσ0 b ω, with ω “ wχ varying in yXL

Ω

unr
. By Lemma
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11.3, for ω in general position the representation IΘpσq is irreducible, and
hence the standard intertwining operator is an isomorphism:

IΘpσq » IΩp
wσq.

Thus, any non-zero morphism:

IΩpτq Ñ IΘpσq

gives, by composition, a non-zero morphism: IΩpτq Ñ IΩp
wσq.

If tτ1, . . . , τku is the fiber of yXL
Ω

disc
Ñ zA1X,Ω over wχσ0 , then the fiber over

wχσ, for σ as above, is tτ1 b ω, . . . , τk b ωu. Again by Lemma 11.3, for ω
in general position, we cannot have a non-zero morphism IΩpτi b ωq Ñ
IΩp

wσ0 b ωq, unless τi b ω » wσ0 b ω, or equivalently τi » wσ0.
Thus, the specialization of Sw at σ factors through LΩ,wσ. Using (9.5),

this proves that the scattering map Sw is w-equivariant with respect to the
discrete center zdiscpXL

Θq. The fact that Sw is an isometry now proves that
the resulting map: LΩ,wσ Ñ LΘ,σ is an isomorphism for generic σ.

For the regularity statement, we will proceed as in the proof of Propo-
sition 8.5, where a priori knowledge of the integrability of Eisenstein inte-
grals gave us their regularity on the unitary spectrum. Here we will use the
a priori knowledge (Theorem 9.1) that the scattering operators are bounded
operators between L2-spaces (in fact, isometries, but we will not use that):

Sw : L2pXΘqdisc Ñ L2pXΩqdisc.

In terms of Theorem 5.2, this can be written as a map:

L2pyXL
Θ

disc
,LΘq Ñ L2pyXL

Ω

disc
,LΩq,

which, we now know, is induced by some element:

Sw P CpyXL
Θ

disc
,HomGpLΘ, w

˚LΩqq.

By Corollary 10.16, Sw has linear poles. Corollary 3.6 now implies that
it is regular on the unitary spectrum.

Finally, the associativity conditions on Sw follow from those of the uni-
tary scattering maps Sw. Indeed, the only way that the composition of the
following maps:

L2pyXL
Θ

disc
,LΘq Ñ L2pyXL

Ω

disc
,LΩq Ñ L2pyXL

Ξ

disc
,LΞq,

given by fiberwise application of Sw and Sw1 , is equal to the fiberwise
application of Sw1w is that Sw1w|LΘ,σ

“ Sw1 ˝ Sw|LΘ,σ
for almost all σ P

yXL
Θ

disc
, and thus for all.

�

11.4. Corollary. When we decompose E˚Ω
Θ,disc as in 10.18, the poles of the form

(10.16) with w PWXpΩ,Θq do not appear.
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Proof. Indeed, by (10.7) these poles intersect the unitary set, where we have
just proven that the summands are regular. �

Finally, we prove the continuous preservation of Harish-Chandra Schwartz
spaces under the scattering maps, thus completing the proof of Theorem
9.1:

Proof that Sw, w PWXpΩ,Θq, restricts to a continuous map: C pXΘqdisc Ñ C pXΩqdisc.
By (9.5) the following diagram commutes:

L2pXΘqdisc
Sw //

��

L2pXΩqdisc

��

L2pyXL
Θ

disc
,LΘq

Sw // L2pyXL
Ω

disc
,LΩq,

where the vertical arrows are the isomorphisms of the Plancherel formula
(5.2).

By the regularity statement of Proposition 11.2, the restriction of the bot-
tom arrow to smooth sections gives an isomorphism:

C8pyXL
Θ

disc
,LΘq

Sw // C8pyXL
Ω

disc
,LΩq,

which by Theorem 5.2 corresponds to an isomorphism between discrete
summands of the corresponding Harish-Chandra Schwartz spaces.

�

12. SCATTERING: THE SMOOTH CASE

We now turn to the smooth case, in order to prove Theorem 9.2 and the
remainder of Theorem 9.3. As in the unitary case, the smooth scattering
maps Sw will be given by integrating the fiberwise scattering maps Sw,
but now over a shift of the unitary set in analogy to Theorem 7.4. However,
there is an important result that needs to be proven first: that “cuspidal
scatters to cuspidal”. This is the analog of “discrete scatters to discrete”
in the unitary case, which was proven in the course of the development of
the Plancherel theorem, by an analytic argument. Similarly, here, “cuspidal
scatters to cuspidal” will be proven using a priori knowledge about smooth
asymptotics, and more precisely the support theorem 7.6.

We notice that both the statement “discrete scatters to discrete” and “cus-
pidal scatters to cuspidal” have been proven by Carmona-Delorme [CD14]
in the symmetric case. The proofs there heavily use the structure of sym-
metric varieties. Here we present a different argument which applies in
greater generality.

Recall again the asymptotics of normalized constant terms, defined in
section 10:

E˚,ΩΘ,disc “ E˚Θ,disc ˝ eΩ : SpXΩq Ñ CpyXL
Θ

disc
,LΘq.
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We may project those to the cuspidal quotient (and summand) LΘ of LΘ,
in which case we will denote them by:

E˚,ΩΘ,cusp : SpXΩq Ñ CpyXL
Θ

cusp
,LΘq.

12.1. Proposition. If Ω does not contain a conjugate of Θ, then E˚,ΩΘ,cusp is zero.
If Ω „ Θ then E˚,ΩΘ,cusp factors through SpXΩqcusp:

E˚,ΩΘ,cusp P HomG

´

SpXΩqcusp,CpyXL
Θ

cusp
,LΘq

¯

.

The summands Sw of (10.18), viewed as in (11.4), restrict to elements of:

Γ
´

yXL
Θ

cusp
,HomGpw

˚LΩ,LΘq

¯

(12.1)

(i.e. preserve the cuspidal summands of the bundles L‚), and the projection of
SSubunit of (10.18) to LΘ is zero, hence we have a decomposition:

E˚,ΩΘ,cusp “
ÿ

wPWXpΘ,Ωq

Sw|L, (12.2)

where |L denotes the restriction of Sw to the subbundle L‚.

We will prove this proposition below; let us first see how it implies The-
orems 9.2 and 9.3.

First of all, the decomposition (12.2), combined with Theorem 7.4, allows
us to express the composition e˚ΩeΘ, restricted to SpXΘqcusp as a sum:

e˚ΩeΘ|SpXΘqcusp
“

ÿ

wPWXpΩ,Θq

Sw,

as claimed in Theorem 9.2, whereSw is defined as in (9.4). Notice that (9.4)
is independent of ω as long as ω " 0; this follows from Corollary 10.18,
according to which the Sw are rational with linear poles (hence no poles
for ω " 0). Moreover, by Proposition 12.1,

SwpSpXΘqcuspq Ă C8pXΩqcusp.

Now define, as in Theorem 9.2 the space S`pXΘqcusp Ă C8pXΘqcusp as
the span of all spaces:

SwSpXΩqcusp

with Ω „ Θ and w P WXpΘ,Ωq. This includes the case w “ 1 where Sw “
Id, so S`pXΘqcusp Ą SpXΘqcusp. Let us prove that the scattering maps (and,
incidentally, the Bernstein maps) extend to the spaces S`pXΘqcusp, and that
they satisfy the associativity properties asserted in Theorem 9.2:

12.2. Proposition. For f P S`pXΘqcusp and w P WXpΩ,Θq, define Swf P
S`pXΩqcusp and eΘf P C

8pXq as follows: If

f “
ÿ

pΘ1,w1q

Sw1fpΘ1,w1q
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with w1 PWXpΘ,Θ
1q and fpΘ1,w1q P SpXΘ1qcusp, we set:

Swf “
ÿ

pΘ1,w1q

Sww1fpΘ1,w1q.

and:
eΘf “

ÿ

pΘ1,w1q

eΘ1fpΘ1,w1q.

Then the resulting maps are well-defined (do not depend on the decomposition
of f chosen), and Sw is an isomorphism:

Sw : S`pXΘqcusp Ñ S`pXΩqcusp.

Moreover, Sw is w-equivariant with respect to the actions of zcusppXL
Θq on

C8pXΘqcusp, C8pXΩqcusp, and the maps Sw satisfy the associativity properties
of Theorem 9.2.

Proof. First of all, (9.4) implies that every element of S`pXΘqcusp is of mod-
erate growth, as was the case for elements of e˚ΘpSpXqq, cf. Proposition 7.7.
Hence, every element of S`pXΘqcusp admits a unique spectral decomposi-
tion of the form (7.4), with the only difference from (7.4) being that the
forms f σ̃dσ are not polynomial, but rational with linear poles, given by
(9.4). We point the reader to [SV, §15.4.4] for details on the spectral decom-
position of functions of moderate growth.

If f “
ř

pΘ1,w1qSw1fpΘ1,w1q as in the statement of the proposition then,
using (9.4) and the associativity property (9.6) of the fiberwise scattering
maps Sw we conclude that the operator Sw described in the proposition
also admits the expression (9.4), which proves that it is well-defined.

Similarly for eΘ: by the commutativity of (10.19), it is expressed explicitly
by applying the formula of Theorem 7.4 to the spectral decomposition (7.4)
of f .

Moreover, (9.3) now follows from (9.6), and the fact that S1 “ Id shows
that these maps are isomorphisms. The extension of the action of the cusp-
idal center with the given properties is obvious.

The associativity relations of the operators Sw follow from those of the
operators Sw, which were proven in the previous section. �

This completes the proof of Theorem 9.3, and of Theorem 9.2 for the case
Ω „ Θ.

If Ω does not contain a conjugate of Θ then the same calculation and
Proposition 12.1 show that the projection of e˚ΘeΩ to C8pXΘqcusp is zero or,
equivalently, e˚ΩeΘ, when restricted to SpXΘqcusp, is zero.

Finally, if Ω contains, but is not equal to, a conjugate of Θ then by switch-
ing the roles of Θ and Ω in the above argument, since Θ does not contain a
conjugate of Ω we have:

e˚Θ,cuspeΩ|SpXΩqcusp
“ 0,

which means that e˚ΩeΘ, when restricted to SpXΘqcusp, has image inC8pXΩqnoncusp.
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This completes the proof of Theorem 9.2, assuming Proposition 12.1.
Now let us come to the proof of Proposition 12.1.

Proof of Proposition 12.1. The proof is based on the same result as Theorem
7.4, namely Proposition 7.6 on the support of elements of e˚ΘpSpXqq. This
proposition implies, in particular, that for every f P SpXΘqcusp, the support
of e˚ΩeΘf has compact closure in an affine embedding Xa

Ω of XΩ. Moreover,
Proposition 7.7 states that this function is of moderate growth.

By Theorem 7.4,

e˚ΩeΘfpxq “ e˚Ω

ż

ω´1yXL
Θ

cusp EΘ,σ,cuspf
σ̃pxqdσ “

ż

ω´1yXL
Θ

cusp E
Ω
Θ,σ,cuspf

σ̃pxqdσ,

(12.3)
the second equality because e˚Ω commutes with the integral (because it is
equivariant and commutes after evaluating “close to infinity” — cf. the
proof of Proposition 7.1).

We first claim that if |Ω| ă |Θ|, i.e. dimAX,Ω ą dimAX,Θ, then e˚ΩeΘf has
to be zero. Since we may translate f by the action of G, it is enough to fix
an AX,Ω-orbit Z and show that

e˚ΩeΘf |Z ” 0.

We identify Z with AX,Ω by fixing a base point. Let Xa
Ω be an affine em-

bedding of XΩ as above, and let ψ be an algebraic character of AX,Ω which
extends to the closure Z̄ of Z in Xa

Ω by zero. We remind that an affine em-
bedding of a torus AX,Ω is described by the set of characters of AX,Ω which
vanish on the complement of the open orbit, and this set (monoid) of char-
acters has to generate the character group; in particular, such a character ψ
exists. The function e˚ΩeΘf is of moderate growth; since Z̄ r Z is a divisor,
this is equivalent to saying that there is an open cover Z̄ “ YiUi and for
every i a function Fi which is regular on Ui X Z such that |e˚ΩeΘf | ď |Fi|
on Ui X Z. Multiplied by a high enough power of ψ, Fi becomes regu-
lar on the whole Ui. The support of e˚ΩeΘf |Z has compact closure in Z̄,
and the Haar measure on Z » AX,Ω, after multiplied by a high enough
power of ψ, also extends to a finite measure on the closure of the support
of e˚ΩeΘf |Z . Therefore, for a large enough n, the function |ψ|n ¨ e˚ΩeΘf |Z
belongs to L2pZq “ L2pAX,Ωq, and its abelian Fourier/Mellin transform is
in L2p pAX,Ωq.

On the other hand, let us revisit Proposition 10.1, fixing again a con-

nected component Y of yXL
Θ

cusp
: As ω varies in yXL

Θ

unr

C , each factor of (10.6)
varies over a set of characters of AX,Ω of positive codimension in zAX,ΩC.
More precisely, the support of the CrzAX,Ωs-module generated by E˚,ΩΘ,cusp

(restricted to the connected component Y ) is contained in a subscheme S
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of zAX,ΩC whose reduction is the union:
ď

wPW1

wpχ {AX,Θ,Cq
ˇ

ˇ

ˇ

AX,Ω
Ă zAX,ΩC,

in the notation of (10.6).
Hence, on one hand we have that the CrzAX,Ωs-module generated by

E˚,ΩΘ,cusp is supported on a subscheme of zAX,ΩC which does not contain any
connected component, and, on the other hand, the restriction of any e˚ΩeΘf
to any AX,Ω-orbit (which decomposes as in (12.3)), when multiplied by a
high enough power |ψ|n of the absolute value of a character ψ, belongs to
L2pAX,Ωq. Elementary Fourier analysis will now prove that this function is
zero.

Indeed, the CrzAX,Ωs-action on E˚,ΩΘ,cusp corresponds to an action of the
completed Hecke algebra

ĤpAX,Ωq :“ lim
Ð
J

HpAX,Ω, Jq,

with J ranging over a basis of compact open subgroups. More specifically,
given a polynomial P P CrzAX,Ωs, there is a compatible system of mea-
sures phP,JqJ P pHpAX,Ω, JqqJ such for χ P zAX,Ω a J-invariant character,
the Mellin transform satisfies

}hP,Jpχq :“

ż

AX,Ω

hP,Jpaqχ
´1paq “ P pχq.

Since the dimension of the support subscheme S Ă zAX,ΩC is smaller than
that of zAX,ΩC, there is P P CrzAX,Ωs, non-zero on every connected compo-
nent, which vanishes on S (i.e. vanishes with the appropriate multiplicity,
since S is not necessarily reduced). Explicitly, if for every factor of (10.6)
of the form pz ´ wpχt̃qpzqq we choose an element zχ,w P AX,Ω on which
wpχωqpzχ,wq is equal to some constant aχ,w for all ω P yXL

Θ

unr
(such an ele-

ment exists for dimension reasons), then the restriction of P to a connected
component of zAX,Ω can be taken to be the product, over all pairs pχ,wq
such that wχ belongs to that component, of the terms pzχ,w ´ aχ,wq (where
zχ,w is by evaluation a polynomial on this component and aχ,w, we repeat,
is a constant complex number). For every open compact subgroup J , the
measure hP,J annihilates the restriction of E˚,ΩΘ,cusp to the chosen component

Y ĂyXL
Θ

cusp
.

Now take f P SpXΘqcusp, spectrally supported on the chosen component

Y Ă yXL
Θ

cusp
, and an open compact subgroup J Ă AX,Ω such that e˚ΩeΘf is

J-invariant. By (12.3), we will have hP,J ‹ e˚ΩeΘf “ 0, and therefore

p|ψ|nhP,Jq ‹ p|ψ|
ne˚ΩeΘfq “ |ψ|

n ¨ phP,J ‹ e
˚
ΩeΘfq “ 0.
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But the function |ψ|ne˚ΩeΘf , restricted to anyAX,Ω-orbit, belongs toL2pAX,Ωq
(where we have chosen a base point to identify this restriction with a func-
tion Φ on AX,Ω). Thus, its Mellin transform Φ̌pχq “

ş

AX,Ω
Φpaχqχ´1paqda is

in L2pzAX,Ωq. On the other hand, the Mellin transform of Φ1 :“ p|ψ|nhP,Jq‹Φ

is equal to Φ̌1pχq “ P pχ|ψ|´nqΦ̌pχ|ψ|´nq. Since Φ1 “ 0, and P is non-
vanishing outside of a set of measure zero in zAX,Ω, it follows that Φ̌ “ 0,
and hence Φ “ 0.

This proves that e˚ΩeΘf ” 0 when |Ω| ă |Θ|.
Now assume that Ω does not contain a conjugate of Θ. By induction on

|Ω|, we may assume that e˚Ω1eΘf “ 0 for every Ω1 Ĺ Ω and hence e˚ΩeΘf P

C8pXΩqcusp, for all f P SpXΘqcusp. That means that E˚,ΩΘ,cusp factors through
SpXΩqcusp, so by evaluating at points of regularity we get a family I of
morphisms:

SpXΩqcusp Ñ LΘ,σ.

In the language of §10.5, we will examine the weak tangent space of this
family which, we recall, has to do with the set of morphisms obtained by
second adjointness:

SpXL
Ωqcusp Ñ pLΘ,σqΩ. (12.4)

By Corollary 10.6 we have that WTΩpIq, if nonempty, is a union of sets
of the form:

rw
`

a˚X,Θ,C
˘

s,

where r ‚ s denotes image in a˚{WLΩ
. On the other hand, we can twist the

morphisms (12.4) by elements of yXL
Ω

unr

C , thus obtaining a possibly larger
family J whose weak tangent space will be a union of components of the
form:

rw
`

a˚X,Θ,C
˘

s ` a˚X,Ω,C.

By the first statement of Lemma 10.10 (with Θ and Ω interchanged), since
Ω does not contain a conjugate of Θ, the dimension of this is strictly larger
than the dimension of a˚X,Ω,C. This is a contradiction: the supercuspidal
supports of all finite-length quotients of SpXL

Ωqcusp belong to the equiva-
lence classes of a countable union of families of the form pτ b ω,Lq, with
pτ, Lq a supercuspidal pair in LΩ and ω varying in yXL

Ω

unr

C ; hence, we cannot
have a family of finite-length quotients of SpXL

Ωqcusp whose weak tangent

space has dimension larger than that of yXL
Ω

unr

C , i.e. larger than that of AX,Ω.
This shows that E˚,ΩΘ,cusp is zero.

Finally, consider the case Ω „ Θ. First of all:
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12.3. Lemma. Let Y Ă yXL
Θ

cusp
be a connected component, and E P Mcusp

Y :“
HomGpSpXΩq,CpY,LΘqq. Let KY “ CpY q, and let E “

ř

iEi be the decom-
position of E into elements of (distinct) generalized eigenspaces4 for the action
of AX,Ω on the finite-dimensional KY -vector space Mcusp

Y . If E factors through
SpXΩqcusp, so does each of the Ei’s.

The validity of the lemma is obvious, since HomGpSpXΩqcusp,CpY,LΘqq

is an AX,Ω-stable subspace of Mcusp
Y .

Because of the lemma, the projections to LΘ of all summands S‚ of
(10.18) all factor through SpXΩqcusp, in other words by (11.4) they restrict to
elements of (12.1).

Finally, we claim that the projection of SSubunit to LΘ is zero. The argu-
ment here is identical to the one one we used for the case that Ω does not
contain a conjugate of Θ, using the weak tangent space of the correspond-
ing family of maps:

SpXL
Ωqcusp Ñ pLΘ,σqΩ

which arises from SSubunit. If this family were non-zero, based on Lemma
10.10 it would give rise again to a family of morphisms of the form (12.4)
whose weak tangent space has dimension larger than that of a˚X,Ω,C, a con-
tradiction.

�

12.4. Remark. Regarding the last step of the proof: in the discrete case, there
is no contradiction to the existence of subunitary exponents. The reason is
that the “subunitary parts” of Eisenstein integrals do not need to be “dis-
crete modulo center” (while the cuspidal parts were necessarily cuspidal
modulo center by Lemma 12.3). Indeed, they could be non-discrete, but
with a central character that makes them decay “towards infinity”.

Part 5. Paley–Wiener theorems

13. THE HARISH-CHANDRA SCHWARTZ SPACE

We start by proving the following two results:

13.1. Proposition. ιΘ takes C pXΘqdisc continuously into C pXq.

And in the other direction:

13.2. Proposition. ι˚Θ,disc takes C pXq continuously into C pXΘqdisc.

We first reduce both statements to the case ZpXq “ 1. This is achieved by
using (2.13) and (2.14), which identify C pXq and L2pXq as closed subspaces
of a direct sum of spaces of the form:

C pZpXq ˆ Y q » C pZpXqqb̂C pY q,

4“Generalized eigenspaces” is used here in the generality of non-algebraically closed
fields, i.e. a generalized eigenspace does not necessarily correspond to an eigenvalue, but
to an irreducible monic polynomial.



78 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

respectively:
L2pZpXq ˆ Y q » L2pZpXqqb̂L2pY q,

where Y is a spherical rG,Gs-variety with ZpY q “ 1.
It is obvious from the definitions that the Bernstein maps on those spaces

are induced by Bernstein maps for the second factor:

ιΘ : L2pYΘq Ñ L2pY q,

which reduces both problems to the case ZpXq “ 1. We will assume this
for the two proofs.

The proof of Proposition 13.1 will require a lemma: Fix an open com-
pact subgroup J Ă G and a collection pNΘqΘ of J-good neighborhoods of
infinity. We may, and will, assume that this collection is determined by
the neighborhoods Nα̂, where α runs over all simple spherical roots and
α̂ :“ ∆X r tαu, in the following sense:

NΘ “
č

αRΘ

Nα̂. (13.1)

We will also be denoting:

N 1Θ :“ NΘ r
ď

ΩĹΘ

NΩ,

remembering that the image of N 1Θ in XΘ{AX,Θ is compact.
By a decaying function on X we will mean a positive, smooth function

whose restriction to each NΘ is AX,Θ-finite function with subunitary ex-
ponents. Notice that, by our definition, a subunitary exponent on AX,Θ
is allowed to be unitary on a “wall” of A`X,Θ (it only has to be ă 1 on
Å`X,Θ). However, by demanding that the exponents of our function are
A`X,Θ-subunitary on every NΘ, this possibility is ruled out: no exponent can
be unitary on a wall of A`X,Θ. We will call such exponents strictly subuni-
tary. Together with our assumption that ZpXq “ 1 a decaying function is
automatically in C pNΘq.

This definition is essentially compatible with the way the notion of “de-
caying function on A`X,Θ” that was introduced in [SV] (and will be used in
the proof below): Indeed, for each Θ Ă ∆X , a decaying function on A`X,Θ,
according to [SV], is any function bounded by the restriction of a positive,
AX,Θ-finite function with strictly subunitary A`X,Θ-exponents. Hence, a de-
caying (J-invariant) function f on X , in our present sense, is precisely a
J-invariant function with the property that for every Θ Ă ∆X and every
x P N 1Θ (or equivalently: x P NΘ) the function:

A`X,Θ Q a ÞÑ |
〈
f, a´1 ¨ 1xJ

〉
|, (13.2)

where 1xJ denotes the characteristic function of xJ , is bounded by a de-
caying function on A`X,Θ. (Notice that this is stronger than saying that the
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restriction of the function to theA`X,Θ-orbit is a decaying function; our defi-
nition of the action of A`X,Θ is normalized by the square root of the volume,

s. §2.6, so the above bound is equivalent to a bound of fpaxq by VolpaxJq´
1
2

times a decaying function on A`X,Θ.)
Let τ̃Θ denote, for each Θ, the map of restriction to NΘ.

13.3. Lemma. When ZpXq “ 1, for any Φ P L2pXqJ the alternating sum:

AltpΦq :“
ÿ

ΘĂ∆X

p´1q|Θ|τ̃Θι
˚
ΘΦ (13.3)

is bounded in absolute value by }Φ}L2pXq times a decaying function which depends
only on J .

Proof. We claim that for every α P ∆X , and every x P Nα̂, the restriction of
(13.3) to A`X,α̂ ¨ x satisfies the bound:

|AltpΦqpa ¨ xq| ď }Φ}L2pXqVolpaxJq´
1
2Rαpaq, (13.4)

where Rα is a decaying function on A`X,α̂ that only depends on J .
This will prove the Lemma: Indeed, for an arbitrary Θ, x P N 1Θ and

a P A`X,Θ we get a bound:

|AltpΦqpa ¨ xq| “ |AltpΦqpb ¨ a1xq| ď }Φ}L2pXqVolpaxJq´
1
2RΘpaq,

for every α P ∆X r Θ and decomposition a “ a1b with a1 P A`X,Θ and
b P A`X,α̂, where RΘ is the decaying function on A`X,Θ defined as:

RΘpaq “ min
αP∆XrΘ

˜

min
a“a1b,a1PA`X,Θ,bPA

`
X,α̂

Rαpbq

¸

.

(Notice that AX,Θ is generated by the one-dimensional tori AX,α̂, α P

∆X rΘ, up to finite index. Checking that RΘ, as defined above, is a decay-
ing function essentially reduces the problem to the monoid N∆XrΘ, decay-
ing functions Rα̂ for each of the coordinates, which can also be assumed to
be equal to the same function R, and RΘppnαqαP∆XrΘq “ Rpmaxα nαq.)

To prove (13.4), we notice that AltpΦq is equal to the sum over all Θ con-
taining α of the terms:

p´1q|Θ|pτ̃Θι
˚
ΘΦ´ τ̃Θrtαuι

˚
ΘrtαuΦq.

By the transitivity property of Bernstein maps:

ι˚ΘΦ “ ιΘ
1,˚

Θ ˝ ι˚Θ1Φ for Θ Ă Θ1,

where ιΘ
1,˚

Θ is the corresponding adjoint Bernstein map for the variety XΘ1 ,
and by the fact that the norm of ι˚Θ1Φ for some Θ1 Ă ∆X with α P Θ1, is
bounded by a fixed multiple of }Φ}L2pXq, it is enough to prove the statement
when (13.3) is replaced by Φ´ ι˚α̂Φ (the rest of the terms being similar, with
Φ replaced by ι˚ΘΦ, whose norm is bounded by a constant times }Φ}L2pXq).
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Thus, we need to prove that for every x P Nα̂ the restriction of Φ ´ ι˚α̂Φ to
A`X,α̂ ¨ x is bounded by }Φ}L2pXqVolpaxJq´

1
2 ¨ Rα, where Rα is a decaying

function on A`X,α̂ that only depends on J .
This follows from [SV, Lemma 11.5.1] (and its proof): Indeed, if Ψ “ 1xJ ,

the characteristic function of some J-orbit on Nα̂, and a P A`X,α̂, then we
have:

ˇ

ˇ

〈
Φ´ ι˚α̂Φ, a´1 ¨Ψ

〉ˇ
ˇ “

ˇ

ˇ

〈
Φ, peα̂ ´ ια̂qa

´1 ¨Ψ
〉ˇ
ˇ ď

ď }Φ}L2pXq ¨ }peα̂ ´ ια̂qa
´1 ¨Ψ}L2pXq ď }Φ}L2pXqCΨQ

Jpaq

in the notation of loc.cit. so we can set Rαpaq “ CΨQ
Jpaq, where QJpaq is

a decaying function on A`X,α̂ which is independent of Φ,Ψ. In the proof of
[SV, Lemma 11.5.1] it is seen, actually, that the constant CΨ can be bounded
by a fixed multiple of:

}Ψ}L2pXα̂q `
ÿ

i

}eα̂ai ¨Ψ}L2pXq,

where the ai’s range in a fixed finite set of elements of A`X,α̂. When Ψ is
the characteristic function of a J-orbit xJ on Nα̂, this sum will simply be
bounded by a fixed (the number of ai’s `1) multiple of VolpxJq

1
2 , the L2

norm of Ψ — recall that “close to infinity” the Bernstein maps eΘ are in-
duced by measure-preserving identifications of J-orbits, cf. [SV, Proposi-
tion 4.3.3] and [Del, Theorem 2]. Therefore, for every x P Nα̂ and a P A`X,α̂
we get:

ˇ

ˇ

〈
Φ´ ι˚α̂Φ, a´1 ¨ 1xJ

〉ˇ
ˇ ! }Φ}L2pXq ¨VolpxJq

1
2QJpaq

where the implicit constant only depends on J . Taking into account that the
measure onNα̂ is anAX,α̂-eigenmeasure, say with character δα̂, we have by
definition: 〈

Φ´ ι˚α̂Φ, a´1 ¨ 1xJ
〉
“

〈
Φ´ ι˚α̂Φ, δ

´ 1
2

α̂ paq1axJ

〉
“

“ pΦ´ ι˚α̂Φqpaxqδ
´ 1

2
α̂ paqVolpaxJq “ pΦ´ ι˚α̂Φqpaxqδ

1
2
α̂ paqVolpxJq,

and hence the above inequality becomes:

|Φ´ ι˚α̂Φ|paxq ! }Φ}L2pXq ¨Volpa ¨ xJq´
1
2QJpaq.

This proves the lemma.
�

Proof of Proposition 13.1. Fix a Θ, as in a statement of the proposition. We
will prove the proposition inductively on |∆X |´ |Θ|, the base case Θ “ ∆X

being trivial. Assume that it has been proven for all orders of |∆X | ´ |Θ|
smaller than the given one.

We have already reduced the proposition to the case ZpXq “ 1, which
we will henceforth assume. (Notice, however, that by the inductive as-
sumption we are free to assume the proposition for any smaller value of
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|∆X | ´ |Θ| without this assumption.) We fix an open compact subgroup J
and J-good neighborhoods NΩ of Ω-infinity as in the setup of Lemma 13.3,
and use the notation N 1Ω as before.

By Lemma 13.3, it is enough to prove:
For all Ω Ĺ ∆X , the composition of ι˚ΩιΘ : L2pXΘqdisc Ñ

L2pXΩqwith restriction toNΩ takes C pXΘqdisc continuously into
C pNΩq.

(13.5)
Indeed, by Lemma 13.3, for every f P C pXΘq

J the difference:

ιΘf ´
ÿ

ΩĹ∆X

p´1q|Ω|τ̃Ωι
˚
ΩιΘf

is bounded by a fixed decaying function times }ιΘf} ! }f}, and by the
claim the subtrahend above is (continuously) in the Harish-Chandra Schwartz
space.

First of all, if Ω does not contain a conjugate of Θ then ι˚ΩιΘ|L2pXΘqdisc
“ 0

and there is nothing to prove. Now let pΩiqi denote representatives for
WXΩ

-conjugacy classes of subsets of Ω which areWX -conjugate to Θ. (Here,
WXΩ

Ă WX denotes the little Weyl group of XΩ, which is generated by
the simple reflections corresponding to elements of Ω.) Denote by ιΩΩi :

L2pXΩiq Ñ L2pXΩq the analogous Bernstein maps for the variety XΩ. We
claim that there are non-zero integers dΩpΩiq such that:

ι˚Ω ˝ ιΘ|L2pXΘqdisc
“

ÿ

i

a

dΩpΩiq
´1ιΩΩi ˝ ι

˚
Ωi ˝ ιΘ. (13.6)

Indeed, the image of L2pXΘqdisc under ι˚Ω ˝ ιΘ lies in the direct sum
(over all i) of the spaces L2pXΩqrΩis, where L2pXΩqrΩis denotes the im-
age of L2pXΩiqdisc under ιΩΩi . This follows from the transitivity property
ι˚Ξ “ ιΩ,˚Ξ ˝ ι˚Ω of the Bernstein maps, and the fact that ι˚Ξ,discιΘ “ 0 unless Ξ

is a WX -conjugate of Θ.
Let dΩpΩiq “ #WXΩ

pΩi,Ωiq. It follows from Theorem 1.2 that the map:
a

dΩpΩiq
´1ιΩΩi ˝ ι

Ω,˚
Ωi

: L2pXΩq Ñ L2pXΩq

is the identity on L2pXΩqrΩis, and zero on the summands L2pXΩqrΩjs with
j ‰ i. Hence,

ÿ

i

a

dΩpΩiq
´1ιΩΩi ˝ ι

Ω,˚
Ωi

is the identity on the image of L2pXΘqdisc under ι˚Ω ˝ ιΘ, and (13.6) follows.
The map ι˚Ωi ˝ ιΘ is a continuous map:

C pXΘqdisc Ñ C pXΩiqdisc

by Theorem 9.1, so by replacing Θ by Ωi we have reduced the claim (13.5)
to the statement of the proposition when Θ Ă Ω and X is replaced by XΩ.
It now follows by the induction hypothesis. �
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Now we come to proving the other direction. We keep assuming that
ZpXq “ 1, having reduced the problem to this case.

Proof of Proposition 13.2. Let f P C pXqJ , and let X “
Ů

ΘN
1
Θ be a decompo-

sition as above; then fΘ :“ f |N 1Θ P C pN 1Θq Ă C pXΘq. By Theorem 5.2, we

need to show that the image of ι˚Θ,discf in L2pXΘqdisc “ L2pyXL
Θ

disc
,LΘq ac-

tually lies in C8pyXL
Θ

disc
,LΘq (smooth sections), and that the resulting map:

C pXqJ Ñ C8pyXL
Θ

disc
,LΘq is continuous.

First of all, for each Θ and Ω consider the composition of maps:

SpXΩq
eΩ
ÝÑ SpXq

ι˚Θ,disc
ÝÝÝÝÑ L2pXΘqdisc

„
ÝÑ L2pyXL

Θ

disc
,LΘq. (13.7)

By (7.5), this composition is given by the restriction of the maps E˚,ΩΘ,disc of
(10.1) (Ω-asymptotics of normalized constant terms). Recall that by Propo-

sition 8.5, the image of E˚,ΩΘ,disc lies in ΓpyXL
Θ

disc
,LΘq (i.e. rational sections

whose poles do not meet the unitary set).
Our goal is show that the maps E˚,ΩΘ,disc extend continuously to operators

represented by the bottom horizontal row of the following diagram, where
the vertical arrows are the natural inclusions:

SpN 1Ωq //

��

ΓpyXL
Θ

disc
,LΘq

��

C pN 1Ωq
// C8pyXL

Θ

disc
,LΘq.

This will prove the proposition, once we know it for all Ω.

Fix a connected component Y of yXL
Θ

disc
, and recall that ΓpY,LΘq is actu-

ally a DpY q-module (module for the ring of polynomial differential opera-
tors on Y ). Fix any D P DpY q and apply it to the operator E˚,ΩΘ,disc. As we
have seen in Lemma 10.4, the resulting element:

DE˚,ΩΘ,disc P Hom pSpXΩq,ΓpY,LΘqq

(not a G-equivariant homomorphism) has the same exponents, possibly
with higher multiplicity, asE˚,ΩΘ,disc, and by Proposition 11.1, these are either
unitary or subunitary with respect to Å`X,Θ.

We will use the following lemma of linear algebra:

13.4. Lemma. Suppose S is a finitely generated abelian group together with a
finitely generated submonoid S` Ă S that generates S. If S has a locally finite ac-
tion on a complex vector space V , with the degrees of all vectors uniformly bounded
by an integer m, and generalized eigencharacters which are unitary or subunitary
with respect to S`, and if }‚} is any norm on V , there exist a tempered function T
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on S and a finite subset S0 Ă S, depending only on S` and m, with the property
that:

}s ¨ v} ď T psqmax
s1PS0

}s1 ¨ v}

for all s P S`, v P V .

We remind that “locally finite” means that the span of the S-translates of
each vector is finite dimensional, and the degree of a vector is the dimen-
sion of this S-span. Compare this lemma with [SV, Lemma 10.2.5].

Proof. We may replace S` by the free monoid on a set of generators, and S
by the free group on this set. We can then reduce to the case S “ Z, S` “ N,
because, if T 1, S10 work for pZ,Nq, then T pn1, . . . , nrq “ T 1pn1q ¨ ¨ ¨T

1pnrq,
S0 “ S10 ˆ ¨ ¨ ¨ ˆ S

1
0 will work for pZr,Nrq.

For pZ,Nq we apply induction on the degree: Writing the minimal poly-
nomial of the generator M :“ 111 P N on an element v P V as P pxq “
px´ζqQpxq, and assuming by induction that the lemma holds for the vector
v1 “ pM´ζqv (with some tempered function T 1 and some set S10 depending
only on the degree of Q), we get an estimate:

}Mnv} ď }Mn´1v1} ` |ζ|}Mn´1v} ď T 1pn´ 1q ¨max
s1PS10

}s1 ¨ v1} ` }Mn´1v},

where we have used the induction hypothesis and the assumption that
|ζ| ď 1. Repeating this estimate for Mn´1v and so forth, in the end we
get:

}Mnv} ď pT 1pn´1q`T 1pn´2q`¨ ¨ ¨`T 1p1qqmax
s1PS10

}s1¨v1}`}v} ď T pnqmax
s1PS0

}s1¨v}

(again using |ζ| ď 1) where T pnq “ 2pT 1pn´1q`T 1pn´2q`¨ ¨ ¨`T 1p1qq`1,
S0 “ t0u Y S

1
0 Y pS

1
0 ` 1q. �

We now fix a Haar measure dσ on yXL
Θ

disc
, which determines norms } ‚ }σ

on the fibers of LΘ over the unitary set, cf. (4.19). By regularity, for any
F P SpXΩq the numbers

›

›

›
DE˚,ΩΘ,disc,σpF q

›

›

›

σ
,

as σ varies in Y , are uniformly bounded in σ. If we now fix a set of J-orbits
on N 1Ω whose A`X,Ω-translates cover N 1Ω, and denote by Fi their characteris-
tic functions, we claim that there is a finite set S0 of elements of AX,Ω and a
tempered function T on AX,Ω such that:

›

›

›
DE˚,ΩΘ,disc,σpaFiq

›

›

›

σ
ď T paqmax

sPS0

›

›

›
DE˚,ΩΘ,disc,σpsFiq

›

›

›

σ
(13.8)

for all a P A`X,Ω. Indeed, this follows from the above lemma, using the
fact that AX,Ω acts on SpXΩq

J through a finitely generated quotient, and
that the DE˚,ΩΘ,disc,σ are all AX,Ω-finite with uniformly bounded degree, by
Lemma 10.4.
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For an arbitrary element Φ P L2pN 1Ωq
J , writing it as a series in A`X,Ω-

translates of the Fis:
Φ “

ÿ

i,j

cijaj ¨ Fi,

its image in L2pyXL
Θ

disc
,LΘq is given by the corresponding series:

ÿ

i,j

cijE
˚,Ω
Θ,discpaj ¨ Fiq.

If, in particular, Φ P C pN 1Ωq, by (13.8) we deduce that the correspond-

ing series for DE˚,ΩΘ,discpΦq converges in L2pyXL
Θ

disc
,LΘq, and is bounded by

continuous seminorms on C pN 1Ωq.
Since the seminorms:

f ÞÑ }Df}
L2p

yXL
Θ

disc
,LΘq

, D P DpY q,

form a complete system of seminorms for C8pyXL
Θ

disc
,LΘq, we deduce that

the maps E˚,ΩΘ,disc, restricted to SpN 1ΩqJ , extend continuously to:

C pN 1Ωq
J Ñ C8pyXL

Θ

disc
,LΘq.

This proves Proposition 13.2.
�

We are now ready to complete the proof of our main result on the Harish-
Chandra Schwartz space:

13.5. Theorem. For each Θ, orthogonal projection to L2pXΘqdisc gives a topolog-
ical direct sum decomposition:

C pXΘq “ C pXΘqdisc ‘ C pXΘqcont.

For each w P WXpΩ,Θq the scattering map Sw restricts to a topological iso-
morphism:

C pXΘqdisc
„
ÝÑ C pXΩqdisc.

The map ι˚ of (1.2) restricts to a topological isomorphism:

C pXq
„
ÝÑ

˜

à

ΘĂ∆X

C pXΘqdisc

¸inv

, (13.9)

where the exponent inv denotes invariants of the scattering maps Sw.

Proof. The first two statements have been proven in Proposition 5.1 and
Theorem 9.1.

Because of the second statement, the space
´

À

ΘĂ∆X
C pXΘqdisc

¯inv
makes

sense. By Proposition 13.2 and Theorem 1.2 the space C pXq injects con-
tinuously into it. Finally, since

ř

Θpi
˚
Θ ˝ iΘq is a multiple of the identity
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on
´

À

ΘĂ∆X
L2pXΘqdisc

¯inv
, it follows from Proposition 13.1 that the map

from C pXq to
´

À

ΘĂ∆X
C pXΘqdisc

¯inv
is onto. �

The combination of Theorems 7.5 and 13.5 gives Theorem 1.4, which we
repeat for convenience of the reader:

13.6. Theorem (cf. Theorem 13.6). The normalized constant terms E˚Θ,disc ex-
tend to an isomorphism of LF-spaces:

C pXq
„
ÝÑ

˜

à

Θ

C8pyXL
Θ

disc
,LΘq

¸inv

, (13.10)

where inv here denotes Sw-invariants, i.e. collections of sections pfΘqΘ such that
for all triples pΘ,Ω, w PWXpΩ,Θqq we have: SwfΘ “ fΩ.

In particular, the existence of a ring ztemppXq of multipliers on C pXq,
as described in Corollary 1.5, immediately follows from either of the above
two versions of our Paley–Wiener theorem for the Harish-Chandra Schwartz
space:

13.7. Corollary. Let

ztemppXq “

˜

à

Θ

zdiscpXL
Θq

¸inv

,

where the exponent inv denotes invariants of all the isomorphisms induced by
triples pΘ,Ω, w PWXpΩ,Θqq.

There is a canonical action of ztemppXq by continuous G-endomorphisms on
C pXq, characterized by the property that for every Θ, considering the map:

ι˚Θ,disc : C pXq Ñ C pXΘqdisc

we have:
ι˚Θ,discpz ¨ fq “ zΘpι

˚
Θ,discfq

for all z P ztemppXq, where zΘ denotes the Θ-coordinate of z.

Proof. Indeed, ztemppXq acts by continuous G-automorphisms on the right
hand side of (13.9) or (13.10), and the action is characterized by the stated
property. �

We complete this section by formulating an extension of the properties
of Bernstein and scattering maps from the discrete components of Harish-
Chandra Schwartz spaces to the whole space. For the proof, we point the
reader to the proof of Theorem 14.7, which will be completely analogous.

13.8. Theorem. For every triple pΘ,Ω, w PWXpΩ,Θqq the scattering map:

Sw : L2pXΘq Ñ L2pXΩq
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restricts to a topological isomorphism:

C pXΘq Ñ C pXΩq

which is ztemppXL
Θq-equivariant with respect to the obvious isomorphism:

ztemppXL
Θq

„
ÝÑ ztemppXL

Ωq

induced by w.
The Bernstein maps ιΘ and their adjoints ι˚Θ map C pXΘq continuously into

C pXq and vice versa.

14. THE SCHWARTZ SPACE

We now come to our Paley–Wiener theorem for the Schwartz space of
compactly supported, smooth functions on X . Besides the properties of
the scattering operators Sw of §9, we will use the following basic result:

14.1. Theorem. Let rΘs run over all associate classes of subsets of ∆X , and for
each such class let SpXqrΘs denote the space generated by all eΩSpXΩqcusp, Ω P

rΘs. Then:

SpXq “
à

rΘs

SpXqrΘs. (14.1)

Proof. The sum is direct by Theorem 9.2. We need to show that the map:
ÿ

Θ

eΘ :
à

Θ

SpXΘqcusp Ñ SpXq

is surjective.
We will use induction on the size of ∆X , the case ∆X “ H being tauto-

logically satisfied (because then SpXq “ SpXqcusp). Assume that the propo-
sition has been proven when X is replaced by XΩ, for all Ω Ĺ ∆X . Let us
denote by eΩ

Θ : SpXΘq Ñ SpXΩq (Θ Ă Ω) the corresponding maps for the
variety XΩ. Recall the transitivity property:

eΩ ˝ e
Ω
Θ “ eΘ.

Therefore,
ÿ

Θ

eΘ pSpXΘqcuspq “ SpXqcusp `
ÿ

Θ‰∆X

eΘ pSpXΘqq .

Assume that SpXq ‰
À

rΘs SpXqrΘs, then there would be a non-zero sub-
space V of the smooth dual (i.e. C8pXq) which would vanish on all the
spaces on the right hand side of the last equation. In particular, e˚ΘV “ 0
for all Θ ‰ ∆X , hence the elements of V are compactly supported modulo
the center of X . But then they cannot be orthogonal to the cuspidal part
SpXqcusp “ SpXqr∆X s

.
�
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14.2. Remark. This theorem is false, in general, in the non-factorizable case,
if we define the cuspidal subspace SpXqcusp, as in section 6, by requiring
that the image under the Plancherel decomposition (5.2) of the (smooth)
function is relatively cuspidal. For example, if X “ PGL2 under the G “

Gm ˆPGL2 action (with Gm acting as a split subtorus by multiplication on
the left, and PGL2 acting by multiplication on the right) then it is known
that the tensor product of the trivial character of Fˆ by the Steinberg rep-
resentation St of PGL2 is relatively cuspidal on X , while this is not the
case for non-trivial characters of Fˆ. What this means is that the image of
an embedding St ãÑ SpFˆzPGL2q will be orthogonal to eHpSpXHqq (this
is the property of 1 b St being relatively cuspidal), but also orthogonal to
SpXqcusp (which has no Steinberg-equivariant part, since for generic char-
acters of Fˆ the Steinberg representation is not relatively cuspidal).

Recall that for each Θ we have defined S`pXΘqcusp as the subspace of
C8pXΘq generated by all spaces of the form:

SwSpXΩqcusp

where Ω is an associate of Θ and w P WXpΩ,Θq, and in Theorem 9.2 (and
Proposition 12.2) we extended the scattering operatorsSw to isomorphisms
between these spaces.

We are now ready to prove a Paley–Wiener theorem, reminding first that
the exponent inv in:

`

‘ΘS`pXΘqcusp

˘inv (14.2)
denotes invariants of these maps. Notice that, as follows easily from the
definitions, any element of (14.2) can be obtained by averaging elements of
the spaces SpXΘqcusp via the operators Sw, i.e.:

14.3. Lemma. For any element f “ pfΘqΘ of (14.2) there is a (non-unique)
element

pf 1ΘqΘ P ‘ΘSpXΘqcusp

such that:
fΘ “

ÿ

Ω;wPWXpΘ,Ωq

Swf
1
Ω. (14.3)

Proof. Let Θi vary in a set of representatives for associate classes of subsets
of ∆X . For each i there is, by definition of the spaces S`pXΘq, a collection

pf 1Ω,wqΩ„Θi;wPWXpΘi,Ωq P ‘Ω„Θi;wPWXpΘi,ΩqSpXΩqcusp

with fΘi “
ř

Ω;wPWXpΘi,Ωq
Swf

1
Ω,w.

Setting then

f 1Ω “
1

|WXpΩ,Ωq|

ÿ

wPWXpΘi,Ωq

f 1Ω,w

(where Θi is the representative for the associate class of Ω), we easily get
from the WXpΘi,Θiq-invariance of fΘi and the associativity properties of
the scattering operators that (14.3) holds for every Θ.
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�

14.4. Theorem. The sum of the morphisms e˚Θ,cusp defines an isomorphism:

SpXq »
`

‘ΘS`pXΘqcusp

˘inv
. (14.4)

Proof. It is an immediate corollary of Theorem 14.1 and Theorem 9.2 that
the image of

À

Θ e
˚
Θ,cusp lies in p‘ΘS`pXΘqcuspq

inv.
Lemma 14.3 shows that the map is surjective, and injectivity follows

from Proposition 7.1. �

It is easy from this to deduce the fiberwise version in terms of normalized
constant terms. First of all, for every Θ Ă ∆X let:

C`
”

yXL
Θ

cusp
,LΘ

ı

Ă C
´

yXL
Θ

cusp
,LΘ

¯

be the subspace generated by the images of all fiberwise scattering maps
Sw, for Ω and associate of Θ and w P WXpΘ,Ωq. Notice that by the regu-
larity of scattering maps on the unitary spectrum (Theorem 9.3), we might
as well have written Γp q instead of Cp q. Then it is clear that such an Sw

induces an isomorphism:

C`
”

yXL
Ω

cusp
,LΩ

ı

„
ÝÑ C`

”

yXL
Θ

cusp
,LΘ

ı

,

and the combination of Theorems 7.4 and 14.4 gives Theorem 1.9, which
we repeat for convenience of the reader:

14.5. Theorem. The normalized cuspidal constant terms E˚Θ,cusp give rise to an
isomorphism:

SpXq „ÝÑ

˜

à

Θ

C`ryXL
Θ

cusp
,LΘs

¸inv

, (14.5)

where inv here denotes Sw-invariants.

In particular, the existence of a ring zsmpXq of multipliers on SpXq, as
described in Corollary 1.10, immediately follows from either of the above
two versions of our Paley–Wiener theorem for the Schwartz space:

14.6. Corollary. Let

zsmpXq “

˜

à

Θ

zcusppXL
Θq

¸inv

,

where the exponent inv denotes invariants of all the isomorphisms induced by
triples pΘ,Ω, w PWXpΩ,Θqq.

There is a canonical action of zsmpXq by continuousG-endomorphisms on SpXq,
characterized by the property that for every Θ, considering the map:

e˚Θ,cusp : SpXq Ñ S`pXΘqcusp
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we have:
e˚Θ,cusppz ¨ fq “ zΘpe

˚
Θ,cuspfq

for all z P zsmpXq, where zΘ denotes the Θ-coordinate of z.
Proof. Indeed, zsmpXq acts by continuous G-automorphisms on the right
hand side of (14.4) or (14.5), and the action is characterized by the stated
property. �

We complete this section by extending the smooth scattering maps from
the cuspidal components of Schwartz spaces to the whole space.

14.7. Theorem. There are unique extensions of the smooth scattering maps, for
all triples pΘ,Ω, w PWXpΩ,Θqq:

Sw : SpXΘq Ñ C8pXΩq,

such that for all Θ1 Ă Θ, setting Ω1 “ wΘ1:

eΩ
Ω1 ˝Sw|SpXΘ1 qcusp

“ Sw ˝ e
Θ
Θ1 |SpXΘ1 qcusp

, (14.6)

where as usual we denote by eΘ
Θ1 , e

Ω
Ω1 the analogous equivariant exponential maps

for the varieties XΘ, XΩ, respectively.
These maps satisfy the same associativity relations as their restrictions to cusp-

idal spectra (s. Theorem 9.2), and Sw is zsmpXL
Θq-equivariant with respect to the

obvious isomorphism:
zsmpXL

Θq
„
ÝÑ zsmpXL

Ωq

induced by w.
Proof. Given Proposition 14.1 (applied toXΘ), property (14.6) characterizes
the extension of Sw, provided it is unambiguous. For this, we need to
show that if F “ eΘ

Θ11
f1 “ eΘ

Θ12
f2 P SpXΘq, with f1 P SpXΘ11

qcusp and f2 P

SpXΘ12
qcusp, then the left hand side of (14.6), applied to either f1 or f2, gives

the same result.
Theorem 14.4, applied to XΘ, implies that the kernel of the map:

ÿ

i“1,2

eΘ
Θ1i

:
à

i“1,2

SpXΘ1i
qcusp Ñ SpXΘq

is generated by elements of the form: pf1,´f2q with fi P SpXΘ1i
qcusp and

f2 “ Sw1f1 for somew1 PWXpΘ
1
2,Θ

1
1q; thus, we can assume our pair pf1, f2q

to be of this form.
Then we have:

Swf2 “ SwSw1f1 “ Sww1f1 “ Sww1w´1Swf1

(by the associativity properties of scattering maps), hence the element pSwf1,´Swf2q

belongs to the kernel of the map:
ÿ

i“1,2

eΩ
Ω1i

:
à

i“1,2

SpXΩ1i
qcusp Ñ SpXΩq.

Thus, the operator Sw is well-defined on SpXΘq. The associativity and
zsmpXL

Θq-equivariance properties follow easily from the construction. �
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15. EXAMPLES OF SCATTERING OPERATORS

15.1. Scattering operators in the group case. Let us consider the case of
the group, X “ H , G “ H ˆH . We consider it not just as a homogeneous
space, but as a pointed space, with a distinguished element 1 P H , which
will help us fix isomorphisms for its boundary degenerations. Its boundary
degenerations are parametrized by conjugacy classes of parabolics in H ,
where a given class of parabolics rP s corresponding to Θ Ă ∆X we have:

XrP s :“ XΘ “ LP ˆ
PˆP´ pH ˆHq » XΘ » Ldiag

P z
`

UP zH ˆ U
´
P zH

˘

.

Here we have chosen representatives P for rP s and P´ for the opposite
class, LP “ P XP´ a Levi subgroup and UP , U´P the corresponding unipo-
tent radicals. The space XrP s lives over an open subset Y in the product of
Grassmannians ofH corresponding to rP sˆrP´s, and its fiber over pP, P´q
is isomorphic to LP canonically up to inner automorphism. In particular, each
fiber has a canonical point 1 P LP ; the subgroup Hdiag acts transitively on
Y , preserving those points.

Let us identify the space yXL
Θ

disc

C with the space xLP
disc

C of isomorphism

classes of discrete series representations of LP by identifying σ P xLP
disc

C
with the representation σ̃ b σ of the Levi quotient LP of P ˆ P´. Fixing
a Haar measure on H , which induces invariant measures on all XrP s, we
can identify the smooth dual of the bundle LrP s of discrete coinvariants

for XrP s with the bundle whose fiber ČLrP s,σ over σ P xLP
disc

C is the induced
representation IHˆH

PˆP´
pCσ̃q, where Cσ̃ Ă C8pLP q is the space of matrix co-

efficients of σ̃. The matrix coefficient map

σ b σ̃ Q v b ṽ ÞÑ 〈v, σ̃p‚qṽ〉 P Cσ̃
allows us to canonically identify IHˆH

PˆP´
pCσ̃qwith IP pσq b IP´pσ̃q.

Now consider a pair prP s, rQsq of associate classes of parabolics of H ,
and an element w P WHpQ,P q. If we fix a representative P for rP s and a
Levi subgroup L, the pair prQs, wq gives rise to a representative Q of rQs
which shares the Levi subgroup L with P ; the relation is that wQ shares a
minimal parabolic with P . We will say that “the relative position of P and
Q is determined by w”.

We let TP |Q denote the rational family of standard intertwining opera-
tors, as σ varies:

TP |Q : IHQ pσq Ñ IHP pσq. (15.1)

This family depends on the choice of a Haar measure on UP {UP X UQ, and
is generically invertible with a rational family T´1

P |Q of inverses.
We denote by P´, Q´ the opposite parabolics with respect to the chosen

Levi. The product:

TP |Q b T
´1
Q´|P´

: IHQ pσq b I
H
Q´pσ̃q »

ČLrQs,wσ Ñ
ČLrP s,σ » IHP pσq b I

H
P´pσ̃q
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does not depend on choices of Haar measures, because of the isomorphisms:

UP {UQ X UP » UP X UQ´ » UQ´{UP´ X UQ´ .

Notice also that there is no lack of symmetry here, because TP |QbT
´1
Q´|P´

“

T´1
Q|P b TP´|Q´ .

15.2. Proposition. For any pair prP s, rQsq of associate classes of parabolics of
H , and w P WHpQ,P q, the adjoints of the corresponding fiberwise scattering
operators Sw are the family of operators:

TP |Q b T
´1
Q´|P´

: ČLrQs,wσ Ñ
ČLrP s,σ.

Proof. The result will follow from Proposition 10.18.
Let us for simplicity denote by T0 the standard intertwining operator

between induction from a given parabolic and its opposite; it will be clear
from the context which parabolic we are referring to.

By [SV, Lemma 15.7.1], the normalized Eisenstein integrals can be writ-
ten as the composition of matrix coefficients with T´1

0 as follows:

EQ : IHQ pσq b I
H
Q´pσ̃q

IdbT´1
0

ÝÝÝÝÝÑ IHQ pσq b I
H
Q pσ̃q

M
ÝÑ C8pHq.

HereM denotes the matrix coefficient map, which depends on the choice
of a Haar measure on UQ´ , which brings IHQ pσ̃q and IHQ pσq in duality. On
the other hand, T0 : IHQ pσ̃q Ñ IHQ´pσ̃q is also proportional to the choice of a
measure on UQ´ , so the composition of M with IdbT´1

0 does not depend
on choices.

Now, we have a commutative diagram:

C8pHq

IHQ pσq b I
H
Q pσ̃q

M
77

TP |QbT
´1
Q|P // IHP pσq b I

H
P pσ̃q

M
gg

IHQ pσq b I
H
Q´pσ̃q

1bT´1
0

OO

TP |QbT
´1

Q´|P´ // IHP pσq b I
H
P´pσ̃q

1bT´1
0

OO

(15.2)

of operators varying rationally with xLP
disc

C . The fact that the operator TP |Qb
T´1
Q|P commutes with matrix coefficients follows from the fact that TP |Q is

adjoint to TQ|P . The fact that the operator on the last horizontal arrow
making the diagram commute is TP |Q b T´1

Q´|P´
follows from the fact that

T0TQ|P “ TQ´|P´T0 “ TQ´|P´TP´|QTQ|P .
From the commutative diagram (10.19) (dualized), we now infer that the

adjoint of Sw is the operator TP |Q b T
´1
Q´|P´

. �
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15.3. Unramified scattering operators. We now assume thatG is split, and
G,X are endowed with compatible models over the ring of integers o. We
will discuss results of [Sak13] in the light of our current framework. For
this, we assume that the conditions of [Sak13, §1.7 and 2.4] hold. In par-
ticular, there is a way to identify the universal torus AX as a torus orbit
AX Ă X (over o), so that its “anti-dominant” elements A`X Ă AXpF q repre-
sent all K “ Gpoq-orbits on X .

We will consider only the most degenerate boundary degeneration XH,
which carries an action of AX . Scattering operators for that degeneration
are parametrized by elements of the little Weyl group WX of X . We have

XHpF q{K » AXpF q{Apoq, (15.3)

where A is the universal Cartan of G (whose quotient as an algebraic vari-
ety is AX ). The isomorphism (15.3) is fixed so that for “very antidominant”
elements a P A`X , the K-orbit represented by a on XH corresponds, un-
der the exponential map, to the K-orbit represented by a on X , cf. [Sak,
Theorem 4.2].

A technical comment is in order: For the purpose of interpreting expres-
sions of the form eα̌pχq, where α̌ is a coroot of the universal Cartan ofG and
χ an unramified character ofAX (orA1X “the image ofApF q inAXpF q), we
identify AX as a quotient of the universal Cartan A in such a way that the
action of AX on the open Borel orbit X̊H Ă XH is compatible with the
action of A “ B{N on X̊H{N . Then, eα̌pχq just means the value of χ on
α̌p$q, where $ is a uniformizer in the field. (We use exponential notation,
because we use additive notation for the coroots.) This convention is com-
patible with [Sak13].

We may interpret the functional equations established in loc.cit. in terms
of normalized Eisenstein integrals and scattering operators as we did above
for the group, but we do not actually need to worry about normalization:
Indeed, Theorem 4.2.2 in loc.cit. implies the following, which we state be-
fore defining the terms used:

15.4. Theorem. For everyw PWX there is a rational family of HpG,Kq-equivariant
operators

Bwpχq :“

˜

ź

α̌ą0,wα̌ă0

p´eα̌pχqq

¸

bwpδ
1
2

pXqχq : C8pXHq
χ,K Ñ C8pXHq

wχ,K ,

satisfying the cocycle conditions Bw1p
wχq ˝ Bw1wpχq “ Bwpχq, such that, for

a Zariski dense subset of X-distinguished Satake parameters, the space of e˚H-
asymptotics of HpG,Kq-eigenfunctions with those Satake parameters is precisely
the space of all Bw-invariants.
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The theorem itself does not talk about asymptotics, actually, but about
the evaluation of HpG,Kq-eigenfunctions (where HpG,Kq denotes the un-
ramified Hecke algebra G with respect ot K) on A`X Ă XpF q. It was ex-
plained in [Sak] that can also be seen as a formula for e˚H-asymptotics on
XH.

We explain the notation: The spaceC8pXHqχ is the subspace ofC8pXHq
where ApF q acts with unramified character χ; this notation is compatible
with the notation C8pXΘq

σ̃
cusp that we have been using for the dual of the

fiber LΘ,σ (the index cusp here is superfluous).
The character χ lives in the space of unramified characters ofApF qwhich

are trivial on the kernel of A Ñ AX . The normalized action of A ex-
plained in 2.6 implies that C8pXHqχ is a direct sum of copies of the nor-
malized induced representation IP pXq´pχq; thus, its Satake parameter is the

W -conjugacy class of δ
1
2

pXqχ, where δpXq denotes the modular character of
LpXq. Those are the “X-distinguished Satake parameters” of the theorem.

The notation bw refers precisely to the operators (matrices there, because
a basis has been chosen) denoted by the same symbol in Theorem 4.2.2,
while the notation Bw is adapted from (6.1) of loc.cit. (s. also Theorem 1.2.1
there), which refers to a slightly special case. The coroots α̌ appearing in
the relation between Bw and bw are the coroots of G.

Finally, the notion of “Bw-invariants” is completely analogous to the
“Sw-invariants” of our main theorems: a vector

pfwqw P
à

wPWX

C8pXHq
wχ (15.4)

is in the space of “Bw-invariants” if for every w,w1 PWX we have:

fw1w “ Bw1fw.

Notice that the map from WX -conjugacy classes of χ’s to X-distinguished
Satake parameters is not necessarily injective (as happens, for example,
when X “ NzG, with N maximal unipotent, where WX “ 1). Therefore, to
obtain the e˚H-asymptotics of all HpG,Kq-eigenfunctions with a given Sa-
take parameter, as in the theorem, one might need to take the direct sum of
Bw-invariants of several of the spaces (15.4).

From Theorem 15.4 we can now deduce:

15.5. Proposition. In the notation of Theorem 15.4, the adjoints of the fiberwise
scattering operators

Swpχq : LH,wχ Ñ LH,χ,
restricted to K-invariants, are given by:

Sw´1pχq˚ “ Bwpχ
´1q : C8pXHq

χ´1,K Ñ C8pXHq
wχ´1,K . (15.5)

Proof. From the fact that the images of normalized Eisenstein integrals:

EH,χ : C8pXHq
χ´1

Ñ C8pXq
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also span the space of HpG,Kq-eigenfunctions on X with given Satake pa-
rameter, for a Zariski-dense set of X-distinguished Satake parameters, we
deduce:

e˚HEH,χ “
ÿ

wPWX

Bwpχ
´1q : C8pXHq

χ´1
Ñ C8pXHq,

and by the definition of the fiberwise scattering maps in (10.18), the claim
follows. �

Up to this point we have presented nothing more than a new symbol for
the scattering maps; however, the results of [Sak13] now give rise to a many
examples of scattering operators, restricted to unramified vectors. We will
only discuss the two most characteristic examples, that of course are much
older than loc.cit.

15.6. Example. (Whittaker model.) Consider the case of X “ N´zG, where
N´ is a maximal unipotent subgroup over o, and N´pF q is equipped with
a non-degenerate character Ψ. We keep assuming that G is split, for sim-
plicity. The character is chosen to be trivial on all α̌poq for all simple coroots
α̌, but non-trivial on α̌p$´1oq, where $ denotes a uniformizer. In this case,
XH “ X as varieties, but with trivial character on N´pF q. For every un-
ramified character χ of the universal Cartan ApF q, the space C8pXHqK

is 1-dimensional (isomorphic to the unramified vectors of the normalized
principal series IGB´pχq), with a canonical basis element ϕ´K,χ which is equal
to 1 on N´1K. (The normalization of the character Ψ on N´pF qmakes the
double coset N´1K unambiguous; the exponent ´ on ϕ is to remind that
we are using the opposite Borel than that containing N´ to identify the
character χ with a character of the universal Cartan.)

The Shintani-Casselman-Shalika formula states that, in this case, bwpχq “
1 for allw PWX “W in terms of the canonical basis elements, i.e. bwpχqϕ

´
K,χ “

ϕ´K,wχ, cf. §5.5 in loc.cit. Hence,

S ˚
w pχq “

˜

ź

α̌ą0,wα̌ă0

p´e´α̌pχqq

¸

: C8pXHq
χ´1,K Ñ C8pXHq

wχ´1,K .

In particular, the scattering operators have no poles and we get:

15.7. Corollary. In the Whittaker case, we have S`pXHqK “ SpXHqK .

This is the only example that we know where the extended Schwartz
space of the boundary degeneration is equal to the original Schwartz space,
as far as K-invariants go. As we will see in the next subsection, this is not
true for Iwahori-invariants.

15.8. Example. (Group case.) We discussed scattering operators for the group
case X “ H in the previous subsection, but for unramified vectors we can
also describe them explicitly using Macdonald’s formula for spherical func-
tions. We keep assuming that G (hence H) is split, for simplicity. Using the
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notation of §15.1, for rP s “ rBs (where B here denotes the class of Borel
subgroups of H , not of G) we may identify the smooth dual C8pXHqχ

´1
of

LrBs,χ with IBpχqbIB´pχ´1q (since the fiber ofXrBs overB is trivialized, cf.
§15.1). Here χ is an unramified character of B, and we keep the convention
from §15.1 of using the parameter χ to denote the representation χbχ´1 of
B ˆB´.

Using the canonical basis vector of pIBpχq b IB´pχ
´1qqK , we may again

express scattering operators on K “ Hpoq ˆHpoq-invariants as scalars. In
this case we have WX “ WH (the Weyl group of H), and Macdonald’s
formula implies:

S ˚
w pχq :

˜

ź

α̌ą0,wα̌ă0

p´e´α̌q
1´ q´1eα̌

1´ q´1e´α̌

¸

pχq : C8pXHq
χ´1,K Ñ C8pXHq

wχ´1,K

where the coroots α̌ ą 0 in the product above are the positive (with respect
to B) coroots of H , not all positive coroots of G.

15.9. Examples with Iwahori-fixed vectors. Let us consider the Whittaker
and the group case in rank one.

15.10. Example. (Whittaker model) Consider the Whittaker model of G “

PGL2, with conventions (about integral models and characters) as above.
Let w be the non-trivial element of the Weyl group. We can reinterpret
Example 15.6 as saying that

S ˚
w pχq “

1´ e´α̌

1´ q´1eα̌
pχqT0 : (15.6)

C8pXHq
χ´1

“ IGB´pχ
´1q Ñ IGB´p

wχ´1q “ C8pXHq
wχ´1

Indeed, this holds for K-fixed vectors by the formula

T0ϕ
´

K,χ´1 “
1´ q´1eα̌

1´ eα̌
pχqϕ´

K,wχ´1 ,

but for χ in general position these generate the whole representation.
The rational family of operators (15.6) may be regular onK-fixed vectors,

but this is not true for all vectors in the representation. More precisely, for a
holomorphic family of functions χ ÞÑ ϕχ´1 P C8pXHq

χ´1
with the property

that ϕ
δ

1
2
B

does not belong to the trivial subrepresentation C Ă IGB´pδ
1
2
Bq, the

section S ˚
w pχqpϕχ´1q has a simple pole at χ “ δ

´ 1
2

B . It follows from this that
we have a short exact sequence:

0 Ñ SpXHqJ Ñ S`pXHqJ Ñ StJ Ñ 0

of HpG, Jq-modules, where J is the Iwahori subgroup and St denotes the
Steinberg representation. (Restricting to Iwahori-invariants is just a way to
isolate the spectral contribution of unramified principal series.) The quo-
tient StJ lives over the character χ “ δ´

1
2 of A, which is where the trivial



96 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

representation is a quotient of SpXHqχ “ LH,χ. The trivial representation
is no longer a quotient of S`pXHq, as should be the case for the Whittaker
model.

15.11. Example. (The group case) Consider the case X “ H “ PGL2 under
theG “ PGL2ˆPGL2-action. We have seen that for the non-trivial element
w PWX “WH the scattering map is given by:

S ˚
w pχq “ T0 b T

´1
0 : C8pXHq

χ´1
» IBpχq b IB´pχ

´1q Ñ C8pXHq
wχ´1

,

where again we denote here by B a Borel subgroup of H (not G).
It can easily be seen that, for χ unramified, T0bT

´1
0 has poles precisely at

χ “ δ˘
1
2 ; more precisely, for a holomorphic family of functions χ ÞÑ ϕχ´1 P

C8pXHq
χ´1

, the section S ˚
w pχqpϕχ´1q has a (simple) pole at χ “ δ˘

1
2 if and

only if the specialization of ϕχ´1 at that point does not belong to any proper
subrepresentation of

C8pXHq
δ¯

1
2
» IBpδ

˘ 1
2 q b IB´pδ

¯ 1
2 q.

From this it can be inferred that we have a short exact sequence:

0 Ñ SpXHqJ Ñ S`pXHqJ Ñ StJ b StJ ‘ Cb CÑ 0,

with the quotient StJ b StJ living over χ “ δ´
1
2 and the quotient C b C

living over χ “ δ
1
2 . The fiber V of S`pXHq over either of χ “ δ˘

1
2 admits a

short exact sequence:

0 Ñ Stb C‘ Cb St Ñ V Ñ Stb St‘ Cb CÑ 0

and, of course, as a result both Stb St and Cb C are quotients of SpHq.

16. THE BERNSTEIN CENTER AND THE GROUP PALEY–WIENER THEOREM

16.1. The Bernstein center. We will now see how our Paley–Wiener the-
orem, and in particular the description of multipliers (Corollary 1.10), im-
plies the well-known theorem on the structure of the Bernstein center in
the case of the group, X “ H , G “ H ˆ H . The argument is inductive in
the size of H ; in particular, we have used the structure of the Bernstein cen-
ter for its proper Levi subgroups in Corollary 10.6 and hence Proposition
12.1 in order to deduce our Paley–Wiener theorem and the existence of the
multiplier ring zsmpHq on SpHq.

Recall that the Bernstein center zpHq is, by definition, the center of the
category MpHq of smooth representations of H , i.e. the algebra of natural
transformations of the idendity functor of MpHq. WhenX “ H the bound-
ary degenerations XΘ, Θ Ă ∆X are parametrized by classes of parabolics
in H , where for a given parabolic P corresponding to Θ Ă ∆X we have:

XP :“ XΘ » Ldiag
P z

`

UP zH ˆ U
´
P zH

˘

» LP ˆ
PˆP´ pH ˆHq.

Here P´ is an opposite parabolic, LP “ P X P´ a Levi subgroup and
UP , U

´
P the corresponding unipotent radicals.
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For all H ˆ H-representations that appear below, if not specified other-
wise, we let the Bernstein center ofH act via the embeddingH Idˆ1

ÝÝÝÑ HˆH .

16.2. Theorem. (1) The canonical morphism:

zpHq Ñ EndHˆHpSpHqq (16.1)

is an isomorphism.
(2) For every class of parabolics P in H (corresponding to Θ Ă ∆X ) the

Bernstein center acts fiberwise, i.e. zcusppXL
Θq “ CrL̂cusps-equivariantly,

on SpXΘqcusp » CrL̂cusp
P ,LΘs.

(3) The action of any element of zpHq on each fiber of LΘ is scalar; this scalar
varies polynomially on L̂cusp

P,C , i.e. we get a canonical morphism:

zpHq Ñ
à

P

CrpLcusp
P s. (16.2)

(4) The above map gives rise to an isomorphism:

zpHq
„
ÝÑ

˜

à

P

CrpLcusp
P s,

¸inv

“ zsmpHq, (16.3)

where the exponent inv denotes invariants with respect to the isomor-
phisms:

pLcusp
P » pLcusp

Q

induced by all w PWHpP,Qq.

Proof. (1) Choose a Haar measure dh onH , and let z ÞÑ αpzq denote the
morphism (16.1). We can construct an inverse to α as follows: Let
pπ, V q be a smooth representation ofH and let J be an open compact
subgroup. For Z P EndHˆHpSpHqq we define an endomorphism
βpZq of V J by:

βpZqpvq “ πpZp1J{VolpJqqdhqpvq,

where 1J is the characteristic function of J . It is easy to see that
this defines an endomorphism βpZq of V , and that the collection
of these endomorphisms is an element of the Bernstein center (also
to be denoted by βpZq). Finally, the fact that β is inverse to α fol-
lows from applying any z P zpHq to the morphism of smooth H-
representations:

SpHq b π Q f b v ÞÑ πpfdhqpvq P π,

where the left hand side is considered as an H-module only via the
action on SpHq by left multiplication.

(2) This is obvious from the definition of the Bernstein center and the
fact that the zcusppXL

Θq-action commutes with theG “ HˆH-action.
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(3) The action is generically scalar because for σ P pLcusp
C in general posi-

tion the representations IHP´pσq and IHP pσq are irreducible, s. Lemma
11.3. On the other hand, it has to preserve the space SpXΘqcusp »

CrL̂cusp
P ,LΘs of regular sections of LΘ, so it has to be polynomial in

σ.
(4) From our Paley–Wiener theorem (e.g. in the form of Theorem 14.5)

and the zcusppXL
Θq-equivariance properties of the scattering maps,

it follows that the image of (16.2) has to lie in the invariants. On
the other hand, by the inverse of (16.1) and the fact that zsmpHq Ă
EndHˆHpSpHqq, every invariant induces an H ˆH-equivariant en-
domorphism of SpHq, thus by the first assertion of this proposition
we get the desired isomorphism.

�

16.3. Paley–Wiener theorem. In the case of the group,X “ H ,G “ HˆH ,
we would like to explain the relation of our theorem to the well-known
Paley–Wiener theorem of Bernstein [Ber] and Heiermann [Hei01]. We clar-
ify that our theorem goes only half-way towards their result; for the other
half, one needs to appeal to Proposition (0.2) of [Hei01], which is proba-
bly also the hardest part of that paper. This is because the Paley–Wiener
theorem of Bernstein and Heiermann for the group does not generalize
(as a statement) to spherical varieties; and there is a non-trivial distance
to cover in order to obtain one from the other, accomplished through the
aforementioned proposition of Heiermann. In fact, the steps taken in part
A of [Hei01] can be recast in the setting of our general proof; thus, our work
provides a weak generalization, but not a new proof of the Paley–Wiener
theorem for reductive groups. We find it important, nevertheless, to ex-
plain the connection.

To state the Paley–Wiener theorem of Bernstein and Heiermann we will
use the language of bundles, as in §3, 4; we will not explicitly detail the
algebraic structure of the bundles that we will encounter, since the process
is identical to the one we have used thus far.

16.4. Theorem (Bernstein [Ber], Heiermann [Hei01]). For every parabolic P
of H , denoting its Levi quotient by L, consider the bundle σ ÞÑ End

`

IHP pσ̃q
˘

over
L̂cusp
C .
Fixing a Haar measure dh, for every smooth representation π we have the canon-

ical map:
SpHq Q f ÞÑ πpfdhq P Endpπq.

Then this map gives rise to an isomorphism:

SpHq „ÝÑ

˜

à

P

C
”

σ P L̂cusp,End
`

IHP pσ̃q
˘

ı

¸inv

,

where:
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‚ P ranges over all conjugacy classes of parabolics;
‚ the exponent inv refers to sections of the bundle of endomorphisms which

commute with all standard intertwining operators.

We will use the notation of §15.1. In particular, TQ|P is the standard in-
tertwining operator between representations induced from parabolics P,Q
which share a common Levi subgroup (depending on a choice of Haar mea-
sure onUQ{UQXUP ),XrP s denotes the boundary degeneration correspond-

ing to a class rP s of parabolics inH , and the space zXL
rP s

cusp

C
is identified with

pLcusp
C as explained there.
By setting IHP pσq in duality with IHP pσ̃q (that depends on the choice of a

Haar measure on UP´), the bundle with fibers σ ÞÑ End
`

IHP pσ̃q
˘

of Theo-
rem 16.4 is identified with the bundle whose fiber over σ P pLcusp

C is IHP pσ̃qb
IHP pσq.

Thus, the morphism f ÞÑ πpfdhq can be understood as a morphism:

M˚ : SpXq Ñ C
”

σ P L̂cusp, IHP pσ̃q b I
H
P pσq

ı

(16.4)

where the notation M˚ is due to the fact that this is dual to the operation of
taking matrix coefficients. On the other hand, the condition of invariance
under standard intertwining operators in Theorem 16.4 can be tranlated to
the condition of invariance under the operators:

C
´

σ P L̂cusp, IHP pσ̃q b I
H
P pσq

¯ TQ|PbT
´1
P |Q

ÝÝÝÝÝÝÝÑ C
´

σ P L̂cusp, IHQ pσ̃q b I
H
Q pσq

¯

.

By [SV, §15.7], one obtains the normalized cuspidal constant termsE˚Θ,cusp

out of this by composing with the inverse of the standard intertwining op-
erator T0 : IHP´pσq Ñ IHP pσq in the second variable:

SpXq M˚

ÝÝÑ C
“

IHP pσ̃q b I
H
P pσq

‰ 1bT´1
0

ÝÝÝÝÑ C
`

IHP pσ̃q b I
H
P´pσq

˘

,

where we have for brevity omitted L̂cusp from the notation.
Thus, we have a commutative diagram:

SpHq
M˚

ww

M˚

''

C
“

IHP pσ̃q b I
H
P pσq

‰

» 1bT´1
0

��

TQ|PbT
´1
P |Q // C

”

IHQ pσ̃q b I
H
Q pσq

ı

» 1bT´1
0

��

C
`

IHP pσ̃q b I
H
P´pσq

˘

TQ|PbT
´1

P´|Q´ // C
´

IHQ pσ̃q b I
H
Q´pσq

¯

(16.5)

which is dual to (15.2), so the compositions of slanted and vertical arrows
are the normalized constant terms. Notice that up to this point we have
made choices of Haar measures on H and UP´ (so that the left slanted
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arrow M˚ is proportional to the measure dh and inversely proportional
to UP´), and of a Haar measure on UP (to which T´1

0 is inversely propor-
tional; and similarly when P is replaced byQ. The measure dh also induces
measures on the boundary degenerations XrP s, XrQs, and we leave to the
reader to check that the choices of measures cancel each other out when
we identify the bundles in the bottom row with the bundles of cuspidal
coinvariants LrP s, resp. LrQs.

Our Theorem 14.4, together with Proposition 15.2, states that the sum of
normalized constant terms induces an isomorphism:

SpHq „ÝÑ

˜

à

P

C`
“

IHP pσ̃q b I
H
P´pσq

‰

¸inv

, (16.6)

where inv denotes invariants of the fiberwise scattering maps Sw “ TQ|P b

T´1
P´|Q´

. Recall that the space C`
“

IHP pσ̃q b I
H
P´pσq

‰

is generated by apply-
ing these scattering maps to regular sections.

To see that this implies Theorem 16.4, the only non-trivial statement to
prove is that every element of:

˜

à

Q

C
“

IHQ pσ̃q b I
H
Q pσq

‰

¸inv

(16.7)

corresponds to an element of the right hand side of (16.6) under the di-
agram (16.5), but this is [Hei01, Proposition 0.2] which, in our language,
states:

16.5. Proposition (Heiermann [Hei01]). For every element ϕ “ pϕQqQ of
(16.7) there is an element ξ “ pξP qP P

À

P C
“

IHP pσ̃q b I
H
P´pσq

‰

such that:

ϕ “

¨

˝

ÿ

P„Q,wPWHpP,Qq

TQ|P b TQ|P´ξP

˛

‚

Q

.

Notice that TQ|P bTQ|P´ “ TQ|P bpT0˝T
´1
P´|Q´

q. Thus, under the vertical
arrows of diagram (16.5), the element ϕ corresponds to the element:

¨

˝

ÿ

P„Q,wPWHpP,Qq

TQ|P b T
´1
P´|Q´

ξP

˛

‚

Q

of
´

À

QC`
”

IHQ pσ̃q b I
H
Q´pσq

ı¯inv
. This recovers Theorem 16.4 on the basis

of [Hei01, Proposition 0.2].

APPENDIX A. CHARACTERIZATION OF STRONGLY FACTORIZABLE
SPHERICAL VARIETIES

In this appendix we assume that G is split.
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Recall that a homogeneous spherical variety X is called factorizable if the
rank of Xab is equal to the rank of ZpXq, and that a wavefront spherical
variety is called strongly factorizable if all its Levi varieties are factorizable.

We will characterize factorizable and strongly factorizable spherical vari-
eties in terms of combinatorial invariants attached toX . We refer the reader
to [Lun01] for more details on the definitions and properties of these invari-
ants.

Recall that the group X pXq “ HompAX ,Gmq defined previously de-
notes the subgroup of characters of a Borel subgroupB which are trivial on
generic stabilizers or, equivalently, the group of eigencharacters of the Borel
subgroup on the space F pXqpBq of non-zero rational B-eigenfunctions on
X . By definition, the group X pXq is a subgroup of X pAq, the character
group of the universal Cartan A “ B{N .

The little Weyl group WX acts on X pXq. The character group of ZpXq
can be identified with the quotient of X pXq by the characters in the sub-
space of X pXqQ “ X pXq bQ spanned by the set ∆X of spherical roots.

Let D be the set of colors, i.e. prime B-stable geometric divisors. Each
of them induces a valuation on the function field over the algebraic closure
F̄ pXq and, by restriction toB-eigenfunctions, a map ρX : D Ñ HompX pXq,Zq.
Indeed, there is a short exact sequence

1 Ñ F̄ˆ Ñ F̄ pXqpBq Ñ X pXq Ñ 1, (A.1)

and the valuations are trivial on F̄ˆ. Since, in the case of G being split, the
Galois group acts trivially on X pXq, these valuations are Galois stable — in
particular, Galois-conjugate colors give rise to the same valuation.

A.1. Proposition. A homogeneous spherical G-variety X is factorizable if and
only if the following two conditions are satisfied:

(1) X pXqWX
Q Ă X pAqWQ ;

(2) the set ρXpDq of valuations induced by colors lies in the subspace of X pXq˚Q
spanned by the images of coroots of G under the quotient map X pAq˚Q Ñ
X pXq˚Q.

A wavefront homogeneous spherical variety is strongly factorizable if and only
if the following two conditions are satisfied:

(1) For every subset Θ of the set ∆X of spherical roots,

X pXqWXΘ
Q Ă X pAqWLΘ

Q .

(Recall that the little Weyl group WXΘ
of XΘ is generated by the simple

reflections associated to elements of Θ; by WLΘ
we denote the Weyl group

of the Levi subgroup LΘ.)
(2) For every color D, ρXpDq is a multiple of the image of a simple coroot α̌ of

G.

Before we prove the proposition, we make some remarks, prove some
lemmas and give some examples that clarify its use.
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Remarks. (1) In terms of the dual groups, the first condition means that
the center of the dual group ofX is, up to finite indices, contained in
the center of the dual group of G, and similarly for all Levi varieties
(for strong factorizability). Notice that the dual group5 ǦX of X is a
canonical subgroup of the dual group Ǧ of G, if the Tannakian con-
struction of Gaitsgory-Nadler is assumed, or a canonical subgroup
up to conjugacy by the canonical maximal torus, if a combinatorial
definition based on the set ∆X of spherical roots is used. The dual
ĽΘ of the Levi LΘ is determined by the set of simple roots of G in
the support of elements of Θ, and the simple roots in the Levi of
P pXq. Hence, this is a condition that can be easily checked once the
spherical roots of X and the parabolic P pXq are known.

(2) The second condition (in both cases) cannot be read off from dual
groups. It requires more specific knowledge on colors, which can
be obtained from the Luna diagram [Lun01] of the spherical variety.
This condition, for strong factorizability, eventually boils down to a
determination of valuations for “type T” colors, i.e. colors attached6

to simple roots of G belonging to (the set of unnormalized spherical
roots)7 ΣX . More precisely:

A.2. Lemma. The second condition for strong factorizability is satisfied if and
only if for every α P ΣX which is also a simple root for G, the two colors contained
in X̊ ¨ Pα induce valuations equal to α̌

2 .

Such colors are called undetermined in [Kno96, §5].

Proof. Indeed, for every color D there exists at least one α such that D Ă

X̊Pα, and then ρXpDq “ the image of α̌ (hence the second condition of
strong factorizability is satisfied) except when α P ΣX , cf. [Lun01]. In this
last case, consider the boundary degeneration of rank one associated to
Θ “ tαu. The Levi LΘ has simple roots tαu Y SpX , where, using Luna’s
notation, SpX denotes the simple roots in the Levi of P pXq. But it is known
that if β P SpX then the image of the coroot β̌ in X pXq˚Q is zero. Hence,
ρXpDq has to be a multiple of (the image of) α̌, and then it has to be equal
to α̌

2 . (Cf. loc.cit. for all the facts we are using.) �

Moreover, it has been proven by Losev [Los09, Theorem 2] that for α P
ΣX as in the previous lemma, the spherical variety XN “ NpHqzG “

X{AutGpXq (whereX “ HzG andNpHq denotes its normalizer), the spher-
ical root α gets replaced by 2α. That means that, up to dividing by the

5We are using here the Gaitsgory-Nadler dual group, denoted by ǦX,GN in [SV], as-
suming that its root datum is the one corresponding to the spherical roots — see loc.cit.,
Theorem 2.2.3.

6A color D is attached to the simple root α of G if it belongs to X̊ ¨ Pα, where Pα is the
parabolic of semisimple rank 1 associated to α.

7Those are the spherical roots as used by Luna. They are multiples of elements of ∆X .
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G-automorphism group or a suitable subgroup thereof, X is a spherical
variety whose spherical system has no simple roots, and those have been
classified, along with “strict spherical varieties” by [BCF10]. Most of those
are symmetric, and among the non-symmetric ones some are not of wave-
front type or do not satisfy the first condition of Proposition A.1, but there
are some examples that do:

A.3. Example. Let X “ G2zSO7. Its spherical system is denoted b3p3q in
[BCF10]. With simple roots labelled consecutively (on the Dynkin diagram)
as α1, α2, α3, where α3 is the short root, we have SpX “ tα1, α2u and ΣX “

tα1 ` 2α2 ` 3α3u.
The variety X is factorizable for trivial reasons: ZpXq is trivial. From its

spherical system it can be deduced that its only boundary degeneration is
the unique horospherical homogeneous variety XH with SpXH “ SpX and
character group spanned by α1 ` 2α2 ` 3α3. Thus, XH “ SL3 UzG, where
U is the unipotent radical of the parabolic with Levi of type GL3, and SL3 is
the derived group of this Levi. Hence, the Levi variety is SL3 zGL3, which
is factorizable.

A.4. Example. Let X “ HzG, where G is the exceptional group G2 and
H “ SL3; its spherical system is denoted gp2q in loc.cit. Here SpX “ tα2u

(the long root) and ΣX “ t2α1 ` α2u. Again, ZpXq “ 1, and from the
spherical system it can be deduced that the only boundary degeneration
XH is isomorphic to the quotient of G by the subgroup SL2 ¨U , where U
is the unipotent radical of the parabolic whose Levi has root α2, and SL2

belongs to that Levi. Thus, XL
H “ SL2 zGL2, which is factorizable.

Now we come to the proof of Proposition A.1.

Proof of Proposition A.1. Consider the diagram of natural morphisms of tori:

ZpXq // AX // Xab

ZpGq0 //

OO

A //

OO

Gab

OO

In terms of character groups we have a dual diagram:

X pXq bQ{ 〈ΣX〉Q

��

X pXq bQoo

��

X pXabq bQoo

��
X pAq bQ{ 〈Φ〉Q X pAq bQoo X pGabq bQ.oo

The vertical arrows are injective, and so are the horizontal arrows on the
right. Thus, for an element χ P X pXq b Q to come from X pXabq b Q, first
of all it has to come from X pGabq b Q; thus, it has to be orthogonal to the
subspace of HompX pAq,Qq spanned by coroots of G. Granted that, and
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assuming without loss of generality that χ P X pXq, we need to make sure
that such a character is trivial on the subgroup H stabilizing a point on the
homogeneous variety X . This is equivalent to saying that χ, thought of as
a function on the open Borel orbit (uniquely determined up to scalar by
(A.1)), extends to a nonvanishing, regular function on the spherical variety.
(The equivalence is established by pulling it back to G and using the fact
that a regular, non-vanishing function on G is necessarily a scalar multiple
of a character.) Which, in turn, is equivalent to saying that its valuations on
all colors are trivial. Thus:

X pXabq bQ “ X pXq bQX Φ̌
K

X ρXpDqK, (A.2)

where Φ̌ denotes the image of coroots of G. Thus, X is factorizable if and
only if the span of colors and coroots of G in HompX pXq,Qq has the same
dimension as the span of ΣX in X pXqQ.

This condition can be reformulated, taking into account that there is a
Weyl group action on X pXq, under which the quotient X pXq b Q{ 〈ΣX〉Q
can be identified with the subspace of WX -fixed vectors. This, in turn, con-

tains the subspace X pXq b Q X Φ̌
K

. (Notice that, in terms of dual groups,
this containment corresponds the embedding into the center of the dual
group of X of its intersection with the center of the dual group of G.) Thus,
a variety is factorizable if and only if the WX -fixed subspace of X pXq b Q
belongs to theW -fixed subspace of X pAqbQ and, moreover, the valuations
induced by colors, i.e. the set ρXpDq, are in the subspace spanned by the
images of coroots of G.

For a Levi variety, the lattice X pXq does not change, the set of spheri-
cal roots is a subset of ΣX , and the set of colors can be identified with the
subset of those D P D with 〈γ, ρXpDq〉 ą 0 for some γ in that subset of ΣX

(cf. [Lun01]). The first condition of strong factorizability follows directly
from the first condition of factorizability, and the second follows from con-
sidering boundary degenerations with a unique spherical root, and clearly
suffices for all other boundary degenerations.

�

Finally, we check that the two examples A.3, A.4 of non-symmetric, strongly
factorizable varieties that we saw satisfy the rest of the assumptions of this
paper (s. §2.1).

In both cases, the character group X pXq is generated by the spherical
root, hence is of rank one, and the spherical root is a root of the group.
Hence, we have a˚X,Θ “ either the line generated by the spherical root
(when Θ “ H) or the trivial space t0u (when Θ “ ∆X ). In the non-
trivial case, since a˚X,Θ is one-dimensional, an element of the Weyl group
that leaves it invariant either acts trivially on it or acts by p´1q; hence, both
actions are represented by elements of the little Weyl group WX . Thus, the
strong generic injectivity assumption is fulfilled.
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We now sketch the argument for the validity of the explicit Plancherel
formula of [SV, Theorem 15.6.2], by checking the “generic injectivity of
small Mackey restriction” (we point the reader to loc.cit. for the definitions).
This has to do with representations appearing in the continuous spectrum
of X , i.e. in the spectrum of (the unique boundary degeneration) XH. In
this case, since XH is horospherical, the representations will have the form
IP pXqpχq, where χ is a character that is trivial on the intersection of P pXq
with the stabilizer of a point on XH belonging to the opposite parabolic.

We need to show that, for generic such χ, any morphism:

SpXq Ñ IP pXqpχq

is obtained by the analytic continuation of the functional “integration over

the open P pXq-orbit” (against the character χ´1δ
´ 1

2

P pXq). To show this, we
argue that other P pXq-orbits (or, for that matter, other Borel orbits) cannot
support such a P pXq-equivariant (or Borel-equivariant) distribution. For
unramified characters, this has been done in [Sak08], but the same argu-
ment works in general. It is enough to show that no B-orbit other than the
open one has character group (= the group of characters of the Borel sub-
group which are trivial on stabilizers of points on this orbit) different from
the open orbit (whose character group coincides with X pXq and hence, in
our examples, is generated by the unique spherical root). By [Kno95], the
rank of the character group of each Borel orbit is at most equal to that rank
for the open orbit, which in our case is 1; and all orbits of maximal rank (in
our case, rank 1) are conjugate under an action of the full Weyl group W
defined by F. Knop, which is compatible with the action of W on character
groups (considered as subgroups of X pAq, the character group of the Borel).
The stabilizer of the open orbit under this action is the productWX˙WLpXq,
where LpXq is the Levi of P pXq, so the whole problem boils down to check-
ing that the stabilizer of X pXq Ă X pAq in W is equal to WX ˙WLpXq in our
examples. This is indeed the case: Let w P W stabilize X pXq. Without loss
of generality (multiplying, if necessary, by the non-trivial element of WX ),
w acts trivially on X pXq. But this places w in the centralizer of the dual
torus ǍX (the torus with cocharacter group X pXq) in the dual group Ǧ of
G, a Levi of Ǧ which by [Kno94, Lemma 3.1] is the Levi dual to P pXq; thus,
w PWLpXq.
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