Spherical character of a supercuspidal representation as weighted orbital integral

P. Delorme, P. Harinck

Abstract

Let E/F be an unramified quadratic extension of local non archimedean fields of characteristic 0. Let \underline{H} be an algebraic reductive group, defined and split over F. We assume that the split connected component of the center of \underline{H} is trivial. Let (τ, V) be a $\underline{H}(F)$ -distinguished supercuspidal representation of $\underline{H}(E)$. Using the recent results of C. Zhang [Z], and the geometric side of a local relative trace formula obtained by P. Delorme, P. Harinck and S. Souaifi [DHS], we describe spherical characters associated to $\underline{H}(F)$ -invariant linear forms on V in terms of weighted orbital integrals of matrix coefficients of τ .

Mathematics Subject Classification 2000: 11F72, 22E50.

Keywords and phrases: p-adic reductive groups, symmetric spaces, truncated kernel, spherical character, weighted orbital integral.

1 Introduction

Let E/F be an unramified quadratic extension of local non archimedean fields of characteristic 0. Let \underline{H} be an algebraic reductive group, defined and split over F. We denote by $\underline{G} := \operatorname{Res}_{E/F}\underline{H}_{/E}$ the restriction of scalars of $\underline{H}_{/E}$. Then $G := \underline{G}(F)$ is isomorphic to $\underline{H}(E)$. We set $H := \underline{H}(F)$. We denote by σ the involution of \underline{G} induced by the nontrivial element of the Galois group of E/F.

An unitary irreducible admissible representation (π, V) of G is H-distinguished if the space $V^{*H} = \operatorname{Hom}_{H}(\pi, \mathbb{C})$ of H-invariant linear forms on V is nonzero. In that case, a distribution $m_{\xi,\xi'}$, called spherical character, can be associated to two H-invariant linear forms ξ, ξ' on V (cf. (2.1)). By ([Ha] Theorem 1), spherical characters are locally integrable functions on G, which are H biinvariant and smooth on the set $G^{\sigma-reg}$ of elements g, called σ -regular points, such that g is semisimple and $g^{-1}\sigma(g)$ is regular in G in the usual sense.

^{*}The first author was supported by a grant of Agence Nationale de la Recherche with reference ANR-13-BS01-0012 FERPLAY.

We assume that the split component of the center of H is trivial. Let (τ, V) be a H-distinguished supercuspidal representation of G.

The aim of this note is to give the value of a spherical character $m_{\xi,\xi'}(g)$, when $g \in G$ is a regular point for the symmetric space $H \setminus G$ and $\xi, \xi' \in V^{*H}$, in terms of weighted orbital integrals of a matrix coefficient of τ (cf. Theorem 3.1). This result is analogous to that of J. Arthur in the group case ([Ar1]). Notice that this result of J. Arthur can be deduced from his local trace formula ([Ar2]) which was obtained later.

We use the recent work of C. Zhang [Z], which describes the space of *H*-invariant linear forms of supercuspidal representations, and the geometric side of a local relative trace formula obtained by P. Delorme, P. Harinck and S. Souaifi [DHS].

2 Spherical characters

We denote by $C_c^{\infty}(G)$ the space of compactly smooth functions on G. We fix a H-distinguished supercuspidal representation (τ, V) of G. We denote by $d(\tau)$ its formal degree.

Let (\cdot, \cdot) be a G-invariant hermitian inner product on V. Since τ is unitary, it induces an isomorphism $\iota: v \mapsto (\cdot, v)$ from the conjugate complex vector space \overline{V} of V and the smooth dual \check{V} of V, which intertwines the complex conjugate of τ and its contragredient $\check{\tau}$. If ξ is a linear form on V, we define the linear form $\bar{\xi}$ on \bar{V} by $\bar{\xi}(u) := \bar{\xi}(u)$.

For ξ_1 and ξ_2 two *H*-invariant linear forms on *V*, we associate the spherical character m_{ξ_1,ξ_2} defined to be the distribution on *G* given by

$$m_{\xi_1,\xi_2}(f) := \sum_{u \in \mathcal{B}} \xi_1(\tau(f)u)\overline{\xi_2(u)},$$
 (2.1)

where \mathcal{B} is an orthonormal basis of V. Since $\tau(f)$ is of finite rank, this sum is finite. Moreover, this sum does not depend on the choice of \mathcal{B} . Indeed, let (τ^*, V^*) be the dual representation of τ . For $f \in C_c^{\infty}(G)$, we set $\check{f}(g) := f(g^{-1})$. By ([R] Théorème III.3.4 and I.1.2), the linear form $\tau^*(\check{f})\xi$ belongs to \check{V} . Hence we can write $\iota^{-1}(\tau^*(\check{f})\xi) = \sum_{v \in \mathcal{B}} (\tau^*(\check{f})\xi)(v) \cdot v$ where $(\lambda, v) \mapsto \lambda \cdot v$ is the action of \mathbb{C} on \overline{V} . Therefore we deduce easily that one has

$$m_{\xi_1,\xi_2}(f) = \overline{\xi}_2(\iota^{-1}(\tau^*(\check{f})\xi_1)).$$
 (2.2)

Since τ is a supercuspidal representation, we can define the $H \times H$ -invariant pairing \mathcal{L} on $V \times \overline{V}$ by

$$\mathcal{L}(u,v) := \int_{H} (\tau(h)u,v)dh.$$

By ([Z] Theorem 1.5),

the map
$$v \mapsto \xi_v : u \mapsto \mathcal{L}(u, v)$$
 is a surjective linear map from \overline{V} onto V^{*H} . (2.3)

For $v, w \in V$, we denote by $c_{v,w}$ the corresponding matrix coefficient defined by $c_{v,w}(g) := (\tau(g)v, w)$ for $g \in G$.

2.1 Lemma. Let $\xi_1, \xi_2 \in V^{*H}$ and $v, w \in V$. Then we have

$$m_{\xi_1,\xi_2}(\check{c}_{v,w}) = d(\tau)^{-1}\xi_1(v)\overline{\xi_2(w)}.$$

Proof:

By (2.3), there exist v_1 and v_2 in V such that $\xi_j = \xi_{v_j}$ for j = 1, 2. By definition of the spherical character, for $f \in C_c^{\infty}(G)$ and \mathcal{B} an orthonormal basis of V, one has

$$m_{\xi_{1},\xi_{2}}(f) = \sum_{u \in \mathcal{B}} \int_{H} (\tau(h)\tau(f)u, v_{1})dh \int_{H} \overline{(\tau(h)u, v_{2})}dh$$

$$= \sum_{u \in \mathcal{B}} \int_{H \times H} (u, \tau(\check{f})\tau(h_{1})v_{1})(\tau(h_{2})v_{2}, u)dh_{1}dh_{2}$$

$$= \int_{H \times H} (\tau(h_{2})v_{2}, \tau(\check{f})\tau(h_{1})v_{1})dh_{1}dh_{2}$$

Hence we obtain

$$m_{\xi_1,\xi_2}(f) = \int_{H \times H} \int_G f(g)(\tau(h_1 g h_2) v_2, v_1) dg dh_1 dh_2.$$
 (2.4)

Let $f(g) := \check{c}_{v,w}(g) = \overline{(\tau(g)w,v)}$. By the orthogonality relation of Schur, for $h_1,h_2 \in H$, one has

$$\int_{G} (\tau(g)\tau(h_{2})v_{2}, \tau(h_{1})v_{1})\overline{(\tau(g)w, v)}dg = d(\tau)^{-1}(\tau(h_{2})v_{2}, w)(v, \tau(h_{1})v_{1}).$$

Thus, we deduce that

$$m_{\xi_1,\xi_2}(f) = d(\tau)^{-1} \xi_w(v_2) \xi_{v_1}(v) = d(\tau)^{-1} \xi_1(v) \overline{\xi_2(w)}.$$

3 Main result

We first recall some notations of [DHS] to introduce weighted orbital integrals.

We refer the reader to ([RR] §3) and ([DHS] §1.2 and 1.3) for the notations below and more details on σ -regular points. Let D_G be the usual Weyl discriminant function of G. By ([RR] Lemma 3.2 and Lemma 3.3), an element $g \in G$ is σ -regular if and only if $D_G(g^{-1}\sigma(g)) \neq 0$. The set $G^{\sigma-reg}$ of σ -regular points of G is decribed as follows. Let \underline{S} be a maximal torus of \underline{H} . We denote by \underline{S}_{σ} the connected component of the set of points $\gamma \in \operatorname{Res}_{E/F}\underline{S}_{/E}$ such that $\sigma(\gamma) = \gamma^{-1}$. We set $S_{\sigma} := \underline{S}_{\sigma}(F)$. By Galois cohomology, there exists a finite set $\kappa_S \subset G$ such that $\underline{HS}_{\sigma} \cap G = \cup_{x \in \kappa_S} HxS_{\sigma}$.

By ([RR] Theorem 3.4) and ([DHS] (1.30)), if $g \in G^{\sigma-reg}$, there exist a unique maximal torus \underline{S} of \underline{H} defined over F and 2 unique points $x \in \kappa_S$ and $\gamma \in S_{\sigma}$ such that $g = x\gamma$. We denote by M the centralizer of the split connected component of $S := \underline{S}(F)$. Then M is

Levi subgroup, that is the Levi component of a parabolic subgroup of H. We define the weight function w_M on $H \times H$ by

$$w_M(y_1, y_2) := \tilde{v}_M(1, y_1, 1, y_2),$$

where \tilde{v}_M is the weight function defined in ([DHS] Lemma 2.10) and 1 is the neutral element of H.

For $x \in \kappa_S$, we set $d_{M,S,x} := c_M c_{S,x}$ where the constants c_M and $c_{S,x}$ are defined in ([DHS] (1.33)).

For $f \in C_c^{\infty}(G)$, we define the weighted orbital integral of f on $G^{\sigma-reg}$ as follows. Let $g \in G^{\sigma-reg}$. We keep the above notations and we write $g = x\gamma$ with $x \in \kappa_S$ and $\gamma \in S_{\sigma}$. We set

$$\mathcal{WM}(f)(g) := \frac{1}{d_{M,S,x}} |D_G(g^{-1}\sigma(g))|^{1/2} \int_{H \times H} f(y_1 g y_2) w_M(y_1, y_2) dy_1 dy_2.$$

3.1 Theorem. For $v, w \in V$, we have

$$\mathcal{WM}(c_{v,w})(g) = m_{\xi_w,\xi_v}(g), \quad g \in G^{\sigma-reg}$$

Proof:

Let f_1 be a matrix coefficient of τ and $f_2 \in C_c^{\infty}(G)$. We set $f := f_1 \otimes f_2$. Let R be the regular representation of $G \times G$ on $L^2(G)$ given by $[R(x_1, x_2)\Psi](g) = \Psi(x_1^{-1}gx_2)$. Then R(f) is an integral operator with smooth kernel K_f given by $K_f(x, y) = \int_G f_1(xu) f_2(uy) du$. As in ([DHS] §2.2), we introduce the truncated kernel

$$K^{T}(f) := \int_{H \times H} K_{f}(x, y) u(x, T) u(y, T) dx dy$$

where u(x,T) is the truncated function of J. Arhur on H (cf. [DHS] (2.7)). It is the characteristic function of a compact subset of H, depending on a parameter T in a finite dimensional vector space, which converges to the function equal to 1 when ||T|| approaches $+\infty$. We will give the spectral asymptotic expansion of $K^{T}(f)$.

For $x \in G$, we define

$$h(g) := \int_G f_1(xu) f_2(ugx) du,$$

so that

$$K_f(x,y) = \left[\rho(yx^{-1})h\right](e),$$

where ρ is the right regular representation of G.

If π is a unitary irreducible admissible representation of G, one has

$$\pi(\rho(yx^{-1})h) = \int_{G\times G} f_1(xu)f_2(ugy)\pi(g)dudg$$

$$= \int_{G\times G} f_1(xu)f_2(u_2)\pi(u^{-1}u_2y^{-1})dudu_2 = \int_{G\times G} f_1(u_1^{-1})f_2(u_2)\pi(u_1xu_2y^{-1})du_1du_2$$

$$= \pi(\check{f}_1)\pi(x)\pi(f_2)\pi(y^{-1}).$$

Since τ is supercuspidal and f_1 is a matrix coefficient of τ , we deduce that $\pi(\rho(yx^{-1})h)$ is equal to 0 if π is not equivalent to τ . Therefore, applying the Plancherel formula ([W2] Théorème VIII.1.1.) to $[\rho(yx^{-1})h]$, we obtain

$$K_f(x,y) = d(\tau)\operatorname{tr}(\tau(\check{f}_1)\tau(x)\tau(f_2)\tau(y^{-1})).$$

We identify $\check{V} \otimes V$ with a subspace of Hilbert-Schmidt operators on V. Taking an orthonormal basis $\mathcal{B}_{HS}(V)$ of $\check{V} \otimes V$ for the scalar product $(S, S') := \operatorname{tr}(SS'^*)$, one obtains

$$K_{f}(x,y) = d(\tau)\operatorname{tr}\left(\tau(\check{f}_{1})\tau(x)\tau(f_{2})\tau(y)^{*}\right) = d(\tau)(\tau(\check{f}_{1})\tau(x)\tau(f_{2}),\tau(y))$$

$$= d(\tau)\sum_{S \in \mathcal{B}_{HS}(V)} (\tau(\check{f}_{1})\tau(x)\tau(f_{2}),S^{*})\overline{(\tau(y),S^{*})}$$

$$= d(\tau)\sum_{S \in \mathcal{B}_{HS}(V)} \operatorname{tr}\left(\tau(x)\tau(f_{2})S\tau(\check{f}_{1})\right)\operatorname{tr}\overline{(\tau(y)S)},$$

where the sums over S are finite since $\tau(f_2)$ and $\tau(f_1)$ are of finite rank. Therefore, the truncated kernel is equal to

$$K^T(f) = d(\tau) \sum_{S \in \mathcal{B}_{HS}(V)} P_{\tau}^T(\check{\tau} \otimes \tau(f)S) \overline{P_{\tau}^T(S)}$$

where

$$P_{\tau}^{T}(S) = \int_{H} \operatorname{tr}(\tau(h)S)u(h,T)dh, \quad S \in \check{V} \otimes V.$$

For $\check{v} \otimes v \in \check{V} \otimes V$, one has $\operatorname{tr}(\tau(h)(\check{v} \otimes v)) = c_{\check{v},v}(h)$. Since $c_{\check{v},v}$ is compactly supported, the truncated local period $P_{\tau}^{T}(S)$ converges when ||T|| approaches infinity to

$$P_{\tau}(S) = \int_{H} \operatorname{tr}(\tau(h)S) dh.$$

Therefore, we obtain

$$\lim_{\|T\|\to +\infty} K^T(f) = d(\tau) m_{P_\tau, P_\tau}(f), \tag{3.1}$$

where $m_{P_{\tau},P_{\tau}}$ is the spherical character of the representation $\check{\tau} \otimes \tau$ associated to the $H \times H$ -invariant linear form P_{τ} on $\check{V} \otimes V$.

By ([DHS] Theorem 2.15), the truncated kernel $K^T(f)$ is asymptotic to a distribution $J^T(f)$ as ||T|| approaches $+\infty$ and the constant term $\tilde{J}(f)$ of $J^T(f)$ is explicitly given in ([DHS] Corollary 2.11). Therefore, we deduce that

$$d(\tau)m_{P_{\tau},P_{\tau}}(f) = \tilde{J}(f). \tag{3.2}$$

We now express $m_{P_{\tau},P_{\tau}}$ in terms of H-invariant linear forms on V. Let V_H be the orthogonal of V^{*H} in V. Since $\xi_u(v) = \overline{\xi_v(u)}$ for $u,v \in V$, the space \overline{V}_H is the kernel of $v \mapsto \xi_v$. Let W be a complementary subspace of V_H in V. Then, the map $v \mapsto \xi_v$ is an isomorphism from \overline{W} to V^{*H} and $(u,v) \mapsto \xi_v(u)$ is a nondegenerate hermitian form on

W. Let (e_1, \ldots, e_n) be an orthogonal basis of W for this hermitian form. We set $\xi_i := \xi_{e_i}$ for $i = 1, \ldots, n$. Thus we have $\xi_i(e_i) \neq 0$.

We identify \overline{V} and \check{V} by the isomorphism ι . We claim that

$$P_{\tau} = \sum_{i=1}^{n} \frac{1}{\xi_i(e_i)} \overline{\xi_i} \otimes \xi_i \tag{3.3}$$

Indeed, we have $P_{\tau}(v \otimes u) = \xi_v(u) = \overline{\xi_u(v)}$. Hence, the two sides are equal to 0 on $\overline{V} \otimes V_H + \overline{V}_H \otimes V + \overline{V}_H \otimes V_H$ and take the same value $\xi_k(e_l)$ on $e_k \otimes e_l$ for $k, l \in \{1, \dots n\}$. Hence, by definition of spherical characters, we deduce that

$$m_{P_{\tau},P_{\tau}}(f_1 \otimes f_2) = \sum_{u \otimes v \in \ o.b.(\bar{V} \otimes V)} P_{\tau}\Big(\bar{\tau}(f_1) \otimes \tau(f_2)(u \otimes v)\Big) \overline{P_{\tau}(u \otimes v)}$$

$$=\sum_{u\otimes v\in\ o.b.(\bar{V}\otimes V)}\sum_{i,j=1}^n\frac{1}{\xi_i(e_i)\xi_j(e_j)}\overline{\xi_i}(\bar{\tau}(f_1)u)\xi_i(\tau(f_2)v)\overline{\overline{\xi_j}(u)\xi_j(v)},$$

where $o.b.(\bar{V} \otimes V)$ is an orthonormal basis of $\bar{V} \otimes V$. By definition of $\bar{\xi}$ for $\xi \in V^{*H}$, one has $\bar{\xi}(\bar{\tau}(f_1)u) = \bar{\xi}(\bar{\tau}(\bar{f}_1))$. Therefore, we obtain

$$m_{P_{\tau}, P_{\tau}}(f_1 \otimes f_2) = \sum_{i, j=1}^{n} \frac{1}{\xi_i(e_i)\xi_j(e_j)} \overline{m_{\xi_i, \xi_j}(\bar{f}_1)} m_{\xi_i, \xi_j}(f_2). \tag{3.4}$$

Let v and w in V. Let $f_1 := c_{v,w}$ so that $\bar{f}_1 = \check{c}_{v,w}$. If $v \in V_H$ or $w \in V_H$, it follows from Lemma 2.1 that $m_{\xi_i,\xi_j}(\bar{f}_1) = 0$ for $i,j \in \{1,\ldots,n\}$, hence $m_{P_\tau,P_\tau}(f_1 \otimes f_2) = 0$. Thus, we deduce from (3.2) that

$$\tilde{J}(c_{v,w} \otimes f_2) = 0, \quad v \in V_H \text{ or } w \in V_H.$$
 (3.5)

Let $k, l \in \{1, ..., n\}$. We set $f_1 := c_{e_k, e_l}$, hence $\bar{f}_1 = \check{c}_{e_l, e_k}$. By Lemma 2.1, one has $m_{\xi_i, \xi_j}(\bar{f}_1) = d(\tau)^{-1} \xi_i(e_l) \xi_j(e_k)$. Therefore, by (3.2) and (3.4) we obtain

$$\tilde{J}(c_{e_k,e_l} \otimes f_2) = m_{\xi_l,\xi_k}(f_2). \tag{3.6}$$

By sesquilinearity, ones deduces from (3.5) and (3.6) that one has

$$\tilde{J}(c_{v,w} \otimes f_2) = m_{\xi_w,\xi_v}(f_2) \quad v, w \in V. \tag{3.7}$$

Let $g \in G^{\sigma-reg}$. Let $(J_n)_n$ be a sequence of compact open sugroups whose intersection is equal to the neutral element of G. The characteristic function ϕ_n of J_ngJ_n approaches the Dirac measure at g as n approaches $+\infty$. Thus, if $v, w \in V$ then $m_{\xi_w,\xi_v}(\phi_n)$ converges to $m_{\xi_w,\xi_v}(g)$. By ([DHS] Corollary 2.11) the constant term $\tilde{J}(c_{v,w} \otimes \phi_n)$ converges to $\mathcal{WM}(c_{v,w})(g)$. We deduce the Theorem from (3.7).

References

- [Ar1] J. Arthur, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci. Math. Sci., 97 (1987), 3-19.
- [Ar2] J. Arthur, A Local Trace formula, Publ. Math. Inst. Hautes Études Sci., 73 (1991), 5 - 96.
- [DHS] P. Delorme, P. Harinck and S. Souaifi, Geometric side of a local relative trace formula, arXiv:1506.09112 (47 p.),
- [Ha] J. Hakim, Admissible distributions on p-adic symmetric spaces, J. Reine Angew. Math. 455 (1994), 119.
- [RR] C. Rader, S. Rallis, Spherical characters on p-adic symmetric spaces, Amer. J. Math., Vol 118, No 1 (5 Feb. 1996), 91-178.
- [R] D. Renard, Représentations des groupes réductifs p-adiques, Cours spécialisés, volume 17, SMF.
- [W2] J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003) 235 333.
- [Z] C. Zhang, Local periods for discrete series representations, Preprint, arXiv:1509.06166.