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3.1 Mean-field equations of Vlasov type

The Vlasov equation governs the number density in single-particle phase space
of a large particle system (typically a rarefied ionized gas or plasma), subject
to some external force field (for instance the Lorentz force acting on charged
particles). Most importantly, collisions between particles are neglected in the
Vlasov equation, unlike the case of the Boltzmann equation. Hence the only
possible source of nonlinearity in the Vlasov equation for charged particles
is the self-consistent electromagnetic field created by charges in motion: each
particle is subject to the electromagnetic field created by all the particles other
than itself.

The Vlasov equation reads

∂tf + divx(v(ξ)f) + divξ(F(t, x)f) = 0, (3.1.1)

where f ≡ f(t, x, ξ) ∈ MN (R) is the diagonal matrix of number densities for
the system of particles considered. Specifically, there are N different species
of particles in the system, and

f(t, x, ξ) =

⎛⎜⎝f1(t, x, ξ) 0 0

0
. . . 0

0 0 fN (t, x, ξ)

⎞⎟⎠ ,

where fj(t, x, ξ) is the density of particles of the jth species located at the
position x ∈ R3 with momentum ξ ∈ R3 at time t. Likewise

v(ξ) =

⎛⎜⎝v1(ξ) 0 0

0
. . . 0

0 0 vN (ξ)

⎞⎟⎠ ,

where vj(ξ) is the velocity of particles of the jth species with momentum ξ,
while
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F(t, x) =

⎛⎜⎝F1(t, x) 0 0

0
. . . 0

0 0 FN (t, x)

⎞⎟⎠ ,

where Fj(t, x) is the force field at time t and position x acting on particles of
the jth species. The divergence operators act entrywise on their arguments,
meaning that

divx(v(ξ)f(t, x, ξ))

=

⎛⎜⎝divx(v1(ξ)f1(t, x, ξ)) 0 0

0
. . . 0

0 0 divx(vN (ξ)fN (t, x, ξ))

⎞⎟⎠ ,

while

divξ(F(t, x)f(t, x, ξ))

=

⎛⎜⎝divξ(F1(t, x)f1(t, x, ξ)) 0 0

0
. . . 0

0 0 divξ(FN (t, x)fN (t, x, ξ))

⎞⎟⎠ .

Henceforth

m =

⎛⎜⎝m1 0 0

0
. . . 0

0 0 mN

⎞⎟⎠ , q =

⎛⎜⎝q1 0 0

0
. . . 0

0 0 qN

⎞⎟⎠ ,

where mj and qj are respectively the mass and the charge of particles of the
jth species.

The relativistic Vlasov–Maxwell model

This is the fundamental model for relativistic particles with strong electro-
magnetic coupling. Hence, denoting by c the speed of light in a vacuum,

v(ξ) = ∇ξe(ξ) , F(t, x) = E(t, x)q− 1
cB(t, x)×∇ξe(ξ)q , (3.1.2)

where

e(ξ) = (m2c4 + c2|ξ|2I)1/2, (3.1.3)

while E ≡ E(t, x) ∈ R3 and B ≡ B(t, x) ∈ R3 are respectively the electric
and the magnetic field at time t and position x. They are governed by the
system of Maxwell’s equations

divx B = 0 , ∂tB + c curlx E = 0 ,
divx E = ρ , ∂tE − c curlx B = −j .

(3.1.4)
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The charge density ρ is defined as

ρ(t, x) =
∫

R3
trace(qf(t, x, ξ))dξ , (3.1.5)

while the current density j ≡ j(t, x) ∈ R3 is given by

j(t, x) =
∫

R3
trace(qv(ξ)f(t, x, ξ))dξ . (3.1.6)

The main mathematical problem concerning the Vlasov–Maxwell system
is the question of global existence and uniqueness of smooth solutions of the
Cauchy problem, which remains open at the time of this writing.

Since the time-dependent vector field

R3 × R3 � (x, ξ) �→ (vj(ξ), Fj(t, x)) ∈ R3 × R3

is divergence free for each j = 1, . . . , N , the quantity

‖fj(t, ·, ·)‖Lp(R3×R3) = Const.

is an invariant of the motion for each j = 1, . . . , N and each 1 ≤ p ≤ ∞.
The total energy of the particle system is also an invariant of the motion.

It reads

1
2

∫∫
R3×R3

trace(e(ξ)f(t, x, ξ))dxdξ +
1
2

∫
R3

(|E|2 + |B|2)(t, x)dx = Const.

Since all the matrices m, e(ξ) and f(t, x, ξ) have nonnegative entries, there
are no cancellations in the expression above, so that the energy conservation
implies a priori estimates of the form∫∫

R3×R3

√
m2

jc
4 + c2|ξ|2fj(t, x, ξ)dxdξ ≤ Const.

and ∫
R3

(|E|2 + |B|2)(t, x)dx ≤ Const.

for the Vlasov–Maxwell system.

3.2 A kinetic formulation of the Maxwell equations

Henceforth, we consider a classical solution (f , E,B) of the relativistic Vlasov–
Maxwell system (3.1.1), (3.1.2), (3.1.4), (3.1.5), (3.1.6), with initial data

f
∣∣
t=0

= f in , E
∣∣
t=0

= Ein , B
∣∣
t=0

= Bin , (3.2.1)
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where f in, Ein and Bin are at least of class C∞ in all their variables, and
satisfy the compatibility conditions

divx E
in =

∫
R3

trace(qf in)dξ , divx B
in = 0 . (3.2.2)

For simplicity, we shall assume moreover that f in, Ein and Bin are compactly
supported.

It will be especially convenient to represent the electromagnetic field in
terms of the distribution of Liénard–Wiechert potentials created by each one
of the moving charged particles in the system considered. For a classical pre-
sentation of Liénard–Wiechert potentials, see for instance §14.1 in [14], or §63
in [16]. Here, we propose a slightly different (and yet equivalent) formulation
of that notion.

Define u ≡ u(t, x, ξ) ∈MN (R) to be the solution of

�t,xu = f , t > 0 , x, ξ ∈ R3 ,

u
∣∣
t=0

= ∂tu
∣∣
t=0

= 0 ,
(3.2.3)

where �t,x = ∂2
t − c2Δx is the d’Alembert operator. The jth diagonal entry

of u(t, x, ξ) is exactly the distribution of Liénard–Wiechert potentials created
at time t by particles of the jth species distributed under f in

j ≡ f in
j (x, ξ)

initially.
Define then the electromagnetic potential

ΦΦΦ(t, x) =
∫

R3
qu(t, x, ξ)dξ ,

A(t, x) =
∫

R3
qv(ξ)u(t, x, ξ)dξ .

(3.2.4)

We also define (a diagonal matrix of) vector potentials A0 ≡ A0(t, x) so that

�t,xA0 = 0 (3.2.5)

with the following compatibility conditions:

divx A0
∣∣
t=0

= 0 , divx ∂tA0
∣∣
t=0

= −
∫

R3
qf in(x, ξ)dξ , (3.2.6)

as well as

curlx trace(A0)
∣∣
t=0

= Bin , trace(∂tA
0)
∣∣
t=0

= −Ein . (3.2.7)

One easily checks that (ΦΦΦ,A0 + A) is the electromagnetic potential leading
to the electromagnetic field (E,B) by the formulas

E = −∂t trace(A0 + A)−∇xΦΦΦ , B = curlx trace(A0 + A)
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and satisfying the Lorentz gauge entrywise:

∂tΦΦΦ + divx(A0 + A) = 0 .

Hence one can replace the Vlasov–Maxwell system (3.1.1), (3.1.2), (3.1.4),
(3.1.5), (3.1.6) with the equivalent system (3.1.1), (3.2.3) with the following
formula for the Lorentz force:

F(t, x) = −1
c curlx trace

(
A0 +

∫
R3

qv(ξ)u(t, x, ξ)dξ
)
×∇ξe(ξ)q

− trace
(
∂tA0 + ∂t

∫
R3

qv(ξ)u(t, x, ξ)dξ +∇x

∫
R3

qu(t, x, ξ)dξ
)

q .

(3.2.8)

Observe that the (diagonal matrix of) vector potentials A0 can be chosen as
smooth as the initial data (f in, Ein, Bin), i.e., of class C∞ in all its variables,
since the wave equation (3.2.5) propagates the regularity of the initial data
(3.2.6), (3.2.7) of A0. Hence the only possibility for a finite time blow-up of
classical solutions of the relativistic Vlasov–Maxwell model would therefore
come from the f -u coupling in the system (3.1.1), (3.2.3). In the next section,
we shall analyze carefully some conditional smoothing mechanisms for such
systems.

3.3 Nonresonant velocity averaging for transport+wave
systems

Throughout this section, we set c = 1. We are concerned with coupled trans-
port+wave systems of the form

�t,xu(t, x, ξ) = f(t, x, ξ)
(∂t + v(ξ) · ∇x)f(t, x, ξ) = P (Dξ)g(t, x, ξ),

(3.3.1)

where P (Dξ) is a differential operator of order m ≥ 0. Specifically, we are
interested in the local regularity in (t, x) of averages of u of the form

U(t, x) =
∫

RD

u(t, x, ξ)φ(ξ)dξ .

Observe that the expression of the Lorentz force in (3.2.8) involves precisely
averages of u of this type, instead of u itself.

For simplicity, we consider first regularity estimates in L2-based Sobolev
spaces. Assume that f, u, g ∈ L2

loc(R×RD ×RD) while v ∈ C∞(RD; RD) and
φ ∈ C∞

c (RD).
Under the full-rank condition

rank∇ξv(ξ) = D for each ξ ∈ suppφ, (3.3.2)
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the classical velocity averaging lemma implies that∫
RD

f(t, x, ξ)φ(ξ)dξ ∈ H
1/2(m+1)
loc (R× RD) .

On the other hand
�t,xU =

∫
RD

fφdξ

and the usual energy estimate for the wave equation on u, obtained by mul-
tiplying each side of that equation by ∂tU , leads to

∂t
1
2
(
|∂tU |2 + |∇xU |2

)
− divx(∂tU∇xU) = ∂tU

∫
RD

fdξ .

After localizing in (t, x) and integrating in x, this clearly shows that U gains
one derivative in L2 in each variable t, x over the average of f :∫

RD

f(t, x, ξ)φ(ξ)dξ .

Hence
U ∈ H

1+ 1
2(m+1)

loc (R× RD) .

Going back to our formulation (3.1.1), (3.2.3), we see that, in order for the
vector field

R3 × R3 � (vj(ξ), Fj(t, x)) ∈ R3 × R3

to generate a unique characteristic flow, Fj should be locally Lipschitz contin-
uous in x uniformly in t, for each j = 1, . . . , N . In terms of the distribution of
Liénard–Wiechert potentials u, this amounts precisely to controlling second-
order derivatives of averages of u, as can be seen from (3.2.8). Unfortunately,
the strategy based on the classical velocity averaging lemma as explained
above (in the most favorable L2 setting) fails to gain that much regularity—
in fact, m = 1 in the Vlasov equation, so that the best one can hope for with
this method is a gain of 1 + 1

4 derivatives in (t, x), which is not enough to
allow us to define characteristics for the Vlasov–Maxwell system.

However, this approach to the regularity question leaves aside an important
feature of the Vlasov–Maxwell system. The electromagnetic field consists of
waves that propagate at the speed of light, whereas the charged particles, all
of which have positive mass, move at a lesser speed. Indeed, the speed of a
particle of mass m and momentum ξ is

c2|ξ|√
m2c4 + c2|ξ|2

< c .

The fact that the speed of propagation in the wave equation (3.2.3) is larger
than the speed of particles v(ξ) in the Vlasov equation (3.1.1) leads to a new
regularizing mechanism, which we now explain.

Consider the system (3.3.1). We shall call this system nonresonant if

|v(ξ)| < 1 , for each ξ ∈ RD . (3.3.3)
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Theorem 3.3.1 (Bouchut-Golse-Pallard [2]) Let u, f, g in L2
loc(Rt×RD

x ×
RD

ξ ) satisfy (3.3.1) with v ∈ C∞(RD; RD). Assume that this system is non-
resonant. Then, for each φ ∈ C∞

c (RD
ξ ), one has

U(t, x) =
∫

RD

u(t, x, ξ)φ(ξ)dξ ∈ H2
loc(R× RD) .

This result generalizes the fact that the operator �t,x is microlocally el-
liptic on the null space of the transport operator whenever |v(ξ)| < 1.

There is also an interesting difference with the strategy based on the usual
velocity averaging lemma described above. Indeed, this new method leads to
a gain of 2 derivatives on momentum averages of u in the nonresonant case—
without gaining more than 1 + 1

2(m+1) derivatives in (t, x) on momentum
averages of f itself.

To see the importance of the nonresonance condition (3.3.3), we briefly
sketch the proof of Theorem 3.3.1.

Proof (Sketch of the proof). Set T±
ξ = ∂t± v(ξ) ·∇x and consider the second-

order differential operator

Qξ = �t,x − λT−
ξ T+

ξ .

First, one checks that

Qξu = f − λT−
ξ �−1

t,xD
m
ξ g = f − λDm

ξ �−1
t,xT

−
ξ g − λ�−1

t,x[T−
ξ , Dm

ξ ]g

= f − λDm
ξ �−1

t,xT
−
ξ g − λ�−1

t,xD
m
ξ v(ξ)·∇xg

= a + dm
ξ b ∈ L2

loc(dtdxdξ) + Dm
ξ L2

loc(dtdxdξ).

Here, we have denoted by �−1
t,x the operator defined by �−1

t,xψ = Ψ where Ψ is
the solution of the Cauchy problem

�t,xΨ = 0 , x ∈ RD , t > 0 ,

Ψ
∣∣
t=0

= 0 ,

∂tΨ
∣∣
t=0

= ψ .

Next, we observe that, for ξ ∈ suppφ and λ such that

sup
ξ∈supp φ

|v(ξ)| < λ < 1,

the operator Qξ is elliptic for each ξ ∈ suppφ.
More precisely, denoting by qξ(ω, k) the symbol of Qξ, one has

sup
ξ∈supp φ

∣∣∣∣Dm
ξ

(
1

qξ(ω, k)

)∣∣∣∣ ≤ Cm

ω2 + |k|2 ,

where Cm may depends on m but is uniform in ξ. Then
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RD

ûφ(ξ)dξ =
∫

â

qξ(ω, k)
φ(ξ)dξ + (−1)m

∫
RD

Dm
ξ

(
φ(ξ)

qξ(ω, k)

)
b̂dξ

with â and b̂ ∈ L2
ω,k,ξ have H2-decay in ω, k.

Remarks
(a) First, one easily checks that none of the assumptions in Theorem 3.3.1

can be dispensed with.
(b) That one gains 2 derivatives is special to the L2-case, since �−1

t,x gains
1 derivative in (t, x) by the energy estimate for the wave equation.

In Lp with 1 < p <∞, �−1
t,x gains 1−(D−1)| 12−

1
p | derivatives in (t, x)—see

for instance [18], [19])—whenever | 12 −
1
p | ≤

1
D−1 .

Using this result and the Mihlin-Hörmander theorem on Lp multipliers—
see for instance Theorem 3 on p. 96 of [20]—the same method as above shows
that∫

RD

u(t, x, ξ)φ(ξ)dξ ∈W 1+γ,p
loc (R× RD) with γ = 1− (D − 1)

∣∣∣∣12 − 1
p

∣∣∣∣ .
This result, due to C. Pallard [17] suggests a gain of 1 derivative in L1 or L∞

in space dimension 3. The regularity statement above is still true in these lim-
iting cases of nonresonant velocity averaging; however, the proof rests on the
explicit formula for �−1

t,x—the forward fundamental solution of the d’Alembert
operator—in physical (instead of Fourier) space. In the case of 3 space dimen-
sions, this fundamental solutions turns out to be a measure, and thus behaves
nicely with L∞ data. The proof also uses a “division lemma” discussed in the
next section. See [17] for a complete proof of the Lp variant of nonresonant
velocity averaging, including the aforementioned limiting cases.

3.4 Applications to the Vlasov–Maxwell system

3.4.1 A conditional regularity result

R. DiPerna and P.-L. Lions [4] have proved that the Cauchy problem for
the Vlasov–Maxwell system has globally defined renormalized solutions for
initial data with finite energy. However, their method does not allow defining
characteristic curves for the Vlasov equation; i.e., trajectories for the charged
particles governed by the Vlasov–Maxwell system. Their analysis, written in
the case of the classical Vlasov–Maxwell system, i.e., for

v(ξ) = m−1ξ,

obviously applies to the relativistic Vlasov–Maxwell system considered here,
which is somewhat more consistent on physical grounds, since the Maxwell
equations are themselves a relativistic model.
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By using both the standard velocity averaging argument for large mo-
menta and the nonresonant velocity averaging method for momenta below
some threshold R, one arrives at the following conditional result, upon opti-
mizing in R.

Theorem 3.4.1 (Bouchut-Golse-Pallard [2]) Consider the relativistic
Vlasov–Maxwell system (3.1.1), (3.1.2), (3.1.4), (3.1.5), (3.1.6) with initial
condition (3.2.1). Assume that the initial data satisfy

0 ≤ f in ∈ L∞(R3 × R3) , Ein and Bin ∈ H1
loc(R

3)

with the compatibility condition

divBin = 0 , divEin =
∫

R3
trace(qf(t, x, ξ))dξ

and the finite energy condition∫∫
R3×R3

trace(e(ξ)f in(x, ξ))dξdx +
1
2

∫
R3

(|Ein|2 + |Bin|2)(x)dx <∞ .

Let (f,E,B) be a renormalized solution of the Vlasov–Maxwell system with
those initial data. If the macroscopic energy density satisfies∫ 3

R

trace(e(ξ)f in(t, x, ξ))dξ ∈ Lp
loc(R+ × R3) with

3
2
< p ≤ 2,

then the electromagnetic field has Sobolev regularity

(E,B) ∈ Hs
loc(R

∗
+ × R3) with s <

4p− 6
4p + 3

.

See [2] for a proof of this result. The theorem above falls short of pro-
viding the amount of regularity on the electromagnetic field that one would
need in order to define a characteristic flow, even in a generalized sense—see
[1], [5]. Perhaps, its main interest is to indicate the relevance of the idea of
nonresonant velocity averaging in the context of the Vlasov–Maxwell system.
Most likely, further ideas are needed in order to apply the method of nonreso-
nant velocity averaging to the Vlasov–Maxwell system with more convincing
output.

3.4.2 A new proof of the Glassey–Strauss theorem

Consider the Cauchy problem for the Vlasov–Maxwell system (3.1.1), (3.1.2),
(3.1.4), (3.1.5), (3.1.6) with initial condition (3.2.1). As mentioned above, R.
DiPerna and P.-L. Lions [4] have proved that this Cauchy problem has globally
defined renormalized solutions for initial data with finite energy.
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However, such solutions are not known to be uniquely defined by their ini-
tial data. Besides, one would expect that the regularity of initial data propa-
gates, so that it seems reasonable to seek classical solutions, with (f,E,B) at
least of class C1. The benefit of dealing with classical solutions is twofold: first,
such solutions are uniquely defined by their initial data. Furthermore, one can
define characteristic curves of the Vlasov equation (3.1.1) for C1 solutions by
a simple application of the Cauchy–Lipschitz theorem.

Unfortunately, global existence of classical solutions of the Vlasov–Maxwell
system for any C1 initial data of arbitrary size with good enough decay prop-
erty at infinity remains an open problem. The best result in that direction is
the following theorem.

Theorem 3.4.2 (R. Glassey-W. Strauss [13]) Let f ∈ C1([0, T ) × R3 ×
R3) and E,B ∈ C1([0, T ) × R3) be a solution of the Vlasov–Maxwell system
(3.1.1), (3.1.2), (3.1.4), (3.1.5), (3.1.6) with initial condition (3.2.1). Assume
that f in ∈ C1

c (R3 × R3) and that Ein, Bin ∈ C2
c (R3) with

divx E
in =

∫
R3

trace(qf in)dξ , divx B
in = 0.

If
lim t→T−‖f(t)‖Lipx,ξ

+ ‖(E,B)(t)‖Lipx = +∞,

then
lim t→T−Rf (t) = +∞,

where

Rf (t) = inf{r > 0 | f(t, x, ξ) = 0 for each x ∈ R3 and |ξ| > r} .

The original proof of this result is fairly hard to read in detail, although the
general strategy is very clearly explained in [13]. For this reason, together with
the considerable interest in the result itself, there have been some attempts
at finding alternatives to the original proof. One is due to S. Klainerman and
G. Staffilani [15]; although perhaps not very much simpler than the original
proof, it is based on a completely new and different idea which may be of
great interest in further understanding the Vlasov–Maxwell system.

The proof of the Glassey–Strauss theorem sketched below originates from
[3]. The underlying strategy is essentially the same as in the original proof;
however, it is much simpler in two very different respects. A first, considerable
simplification over [13] comes from the representation of the electromagnetic
field (E,B) in terms of the number densities f : whereas the original argument
led the reader through complicated manipulations of integrals involving vector
analysis, using the kinetic formulation of the Maxwell equations in terms of
the distribution of Liénard–Wiechert potentials as in Section 3.2 reduces that
burden to performing similar manipulations on scalar solutions of the wave
equation.
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But the most important part of the Glassey–Strauss analysis was a subtle
decomposition of the vector fields corresponding to space- and time-derivatives
into their projection on the wave cone and the free streaming operator. This
decomposition was then used in the representation of the electromagnetic
field with several integrations by parts to smooth out the singularities of the
integral kernels involved.

In our analysis, this last step is replaced by a “division lemma” bearing on
the fundamental solution of the d’Alembert operator, which is vaguely rem-
iniscent of the classical “Preparation Theorem.” The main advantage of this
argument is that it does not depend at all on the explicit form of the funda-
mental solution, and remains the same for other space dimensions—whereas
the 2-dimensional analogue of the Glassey–Strauss analysis required a differ-
ent argument, since the 2-dimensional fundamental solution of the d’Alembert
operator is not concentrated on the wave cone in even space dimensions.

The division lemma

At variance with the Glassey–Strauss analysis, our argument uses only the
following symmetries of the d’Alembert operator. Denote the Lorentz boosts
on Rt × RD

x by
Lj = xj∂t + t∂xj , j = 1, . . . , D .

We recall that these Lorentz boosts commute with the d’Alembert operator
�t,x on Rt × RD

x :
[�t,x, Lj ] = 0 , j = 1, . . . , D .

Let Y be the forward fundamental solution of �t,x, i.e.,

�t,xY = δ(0,0) , suppY ⊂ R+ × RD

—for instance, in space dimension D = 3, one has

Y (t, x) = 1t≥0
δ(t− |x|)

4πt
.

Then, since Lj commutes with �t,x, one finds that

�t,xLjY = Ljδ(0,0) = 0 , suppLjY ⊂ R+ × RD,

whence, by the uniqueness of the solution to the Cauchy problem for the wave
equation,

LjY = 0 , j = 1, . . . , D .

Lemma 3.4.3 Let D ≥ 2. For each ξ ∈ RD, there exists bk
ij ≡ bk

ij(t, x, ξ) in
C∞ on RD+1 \ 0 and homogeneous of degree −k in (t, x) such that

(i) the homogeneous distribution b2ijY of degree −D − 1 on RD+1 \ 0 has
null residue at the origin, and
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(ii) there exists an extension of b2ijY as a homogeneous distribution of
degree −D − 1 on RD+1 \ 0, still denoted b2ijY , that satisfies

∂ijY = T 2(b0ijY ) + T (b1ijY ) + b2ijY , i, j = 0, . . . , D .

Here T denotes the advection operator T = ∂t + v(ξ) · ∇x.

Remark. The null residue condition reads∫
S2

b2ij(1, y)dσ(y) = 0 if D = 3 ,∫
|y|≤1

b2ij(1, y)
dy√

1−|y|2 = 0 if D = 2 .

In the first formula, dσ designates the surface element on the unit sphere.

Proof (Sketch of the proof). Observe that
D∑

j=1

vj(ξ)Lj = v(ξ) · x∂t + tv(ξ) · ∇x = (v(ξ) · x− t)∂t + tT .

Since LjY = 0 for j = 1, . . . , D, one has

(t− v(ξ) · x)∂tY = tTY .

Furthermore, since supp ∂tY ∩ {t− v(ξ) · x = 0} = {(0, 0)},
∂tY − a0

0TY = 0 .

Indeed, Y is a homogeneous distribution of degree 1 − D on RD+1, so that
∂tY − a0

0TY is a homogeneous distribution of degree −D on RD+1 \ 0. It has
therefore a unique extension to RD+1 as a distribution of degree −D; since
this distribution is supported at the origin, it is a linear combination of δ(0,0)

and its derivatives. Because δ(0,0) is homogeneous of degree −D− 1 on RD+1,
this linear combination must be 0. Hence

∂tY = T (a0
0Y )− (Ta0

0)Y .

One finds analogous formulas for ∂xj
Y with j = 1, . . . , D by combining the

formula above with the fact that LjY = 0 for j = 1, . . . , D.
Statement (ii) is obtained by iterating the argument above once in each

variable.
As for statement (i), observe that bk

ijY is a homogeneous distribution of
degree 1 − k −D on RD+1 \ 0. Hence, whenever k = 0, 1, bk

ijY has a unique
extension as a homogeneous distribution of degree 1− k −D on RD+1. Since

β2
ijY = ∂ijY − T 2(b0ijY )− T (b1ijY )

and the right-hand side is a homogeneous dsitribution on RD+1, the left-hand
side is a homogeneous distribution of degree −1−D on RD+1 \ 0 that has a
homogeneous extension to RD+1. Hence, it has null residue at (0, 0): see for
instance §3 in chapter 3 of [6].
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Application to the Glassey–Strauss theorem

We use the division lemma above to estimate the first-order derivatives of the
electromagnetic field. This amounts to estimating the second-order derivatives
of the momenum averages of the distribution of Liénard–Wiechert potentials:

∂ij

∫
m(ξ)u(t, x, ξ)dξ =

2∑
k=0

∫
m(ξ)

(
bk−l
ij Y � T l(1t≥0f)(t, x, ξ)

)
dξ.

Here, m denotes any C∞ function with compact support that coincides with
either 1 or each component of v(ξ) on the ξ-support of f .

The idea is to use the Vlasov equation to compute T l(1t≥0f) and integrate
by parts to bring the ξ-derivatives to bear on bk−l

ij and m.
In fact, the worst term is for l = 0:∫

m(ξ)
(
b2ijY � (1t≥0f)(t, x, ξ)

)
dξ .

By using the null residue condition, we write this term in the form∫
m(ξ)

∫ t

ε

∫
S2

b2ij(1, ω, ξ)f(t− s, x− sω, ξ)
dσ(ω)
4πs

dsdξ

+
∫

m(ξ)
∫ ε

0

∫
S2

b2ij(1, ω, ξ)
f(t− s, x− sω, ξ)−f(t, x, ω)

4πs
dσ(ω)dsdξ.

If the size Rf (t) of the ξ-support of f is bounded on [0, T ), i.e., if

lim t→T−Rf (t) < +∞,

this term is bounded by

C(1 + ln+(t‖∇xf‖L∞)).

Hence, the Lipschitz semi-norm N(t) = ‖∇x,ξf(t, ·, ·)‖L∞ satisfies a logarith-
mic Gronwall inequality of the form

N(t) ≤ N(0) +
∫ t

0

(1 + ln+ N(s))N(s)ds , t ∈ [0, T ) .

Therefore, N is uniformly bounded on [0, T ], which implies in turn that the
fields (E,B) ∈ L∞([0, T ];W 1,∞(R3)).
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