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The Tartar-DiPerna compensated compactness method, used initially to construct global
weak solutions of hyperbolic systems of conservation laws for large data, can be adapted
in order to provide some regularity estimates on these solutions. This note treats two
examples: (a) the case of scalar conservation laws with convex flux, and (b) the Euler
system for a polytropic, compressible fluid, in space dimension one.
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1. Motivation

Hyperbolic PDEs such as the wave equation are known to propagate singulari-

ties, unlike parabolic (or elliptic) PDEs, whose solutions are more regular than the

corresponding data. Besides, in the context of hyperbolic PDEs, nonlinearities are

responsible for the build-up of finite time singularities in the form of shock waves.

Therefore, the notion of a “nonlinear regularizing effect” for hyperbolic PDEs may

seem somewhat of a paradox.

Yet it has been known since the work of P. Lax [8, 9] that the evolution semigroup

defined by the entropy solution u ≡ u(t, x) ∈ R of a scalar conservation law

∂tu+ ∂xf(u) = 0 , (t, x) ∈ R
∗

+ × R

with strictly convex flux f is compact in L1(R) for each t > 0. On the other

hand, if the flux f is linear, solving the equation above explicitly by the method

of characteristics shows that whichever singularities exist in the initial data u
∣

∣

t=0

are propagated and persist in the solution u(t, x) for all t > 0. This simple example

suggests that some type of nonlinearities may indeed induce limited regularization

effects in hyperbolic PDEs. The purpose of the present note is to investigate that

question on two examples: (a) the case of a scalar conservation law with convex flux

as above, and (b) the case of the Euler system for the dynamics of a polytropic,

compressible fluid.
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2. Regularizing effect for scalar conservation laws

Consider the Cauchy problem
{

∂tu+ ∂xf(u) = 0 , x ∈ R , t > 0 ,

u
∣

∣

t=0
= uin ,

(1)

with unknown u ≡ u(t, x) ∈ R and flux f ∈ C2(R;R), and assume without loss of

generality that f(0) = f ′(0) = 0.

One of the methods for constructing entropy solutions of Eq. (1) is based on

the compensated compactness method proposed by Tartar [13]. A striking feature

in Tartar’s argument is that he obtains the compactness of some approximating

sequence converging to the entropy solution of (1) without using any variant of the

Ascoli-Arzelà theorema based on Sobolev (or Besov) regularity estimates.

Our main purpose in the present note is to present a method for obtaining

nonlinear regularization effects in the context of hyperbolic PDEs that is inspired

from Tartar’s compensated compactness argument, and follows it very closely.

Theorem 2.1. Let a,R > 0 and assume that f ′′(v) ≥ a for all v ∈ R, while the

initial data uin ∈ L∞(R) satisfies uin(x) = 0 for a.e. |x| ≥ R. Then, the entropy

solution u belongs to the Besov space B
1/4,4
∞,loc(R

∗
+ × R); in other words

∫ ∞

0

∫

R

χ(t, x)2|u(t, x) − u(t+ s, x+ y)|4dxdt = O(|s| + |y|)

as |s| + |y| → 0, for each compactly supported χ ∈ C1(R∗
+ × R).

Before giving the proof of this estimate, let us compare it with earlier results in

the literature.

As is well known, the optimal regularity result for Eq. (1) was obtained by

Lax [9], who proved that the entropy solution u ∈ BVloc(R
∗
+×R), as a consequence

of the Lax-Oleinik one-sided inequality

∂xu(t, x) ≤
1

at
, (t, x) ∈ R

∗

+ × R .

Unfortunately, this inequality is specific to the case of scalar conservation laws in

space dimension 1 with nondegenerate convex flux.

More recently, Lions-Perthame-Tadmor [10] and Jabin-Perthame [7] obtained a

Sobolev regularity estimate, by using a “kinetic formulation” of the scalar conserva-

tion law (1), together with some appropriate “velocity averaging” result. Specifically,

they proved that u ∈ W s,p
loc (R∗

+ × R) for all s < 1
3 and 1 ≤ p < 3

2 .

On the other hand, a very interesting contribution of DeLellis and Westdicken-

berg [2] shows that one cannot obtain better regularity in the scale of Besov spaces

than B
1/r,r
∞ for r ≥ 3 or B

1/3,r
r for 1 ≤ r < 3, by using only that the entropy

production is a bounded Radon measure, without using that it is a positive Radon

measure.

aThe same is true of the argument used by Lax in Ref. [8].
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Our result in Theorem 2.1, like the one of Lions-Perthame-Tadmor or of Jabin-

Perthame, does not use the positivity of the entropy production, and therefore

belongs to the DeLellis-Westdickenberg optimality class.

Sketch of the proof. The proof is split in two steps. We henceforth denote

Ds,yφ(t, x) := φ(t + s, x+ y) − φ(t, x).

Step 1: Let u be the entropy solution of Eq. (1), and consider the two vector fields

B := (u, f(u)) and E := (f(u), g(u)), where g′(v) = f ′(v)2 for each v ∈ R. That u

is the entropy solution of Eq. (1) entails the two following equalities:

divt,xB = 0 , and divt,xE = −µ ,

where µ is a bounded Radon measure on R
∗
+ × R. A variant of the Murat-Tartar

div-curl lemma [12] leads to the inequality
∫ ∞

0

∫

R

χ2
Ds,yE · JDs,yBdtdx ≤ C(|s| + |y|) ,

where J denotes the rotation of an angle π/2, the function χ is C1 with compact

support in R
∗
+ × R and C = C(‖u‖∞, ‖µ‖1) > 0. (The notations ‖u‖L∞ and ‖µ‖1

designate respectively the sup norm of u and the total mass of µ.)

Step 2: The integrand in the l.h.s. of the inequality above is of the form

(w − v)(g(w) − g(v)) − (f(w) − f(v))2

=

∫ w

v

dλ

∫ w

v

f ′(λ)2dλ−

(
∫ w

v

f ′(λ)dλ

)2

≥ 0

by the Cauchy-Schwarz inequality, as observed by Tartar [13]. In fact, the r.h.s. of

the identity above can be written as the double integral:

(w − v)(g(w) − g(v)) − (f(w) − f(v))2 =

∫ w

v

∫ w

v

(f ′(ζ) − f ′(ξ))f ′(ζ)dξdζ

= 1
2

∫ w

v

∫ w

v

(f ′(ζ) − f ′(ξ))2dξdζ ≥ 1
2

∫ w

v

∫ w

v

a2(ζ − ξ)2dξdζ = a2

12 |w − v|4 ,

and substituting this lower bound in the inequality obtained at the end of Step 1

above entails the claimed B
1/4,4
∞,loc estimate.

Remark 2.1. The same method also works for degenerate convex fluxes, for which

f ′′(v) ≥ 0 for all v ∈ R, but may have finitely many zeros v1, . . . , vn of finite order

— meaning that f ′′(v) = O((v− vk)2βk) as v → vk for some positive integer βk. See

Ref. [5].

Remark 2.2. The proof sketched above uses only the entropy condition with f as

the entropy density. By using a family of entropies (e.g. all Kruzhkov’s entropies)

one can improve the argument above and obtain a Besov regularity estimate in

B
1/3,3
∞ , known to be optimal according to DeLellis-Westdickenberg [2]. See Ref. [6].
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3. The Euler system for polytropic compressible fluids

The Euler system governs the evolution of the density ρ ≡ ρ(t, x) ≥ 0 and velocity

field u ≡ u(t, x) ∈ R of a polytropic compressible fluid:
{

∂tρ+ ∂x(ρu) = 0 , ρ
∣

∣

t=0
= ρin ,

∂t(ρu) + ∂x

(

ρu2 + κργ
)

= 0 , u
∣

∣

t=0
= uin .

(2)

We assume that this Cauchy problem is posed for all x ∈ R and t > 0. The

pressure is p(ρ) = κργ , and, by a convenient choice of units, one can assume that

κ = (γ − 1)2/4γ. This system is known to be hyperbolic with characteristic speeds

λ± = u± θρθ , where θ =
γ − 1

2
.

Besides, along C1 solutions (ρ, u), Euler’s system assumes the diagonal form
{

∂tw+ + λ+∂xw+ = 0 ,

∂tw− + λ−∂xw− = 0 ,

where w± ≡ w±(ρ, u) are the Riemann invariants

w+ := u+ ρθ > u− ρθ =: w− .

In 1983, DiPerna [3, 4] managed to extend Tartar’s method to a certain class of

nonlinear hyperbolic systems with two equations in space dimension one including

Euler’s system (2). He proved that, given ρ̄ > 0 and assuming that ρin − ρ̄ and

u are of class C2 and compactly supported on R, and that ρin > 0 on R, there

exists a least one entropy solution of (2) defined for all t ≥ 0 and x ∈ R. DiPerna’s

original proof could handle only exponents of the form γ = 1 + 1/(2n+ 1) for each

n ∈ N. The case of an arbitrary γ ∈ (1, 3] was subsequently settled by Chen [1] and

Lions-Perthame-Souganidis [11].

Definition 3.1. Given an open set O ⊂ R
∗
+ × R, an entropy solution (ρ, ρu) of

Eq. (2) is called admissible on O if and only if there exist constants C > 0, u∗ > 0

and 0 < ρ∗ < ρ∗ such that ρ∗ ≤ ρ ≤ ρ∗ and |u| ≤ u∗ on O, and, for each smooth

entropy-entropy flux pair (φ, ψ) for the system Eq. (2),
∫∫

O

|∂tφ(ρ, ρu) + ∂xψ(ρ, ρu)| ≤ C‖D2φ‖L∞([ρ∗,ρ∗]×[−ρ∗u∗,ρ∗u∗]) .

Any DiPerna solution whose artificial viscous approximation with viscosity ǫ > 0

satisfies ρǫ ≥ ρ∗ uniformly on O as ǫ → 0 is admissible on O. Yet, the global

existence of admissible solutions for initial data of arbitrary size remains an open

problem at the time of this writing.

Theorem 3.1. Assume that γ ∈ (1, 3) and let O ⊂ R
∗
+×R be open. Any admissible

solution of Euler’s system (2) on O satisfies
∫∫

O

|(ρ, u)(t+ s, x+ y) − (ρ, u)(t, x)|2dxdt = O(ln(|s| + |y|)−2)

as |s| + |y| → 0.



November 16, 2009 10:4 WSPC - Proceedings Trim Size: 9.75in x 6.5in ICMP09proc

434

The only regularity result for large data known prior to this one is due to Lions-

Perthame-Tadmor [10] and Jabin-Perthame [7], for the only case γ = 3. Using a

kinetic formulation of Eqs. (2) and some appropriate velocity averaging argument,

they proved that ρ and ρu ∈ W s,p
loc (R+ × R) for all s < 1

4 and 1 ≤ p ≤ 8
5 . Unfor-

tunately, the structure of the compressible Euler system (2) prevents any obvious

extension of their method to the case γ ∈ (1, 3). While we doubt that the regularity

obtained in Theorem 3.1 is optimal, some depletion of nonlinear interactions may

occur when γ = 3, since the Euler system in Riemann invariants coordinates is then

decoupled into two independent Hopf (i.e. inviscid Burgers) equations. This could

account for the better regularity obtained when γ = 3.

The proof of Theorem 3.1 (see Ref. [5]) is again inspired from the compensated

compactness method in Ref. [3] for hyperbolic systems. It uses two special features of

Eq. (2). First, the characteristic speeds are linear in terms of the Riemann invariants:

(λ+, λ−) = (w+, w−)A, where the matrix A is symmetric. Moreover A is definite

positive for γ > 1, and, whenever γ ∈ (1, 3), satisfies the stronger coercivity property

(sinhX, sinhY )A(X,Y )T ≥ γ−1
2 (X sinhX + Y sinhY ) , X, Y ∈ R .

The second property of the Euler system (2) used in the proof is that the vector

field (w+, w−) 7→ (∂w−
λ+/(λ+ − λ−), ∂w+

λ−/(λ− − λ+)) is a gradient.

4. Final remarks

Thus the Tartar-DiPerna compensated compactness method can be used to establish

new regularizing effects in the context of hyperbolic systems of conservation laws.

Open questions include (a) the case of scalar conservation laws in space dimension

larger than one, (b) the case of more general pressure laws in the Euler system, and

(c) the case of solutions of the Euler system with vanishing density.
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