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Hydrodynamic Limits

François Golse

Abstract. This article reviews recent progress on the derivation of the fundamen-
tal PDE models in fluid mechanics from the Boltzmann equation.

1. Introduction

The subject of hydrodynamic limits goes back to the work of the founders of
the kinetic theory of gases, J. Clerk Maxwell and L. Boltzmann. At a time
when the existence of atoms was controversial, kinetic theory could explain
how to estimate the size of a gas molecule from macroscopic data such as the
viscosity of the gas. Later, D. Hilbert formulated the question of hydrodynamic
limits as a mathematical problem, giving an example in his 6th problem on the
axiomatization of physics [25]. In Hilbert’s own words “[. . . ] Boltzmann’s work
on the principles of mechanics suggests the problem of developing mathemat-
ically the limiting processes [. . . ] which lead from the atomistic view to the
laws of motion of continua”. Hilbert himself attacked the problem in [26], as
an application of his own work on integral equations.

We should mention that there are several interpretations of what is meant
by “the atomistic view” in Hilbert’s problem. One can either choose molecular
dynamics (i.e., the N -body problem of classical mechanics with elastic colli-
sions, assuming all bodies to be spherical and of equal mass); another possi-
bility is to start from the Boltzmann equation of the kinetic theory of gases
(which is what Hilbert himself did in [26]). However, one should be aware that
the Boltzmann equation is not itself a “first principle” of physics, but is a
low density limit of molecular dynamics – which can be considered as a first
principle within the theory of classical, nonrelativistic mechanics.

The problem of hydrodynamic limits is to obtain rigorous derivations of
macroscopic models such as the fundamental PDEs of fluid mechanics from
a microscopic description of matter, either molecular dynamics or the kinetic
theory of gases. The situation can be summarized by the following diagram:

MOLECULAR DYNAMICS −→ KINETIC THEORY

↘


�

HYDRODYNAMICS
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First, we recall that a rigorous derivation of the Boltzmann equation from
molecular dynamics on short time intervals (i.e., the horizontal arrow in the
diagram above) was obtained by O.E. Lanford in [30]. Hence, although not a
first principle itself, the Boltzmann equation can be rigorously derived from first
principles and therefore has more physical legitimacy than phenomenological
models (such as lattice gases).

On the other hand, “formal” derivations of the Euler system for com-
pressible fluids from molecular dynamics were discussed by C.B. Morrey in
[37]. Later on, S.R.S. Varadhan and his collaborators considered stochastic
variants of molecular gas dynamics and obtained rigorous derivations of macro-
scopic PDE models from these variants: see for instance [49] and the references
therein, notably [39].

In the present work, we shall mostly restrict our attention to derivations
of the fundamental PDEs of fluid mechanics from the Boltzmann equation.
Perhaps the most complete result in this direction is the derivation of the
Navier-Stokes equations for incompressible flows from the Boltzmann equation.
Indeed, unlike in the case of other hydrodynamic models, this derivation is valid
for all physically admissible data, without any restriction on the regularity or
the size of the solutions considered. We conclude this presentation with a quick
survey of other recent results and open problems on hydrodynamic limits of
kinetic models.

2. The Navier-Stokes equations

The Navier-Stokes equations govern incompressible flows of a viscous fluid. In
the sequel, we only consider the case of a fluid with constant density that can
be set equal to 1 without loss of generality. The unknown is the velocity field
u ≡ u(t, x) ∈ R3, where t ∈ R+ and x ∈ R3 are the time and space variables.

In the absence of external forces (such as electromagnetic forces, grav-
ity. . . ) the velocity field u satisfies

divx u = 0 ,

∂tu + (u · ∇x)u + ∇xp = ν∆xu ,
(2.1)

where ν > 0 is a constant called the “kinematic viscosity”. Here, the notation
(u · ∇x)u designates the parallel derivative of u along itself, whose coordinates
are given by

((u · ∇x)u)i :=
3∑

j=1

uj ∂ui

∂xj
.

In physical terms, the first equality in (2.1) is the incompressibility condition,
while the second equality is the motion equation – i.e., Newton’s second law of
motion applied to an infinitesimal volume of the fluid.
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Observe that, for any C1 divergence-free vector field v on R3

((v · ∇x)v)i =
3∑

j=1

vj ∂vi

∂xj
=

3∑

j=1

∂(vivj)
∂xj

=: (divx(v ⊗ v))i
.

The expression divx(v ⊗ v) defines a (vector-valued) distribution on R3 if v ∈
L2(R3), and it coincides with (v · ∇x)v if v is of class C1 on R3. This remark
justifies the following notion of weak solution of the Navier-Stokes equations.

Definition 2.1. A weak solution of the Navier-Stokes equations is a vector-field1

u ∈ C(R+; w−L2(R3;R3)) which satisfies
divx u = 0 ,

∂tu + divx(u ⊗ u) − ν∆xu = −∇xp ,
(2.2)

in the sense of distributions on R∗
+ ×R3, for some p ∈ D′(R∗

+ ×R3).

In fact, the term −∇xp is the Lagrange multiplier associated to the con-
straint divx u = 0. In other words, the motion equation in (2.2) should be
viewed as

∂tu + ∇xu − ν∆xu = 0 modulo gradient fields.
After these preliminaries, we can state Leray’s existence result of a global weak
solution for the incompressible Navier-Stokes equations.

Theorem 2.2 (J. Leray [31]). For each uin ∈ L2(R3;R3) such that divx uin = 0,
there exists a weak solution of the Navier-Stokes equations satisfying the initial
data u

∣
∣
t=0

= uin. Moreover, this solution verifies the “energy inequality”

1
2

∫

R3
|u(t, x)|2dx + ν

∫ t

0

∫

R3
|∇xu(s, x)|2dxds ≤ 1

2

∫

R3
|uin(x)|2dx (2.3)

for each t > 0.

Notice that the scalar function p ≡ p(t, x) (the pressure) is not an un-
known in the Navier-Stokes equations, since it is defined (modulo a constant)
in terms of u by the relation

−∆xp = divx((u · ∇x)u) .

Whether Leray solutions of the Navier-Stokes equations are uniquely de-
termined by their initial data is still unknown. Likewise, it is still unknown
whether any Leray solution of the Navier-Stokes equations with smooth initial
data remains smooth for all subsequent times. However, if the Cauchy problem
(2.1) has a smooth solution u with ∇xu ∈ L∞(R+ × R3), any Leray solution
of (2.1) must coincide with u.

Observe that, for smooth solutions of the Navier-Stokes equations de-
caying sufficiently fast as |x| → +∞, the energy inequality (2.3) is in fact an
equality, as can be seen by taking the scalar product of both sides of the motion
equation in (2.1) with u and integrating over [0, t] ×R3.

1The notation w−Lp designates the Lp space endowed with its weak topology.
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3. The Boltzmann equation

In kinetic theory, the dynamics of a gas of (like) hard spheres is described
by the Boltzmann equation. It governs the evolution of the number density
F ≡ F (t, x, v) ≥ 0, the 1-particle phase-space density of the gas molecules at
time t. In other words, F (t, x, v) is the density at time t ≥ 0 (with respect to
the Lebesgue measure dxdv in R3 × R3) of the gas molecules located at the
position x ∈ R3 that have velocity v ∈ R3.

In the absence of external forces (such as electromagnetic forces, grav-
ity. . . ) the Boltzmann equation for F is

∂tF + v · ∇xF = C(F ) (3.1)

where C(F ) is the Boltzmann collision integral.
Collisions other than binary are neglected in the Boltzmann equation,

and these collisions are viewed as purely instantaneous and local. Indeed, in
the kinetic theory of gases, the molecular radius is neglected everywhere in the
description of the collision process except in the expression of the scattering
cross-section. An important consequence of these physical assumptions is that
C is a bilinear operator acting only on the v-variable in F .

For a gas of hard spheres, the collision integral is given by the expression2

C(F )(v) =
∫∫

R3×S2
(F (v′)F (v′∗) − F (v)F (v∗))|v − v∗|dv∗dσ , (3.2)

where the velocities v′ and v′∗ are defined in terms of v, v∗ ∈ R3 and σ ∈ S2 by

v′ ≡ v′(v, v∗, σ) = 1
2 (v + v∗) + 1

2 |v − v∗|σ ,

v′∗ ≡ v′∗(v, v∗, σ) = 1
2 (v + v∗) − 1

2 |v − v∗|σ .
(3.3)

Perhaps the most important result on the structure of the Boltzmann
collision integral is
Boltzmann’s H Theorem. Assume that F ≡ F (v) > 0 a.e. is rapidly decaying
and such that ln F has polynomial growth as |v| → +∞. Then

R(F ) = −
∫

R3
C(F ) ln Fdv ≥ 0 .

Moreover, the following conditions are equivalent:

R(F ) = 0 ⇔ C(F ) = 0 a.e. ⇔ F is a Maxwellian,

i.e., there exists ρ, θ > 0 and u ∈ R3 such that

F (v) = M(ρ,u,θ)(v) :=
ρ

(2πθ)3/2
e−

|v−u|2
2θ a.e. in v ∈ R3 .

From the physical viewpoint, the nonnegative quantity R(F ) represents
the entropy production rate.

2In this formula, the molecular radius is chosen as the unit of length.
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All hydrodynamic limits of the kinetic theory of gases considered in the
present work bear on solutions of the Boltzmann equation that are fluctua-
tions of some uniform Maxwellian state. We henceforth choose this uniform
equilibrium state to be

M = M(1,0,1) (the centered, reduced Gaussian distribution)

without loss of generality. The size of the number density fluctuations around
the equilibrium state M will be measured in terms of the relative entropy of
the number density relatively to M , whose definition is recalled below.

Definition 3.1. Given two measurable functions f ≥ 0 and g > 0 a.e. on R3×R3,
the relative entropy of f relative to g is

H(f |g) =
∫∫

R3×R3

[

f ln
(

f

g

)

− f + g

]

dxdv ≥ 0 .

(Notice that the integrand is a nonnegative measurable function, so that the
integral is a well-defined element of [0, +∞].)

In [15], R. DiPerna and P.-L. Lions defined the following notion of a weak
solution of the Boltzmann equation.

Definition 3.2. A renormalized solution of the Boltzmann equation (3.1) is a
nonnegative function F ∈ C(R+; L1

loc(R
3 × R3)) such that

C(F )
1 + F

∈ L1
loc(R+ × R3 × R3) ,

and that satisfies the equality

(∂t + v · ∇x) ln(1 + F ) =
C(F )
1 + F

in the sense of distributions on R∗
+ ×R3 ×R3.

The motivation for this definition is that the collision integral acts as the
convolution of F with itself in the v variable, and as a pointwise product in the
t and x variables. Since the natural estimates for solutions of the Boltzmann
equation are bounds on

∫

|x|≤r

∫

R3
(1 + |v|2)F (t, x, v)dxdv ,

the collision integral C(F ) may not be defined as a distribution on R∗
+×R3×R3

for such F s. But the expression C(F )
1+F is homogeneous of degree one for F large,

and happens to be well defined for any number density F that satisfies the
natural bounds for solutions of the Boltzmann equation.

Theorem 3.3 (P.-L. Lions [33]). For each F in ≥ 0 a.e. such that H(F in|M ) <
+∞, there exists a renormalized solution F of the Boltzmann equation (3.1)
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with initial data F
∣
∣
t=0

= F in. This renormalized solution satisfies, for each
t > 0, the “entropy inequality”

H(F (t)|M ) +
∫ t

0

∫

R3
R(F )(s, x)dxds ≤ H(F in|M ) . (3.4)

If F is a smooth solution of the Boltzmann equation that satisfies the
assumptions of Boltzmann’s H Theorem for all t > 0 and converges to M as
|x| → +∞ rapidly enough, the entropy inequality (3.4) is in fact an equality.
This fact alone suggests that there is a deep analogy between Leray solutions of
the Navier-Stokes equations in 3 space dimensions and renormalized solutions
of the Boltzmann equation. In fact, as we shall see below, Leray’s theory can
be seen as asymptotic to the DiPerna-Lions theory of renormalized solutions
in some appropriate hydrodynamic limit.

4. From Boltzmann to Navier-Stokes

The incompressible Navier-Stokes equations can be formally derived from the
Boltzmann equation as follows. According to Hilbert’s prescription [26] for the
hydrodynamic limit of the Boltzmann equation leading to the Euler system
for compressible fluids, the solution of the Boltzmann equation is sought as a
formal series

F (t, x, v) = M(1,εu(ε2t,εx),1)(v) +
∑

n≥2

εnFn(ε2t, εx, v)

where u solves the incompressible Navier-Stokes equations (2.1) and Fn depends
on t and x through ∇k

t,xu, k = 0, . . . , n.
In other words, the incompressible Navier-Stokes equations are derived

from the Boltzmann equation in a regime of small, slowly varying fluctuations
of number density about a uniform Maxwellian state, which, in the present
case, is chosen to be the centered reduced Gaussian distribution M = M(1,0,1).

This formal argument was discussed by Y. Sone in [47] for the steady
problem, and by C. Bardos, F. Golse and C.D. Levermore [3] for the evolution
problem (this latter reference also treated the case of an external conservative
force leading to a coupling with a drift-diffusion equation for the temperature
field).

Later, a rigorous derivation based on a truncated variant of Hilbert’s
formal solution above, following a method originally used by R. Caflisch for
the compressible Euler limit of the Boltzmann equation (see [11]) was sketched
by A. DeMasi, R. Esposito and J. Lebowitz in [13]. However, this derivation has
the same shortcomings as the original Caflisch method: first, it gives solutions of
the Boltzmann equation that fail to be everywhere nonnegative3 and therefore
lose physical meaning. Also, this derivation holds only on the time interval

3R. Esposito informed the author that this could probably be remedied by supplementing
Hilbert’s formal solution with initial layer terms, as done by Lachowicz [28] in the context of
the compressible Euler limit; however, there is no written account of this so far.
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on which the limiting solution of the Navier-Stokes equations is smooth. As
mentioned above, based on current knowledge of the Navier-Stokes equations,
we do not know whether this method leads to a derivation of the Navier-Stokes
equations that is valid globally in time.

However, if one gives up the idea of working with Hilbert’s formal solution
and uses instead an energy method based on intrinsic quantities pertaining to
the theory of Boltzmann’s equation – essentially the relative entropy and the
entropy production – one arrives at the following global result.

Theorem 4.1. Let uin ∈ L2(R3;R3) be such that divx uin = 0. For each ε > 0,
let Fε ≡ Fε(t, x, v) be a renormalized solution of the Boltzmann equation (3.1)
with initial data

Fε(0, x, v) = M(1,εuin(εx),1)(v) .

Then the family of vector fields uε ≡ uε(t, x) ∈ R3 defined by

uε(t, x) =
1
ε

∫

R3
vFε

(
t

ε2
,
x

ε
, v

)

dv

is weakly relatively compact in L1
loc(R+ × R3;R3) and each of its limit points

as ε → 0 is a Leray solution of the incompressible Navier-Stokes equations (2.1)
with initial data uin and viscosity

ν = 1
5D∗(v ⊗ v − 1

3 |v|2I) , (4.1)

where D∗ is the Legendre dual of the Dirichlet form of the collision integral C
linearized at M .

The Dirichlet form of the collision integral linearized at M is easily found
to be

D(Φ) = 1
8

∫∫∫

R3×R3×S2
|Φ + Φ∗ − Φ′ − Φ′

∗|2|v − v∗|MM∗dvdv∗dσ .

(Here Φ∗, Φ′ and Φ′
∗ designate resp. Φ(v∗), Φ(v′) and Φ(v′∗), where v′ and v′∗

are defined in (3.3).) The formula above holds for Φ ∈ Cc(R3
v; M3(R)), with

| · | denoting the Hilbert-Schmidt norm on matrices:

|A|2 = trace(AT A) , A ∈ M3(R) .

It can be extended to the form domain of the linearized collision integral, which
is L2((1 + |v|)Mdv).

Remark. The definition of uε consists in intertwining the evolution of the Boltz-
mann equation with the invariance group of the Navier-Stokes equations – we
recall that, if u ≡ u(t, x) is a solution of the Navier-Stokes equations, then
Tλu :≡ λu(λ2t, λx) is also a solution of the Navier-Stokes equations for each
λ > 0.

The theorem above was proved by F. Golse and L. Saint-Raymond [22] in
the case of Maxwell molecules; the extension to all hard potentials with Grad’s
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cutoff assumption (including the hard sphere case described in the present
paper) can be found in [23].

A general strategy for proving global hydrodynamic limits leading to in-
compressible models was proposed by C. Bardos, F. Golse and C.D. Levermore
[5]. This method was based on a priori bounds deduced from the entropy in-
equality together with some appropriate compactness results. In [5], the incom-
pressible Navier-Stokes limit was obtained under two additional assumptions
which, at the time, were left unverified. In addition, only the stationary case
was considered in [5]: indeed, high frequency oscillations in time due to the
presence of acoustic waves may destroy the compactness of number density
fluctuations as ε → 0.

Subsequently, several intermediate results were obtained on this limit.
In [34], P.-L. Lions and N. Masmoudi succeeded in controlling the acoustic
waves, and proved a result analogous to Theorem 4.1 under the same unverified
assumptions as in [5]. In [18], F. Golse and C.D. Levermore went further in the
direction of a complete proof by observing that the local conservation laws of
momentum and energy could be recovered in the limit ε → 0 instead of being
postulated on the renormalized solutions of the Boltzmann equation for each
ε > 0, as was done in [5]. At the same time, L. Saint-Raymond was able to
prove the Navier-Stokes limit for the BGK model of the Boltzman equation
[43],[44]. These contributions contained one important idea used in the proof
of Theorem 4.1.

Finally, we should also mention that C. Bardos and S. Ukai [7] obtained a
complete derivation of the Navier-Stokes equations for the Boltzmann equation
in the case of small initial data for the Navier-Stokes equations – at variance
with the strategy outlined in [5], the proof by Bardos and Ukai rests on the
spectral analysis of the linearized equation, instead of energy bounds and com-
pactness estimates. Unlike Theorem 4.1, this method cannot be applied to
initial data of arbitrary size.

5. Sketch of the convergence proof

First, we recast the Boltzmann equation (3.1) in the hydrodynamic time and
space variables. In other words, consider the relative number density fluctuation
gε defined by

gε(t, x, v) =
Fε

(
t
ε2 , x

ε , v
) − M (v)

εM (v)
, where M (v) = 1

(2π)3/2 e−
|v|2
2 . (5.1)

In terms of gε, the Boltzmann equation (3.1) becomes

ε∂tgε + v · ∇xgε +
1
ε
Lgε = Q(gε, gε) , (5.2)

where the linearized collision operator L and the quadratic operator Q are
defined in terms of the collision integral C by the formulas

Lg = −M−1DC[M ](Mg) , Q(g, g) = 1
2M−1D2C[M ](Mg, Mg) . (5.3)
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Notice that, since Fε is a renormalized solution of (3.1), its fluctuation gε does
not satisfy (5.2), but a renormalized form thereof. However, for the sake of
simplicity, we proceed as if gε did satisfy (5.2). In other words, this amounts to
assuming that, for each ε > 0, the number density Fε is a classical solution of
the Boltzmann equation, without uniform regularity bounds in the vanishing ε
limit. In some sense, this lack of uniformity is the essential difficulty to overcome
in this type of problem.

We recall the following important property of the linearized collision op-
erator.

Lemma 5.1 (Hilbert [26]). The operator L is a nonnegative, Fredholm, self-
adjoint unbounded operator on L2(R3; Mdv) with

kerL = span{1, v1, v2, v3, |v|2} .

5.1. Step 1: Asymptotic fluctuations. First, we seek the asymptotic form of the
number density fluctuations gε in the vanishing ε limit.

Multiplying the Boltzmann equation (5.2) by ε and letting ε → 0 suggests
that

gε → g in the sense of distributions on R+ ×R3 ×R3 with Lg = 0 .

By Hilbert’s lemma, g is an infinitesimal Maxwellian, i.e., is of the form

g(t, x, v) = ρ(t, x) + u(t, x) · v + 1
2θ(t, x)(|v|2 − 3) . (5.4)

Notice that g is parametrized by its own moments, since

ρ = 〈g〉 , u = 〈vg〉 , and θ = 〈(1
3 |v|2 − 1)g〉 ,

where the bracket notation designates the Gaussian integral:

〈φ〉 =
∫

R3
φ(v)M (v)dv .

5.2. Step 2: Local conservation laws. Next, we use an extremely important
feature of the Boltzmann collision integral.

Proposition 5.2. For each measurable f ≡ f(v) rapidly decaying at infinity (in
the v-variable), the collision integral satisfies

∫

R3
C(f)dv =

∫

R3
vkC(f)dv =

∫

R3
|v|2C(f)dv = 0 , k = 1, 2, 3 . (5.5)

Assuming that, for each ε > 0, the solution Fε satisfies the decay assump-
tion in the above proposition, the first relation entails the continuity equation

ε∂t〈gε〉 + divx〈vgε〉 = 0 .

Passing to the limit in the sense of distributions in this continuity equation, we
obtain

divx〈vg〉 = 0 , or equivalently divx u = 0 , (5.6)
which is the incompressibility condition in the Navier-Stokes equations.
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The second relation in (5.5) together with entropy production controls
implies that

∂t〈vgε〉 + divx (〈vgε〉 ⊗ 〈vgε〉) − ν∆x〈vgε〉 → 0 modulo gradients (5.7)

in the sense of distributions on R∗
+×R3. This leads to the Navier-Stokes motion

equation in the limit as ε → 0.
Indeed, denoting A(v) = v ⊗ v − 1

3 |v|2I (the traceless part of v ⊗ v), the
second relation in (5.5) implies that

∂t〈vgε〉 + divx
1
ε
〈A(v)gε〉 + ∇x

1
ε
〈1
3 |v|2gε〉 = 0 . (5.8)

Observe that A⊥ span{1, v1, v2, v3, |v|2}; by Hilbert’s lemma, there exists a
unique symmetric matrix field Â in the domain of L such that

LÂ = A , with Â⊥ kerL .

Since L is self-adjoint on L2(Mdv),

1
ε
〈A(v)gε〉 =

1
ε
〈(LÂ)(v)gε〉

=
〈

Â(v)
1
ε
Lgε

〉

= 〈ÂQ(gε, gε)〉 − 〈Â(ε∂t + v · ∇x)gε〉 .
(5.9)

Let Π be the orthogonal projection on kerL in L2(R3; Mdv): for each φ ∈
L2(R3; Mdv), one has

Πφ = 〈φ〉 + v · 〈vφ〉 + 1
2 (|v|2 − 3)〈(1

3 |v|2 − 1)φ〉 .

Because of step 1, one expects that gε can be replaced by Πgε as ε → 0 in the
right-hand side of (5.9). Hence

1
ε
〈A(v)gε〉 � 〈ÂQ(Πgε, Πgε)〉 − 〈Âv · ∇xΠgε〉

= 〈ÂQ(Πgε, Πgε)〉 − 〈Â ⊗ A〉 : ∇x〈vgε〉
in some sense as ε → 0. The contraction in the last term of the right-hand side
of the equality above bears on the indices of A and ∇x〈vgε〉; in other words,
with the convention of repeated indices,

(〈Â ⊗ A〉 : ∇x〈vgε〉)ij = 〈ÂijAkl〉∂xk
〈vlgε〉 .

The nonlinear term is simplified as follows.

Lemma 5.3. For each φ ∈ kerL, one has

Q(φ, φ) = 1
2
L(φ2) .

Proof. Differentiate twice the relation

C(M(ρ,u,θ)) = 0

with respect to the parameters ρ, u and θ. See [4] for a complete argument. �
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Eventually, we arrive at the formula
1
ε
〈A(v)gε〉 � 1

2 〈ÂL((Πgε)2)〉 − 〈Â ⊗ A〉 : ∇x〈vgε〉
= 1

2 〈A|Πgε|2〉 − 〈Â ⊗ A〉 : ∇x〈vgε〉
= 〈vgε〉 ⊗ 〈vgε〉 − 1

3 |〈vgε〉|2I − νD(〈vgε〉) ,

(5.10)

where ν = 1
10 〈Â : A〉 and, for each vector field ξ ≡ ξ(x) ∈ R3

D(ξ) = ∇xξ + (∇xξ)T − 2
3 (divx ξ)I .

Substituting the formula (5.10) for the momentum flux in (5.8), and taking
into account the incompressibility condition (5.6), we arrive at the asymptotic
momentum conservation law (5.7).

Actually, we do not know whether renormalized solutions of the Boltz-
mann equation (3.1) satisfy the local conservation laws of momentum and en-
ergy that Proposition 5.2 would entail in the case of classical solutions of (3.1)
that are rapidly decaying as |v| → +∞. Instead of following exactly the ar-
gument described above, one must consider an approximate local conservation
law of momentum modulo a defect term that vanishes as ε → 0. This leads to
technical complications much too intricate to be described here.

5.3. Compactness arguments. The DiPerna-Lions entropy inequality gives a
priori bounds on the number density fluctuations that are uniform in ε; it was
proved in [5] that

(1 + |v|2)gε is weakly relatively compact in L1
loc(R+ ×R3

x; L1(R3
v)) .

Hence, modulo extracting subsequences, for each φ ≡ φ(v) = O(|v|2) as |v| →
+∞, one has

φgε → φg weakly in L1
loc(R+ ×R3

x; L1(R3
v)) ,

and this justifies passing to the limit in expressions that are linear in gε.
It remains to pass to the limit in the nonlinear term, i.e., to justify that

div(〈vgε〉 ⊗ 〈vgε〉) → div(〈vg〉 ⊗ 〈vg〉) modulo gradients as ε → 0

and this requires a.e. pointwise, instead of weak convergence.
Perhaps the main compactness argument in the proof is a “velocity aver-

aging” lemma, a typical example of which (in a time-independent situation) is
as follows:

Lemma 5.4 (F. Golse, L. Saint-Raymond [21]). Let fn ≡ f(x, v) be a bounded
sequence in L1(RD

x ; Lp(RD
v )) for some p > 1 such that the sequence v · ∇xfn

is bounded in L1(RD ×RD). Then
• the sequence fn is weakly relatively compact in L1

loc(R
D ×RD); and

• for each φ ∈ Cc(RD), the sequence of moments
∫

RD

fn(x, v)φ(v)dv is strongly relatively compact in L1
loc(R

D) .
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number density fluctuations

Figure 1. Convergence of the number density fluctuations

With the compactness lemma above, the a.e. pointwise convergence of
the number density fluctuations gε (modulo extraction of a subsequence) is
essentially obtained as follows: first, the entropy production bound inferred
from (3.4) implies that gε approaches the manifold of infinitesimal Maxwellians,
i.e., the class of functions of the form (5.4) a.e. pointwise. Since an infinitesimal
Maxwellian f is parametrized by its velocity averages

∫

R3
fMdv ,

∫

R3
vfMdv ,

∫

R3
(1
3 |v|2 − 1)fMdv ,

one concludes by applying Lemma 5.4. The situation is summarized in Figure 1.
The idea of gaining compactness in the strong topology by velocity av-

eraging in the context of transport equations is due to F. Golse, B. Perthame
and R. Sentis, and appeared for the first time in [20]. This first result was an
L2-variant of the lemma above, and was proved with Fourier techniques, by
controlling the small divisors involving the symbol of v ·∇x. Independently, the
regularity of the spherical harmonic coefficients of the solution of the radiative
transfer equation was studied in [1]. Later, a systematic study of the regular-
ity and compactness of velocity averages of solutions of transport equations in
Lp for all p ∈ [1, +∞) appeared in [19]. The L1-variant of velocity averaging
contained in [19] was one of the key arguments in the proof by R.J. DiPerna
and P.-L. Lions of global existence of a renormalized solution of the Boltzmann
equation in [15].

More recently, velocity averaging results have been generalized to cases
where fn is bounded in Lp(RD

x ×RD
v ) and v ·∇xfn = divx gn, with gn relatively

compact in Lp(RD
x ; W−m,p(RD

v )) for some p ∈ (1, +∞): see [16], [41], [14].
These results are proved with various techniques from harmonic analysis: see
Chapter 1 in [8] for a survey as of 2000. This class of results is of considerable
importance in the so-called “kinetic formulation” of hyperbolic conservation
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laws, a topic in some sense analogous to hydrodynamic limits: see [40] for a
detailed introduction to this very active research field.

As for the L1
x(Lp

v) case considered in the lemma above, its proof is based
on a representation of the solution in physical space (instead of Fourier space).
One of the key ideas in the proof of this result is that the group generated by
v · ∇x, defined by the formula

etv·∇xφ(x, v) = φ(x + tv, v)

exchanges x- and v-regularity for t �= 0. This implies dispersion estimates “à
la Strichartz” (see [12], and also Chapter 1 in [8]); the proof of the velocity
averaging lemma above is based on these dispersion estimates together with an
interpolation argument somewhat reminiscent of [32]. A preliminary version of
Lemma 5.4 was used in [43].

6. Other hydrodynamic limits

Hydrodynamic models other than the incompressible Navier-Stokes equations
can also be derived from the Boltzmann equation. Here are some examples.

6.1. The incompressible Euler limit. Let uin ≡ uin(x) ∈ R3 satisfy uin ∈
H3(R3,R3) and divx uin = 0; let u ∈ C([0, T ); H3(R3,R3)) be the maximal
solution of the incompressible Euler equations (see Kato [27])

∂tu + (u · ∇x)u + ∇xp = 0 , divx u = 0 ,

u
∣
∣
t=0

= uin .
(6.1)

These equations can be derived from the Boltzmann equation in the following
manner.

Theorem 6.1 (L. Saint-Raymond [45]). For each ε > 0, let δε = εa with a ∈
(0, 1) and let F in

ε be defined as

F in
ε (x, v) = M(1,δεuin(εx),1)(v) .

Let Fε be a renormalized solution of the Boltzmann equation (3.1) with initial
data Fε

∣
∣
t=0

= F in
ε . Then, in the limit as ε → 0, one has

1
δε

∫

R3
vFε

(
t

εδε
,
x

ε
, v

)

dv → u(t, x)

in L∞([0, T ′]; L1
loc(R

3)) for each T ′ ∈ (0, T ) as ε → 0, where u is the maximal
solution of (6.1) on [0, T )× R3.

The proof of this result differs from that of the Navier-Stokes limit. In
particular, under the scaling assumption leading to the incompressible Euler
equations, the entropy production rate in the Boltzmann equation does not
balance the action of the streaming operator on Fε, which makes it impossible
to apply the velocity averaging compactness lemma as in the Navier-Stokes
limit. Here, the compactness of hydrodynamic fluctuations is obtained as a
consequence of the stability (under perturbations of the initial data) of smooth
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solutions of the incompressible Euler equations. This theorem is proved by a
variant of the relative entropy method (see H.-T. Yau [50] on the hydrodynamic
limit of interacting diffusions on a lattice). Preliminary versions of the theorem
above can be found in [8] and [34]; see also [42] for the BGK model of the
Boltzmann equation.

However, the main feature of the relative entropy method is that the
target equation (in this case the incompressible Euler equations) should have
local smooth solutions.

6.2. The acoustic limit. Here is another example of a hydrodynamic limit of
the Boltzmann equation, leading to a model for compressible fluids. Consider
the acoustic system

∂tρ + divx u = 0 ,

∂tu + ∇x(ρ + θ) = 0 , (ρ, u, θ)
∣
∣
t=0

= (ρin, uin, θin) .

3
2∂tθ + divx u = 0 ,

(6.2)

The initial data satisfies

ρin, θin ∈ L2(R3) , uin ∈ L2(R3;R3) .

Clearly, the system above essentially reduces to a system of uncoupled wave
equations for ρ + θ and the potential in the Helmholtz decomposition4 of u, so
that the Cauchy problem has a unique solution

(ρ, u, θ) ∈ C(R; L2(R3) × L2(R3;R3) × L2(R3)) .

Moreover, the solution map U (t) defined by

U (t)(ρin, uin, θin) = (ρ(t, ·), u(t, ·), θ(t, ·))
is a unitary group on L2(R3) × L2(R3;R3) × L2(R3).

Theorem 6.2 (F. Golse – C.D. Levermore [18]). Let δε > 0 satisfy δε| ln δε|1/2 =
o(
√

ε), and consider, for each ε > 0,

F in
ε (x, v) = M(1+δερin(εx),δεuin(εx),1+δεθin(εx))(v) .

Let Fε be a renormalized solution relative to M of the Boltzmann equation (3.1).
Then, in the limit as ε → 0, one has

1
δε

∫

R3

(

Fε

(
t

ε
,
x

ε
, v

)

− M

)




1
v

(1
3 |v|2 − 1)



 dv →




ρ(t, x)
u(t, x)
θ(t, x)





in L1
loc(R+ ×R3), where (ρ, u, θ) is the solution of the acoustic system (6.2).

4I.e., u = u0 −∇xφ with divx u0 = 0.
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The proof of this result follows the same pattern as that of the incompress-
ible Navier-Stokes limit. Unfortunately, the condition on the size of the number
density fluctuations δε is not optimal. A formal argument similar to steps 1–2 in
the proof of the incompressible Navier-Stokes limit suggests that the same con-
clusion should hold under the assumption that only δε → 0 as ε → 0. Since we
do not know whether renormalized solutions of the Boltzmann equation (3.1)
satisfy the local conservation laws implied by Proposition 5.2 in the case of
classical solutions of (3.1) that are rapidly decaying as |v| → +∞, the analogue
of step 2 in the proof of the incompressible Navier-Stokes limit involves vari-
ants of these local conservation laws of momentum and energy modulo defect
terms that vanish as ε → 0, provided that δε satisfies the stronger assumption
δε| ln δε|1/2 = o(

√
ε).

6.3. Models involving a heat equation. In fact, the result obtained in [22] or in
[23] leads to the Navier-Stokes equations coupled with a drift-diffusion equa-
tion for (fluctuations of) the temperature field, i.e., the Navier-Stokes-Fourier
system

∂tu + divx(u ⊗ u) + ∇xp = ν∆xu , divx u = 0 ,

∂tθ + divx(uθ) = κ∆xθ .
(6.3)

The heat conductivity κ is given by a formula similar to (4.1), i.e.,

κ = 4
15D∗(1

2 (|v|2 − 5)v) .

A rigorous derivation of the linear variant of this system (i.e., the Stokes-Fourier
system) from renormalized solutions of the Boltzmann equation can be found
in [18]; previously, the evolution Stokes equations (for the velocity field only)
had been similarly obtained by P.-L. Lions and N. Masmoudi in [34].

More elaborate asymptotic limits leading to a viscous heating term in
the right-hand side of the drift-diffusion equation for the temperature field
have been formally derived from the Boltzmann equation in [6], but obtaining
a complete mathematical argument justifying this derivation remains a real
challenge.

7. Open problems

An outstanding open problem in this field is the derivation of the Euler equa-
tions for compressible fluids from the Boltzmann equation. The compressible
Euler system (for a perfect monatomic gas) is

∂tρ + divx(ρu) = 0 ,

∂t(ρu) + divx(ρu ⊗ u) + ∇x(ρθ) = 0 ,

∂t(ρ(1
2 |u|2 + 3

2θ)) + divx(ρu(1
2 |u|2 + 3

2θ)) = 0 ,

(7.1)

where ρ ≡ ρ(t, x) ≥ 0 is the density of the fluid at time t and position x, while
θ ≡ θ(t, x) > 0 is the temperature field and u ≡ u(t, x) ∈ R3 the velocity field.
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This is a system of conservation laws with an entropy

η(ρ, u, θ) = ρ ln
( ρ

θ3/2

)

that is a convex function of ρ, ρu and ρ(1
2 |u|2 + 3

2θ) (the conserved densities).
Hence (7.1) is a symmetrizable hyperbolic system, for which the Cauchy prob-
lem has local smooth solutions: see for instance the book by A. Majda [36]. It
is known that, for a large class of initial data, the solution of (7.1) becomes
singular in finite time (see [46]). Yet, the existence of global weak solutions of
(7.1) is still unknown – and a major open problem of the theory of hyperbolic
systems.

However, in the case where ρ, u and θ only depend upon one space variable
(say, x1), global existence of a weak solution to (7.1) for which η decreases across
shock waves has been proved for initial data with small total variation. This
result stems from Glimm’s remarkable paper [17] and is due to T.-P. Liu [35].

So far, solutions of (7.1) have been derived from solutions of the Boltz-
mann equation (3.1) in the regularity phase: see [38], [11], [28]. The idea is to
start from initial data of the form

F in
ε (x, v) = M(ρin(εx),uin(εx),θin(εx))

parametrized by ε > 0. For each ε > 0, let Fε be a solution of (3.1) such that
Fε

∣
∣
t=0

= F in
ε ; then, one shows that the hydrodynamic moments of Fε

∫

R3
Fε

(
t

ε
,
x

ε
, v

)




1
v

|v|2



 dv →




ρ(t, x)
ρu(t, x)

ρ(|u|2 + 3θ)(t, x)





as ε → 0, where (ρ, u, θ) is the solution of (7.1) with initial data (ρin, uin, θin).
The convergence above is of course local in time – at best over the lifespan of
a smooth solution of (7.1).

It would be of considerable interest to derive the global BV solutions
constructed by T.-P. Liu from the Boltzmann equation. As in the case of the
incompressible Euler limit of the Boltzmann equation, the entropy production
bound entailed by Boltzmann’s H Theorem does not balance the action of the
streaming operator on the number density: the compactness of hydrodynamic
moments of the number density is probably to be sought in some stability
property of BV solutions of the compressible Euler system. Most likely, such a
theory should use Bressan’s remarkable results in that direction (see [9], [10]).

Another open problem would be to improve Theorem 6.2, by relaxing the
unphysical assumption made on the size of the number density fluctuations δε to
reach the physically natural condition that δε → 0 as ε → 0. This will probably
require more information on the local conservation laws of momentum and
energy for renormalized solutions of the Boltzmann equation. Such information
would most likely be an important prerequisite for progress on the compressible
Euler limit.
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Finally, we have only treated evolution problems in this paper. In fact,
steady problems are perhaps even more important for applications (as in aero-
dynamics). For instance, it is well known that, for any force field f ≡ f(x) ∈
L2(Ω;R3) such that divx f = 0, the steady incompressible Navier-Stokes equa-
tions in a smooth, bounded open domain Ω ⊂ R3

−ν∆xu = f −∇xp − (u · ∇x)u , divx u = 0 , x ∈ Ω ,

u
∣
∣
∂Ω

= 0
(7.2)

has at least one classical solution u ≡ u(x) ∈ H2(Ω,R3), obtained by a Leray-
Schauder fixed point argument (see for instance [29]). Unfortunately, the par-
allel theory for the Boltzmann equation is not as advanced: see however the
classical papers by Guiraud [24], and more recent work by L. Arkeryd and
A. Nouri (see for instance [2]). Yet, the fact that the solutions of (7.2) are
more regular than in the case of the evolution problem could be of considerable
help in the context of the hydrodynamic limit. A rather exhaustive description
of these kinds of problems (at the formal level) may be found in the recent
monograph by Y. Sone [48]
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cinétique conduisant à la dynamique des fluides incompressibles, C.R. Acad. Sci.
309 (1989), 727–732.

[4] C. Bardos, F. Golse, C.D. Levermore: Fluid dynamic limits of kinetic equations.
I. Formal derivations, J. Statist. Phys. 63 (1991), 323–344.

[5] C. Bardos, F. Golse, C.D. Levermore: Fluid Dynamic Limits of Kinetic Equations
II: Convergence Proofs for the Boltzmann Equation, Comm. Pure & Appl. Math
46 (1993), 667–753.

[6] C. Bardos, C.D. Levermore: Kinetic equations and an incompressible limit that
recovers viscous heating, preprint.

[7] C. Bardos, S. Ukai: The classical incompressible Navier-Stokes limit of the Boltz-
mann equation, Math. Models and Methods in the Appl. Sci. 1 (1991), 235–257.

[8] F. Bouchut, F. Golse, M. Pulvirenti: “Kinetic Equations and Asymptotic The-
ory”, L. Desvillettes & B. Perthame ed., Editions scientifiques et médicales El-
sevier, Paris, 2000.

[9] A. Bressan: “Hyperbolic systems of conservation laws. The one-dimensional
Cauchy problem”, Oxford University Press, Oxford, 2000.”

[10] A. Bressan: Hyperbolic systems of conservation laws in one space dimension, in
“Proceedings of the International Congress of Mathematicians, Vol. I (Beijing,
2002), 159–178, Higher Ed. Press, Beijing, 2002.

[11] R.E. Caflisch: The fluid dynamic limit of the nonlinear Boltzmann equation,
Comm. on Pure and Appl. Math. 33 (1980), 651–666.



716 F. Golse

[12] F. Castella, B. Perthame: Estimations de Strichartz pour les équations de trans-
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