Transport et Diffusion Schéma Diamant et formulation en flux pair

Exercice I. La diffusion synthétique en 1D Fourier. On analyse le schéma explicite

$$\mu_k \frac{u_{j+\frac{1}{2}}^{k,n} - u_{j-\frac{1}{2}}^{k,n}}{\Delta x} + \sigma \frac{u_{j+\frac{1}{2}}^{k,n} + u_{j-\frac{1}{2}}^{k,n}}{2} = \sigma^* \overline{u}_j^{n-1} + f_j$$

avec la relation diamant dans le cas 1D

$$\mu_k = \pm 1.$$

- 1. Écrire la relation diamant. Que vaut \overline{u}_i^{n-1} ?
- 2. Analyser le schéma en mode de Fourier. On cherchera la solution sous la forme

$$\left(\begin{array}{c} u_{j+\frac{1}{2}}^{k=1,n} \\ u_{j+\frac{1}{2}}^{k=2,n} \end{array}\right) = \left(\begin{array}{c} \alpha_{n+\frac{1}{2}} \\ \beta_{n+\frac{1}{2}} \end{array}\right) e^{i\theta(j+\frac{1}{2})\Delta x} \quad \forall n.$$

Déterminer la relation de récurrence sur les (α_n, β_n) .

- 3. Trouver les valeurs propres et retrouver le fait que l'algorithme converge lentement pour $\frac{\sigma^*}{\sigma} = 1^-$.
- 4. Écrire la méthode de la diffusion synthétique.
- **5.** Faire le même travail en Fourier, et vérifier que cet algorithme est beaucoup plus rapide que l'algorithme initial.

Exercice II. Limite de diffusion du schéma Diamant On part du schéma Diamant en 1D pour des vitesses

$$\mu_k \in [-1, 1], \quad 1 \le k \le K.$$

1. Écrire ce schéma pour un scattering

$$\frac{\sigma}{2} \int_{-1}^{1} f(\mu) d\mu$$

et une absorption σf .

2. On suppose que la vitesse est de l'ordre de ε^{-1} et que $\sigma = \overline{\sigma}\varepsilon^{-2}$. Montrer que la limite de diffusion est correcte (ou autrement dit que le coefficient de diffusion du schéma vaut $\frac{1}{3\overline{\sigma}}$) dès que les relations

$$\sum_{k} \omega_{k} \mu_{k} = 0 \text{ et } \sum_{k} \omega_{k} \mu_{k}^{2} = \frac{2}{3}$$

sont vérifiées.

Exercice III. Méthode du flux pair.

Soit $(x,\Omega)\mapsto \varphi(x,\Omega)$ solution de l'équation du transport

$$\Omega.\nabla\varphi + \sigma\varphi = \sigma_s\phi + S$$

avec $\sigma \geq \sigma_s > 0$. La source est S. L'espace est $(x,\Omega) \in \mathcal{C} \times S^{d-1}$ où $\mathcal{C} \subset \mathbb{R}^d$ est un ouvert borné et S^{d-1} est la sphère unité dans l'espace des directions $|\Omega| = 1$. Par définition

$$\phi = \frac{\int_{S^{d-1}} \varphi d\Omega}{|S^{d-1}|}, \quad \left|S^{d-1}\right| = \int_{S^{d-1}} d\Omega.$$

Le bord se décompose en deux parties $\partial C = \overline{\Gamma_v \cup \Gamma_r}$. Soit **n** la normale extérieure. Les conditions aux bord sont du type vide

$$\varphi(x,\Omega) = 0 \quad x \in \Gamma_v, \quad \mathbf{n}.\Omega < 0,$$

et réflexion

$$\varphi(x,\Omega) = \varphi(x,\Omega') \quad x \in \Gamma_r, \quad \Omega' = \Omega - 2(\Omega \cdot \mathbf{n}) \,\mathbf{n}.$$

- 1. Faire un dessin et interpréter les conditions aux bords.
- 2. On pose

$$\varphi^{\pm}(x,\Omega) = \frac{1}{2} (\varphi(x,\Omega) \pm \varphi(x,-\Omega)).$$

Montrer que φ^+ est pair en Ω , φ^- est impair en Ω . Montrer que $\int_S \Omega \varphi^+ d\Omega = 0$. Montrer que $\phi^- = 0$ et

$$\phi = \phi^+ \equiv \frac{\int_{\mathcal{S}} \varphi^+ d\Omega}{|\mathcal{S}|}.$$

3. Montrer que le couple (φ^+, φ^-) est solution du système du premier ordre

$$\begin{cases} \Omega.\nabla\varphi^{-} + \sigma\varphi^{+} = \sigma_{s}\phi + S, \\ \Omega.\nabla\varphi^{+} + \sigma\varphi^{-} = 0. \end{cases}$$

4. En déduire que φ^+ est solution de l'équation du second ordre (elliptique)

$$-\Omega.\nabla\left(\frac{1}{\sigma}\Omega.\nabla\varphi^{+}\right) + \sigma\varphi^{+} = \sigma_{s}\phi^{+} + S.$$

5. Montrer que les conditions aux bords peuvent s'écrire aussi

$$\Omega \cdot \nabla \varphi^+ \pm \sigma \varphi^+ = 0, \quad x \in \Gamma_v, \quad \pm \mathbf{n} \cdot \Omega > 0,$$

et sur le bord réflexif

$$\varphi^+(x,\Omega) = \varphi^+(x,\Omega') \quad x \in \Gamma_r, \quad \Omega' = \Omega - 2(\Omega \cdot \mathbf{n}) \mathbf{n}.$$

Exercice IV. Mise sous forme variationelle On pose

$$J(\varphi^{+}) = \frac{1}{2} \int_{\mathcal{C}} \int_{S^{d-1}} \frac{1}{\sigma} \left(\Omega \cdot \nabla \varphi^{+} \right)^{2} + \sigma \left(\varphi^{+} \right)^{2} - \sigma_{s} \left(\phi^{+} \right)^{2}$$
$$+ \frac{1}{2} \int_{\Gamma_{n}} \int_{S^{d-1}} \left(\varphi^{+} \right)^{2} |\mathbf{n} \cdot \Omega| - \int_{\mathcal{C}} \int_{S^{d-1}} S \varphi^{+}.$$

- 1. Identifier les intégrales de volume et de bord.
- 2. Montrer formellement que $J(\varphi^+) \leq J(\widetilde{\varphi^+})$ pour toute fonction test $\widetilde{\varphi^+}$ suffisament régulière.
- 3. Définir la forme bilinéaire $a(\varphi^+, \varphi^+)$ et la forme linéaire $b(\widetilde{\varphi^+})$ associées, et montrer que la solution φ^+ est solution du problème variationel $a(\varphi^+, \widetilde{\varphi^+}) = b(\widetilde{\varphi^+})$ pour tout $\widetilde{\varphi^+}$ dans un espace de fonctions suffisament régulière.
- **4.** Faire le lien avec la théorie variationelle des équations elliptiques (cours MAP 431). Pour cela on considérera le cas monodimensionel d=1 et on posera $u(x) = \varphi^+(x,1)$. Écrire le problème pour u. Montrer que l'espace $H^1(\mathcal{C})$ est le bon cadre fonctionel. En déduire l'existence et l'unicité de $u \in H^1(\mathcal{C})$.

Exercice V. Analyse numérique en 1D

- 1. Rappeler la définition des fonctions chapeaux (P^1) en dimension d=1. Écrire la formulation variationelle discrète.
- 2. Montrer l'existence et l'unicité de la solution variationelle discrète.

Exercice VI. Dimension $d \geq 2$ et approximation de diffusion.

On peut retrouver l'approximation de diffusion en admettant que φ dépend linéairement de la variable angulaire Ω

$$\varphi(x,\Omega) = \phi(x) + \Omega J(x).$$

1. Montrer que $\varphi^+ = \phi$. Écrire la formulation variationelle correspondante dont l'inconnue est la fonction ϕ . On rappelle que

$$\frac{1}{|S^{d-1}|} \int_{S^{d-1}} \Omega \otimes \Omega = \frac{1}{d} I_d.$$

- **2.** Montrer que cette formulation variationelle est bien posée dans $H^1(\mathcal{C})$.
- **3.** Rappeler quelles sont les fonctions de base P^1 en dimension d=2,3.