MAT 311 Analyse réelle et complexe

Feuille d'exercices 2 (Intégration)

Exercice 1. Soit $f: \mathbf{R} \to \mathbf{C}$ telle que f(x+1) = f(x) p.p. en $x \in \mathbf{R}$. Montrer qu'il existe $F: \mathbf{R} \to \mathbf{C}$ telle que F(x+1) = F(x) pour tout $x \in \mathbf{R}$ et f(x) = F(x) p.p. en $x \in \mathbf{R}$.

Exercice 2. Soit $\Omega \subset \mathbf{R}^N$ ouvert non vide et $f \in \mathcal{L}^1(\Omega; \mathbf{C})$ telle que

$$\left| \int_{\Omega} f(x) dx \right| = \int_{\Omega} |f(x)| dx.$$

Montrer qu'il existe $\theta \in \mathbf{R}$ t.q. $f(x) = |f(x)|e^{i\theta}$ p.p. en $x \in \Omega$.

Exercice 3. Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$, on pose $u_n(x) = e^{-nx} - 2e^{-2nx}$.

- a) Montrer que la série de terme général $u_n(x)$ est absolument convergente pour tout $x \in \mathbf{R}_+^*$ et calculer sa somme.
- b) Calculer

$$\sum_{n\geq 1} \int_{]0,+\infty[} u_n(x) dx \quad \text{et} \quad \int_{]0,+\infty[} \left(\sum_{n\geq 1} u_n(x) \right) dx.$$

c) Comment expliquez-vous le résultat du b)?

Exercice 4. Soit f une fonction mesurable positive sur $\Omega \subset \mathbf{R}^N$ ouvert non vide telle que

$$\int_{\Omega} f(x)dx \in]0, +\infty[.$$

Montrer que, pour tout $\theta > 0$, la suite définie pour tout $n \in \mathbb{N}^*$ par la formule

$$\int_{\Omega} n \ln \left(1 + \left(\frac{f(x)}{n} \right)^{\theta} \right) dx$$

converge vers une limite que l'on calculera. (On étudiera séparément les cas $\theta \geq 1$ et $0 < \theta < 1$.)

Exercice 5.

a) Soit $f \in \mathcal{L}^1(\mathbf{R})$, et soit $K \subset \mathbf{R}$ compact. Calculer

$$\lim_{|x|\to+\infty}\int_{\mathbf{R}}f(y)\mathbf{1}_K(x-y)dy.$$

b) Soit $g: \mathbf{R} \to \mathbf{R}$ uniformément continue. Montrer que

$$\int_{\mathbf{R}} |g(x)| dx < +\infty \Rightarrow g(x) \to 0 \text{ lorsque } |x| \to +\infty.$$

c) Soit $h: \mathbf{R} \to \mathbf{R}$ continue et telle que

$$\int_{\mathbf{R}} |h(x)| dx < +\infty.$$

A-t-on

$$|h(x)| \to 0$$
 lorsque $|x| \to +\infty$?

Exercice 6. Soient $p \ge 1$ et $(f_n)_{n \in \mathbb{N}}$ suite de fonctions mesurables sur $\Omega \subset \mathbb{R}^N$ ouvert non vide. On suppose que

$$f_n(x) \to f(x)$$
 p.p. en $x \in \Omega$ et $\int_{\Omega} |f_n(x)|^p dx \to \int_{\Omega} |f(x)|^p dx$

lorsque $n \to +\infty$. Montrer que

$$\int_{\Omega} |f(x) - f_n(x)|^p dx \to 0$$

lorsque $n \to +\infty$. (On pourra utiliser la convexité de la fonction $Z \mapsto |Z|^p$.)

Exercice 7. (Lemme de Brézis-Lieb)

Soit $p \geq 1$ et $(f_n)_{n \in \mathbb{N}}$ suite de fonctions mesurables sur $\Omega \subset \mathbb{R}^N$ ouvert non vide. On suppose que

$$f_n(x) \to f(x)$$
 p.p. en $x \in \Omega$ et $\sup_{n \ge 1} \int_{\Omega} |f_n(x)|^p dx < +\infty$.

On se propose de montrer que

$$\int_{\Omega} |f_n(x)|^p dx - \int_{\Omega} |f(x) - f_n(x)|^p dx \to \int_{\Omega} |f(x)|^p dx$$

lorsque $n \to +\infty$.

- a) Etablir ce résultat lorsque p=1 (on pourra observer que la fonction valeur absolue est lipschitzienne.)
- b) Soit p > 1. Montrer que, pour tout $\epsilon > 0$, il existe $C(\epsilon) > 0$ t.q.

$$|X + Y|^p - |X|^p \le \epsilon |X|^p + C(\epsilon)|Y|^p$$
, pour tous $X, Y \in \mathbf{R}$.

c) Soit $\epsilon > 0$ fixé. Pour tout $n \in \mathbb{N}$, on pose

$$F_n = (||f_n|^p - |f_n - f|^p - |f|^p| - \epsilon |f_n - f|^p)^+.$$

Calculer

$$\lim_{n \to +\infty} \int_{\Omega} F_n(x) dx.$$

d) Conclure.