Consider the Vlasov-Maxwell system for a single species of charged particles with unit mass and charge +1 , written in the Gaussian system of units

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f+\left(E+\frac{v}{c} \wedge B\right) \cdot \nabla_{v} f=0, \quad x, v \in \mathbf{R}^{3} \tag{VM}\\
\operatorname{div}_{x} B=0, \quad \operatorname{curl}_{x} E=-\frac{1}{c} \partial_{t} B \\
\operatorname{div}_{x} E=4 \pi \rho_{f}, \quad \operatorname{curl}_{x} B=\frac{1}{c}\left(4 \pi j_{f}+\partial_{t} E\right)
\end{array}\right.
$$

Here $f \equiv f(t, x, v)$ is the particle distribution function (density of particles with velocity v located at the position x at time t, $E \equiv E(t, x) \in \mathbf{R}^{3}$ and $B \equiv B(t, x) \in$ \mathbf{R}^{3} are the electric and magnetic field respectively, c is the speed of light, and

$$
\rho_{f}(t, x)=\int_{\mathbf{R}^{3}} f(t, x, v) d v, \quad \text { and } \quad j_{f}(t, x)=\int_{\mathbf{R}^{3}} v f(t, x, v) d v
$$

The system (VM) is supplemented with the initial condition

$$
\begin{equation*}
f(0, x, v)=f^{i n}(x, v), \quad E(0, x)=E^{i n}(x), \quad B(0, x)=0 \tag{IC}
\end{equation*}
$$

where

$$
E^{i n}=-\nabla \phi^{i n} \quad \text { and }-\Delta \phi^{i n}=4 \pi \rho_{f} .
$$

1) Let $(f, E, B) \in C^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$ be a solution of the Cauchy problem (RVM)(IC) such that $f(t, \cdot, \cdot), E(t, \cdot)$ and $B(t, \cdot)$ are rapidly decaying at infinity;
a) express $\|f(t, \cdot, \cdot)\|_{L^{p}\left(\mathbf{R}^{3} \times \mathbf{R}^{3}\right)}$ in terms of $f^{\text {in }}$ for all $p \in[1,+\infty]$;
b) give the sign of $f(t, \cdot, \cdot)$ in terms of the sign of $f^{i n}$;
c) formulate the local conservation of energy as

$$
\partial_{t}\left(\int_{\mathbf{R}^{3}} \alpha_{0}|v|^{2} f d v+\alpha_{1}|E|^{2}+\alpha_{2}|B|^{2}\right)+\operatorname{div}_{x}\left(\alpha_{0} \int_{\mathbf{R}^{3}} v|v|^{2} f d v+\alpha_{3} E \wedge B\right)=0
$$

where $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are 4 constants to be computed;
d) compute

$$
\iint_{\mathbf{R}^{3} \times \mathbf{R}^{3}} \alpha_{0}|v|^{2} f(t, x, v) d x d v+\int_{\mathbf{R}^{3}}\left(\alpha_{1}|E|^{2}+\alpha_{2}|B|^{2}\right)(t, x) d x
$$

in terms of $f^{i n}$ and $E^{i n}$.
In the sequel, we investigate the asymptotic behavior of solutions of (VM)-(IC) as $c \rightarrow+\infty$. Henceforth, we denote by $\left(f_{c}, E_{c}, B_{c}\right)$ a family of solutions of (RVM)-(IC) satisfying the assumptions in question 1$)$, such that $f_{c} \rightarrow f$ and $\left(E_{c}, B_{c}\right) \rightarrow(E, B)$ in the sense of distributions on $\mathbf{R}_{+}^{*} \times \mathbf{R}^{3} \times \mathbf{R}^{3}$ and on $\mathbf{R}_{+} \times \mathbf{R}^{3}$ respectively.
2) Prove that

$$
\rho_{c}(t, x):=\int_{\mathbf{R}^{3}} f_{c}(t, x, v) d v \quad \text { and } j_{c}(t, x):=\int_{\mathbf{R}^{3}} v f_{c}(t, x, v) d v
$$

satisfy

$$
\sup _{c>0} \sup _{t \geq 0}\left(\int_{\mathbf{R}^{3}} \rho_{c}(t, x)^{5 / 3} d x+\int_{\mathbf{R}^{3}}\left|j_{c}(t, x)\right|^{4 / 3} d x\right)<+\infty .
$$

2) Let $p \in[1, \infty)$. Find all the vector fields $H(x)=\left(H_{1}(x), H_{2}(x), H_{3}(x)\right)$ such that $H_{i} \in L^{2}\left(\mathbf{R}^{3}\right)$ for each $i=1,2,3$, satisfying

$$
\operatorname{curl} H=0 \quad \text { and } \quad \operatorname{div} H=0
$$

in the sense of distributions on \mathbf{R}^{3}.
(Hint: if $\Delta h=0$ on \mathbf{R}^{3} and $h \in L^{p}\left(\mathbf{R}^{3}\right)$, then $h=0$.)
3) Let $R \in L^{1} \cap L^{5 / 3}\left(\mathbf{R}^{3}\right)$ and let $G(x)=\frac{1}{4 \pi}|x|^{-1}$. Prove that $G \star R \in L^{12}\left(\mathbf{R}^{3}\right)$ and that $\nabla(G \star R) \in L^{12 / 5}\left(\mathbf{R}^{3}\right)$.
(Hint: in $G \star R$, decompose G into $G(x) \mathbf{1}_{|x| \leq 1}+G(x) \mathbf{1}_{|x|>1}$; likewise, in $\nabla(G \star R)$, decompose ∇G as $\nabla G(x) \mathbf{1}_{|x| \leq 1}+\nabla G(x) \mathbf{1}_{|x|>1}$; conclude with Young's inequality: for all measurable f, g, one has

$$
\|f \star g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $p, q, r \in[1,+\infty]$ and $1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$.)
4) Let $V(x)=\left(V_{1}(x), V_{2}(x), V_{3}(x)\right)$ on \mathbf{R}^{3} such that $V_{i} \in L^{2}\left(\mathbf{R}^{3}\right)$ for each $i=1,2,3$.

Assume that

$$
\operatorname{curl} V=0 \quad \text { and } \quad \operatorname{div} V=R \in L^{1} \cap L^{5 / 3}\left(\mathbf{R}^{3}\right) .
$$

Prove that there exists $U \in L^{12}\left(\mathbf{R}^{3}\right)$ such that $V=\nabla U$.
5) What are the equations satisfied by E and B ? Prove that $B=0$.
6) For each $\chi \in C_{c}^{\infty}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$, let

$$
m_{c}[\chi](t, x):=\int_{\mathbf{R}^{3}} \chi(t, x, v) f_{c}(t, x, v) d v, \quad m[\chi](t, x):=\int_{\mathbf{R}^{3}} \chi(t, x, v) f(t, x, v) d v .
$$

Prove that $m_{c}[\chi] \rightarrow m$ as $c \rightarrow+\infty$ in $L^{p}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}^{3}\right)$ for all $p \in[1,+\infty)$.
(Hint: state a velocity averaging lemma adapted to this situation and indicate briefly the main steps of its proof.)
7) Prove (f, E) satisfies the Vlasov-Poisson system.
8) Justify the initial condition satisfied by (f, E) and define precisely in which sense this initial condition is satisfied.

