M2 "Kinetic models" May 3rd, 2012

Consider the Vlasov-Maxwell system for a single species of charged particles with unit mass and charge +1, written in the Gaussian system of units

$$(VM) \qquad \begin{cases} \partial_t f + v \cdot \nabla_x f + \left(E + \frac{v}{c} \wedge B\right) \cdot \nabla_v f = 0, \quad x, v \in \mathbf{R}^3, \\ \operatorname{div}_x B = 0, \quad \operatorname{curl}_x E = -\frac{1}{c} \partial_t B, \\ \operatorname{div}_x E = 4\pi \rho_f, \quad \operatorname{curl}_x B = \frac{1}{c} (4\pi j_f + \partial_t E). \end{cases}$$

Here $f \equiv f(t, x, v)$ is the particle distribution function (density of particles with velocity v located at the position x at time t), $E \equiv E(t, x) \in \mathbf{R}^3$ and $B \equiv B(t, x) \in \mathbf{R}^3$ are the electric and magnetic field respectively, c is the speed of light, and

$$\rho_f(t,x) = \int_{\mathbf{R}^3} f(t,x,v) dv \,, \quad \text{and} \quad j_f(t,x) = \int_{\mathbf{R}^3} v f(t,x,v) dv \,.$$

The system (VM) is supplemented with the initial condition

(IC)
$$f(0, x, v) = f^{in}(x, v), \quad E(0, x) = E^{in}(x), \quad B(0, x) = 0,$$

where

$$E^{in} = -\nabla \phi^{in}$$
 and $-\Delta \phi^{in} = 4\pi \rho_f$.

1) Let $(f, E, B) \in C^1(\mathbf{R}_+ \times \mathbf{R}^3 \times \mathbf{R}^3)$ be a solution of the Cauchy problem (RVM)-(IC) such that $f(t, \cdot, \cdot)$, $E(t, \cdot)$ and $B(t, \cdot)$ are rapidly decaying at infinity;

- a) express $||f(t,\cdot,\cdot)||_{L^p(\mathbf{R}^3\times\mathbf{R}^3)}$ in terms of f^{in} for all $p\in[1,+\infty]$;
- b) give the sign of $f(t, \cdot, \cdot)$ in terms of the sign of f^{in} ;
- c) formulate the local conservation of energy as

$$\partial_t \left(\int_{\mathbf{R}^3} \alpha_0 |v|^2 f dv + \alpha_1 |E|^2 + \alpha_2 |B|^2 \right) + \operatorname{div}_x \left(\alpha_0 \int_{\mathbf{R}^3} v |v|^2 f dv + \alpha_3 E \wedge B \right) = 0$$

where $\alpha_0, \alpha_1, \alpha_2, \alpha_3$ are 4 constants to be computed; d) compute

$$\iint_{\mathbf{R}^{3} \times \mathbf{R}^{3}} \alpha_{0} |v|^{2} f(t, x, v) dx dv + \int_{\mathbf{R}^{3}} (\alpha_{1} |E|^{2} + \alpha_{2} |B|^{2})(t, x) dx$$

in terms of f^{in} and E^{in} .

In the sequel, we investigate the asymptotic behavior of solutions of (VM)-(IC) as $c \to +\infty$. Henceforth, we denote by (f_c, E_c, B_c) a family of solutions of (RVM)-(IC) satisfying the assumptions in question 1), such that $f_c \to f$ and $(E_c, B_c) \to (E, B)$ in the sense of distributions on $\mathbf{R}^*_+ \times \mathbf{R}^3 \times \mathbf{R}^3$ and on $\mathbf{R}_+ \times \mathbf{R}^3$ respectively. 2) Prove that

$$\rho_c(t,x) := \int_{\mathbf{R}^3} f_c(t,x,v) dv \quad \text{ and } j_c(t,x) := \int_{\mathbf{R}^3} v f_c(t,x,v) dv$$

satisfy

$$\sup_{c>0} \sup_{t\geq 0} \left(\int_{\mathbf{R}^3} \rho_c(t,x)^{5/3} dx + \int_{\mathbf{R}^3} |j_c(t,x)|^{4/3} dx \right) < +\infty$$

2) Let $p \in [1, \infty)$. Find all the vector fields $H(x) = (H_1(x), H_2(x), H_3(x))$ such that $H_i \in L^2(\mathbf{R}^3)$ for each i = 1, 2, 3, satisfying

$$\operatorname{curl} H = 0$$
 and $\operatorname{div} H = 0$

in the sense of distributions on \mathbf{R}^3 .

(Hint: if $\Delta h = 0$ on \mathbf{R}^3 and $h \in L^p(\mathbf{R}^3)$, then h = 0.)

3) Let $R \in L^1 \cap L^{5/3}(\mathbf{R}^3)$ and let $G(x) = \frac{1}{4\pi} |x|^{-1}$. Prove that $G \star R \in L^{12}(\mathbf{R}^3)$ and that $\nabla(G \star R) \in L^{12/5}(\mathbf{R}^3)$.

(Hint: in $G \star R$, decompose G into $G(x)\mathbf{1}_{|x|\leq 1} + G(x)\mathbf{1}_{|x|>1}$; likewise, in $\nabla(G \star R)$, decompose ∇G as $\nabla G(x)\mathbf{1}_{|x|\leq 1} + \nabla G(x)\mathbf{1}_{|x|>1}$; conclude with Young's inequality: for all measurable f, g, one has

$$\|f \star g\|_{L^r} \le \|f\|_{L^p} \|g\|_{L^q}$$

for $p, q, r \in [1, +\infty]$ and $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.)

4) Let $V(x) = (V_1(x), V_2(x), V_3(x))$ on \mathbb{R}^3 such that $V_i \in L^2(\mathbb{R}^3)$ for each i = 1, 2, 3. Assume that

$$\operatorname{curl} V = 0$$
 and $\operatorname{div} V = R \in L^1 \cap L^{5/3}(\mathbf{R}^3)$.

Prove that there exists $U \in L^{12}(\mathbf{R}^3)$ such that $V = \nabla U$.

5) What are the equations satisfied by E and B? Prove that B = 0.

6) For each $\chi \in C_c^{\infty}(\mathbf{R}^*_+ \times \mathbf{R}^3 \times \mathbf{R}^3)$, let

$$m_{c}[\chi](t,x) := \int_{\mathbf{R}^{3}} \chi(t,x,v) f_{c}(t,x,v) dv \,, \quad m[\chi](t,x) := \int_{\mathbf{R}^{3}} \chi(t,x,v) f(t,x,v) dv \,.$$

Prove that $m_c[\chi] \to m$ as $c \to +\infty$ in $L^p(\mathbf{R}^*_+ \times \mathbf{R}^3)$ for all $p \in [1, +\infty)$.

(Hint: state a velocity averaging lemma adapted to this situation and indicate briefly the main steps of its proof.)

7) Prove (f, E) satisfies the Vlasov-Poisson system.

8) Justify the initial condition satisfied by (f, E) and define precisely in which sense this initial condition is satisfied.