
M2 “Kinetic models” May 3rd, 2012

Consider the Vlasov-Maxwell system for a single species of charged particles with
unit mass and charge +1, written in the Gaussian system of units

(VM)


∂tf + v · ∇xf +

(
E +

v

c
∧B

)
· ∇vf = 0 , x, v ∈ R3 ,

divxB = 0 , curlxE = −1

c
∂tB ,

divxE = 4πρf , curlxB =
1

c
(4πjf + ∂tE) .

Here f ≡ f(t, x, v) is the particle distribution function (density of particles with
velocity v located at the position x at time t), E ≡ E(t, x) ∈ R3 and B ≡ B(t, x) ∈
R3 are the electric and magnetic field respectively, c is the speed of light, and

ρf (t, x) =

∫
R3

f(t, x, v)dv , and jf (t, x) =

∫
R3

vf(t, x, v)dv .

The system (VM) is supplemented with the initial condition

(IC) f(0, x, v) = f in(x, v) , E(0, x) = Ein(x) , B(0, x) = 0 ,

where
Ein = −∇φin and −∆φin = 4πρf .

1) Let (f,E,B) ∈ C1(R+×R3×R3) be a solution of the Cauchy problem (RVM)-
(IC) such that f(t, ·, ·), E(t, ·) and B(t, ·) are rapidly decaying at infinity;

a) express ‖f(t, ·, ·)‖Lp(R3×R3) in terms of f in for all p ∈ [1,+∞];

b) give the sign of f(t, ·, ·) in terms of the sign of f in;
c) formulate the local conservation of energy as

∂t

(∫
R3

α0|v|2fdv + α1|E|2 + α2|B|2
)

+ divx

(
α0

∫
R3

v|v|2fdv + α3E ∧B
)

= 0

where α0, α1, α2, α3 are 4 constants to be computed;
d) compute∫∫

R3×R3

α0|v|2f(t, x, v)dxdv +

∫
R3

(α1|E|2 + α2|B|2)(t, x)dx

in terms of f in and Ein.

In the sequel, we investigate the asymptotic behavior of solutions of (VM)-(IC) as
c→ +∞. Henceforth, we denote by (fc, Ec, Bc) a family of solutions of (RVM)-(IC)
satisfying the assumptions in question 1), such that fc → f and (Ec, Bc)→ (E,B)
in the sense of distributions on R∗+ ×R3 ×R3 and on R+ ×R3 respectively.

2) Prove that

ρc(t, x) :=

∫
R3

fc(t, x, v)dv and jc(t, x) :=

∫
R3

vfc(t, x, v)dv

satisfy

sup
c>0

sup
t≥0

(∫
R3

ρc(t, x)5/3dx+

∫
R3

|jc(t, x)|4/3dx
)
< +∞ .

2) Let p ∈ [1,∞). Find all the vector fields H(x) = (H1(x), H2(x), H3(x)) such
that Hi ∈ L2(R3) for each i = 1, 2, 3, satisfying

curlH = 0 and divH = 0

in the sense of distributions on R3.
(Hint: if ∆h = 0 on R3 and h ∈ Lp(R3), then h = 0.)
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3) Let R ∈ L1 ∩ L5/3(R3) and let G(x) = 1
4π |x|

−1. Prove that G ? R ∈ L12(R3)

and that ∇(G ? R) ∈ L12/5(R3).
(Hint: in G ?R, decompose G into G(x)1|x|≤1 +G(x)1|x|>1; likewise, in ∇(G ?R),
decompose ∇G as ∇G(x)1|x|≤1 +∇G(x)1|x|>1; conclude with Young’s inequality:
for all measurable f, g, one has

‖f ? g‖Lr ≤ ‖f‖Lp‖g‖Lq

for p, q, r ∈ [1,+∞] and 1 + 1
r = 1

p + 1
q .)

4) Let V (x) = (V1(x), V2(x), V3(x)) on R3 such that Vi ∈ L2(R3) for each i = 1, 2, 3.
Assume that

curlV = 0 and div V = R ∈ L1 ∩ L5/3(R3) .

Prove that there exists U ∈ L12(R3) such that V = ∇U .

5) What are the equations satisfied by E and B? Prove that B = 0.

6) For each χ ∈ C∞c (R∗+ ×R3 ×R3), let

mc[χ](t, x) :=

∫
R3

χ(t, x, v)fc(t, x, v)dv , m[χ](t, x) :=

∫
R3

χ(t, x, v)f(t, x, v)dv .

Prove that mc[χ]→ m as c→ +∞ in Lp(R∗+ ×R3) for all p ∈ [1,+∞).
(Hint: state a velocity averaging lemma adapted to this situation and indicate
briefly the main steps of its proof.)

7) Prove (f,E) satisfies the Vlasov-Poisson system.

8) Justify the initial condition satisfied by (f,E) and define precisely in which sense
this initial condition is satisfied.


