Introduction
Behaviour at ∞ (no iteration)
Dynamical heuristic
Statemento
A first approach
Action on valuation space
Next

Dynamical system on valuation space

Charles Favre

favre@math.jussieu.fr
 Mattias Jonsson
 mattiasj@kth.se

CNRS et Institut de Mathématiques de Jussieu KTH Stockholm

Sevilla, December 2005.

Introduction
Behaviour at ∞ (no iteration)
Dynamical heuristic
Statements
A first approach
Action on valuation space

The setting

 $P:\mathbb{C}^2 o \mathbb{C}^2$ polynomial

• dominant $\Leftrightarrow P(\mathbb{C}^2) = \mathbb{C}^2 \setminus Z$, Z alg. curve $\Leftrightarrow \operatorname{Jac}(P) \not\equiv 0$

Next

Not necessarily proper

The setting

$$P:\mathbb{C}^2 o \mathbb{C}^2$$
 polynomial

- dominant $\Leftrightarrow P(\mathbb{C}^2) = \mathbb{C}^2 \setminus Z$, Z alg. curve $\Leftrightarrow \operatorname{Jac}(P) \not\equiv 0$
- Not necessarily proper

The setting

$$P:\mathbb{C}^2 \to \mathbb{C}^2$$
 polynomial

- dominant $\Leftrightarrow P(\mathbb{C}^2) = \mathbb{C}^2 \setminus Z$, Z alg. curve $\Leftrightarrow \operatorname{Jac}(P) \not\equiv 0$
- Not necessarily proper

The setting

$$P:\mathbb{C}^2 \to \mathbb{C}^2$$
 polynomial

- dominant $\Leftrightarrow P(\mathbb{C}^2) = \mathbb{C}^2 \setminus Z$, Z alg. curve $\Leftrightarrow \operatorname{Jac}(P) \not\equiv 0$
- Not necessarily proper

Behaviour at ∞ (no iteration) Dynamical heuristic Statements Action on valuation space Next

The setting

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial

- dominant $\Leftrightarrow P(\mathbb{C}^2) = \mathbb{C}^2 \setminus Z$, Z alg. curve $\Leftrightarrow \operatorname{Jac}(P) \not\equiv 0$
- Not necessarily proper

Behaviour at ∞ (no iteration)

Dynamical heuristic

Statements

A first approach

Action on valuation space

Next

- Describe $\{P^n(z)\}_{n\geq 0}$ for all z
- Describe $\mathcal{B} = \{z, P^n(z) \to \infty\}$
- Speed: $\{|P^n(z)|\}_{n\in\mathbb{N}}$

Behaviour at ∞ (no iteration)
Dynamical heuristic
Statements
A first approach
Action on valuation space
Next

- Describe $\{P^n(z)\}_{n\geq 0}$ for most z
- Describe $\mathcal{B} = \{z, P^n(z) \to \infty\}$
- Speed: $\{|P^n(z)|\}_{n\in\mathbb{N}}$

Behaviour at ∞ (no iteration)
Dynamical heuristic
Statements
A first approach
Action on valuation space
Next

- Describe $\{P^n(z)\}_{n\geq 0}$ for most z
- Describe $\mathcal{B} = \{z, P^n(z) \to \infty\}$
- Speed: $\{|P^n(z)|\}_{n\in\mathbb{N}}$

Behaviour at ∞ (no iteration)
Dynamical heuristic
Statements
A first approach
Action on valuation space
Next

- Describe $\{P^n(z)\}_{n\geq 0}$ for most z
- Describe $\mathcal{B} = \{z, P^n(z) \to \infty\}$
- Speed: $\{|P^n(z)|\}_{n\in\mathbb{N}}$

Behaviour at ∞ (no iteration)

Dynamical heuristic

Statements

A first approach

Action on valuation space

Next

Plan

- Introduction
- 2 Behaviour at ∞ (no iteration)
- Oynamical heuristic
- 4 Statements
- 6 A first approach
- Action on valuation space
- Next

- $P = P_0 + P_1 + \cdots + P_d$, $P_i : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous of degree i.
- $||z|| := 1 + \max\{|x|, |y|\}$
- $||P(z)|| \le C_2 ||z||^d$ everywhere
- $C_1 ||z||^d \le ||P(z)||$ on the cone $\Omega := \{z, |P_d(z)| \ge \varepsilon |z|^d\}$

- $P = P_0 + P_1 + \cdots + P_d$, $P_i : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous of degree i.
- $||z|| := 1 + \max\{|x|, |y|\}$
- $||P(z)|| \le C_2 ||z||^d$ everywhere
- $C_1 ||z||^d \le ||P(z)||$ on the cone $\Omega := \{z, |P_d(z)| \ge \varepsilon |z|^d\}$

- $P = P_0 + P_1 + \cdots + P_d$, $P_i : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous of degree i.
- $||z|| := 1 + \max\{|x|, |y|\}$
- $||P(z)|| \le C_2 ||z||^d$ everywhere
- $C_1 ||z||^d \le ||P(z)||$ on the cone $\Omega := \{z, |P_d(z)| \ge \varepsilon |z|^d\}$

- $P = P_0 + P_1 + \cdots + P_d$, $P_i : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous of degree i.
- $||z|| := 1 + \max\{|x|, |y|\}$
- $||P(z)|| \le C_2 ||z||^d$ everywhere
- $C_1 ||z||^d \le ||P(z)||$ on the cone $\Omega := \{z, |P_d(z)| \ge \varepsilon |z|^d\}$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

• $P = (x^d, y^{d-1}), P_d = (x^d, 0),$
 $\Omega = \{|x| > \varepsilon |y|\}$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

$$\Omega = \{|x+y| \ge \varepsilon |x, y|\}$$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

•
$$P = (x^d, y^{d-1}), P_d = (x^d, 0),$$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

 $\Omega = \{|x+y| \ge \varepsilon |x, y|\}$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

•
$$P = (x^d, y^{d-1}), P_d = (x^d, 0),$$

$$\Omega = \{ |x| \ge \varepsilon |y| \}$$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

$$\Omega = \{|x+y| \ge \varepsilon |x,y|\}$$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

•
$$P = (x^d, y^{d-1}), P_d = (x^d, 0),$$

$$\Omega = \{ |x| \ge \varepsilon |y| \}$$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

$$\Omega = \{|x+y| \ge \varepsilon |x,y|\}$$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

•
$$P = (x^d, y^{d-1}), P_d = (x^d, 0),$$

$$\Omega = \{ |\mathbf{x}| \ge \varepsilon |\mathbf{y}| \}$$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

$$\Omega = \{|x+y| \ge \varepsilon |x,y|\}$$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

•
$$P = (x^d, y^{d-1}), P_d = (x^d, 0),$$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

 $\Omega = \{|x+y| \ge \varepsilon |x, y|\}$

 $\Omega = \{ |\mathbf{x}| \geq \varepsilon |\mathbf{y}| \}$

•
$$P = P_d = (x^d, y^d), \Omega = \mathbb{C}^2$$

•
$$P = (x^d, y^{d-1}), P_d = (x^d, 0),$$

 $\Omega = \{ |\mathbf{x}| \geq \varepsilon |\mathbf{y}| \}$

•
$$P = ((x+y)x^{d-1}, (x+y)y^{d-1}),$$

 $\Omega = \{|x+y| \ge \varepsilon |x, y|\}$

• n fixed, $d_n := \deg(P^n)$

$$C_{1,n}\|z\|^{d_n} \leq \|P^n(z)\| \leq C_{2,n}\|z\|^{d_n}$$
.

• $d_{n+m} \leq d_n \times d_m$.

Definition (Dynamical degree)

$$d_{\infty} = \lim_{n} d_{n}^{1/n} \ge 1$$

$$d_{\infty}(\psi^{-1} \circ P \circ \psi) = d_{\infty}(P), \psi : \mathbb{C}^2 \to \mathbb{C}^2$$
 birational

• n fixed, $d_n := \deg(P^n)$

$$C_{1,n} \|z\|^{d_n} \leq \sup_{\text{in }\Omega_n} \|P^n(z)\| \leq \sup_{\text{in }\mathbb{C}^2} C_{2,n} \|z\|^{d_n}.$$

• $d_{n+m} \leq d_n \times d_m$.

Definition (Dynamical degree)

$$d_{\infty} = \lim_n d_n^{1/n} \ge 1$$

$$d_{\infty}(\psi^{-1} \circ P \circ \psi) = d_{\infty}(P), \psi : \mathbb{C}^2 \to \mathbb{C}^2$$
 birational

• n fixed, $d_n := \deg(P^n)$

$$C_{1,n} \|z\|^{d_n} \leq \|P^n(z)\| \leq C_{2,n} \|z\|^{d_n}$$
.

• $d_{n+m} \leq d_n \times d_m$.

Definition (Dynamical degree)

$$d_{\infty} = \lim_{n} d_{n}^{1/n} \ge 1$$

$$d_{\infty}(\psi^{-1} \circ P \circ \psi) = d_{\infty}(P), \psi : \mathbb{C}^2 \to \mathbb{C}^2$$
 birational.

• n fixed, $d_n := \deg(P^n)$

$$C_{1,n} \|z\|^{d_n} \leq \|P^n(z)\| \leq C_{2,n} \|z\|^{d_n}$$
.

• $d_{n+m} \leq d_n \times d_m$.

Definition (Dynamical degree)

$$d_{\infty} = \lim_n d_n^{1/n} \geq 1$$

$$d_{\infty}(\psi^{-1}\circ P\circ\psi)=d_{\infty}(P),\,\psi:\mathbb{C}^2 o\mathbb{C}^2$$
 birational.

• n fixed, $d_n := \deg(P^n)$

$$C_{1,n} \|z\|^{d_n} \leq \|P^n(z)\| \leq C_{2,n} \|z\|^{d_n}$$
.

• $d_{n+m} \leq d_n \times d_m$.

Definition (Dynamical degree)

$$d_{\infty} = \lim_n d_n^{1/n} \ge 1$$

$$d_{\infty}(\psi^{-1} \circ P \circ \psi) = d_{\infty}(P), \psi : \mathbb{C}^2 \to \mathbb{C}^2$$
 birational.

Conjecture

- $d_n \simeq d_\infty^n$?
- $\Omega = \bigcap \Omega_n \neq \emptyset$?
- Uniform constant $C_{1,n}, C_{2,n}$?

$$(C_1||z||)^{d_{\infty}^n} \leq \|P^n(z)\| \leq \sum_{i \in \mathbb{Z}^2} (C_2||z||)^{d_{\infty}^n}$$

Conjecture

- $d_n \simeq d_{\infty}^n$?
- $\Omega = \bigcap \Omega_n \neq \emptyset$?
- Uniform constant $C_{1,n}, C_{2,n}$?

$$(C_1||z||)^{d_{\infty}^n} \leq \|P^n(z)\| \leq \sum_{i \in \mathbb{Z}^2} (C_2||z||)^{d_{\infty}^n}$$

Conjecture

- $d_n \simeq d_\infty^n$?
- $\Omega = \bigcap \Omega_n \neq \emptyset$?
- Uniform constant $C_{1,n}, C_{2,n}$?

$$(C_1||z||)^{d_{\infty}^n} \leq \|P^n(z)\| \leq \sum_{i \in \mathbb{Z}^2} (C_2||z||)^{d_{\infty}^n}$$

Conjecture

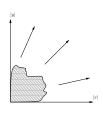
- $d_n \simeq d_\infty^n$?
- $\Omega = \bigcap \Omega_n \neq \emptyset$?
- Uniform constant $C_{1,n}, C_{2,n}$?

$$(C_1||z||)^{d_{\infty}^n} \leq \|P^n(z)\| \leq \sum_{i \in \mathbb{Z}^2} (C_2||z||)^{d_{\infty}^n}$$

Conjecture

- $d_n \simeq d_\infty^n$?
- $\Omega = \bigcap \Omega_n \neq \emptyset$?
- Uniform constant $C_{1,n}, C_{2,n}$?

$$(C_1\|z\|)^{d_{\infty}^n} \leq \|P^n(z)\| \leq \sum_{i \in \mathbb{C}^2} (C_2\|z\|)^{d_{\infty}^n}.$$



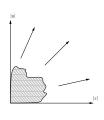
•
$$P = (x^d, y^d) + 1.o.t, d_n = d^n,$$

 $(C_1 ||z||)^{d^n} \le ||P^n(z)|| \le (C_2 ||z||)^d$

$$\mathbb{C}^2 \setminus \Omega$$
 compact

•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

$$\mathbb{C}^2 \setminus \Omega$$
 unbounded



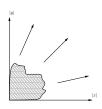
•
$$P = (x^d, y^d) + 1.o.t, d_n = d^n,$$

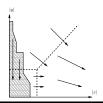
$$(C_1||z||)^{d^n} \leq ||P^n(z)|| \leq (C_2||z||)^{\alpha}$$

$$\mathbb{C}^2 \setminus \Omega$$
 compact

•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

$$\mathbb{C}^2 \setminus \Omega$$
 unbounded



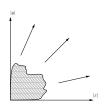


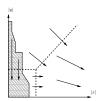
•
$$P = (x^d, y^d) + 1.\text{o.t.}$$
, $d_n = d^n$,
 $(C_1 ||z||)^{d^n} \le ||P^n(z)|| \le (C_2 ||z||)^{d^n}$

$$\mathbb{C}^2 \setminus \Omega$$
 compact

•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

$$\mathbb{C}^2 \setminus \Omega$$
 unbounded





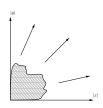
•
$$P = (x^d, y^d) + 1.\text{o.t.}$$
, $d_n = d^n$,
 $(C_1 ||z||)^{d^n} \le ||P^n(z)|| \le (C_2 ||z||)^{d^n}$

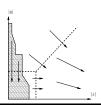
 $\mathbb{C}^2 \setminus \Omega$ compact

•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

 $\mathbb{C}^2 \setminus \Omega$ unbounded

Examples





•
$$P = (x^d, y^d) + 1.o.t, d_n = d^n,$$

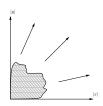
 $(C_1 ||z||)^{d^n} \le ||P^n(z)|| \le (C_2 ||z||)^{d^n}$

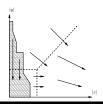
 $\mathbb{C}^2 \setminus \Omega$ compact

•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

 $\mathbb{C}^2 \setminus \Omega$ unbounded

Examples





•
$$P = (x^d, y^d) + 1.o.t, d_n = d^n,$$

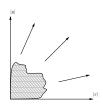
 $(C_1 ||z||)^{d^n} \le ||P^n(z)|| \le (C_2 ||z||)^{d^n}$

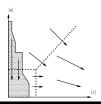
$$\mathbb{C}^2 \setminus \Omega$$
 compact

•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

 $\mathbb{C}^2 \setminus \Omega$ unbounded

Examples

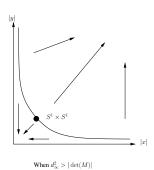




•
$$P = (x^d, y^d) + 1.\text{o.t.}$$
, $d_n = d^n$, $(C_1 ||z||)^{d^n} \le ||P^n(z)|| \le (C_2 ||z||)^{d^n}$ $\mathbb{C}^2 \setminus \Omega$ compact

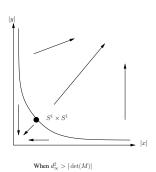
•
$$P = (x^2 + y + c, x), d_n = 2^n,$$

 $\mathbb{C}^2 \setminus \Omega$ unbounded



$$\bullet \ M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

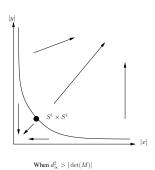
- $M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2)$ $\Omega = \{|x|^{v_1}|y|^{v_2} > 1\}$ $|x|^{v_1}|y|^{v_2} \circ P = (|x|^{v_1}|y|^{v_2})^{d_{\infty}}$



•
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

• $P(z) = z^M = (x^a y^b, x^c, y^d),$

• $M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2)$ $\Omega = \{|x|^{v_1}|y|^{v_2} > 1\}$ $|x|^{v_1}|y|^{v_2} \sim P = (|x|^{v_1}|y|^{v_2})^{d_{\infty}}$

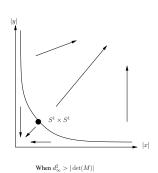


•
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

• $P^n(z) = z^{M^n}$,

$$P^n(z) = z^{M^n},$$

 $M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2)$

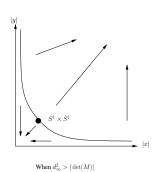


$$\bullet \ M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$P^n(z) = z^{M^n},$$

•
$$d_1 = \max\{a + b, c + d\}$$

$$\begin{array}{l}
\bullet \ M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2) \\
\Omega = \{|x|^{v_1}|y|^{v_2} > 1\} \\
|x|^{v_1}|y|^{v_2} \circ P = (|x|^{v_1}|y|^{v_2})^{d_{\infty}}
\end{array}$$

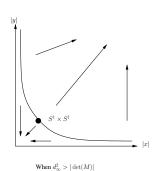


$$\bullet \ M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$P^n(z) = z^{M^n},$$

$$\bullet \ d_n = \max\{a_n + b_n, c_n + d_n\}$$

$$\begin{aligned} \bullet \ \, M \cdot (v_1, v_2) &= d_{\infty}(v_1, v_2) \\ \Omega &= \{|x|^{v_1}|y|^{v_2} > 1\} \\ |x|^{v_1}|y|^{v_2} \circ P &= (|x|^{v_1}|y|^{v_2})^{d_{\infty}} \end{aligned}$$

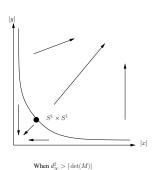


$$\bullet \ M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$P^n(z) = z^{M^n},$$

•
$$d_{\infty} = \rho(M)$$
 (quadratic)

$$\begin{aligned} \bullet \ \, M \cdot (v_1, v_2) &= d_{\infty}(v_1, v_2) \\ \Omega &= \{|x|^{v_1}|y|^{v_2} > 1\} \\ |x|^{v_1}|y|^{v_2} \circ P &= (|x|^{v_1}|y|^{v_2})^{d_{\infty}} \end{aligned}$$



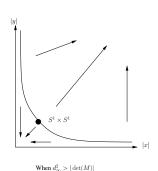
$$\bullet \ M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$P^n(z) = z^{M^n},$$

•
$$d_{\infty} = \rho(M)$$
 (quadratic)

•
$$M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2)$$

 $\Omega = \{|x|^{v_1}|y|^{v_2} > 1\}$
 $|x|^{v_1}|y|^{v_2} \circ P = (|x|^{v_1}|y|^{v_2})^{d_{\infty}}$



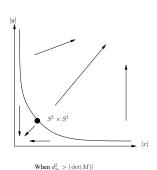
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$P^n(z) = z^{M^n},$$

•
$$d_{\infty} = \rho(M)$$
 (quadratic)

•
$$M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2)$$

 $\Omega = \{|x|^{v_1}|y|^{v_2} > 1\}$
 $|x|^{v_1}|y|^{v_2} \circ P = (|x|^{v_1}|y|^{v_2})^{d_{\infty}}$



$$\bullet \ M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$P^n(z) = z^{M^n},$$

•
$$d_{\infty} = \rho(M)$$
 (quadratic)

•
$$M \cdot (v_1, v_2) = d_{\infty}(v_1, v_2)$$

 $\Omega = \{|x|^{v_1}|y|^{v_2} > 1\}$
 $|x|^{v_1}|y|^{v_2} \circ P = (|x|^{v_1}|y|^{v_2})^{d_{\infty}}$

Skew products

Definition

P is a skew product iff it preserves a rational fibration of \mathbb{P}^2

- \bullet $d_{\infty} = \max\{k, l\}$
 - $k \neq l \Rightarrow d_n \simeq d_\infty^n$ $\left(\operatorname{deg}(A_i) = 0 \right)$
 - $k = l \Rightarrow \begin{cases} \deg(A_l) = 0 & d_n : \\ \deg(A_l) > 1 & d_n : \end{cases}$

Definition

P is a skew product iff $\phi^{-1} \circ P \circ \phi(x, y)$ preserves $\{x = \text{cte}\}$

0

•
$$d_{\infty} = \max\{k, l\}$$

$$k \neq l \Rightarrow d_n \simeq d_{\infty}^n$$

 $k = l \Rightarrow \begin{cases} \deg(A_l) = 0 & d_n \simeq d_{\infty}^n \\ \deg(A_l) \ge 1 & d_n \simeq nd_{\infty}^n \end{cases}$

Definition

P is a skew product iff $\phi^{-1} \circ P \circ \phi(x, y)$ preserves $\{x = \text{cte}\}$

- P = (Q(x), R(x, y))
- $d_{\infty} = \max\{k, l\}$

$$k \neq I \Rightarrow d_n \simeq d_{\infty}^n$$
 $k = I \Rightarrow \begin{cases} \deg(A_I) = 0 & d_n \simeq d_{\infty}^n \\ \deg(A_I) \ge 1 & d_n \simeq nd_{\infty}^n \end{cases}$

Definition

P is a skew product iff $\phi^{-1} \circ P \circ \phi(x, y)$ preserves $\{x = \text{cte}\}$

•
$$P = (x^k + o(x^k), A_l(x) y^l + o_x(y^l))$$

$$k \neq l \Rightarrow d_n \simeq d_{\infty}^n$$

 $k = l \Rightarrow \begin{cases} \deg(A_l) = 0 & d_n \simeq d_{\infty}^n \\ \deg(A_l) \ge 1 & d_n \simeq nd_{\infty}^n \end{cases}$

Definition

P is a skew product iff $\phi^{-1} \circ P \circ \phi(x, y)$ preserves $\{x = \text{cte}\}$

•
$$P^n = \left(x^{k^n} + 1.\text{o.t.}, \prod_{j=0}^{n-1} A_l(Q^j(x)) y^{l^n} + 1.\text{o.t.}\right)$$

$$k \neq l \Rightarrow d_n \simeq d_{\infty}^n$$

 $k = l \Rightarrow \begin{cases} \deg(A_l) = 0 & d_n \simeq d_{\infty}^n \\ \deg(A_l) \ge 1 & d_n \simeq nd_{\infty}^n \end{cases}$

Definition

P is a skew product iff $\phi^{-1} \circ P \circ \phi(x, y)$ preserves $\{x = \text{cte}\}$

•
$$P^n = \left(x^{k^n} + 1.\text{o.t.}, \prod_{j=0}^{n-1} A_l(Q^j(x)) y^{l^n} + 1.\text{o.t.}\right)$$

$$k \neq l \Rightarrow d_n \simeq d_{\infty}^n$$

 $k = l \Rightarrow \begin{cases} \deg(A_l) = 0 & d_n \simeq d_{\infty}^n \\ \deg(A_l) \ge 1 & d_n \simeq nd_{\infty}^n \end{cases}$

Definition

P is a skew product iff $\phi^{-1} \circ P \circ \phi(x, y)$ preserves $\{x = \text{cte}\}$

•
$$P^n = \left(x^{k^n} + 1.\text{o.t.}, \prod_{j=0}^{n-1} A_l(Q^j(x)) y^{l^n} + 1.\text{o.t.}\right)$$

$$k \neq I \Rightarrow d_n \simeq d_{\infty}^n$$
 $k = I \Rightarrow \begin{cases} \deg(A_I) = 0 & d_n \simeq d_{\infty}^n \\ \deg(A_I) \ge 1 & d_n \simeq nd_{\infty}^n \end{cases}$

Statements

Theorem (Favre-Jonsson, 2004)

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

Then $d_{\infty}^2 = ad_{\infty} + b$, $a, b \in \mathbb{Z}$.

- Either $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$
- Or P is a skew product

$$g_n = \frac{1}{d_\infty^n} \log \|P^n(z)\| \longrightarrow g \not\equiv 0$$

$$(g(z)-\varepsilon)^{d_{\infty}^n}\lesssim \|P^n(z)\|\lesssim (g(z)+\varepsilon)^{d_{\infty}^n}\;,\;on\;\Omega=\{g>0\}\;.$$

Statements

Theorem (Favre-Jonsson, 2004)

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

Then $d_{\infty}^2 = ad_{\infty} + b$, $a, b \in \mathbb{Z}$.

- Either $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$
- Or P is a skew product

$$g_n = \frac{1}{d_{\infty}^n} \log \|P^n(z)\| \longrightarrow g \not\equiv 0$$

$$(g(z)-\varepsilon)^{d_{\infty}^n}\lesssim \|P^n(z)\|\lesssim (g(z)+\varepsilon)^{d_{\infty}^n}\;,\;on\;\Omega=\{g>0\}\;.$$

Statements

Theorem (Favre-Jonsson, 2004)

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

Then $d_{\infty}^2 = ad_{\infty} + b$, $a, b \in \mathbb{Z}$.

- Either $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$
- Or P is a skew product

$$g_n = \frac{1}{d_{\infty}^n} \log \|P^n(z)\| \longrightarrow g \not\equiv 0$$

$$(g(z)-\varepsilon)^{d_{\infty}^n}\lesssim \|P^n(z)\|\lesssim (g(z)+\varepsilon)^{d_{\infty}^n}\;,\;on\;\Omega=\{g>0\}\;.$$

Statements

Theorem (Favre-Jonsson, 2004)

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

Then $d_{\infty}^2 = ad_{\infty} + b$, $a, b \in \mathbb{Z}$.

- Either $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$
- Or P is a skew product

$$g_n = \frac{1}{d_\infty^n} \log \|P^n(z)\| \longrightarrow g \not\equiv 0$$

$$(g(z)-\varepsilon)^{d_{\infty}^n}\lesssim \|P^n(z)\|\lesssim (g(z)+\varepsilon)^{d_{\infty}^n}\;,\;on\;\Omega=\{g>0\}\;.$$

Statements

Theorem (Favre-Jonsson, 2004)

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

Then $d_{\infty}^2 = ad_{\infty} + b$, $a, b \in \mathbb{Z}$.

- Either $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$
- Or P is a skew product

$$g_n = \frac{1}{d_{\infty}^n} \log \|P^n(z)\| \longrightarrow g \not\equiv 0.$$

$$(g(z)-\varepsilon)^{d_{\infty}^n}\lesssim \|P^n(z)\|\lesssim (g(z)+\varepsilon)^{d_{\infty}^n}, \text{ on }\Omega=\{g>0\}$$

Statements

Theorem (Favre-Jonsson, 2004)

 $P: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

Then $d_{\infty}^2 = ad_{\infty} + b$, $a, b \in \mathbb{Z}$.

- Either $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$
- Or P is a skew product

$$g_n = \frac{1}{d_{\infty}^n} \log \|P^n(z)\| \longrightarrow g \not\equiv 0.$$

$$(g(z)-\varepsilon)^{d_{\infty}^n}\lesssim \|P^n(z)\|\lesssim (g(z)+\varepsilon)^{d_{\infty}^n}\;,\; on\;\Omega=\{g>0\}\;.$$

- Outside Ω, pts may tend to infinity, at different speed (Dinh-Dujardin-Sibony)
- g continuous $\Rightarrow \Omega$ is open
- $T = dd^cg$ current \rightarrow construction of invariant measure.

- Outside Ω, pts may tend to infinity, at different speed (Dinh-Dujardin-Sibony)
- g continuous $\Rightarrow \Omega$ is open
- $T = dd^cg$ current \rightarrow construction of invariant measure.

- Outside Ω, pts may tend to infinity, at different speed (Dinh-Dujardin-Sibony)
- g continuous $\Rightarrow \Omega$ is open
- $T = dd^c g$ current \rightarrow construction of invariant measure.

- Outside Ω, pts may tend to infinity, at different speed (Dinh-Dujardin-Sibony)
- g continuous $\Rightarrow \Omega$ is open
- $T = dd^cg$ current \rightsquigarrow construction of invariant measure.

Main idea

Look at the action of F on the set of valuations on $\mathbb{C}[x,y]$ centered at infinity

- Explain why this is the right thing to do!
- Have to desingularize the map at infinity!

Main idea

Look at the action of F on the set of valuations on $\mathbb{C}[x,y]$ centered at infinity

- Explain why this is the right thing to do!
- Have to desingularize the map at infinity!

Main idea

Look at the action of F on the set of valuations on $\mathbb{C}[x,y]$ centered at infinity

- Explain why this is the right thing to do!
- Have to desingularize the map at infinity!

Why $d_{n+m} < d_n \times d_m$?

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0:1:0]\}$ $P\{t=0\} = [0:1:0]$

Why $d_{n+m} < d_n \times d_m$?

• Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$

$$P: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$

•
$$P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$$
?

• $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0:1:0]\}$ $P\{t=0\} = [0:1:0]$

Why $d_{n+m} < d_n \times d_m$?

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P \cdot \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0:1:0]\}$ $P\{t=0\} = [0:1:0]$

Why $d_{n+m} < d_n \times d_m$?

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P \cdot \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0:1:0]\}$ $P\{t=0\} = [0:1:0]$

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}.... (P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P(x,y) = (y^2, x^3), d_1 = 3, d_2 = 6$ • $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$ • P[x:y:t] = [0:1:0]• P[t=0] = [0:1:0]

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}.... (P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P(x,y) = (y^2, x^3), d_1 = 3, d_2 = 6$
 - $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0:1:0]\}$ P[t=0] = [0:1:0]

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}.... (P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P(x,y) = (y^2, x^3), d_1 = 3, d_2 = 6$ $P[x:y:t] = [y^2t:x^3:t^3], d_1 = 3, d_2 = 6$

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P[x : y : t] = [y^2t : x^3 : t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0 : 1 : 0]\}$ $P\{t = 0\} = [0 : 1 : 0]$

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P[x : y : t] = [y^2t : x^3 : t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0 : 1 : 0]\}$ $P\{t = 0\} = [0 : 1 : 0]$

- Compactification: $\mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty}$ $P \cdot \mathbb{C}^2 \longrightarrow \mathbb{C}^2$
- $P^*L_{\infty} = d_1L_{\infty}....(P^2)^*L_{\infty} \neq P^*P^*L_{\infty}$?
- $P[x : y : t] = [y^2t : x^3 : t^3], d_1 = 3, d_2 = 6$ $I_P = \{[0 : 1 : 0]\}$ $P\{t = 0\} = [0 : 1 : 0]$

On surfaces

$$X \xrightarrow{f} Y \xrightarrow{g} Z \supset C$$

•
$$f^*g^*C = (g \circ f)^*C$$
 outside $f^{-1}I_g \cup I_f$

• Codim
$$f^{-1}I_g = 2 \Rightarrow f^*g^* = (g \circ f)^*$$

On surfaces

$$X \xrightarrow{f} Y \xrightarrow{g} Z \supset C$$

•
$$f^*g^*C = (g \circ f)^*C$$
 outside $f^{-1}I_g \cup I_f$

• Codim
$$f^{-1}I_g = 2 \Rightarrow f^*g^* = (g \circ f)^*$$

On surfaces

$$X \xrightarrow{f} Y \xrightarrow{g} Z \supset C$$

•
$$f^*g^*C = (g \circ f)^*C$$
 outside $f^{-1}I_g \cup I_f$

• Codim
$$f^{-1}I_g = 2 \Rightarrow f^*g^* = (g \circ f)^*$$

On surfaces

$$X \xrightarrow{f} Y \xrightarrow{g} Z \supset C$$

•
$$f^*g^*C = (g \circ f)^*C$$
 outside $f^{-1}I_g \cup I_f$

• Codim
$$f^{-1}I_g = 2 \Rightarrow f^*g^* = (g \circ f)^*$$

On surfaces

$$X \xrightarrow{f} Y \xrightarrow{g} Z \supset C$$

•
$$f^*g^*C = (g \circ f)^*C$$
 outside $f^{-1}I_g \cup I_f$

• Codim
$$f^{-1}I_g = 2 \Rightarrow f^*g^* = (g \circ f)^*$$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^* : \operatorname{Pic}(X) \to \operatorname{Pic}(X) \simeq H^2(X, \mathbb{Z})$$

 $P^{*n} = P^{n*}$

•
$$d_{\infty} \in \overline{\mathbb{Q}}$$
, $d_n \simeq n^k d_n^n$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^*$$
: Pic $(X) \to$ Pic $(X) \simeq H^2(X, \mathbb{Z})$

- $d_{\infty} \in \overline{\mathbb{Q}}$, $d_{\infty} \sim n^k d^k$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^*$$
: Pic $(X) \rightarrow$ Pic $(X) \simeq H^2(X, \mathbb{Z})$
 $P^{*n} = P^{n*}$

• $d_{\infty} \in \overline{\mathbb{Q}}$, $d_{n} \sim n^{k} d^{n}$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

- P^* : Pic $(X) \rightarrow$ Pic $(X) \simeq H^2(X, \mathbb{Z})$ $P^{*n} = P^{n*}$
- $\pi_*(P^*)^n\pi^*L_\infty$
- $d_{\infty} \in \overline{\mathbb{Q}}$, $d_n \simeq n^k d_{\infty}^n$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^* : \operatorname{Pic}(X) \to \operatorname{Pic}(X) \simeq H^2(X, \mathbb{Z})$$

 $P^{*n} = P^{n*}$

•
$$\pi_*(P^*)^n \pi^* L_{\infty} = \pi_* P^{n*} \pi^* L_{\infty}$$

•
$$d_{\infty} \in \mathbb{Q}$$
, $d_n \simeq n^k d_{\infty}^n$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^*$$
: Pic $(X) \rightarrow$ Pic $(X) \simeq H^2(X, \mathbb{Z})$
 $P^{*n} = P^{n*}$

•
$$\pi_*(P^*)^n \pi^* L_\infty = \deg(P^n) L_\infty$$

•
$$d_{\infty} \in \overline{\mathbb{Q}}$$
, $d_n \simeq n^k d_{\infty}^n$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^* : \operatorname{Pic}(X) \to \operatorname{Pic}(X) \simeq H^2(X, \mathbb{Z})$$

 $P^{*n} = P^{n*}$

•
$$\pi_*(P^*)^n \pi^* L_\infty = \deg(P^n) L_\infty$$

•
$$d_{\infty} \in \overline{\mathbb{Q}}$$
, $d_n \simeq n^k d_{\infty}^n$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^*$$
: Pic $(X) \rightarrow$ Pic $(X) \simeq H^2(X, \mathbb{Z})$
 $P^{*n} = P^{n*}$

•
$$\pi_*(P^*)^n \pi^* L_\infty = \deg(P^n) L_\infty$$

$$oldsymbol{\phi} d_{\infty} \in \overline{\mathbb{Q}}, \ d_{n} \simeq n^{k} d_{\infty}^{n}$$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

•
$$P^*$$
: Pic $(X) \rightarrow$ Pic $(X) \simeq H^2(X, \mathbb{Z})$
 $P^{*n} = P^{n*}$

•
$$\pi_*(P^*)^n \pi^* L_\infty = \deg(P^n) L_\infty$$

$$oldsymbol{\phi} d_{\infty} \in \overline{\mathbb{Q}}, \ d_{n} \simeq n^{k} d_{\infty}^{n}$$

Suppose there exists $\pi: X \to \mathbb{P}^2$ s.t. $\forall C \subset \pi^{-1}(L_\infty)$, $P^n(C) \not\subset I_P$.

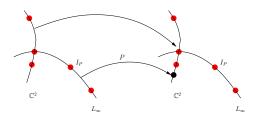
•
$$P^*$$
: Pic $(X) \rightarrow$ Pic $(X) \simeq H^2(X, \mathbb{Z})$
 $P^{*n} = P^{n*}$

•
$$\pi_*(P^*)^n \pi^* L_\infty = \deg(P^n) L_\infty$$

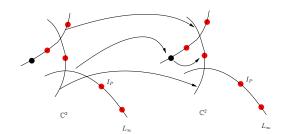
Example



Example



Example



Conclusive remarks

Understand the dynamics of P on the set of irreducible curves C centered at infinity $\pi: X \to \mathbb{P}^2, \ C \subset \pi^{-1}(L_{\infty})$

- Identify $C \leadsto \operatorname{div}_C : \mathbb{C}[x,y] \to \mathbb{R}$
- V_{div} = {Divisorial valuations on C[x, y] centered at infinity i.e. ν(φ) < 0 for some φ}
- $P_*\nu(\phi) = \nu(\phi \circ P)$

- Identify $C \leadsto \operatorname{div}_C : \mathbb{C}[x,y] \to \mathbb{R}$ $L_{\infty} \leadsto -\operatorname{deg}$
- V_{div} = {Divisorial valuations on C[x, y] centered at infinity i.e. ν(φ) < 0 for some φ}
- $P_*\nu(\phi) = \nu(\phi \circ P)$

- Identify $C \rightsquigarrow \operatorname{div}_C : \mathbb{C}[x,y] \to \mathbb{R}$ $L_{\infty} \rightsquigarrow -\operatorname{deg}$
- $\mathcal{V}_{\mathrm{div}} = \{ \mathrm{Divisorial} \ \mathrm{valuations} \ \mathrm{on} \ \mathbb{C}[x,y] \ \mathrm{centered} \ \mathrm{at} \ \mathrm{infinity} \ \mathrm{i.e.} \ \nu(\phi) < 0 \ \mathrm{for} \ \mathrm{some} \ \phi \}$
- $P_*\nu(\phi) = \nu(\phi \circ P)$

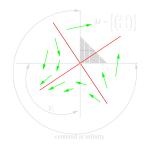
- Identify $C \rightsquigarrow \operatorname{div}_C : \mathbb{C}[x,y] \to \mathbb{R}$ $L_{\infty} \leadsto -\operatorname{deg}$
- $V_{\text{div}} = \{ \text{Divisorial valuations on } \mathbb{C}[x, y] \text{ centered at infinity i.e. } \nu(\phi) < 0 \text{ for some } \phi \}$
- $P_*\nu(\phi) = \nu(\phi \circ P)$

- Identify $C \leadsto \operatorname{div}_C : \mathbb{C}[x,y] \to \mathbb{R}$ $L_{\infty} \leadsto -\operatorname{deg}$
- $V_{\text{div}} = \{ \text{Divisorial valuations on } \mathbb{C}[x, y] \text{ centered at infinity i.e. } \nu(\phi) < 0 \text{ for some } \phi \}$
- $P_*\nu(\phi) = \nu(\phi \circ P)$

$$P(x,y) = (x^a y^b, x^c y^d)$$

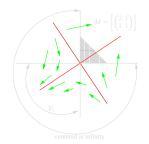
•
$$\nu_{s,t}$$
 monomial with $\nu_{s,t}(x) = s$, $\nu_{s,t}(y) = t$

•
$$\nu_{s,t} \in \mathcal{V}_{\text{div}} \Leftrightarrow s/t \in \mathbb{Q}$$



$$P(x,y) = (x^a y^b, x^c y^d)$$

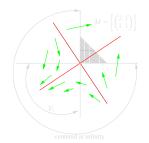
- $\nu_{s,t}$ monomial with $\nu_{s,t}(x) = s$, $\nu_{s,t}(y) = t$
- $\nu_{s,t} \in \mathcal{V}_{\mathrm{div}} \Leftrightarrow s/t \in \mathbb{Q}$



$$P(x,y) = (x^a y^b, x^c y^d)$$

•
$$\nu_{s,t}$$
 monomial with $\nu_{s,t}(x) = s$, $\nu_{s,t}(y) = t$

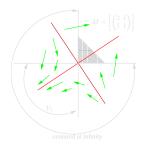
•
$$\nu_{s,t} \in \mathcal{V}_{\text{div}} \Leftrightarrow s/t \in \mathbb{Q}$$



$$P(x,y) = (x^a y^b, x^c y^d)$$

•
$$\nu_{s,t}$$
 monomial with $\nu_{s,t}(x) = s$, $\nu_{s,t}(y) = t$

•
$$\nu_{s,t} \in \mathcal{V}_{\mathrm{div}} \Leftrightarrow s/t \in \mathbb{Q}$$

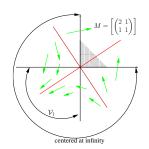


$$P(x,y) = (x^a y^b, x^c y^d)$$

•
$$\nu_{s,t}$$
 monomial with $\nu_{s,t}(x) = s$, $\nu_{s,t}(y) = t$

•
$$\nu_{s,t} \in \mathcal{V}_{\mathrm{div}} \Leftrightarrow s/t \in \mathbb{Q}$$

$$\bullet \quad \begin{pmatrix} s \\ t \end{pmatrix} \xrightarrow{P_*} \begin{pmatrix} as + bt \\ cs + dt \end{pmatrix}$$



Definition of the valuation space

$$\mathcal{V}_1 = \{ \nu : \mathbb{C}[x, y] \to \mathbb{R}, \}$$

Fact

Define $P_*\nu(\phi) = \nu(\phi \circ P)$. Then $P_*(\mathcal{V}_1) \subset \mathcal{V}_2$

$$\mathcal{V}_1 = \{ \nu : \mathbb{C}[x, y] \to \mathbb{R}, \, \forall \phi, \, \nu(\phi) < 0 \}$$

Fact

Define
$$P_*\nu(\phi) = \nu(\phi \circ P)$$
. Then $P_*(\mathcal{V}_1) \subset \mathcal{V}_2$

$$\mathcal{V}_1 = \{ \nu : \mathbb{C}[x, y] \to \mathbb{R}, \, \forall \phi, \, \nu(\phi) < 0, \, A(\nu) < 0 \}$$

Fact

Define
$$P_*\nu(\phi) = \nu(\phi \circ P)$$
. Then $P_*(\mathcal{V}_1) \subset \mathcal{V}_1$

$$\mathcal{V}_1 = \overline{\{\nu : \mathbb{C}[x,y] \to \mathbb{R}, \, \forall \phi, \, \nu(\phi) < 0, \, A(\nu) < 0\}}$$

Fact

Define
$$P_*\nu(\phi) = \nu(\phi \circ P)$$
. Then $P_*(\mathcal{V}_1) \subset \mathcal{V}_1$

$$\mathcal{V}_1 = \overline{\{\nu : \mathbb{C}[x,y] \to \mathbb{R}, \, \forall \phi, \, \nu(\phi) < 0, \, A(\nu) < 0\}}$$

Fact

Define $P_*\nu(\phi) = \nu(\phi \circ P)$. Then $P_*(\mathcal{V}_1) \subset \mathcal{V}_1$

Eigenvaluation

Theorem (Eigenvaluation)

 $P_*\nu = \lambda \nu$ for some $\nu \in \mathcal{V}_1$

Theorem

Suppose $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is associated to a rational fibration.

Eigenvaluation

Theorem (Eigenvaluation)

 $P_*\nu = \lambda \nu$ for some $\nu \in \mathcal{V}_1$

Theorem

Suppose $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is associated to a rational fibration

Eigenvaluation

Theorem (Eigenvaluation)

 $P_*\nu = \lambda \nu$ for some $\nu \in \mathcal{V}_1$

Theorem

Suppose $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is associated to a rational fibration.

First consequences

• ν associated to a rational fibration $\Rightarrow P$ is a skew product

First consequences

• ν associated to a rational fibration \Rightarrow P is a skew product

- ν associated to a rational fibration \Rightarrow P is a skew product
- $C_1P_*^n(-\deg) \le P_*^n \nu \le C_2P_*^n(-\deg)$

$$C \le \frac{\deg(P^n)}{\lambda^n} \le C' \qquad \forall n$$

- ν associated to a rational fibration \Rightarrow P is a skew product
- $C_1P_*^n(-\deg) \le \lambda^n \nu \le C_2P_*^n(-\deg)$

$$C \le \frac{\deg(P^n)}{\lambda^n} \le C' \qquad \forall n$$

ν associated to a rational fibration ⇒ P is a skew product

•
$$C_1P_*^n(-\deg)\langle x,y\rangle \leq \lambda^n\nu\langle x,y\rangle \leq C_2P_*^n(-\deg)\langle x,y\rangle$$

$$C \le \frac{\deg(P^n)}{\lambda^n} \le C' \qquad \forall n$$

ν associated to a rational fibration ⇒ P is a skew product

•
$$C_1(-\deg)\langle x \circ P^n, y \circ P^n \rangle \le \lambda^n \nu \langle x, y \rangle \le C_2(-\deg)\langle x \circ P^n, y \circ P^n \rangle$$

$$C \le \frac{\deg(P^n)}{\lambda^n} \le C' \qquad \forall n$$

 • v associated to a rational fibration ⇒ P is a skew product

•
$$C_1(-\deg)\langle x \circ P^n, y \circ P^n \rangle \le \lambda^n \nu \langle x, y \rangle \le C_2(-\deg)\langle x \circ P^n, y \circ P^n \rangle$$

$$C \leq \frac{\deg(P^n)}{\lambda^n} \leq C' \qquad \forall n$$

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V_1 Based on Key Polynomials
- d_{∞} quadratic integer?... monomialization result \Leftrightarrow desingularization of dynamical system

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V_1 Based on Key Polynomials
- d_{∞} quadratic integer?... monomialization result \Leftrightarrow desingularization of dynamical system

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V_1 Based on Key Polynomials
- d_{∞} quadratic integer?... monomialization result \Leftrightarrow desingularization of dynamical system

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V₁
 Based on Key Polynomials
- d_{∞} quadratic integer?... monomialization result \Leftrightarrow desingularization of dynamical system

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V₁
 Based on Key Polynomials
- d_∞ quadratic integer?...
 monomialization result ⇔ desingularization of dynamical
 system

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V₁
 Based on Key Polynomials
- d_∞ quadratic integer?...
 monomialization result ⇔ desingularization of dynamical system

Geometry of V_1

- First theorem: fixed pt theorem on tree
- Second theorem: structure result for valuation in V₁
 Based on Key Polynomials
- d_{∞} quadratic integer?... monomialization result \Leftrightarrow desingularization of dynamical system

- lacktriangledown geometry of \mathcal{V}_1
- 2 global results for valuations in V_1
- fixed point thm
- desingularization of polynomial maps.

- lacktriangledown geometry of \mathcal{V}_1
- 2 global results for valuations in V_1
- fixed point thm
- desingularization of polynomial maps.

- lacktriangledown geometry of \mathcal{V}_1
- 2 global results for valuations in V_1
- fixed point thm
- desingularization of polynomial maps.

- lacktriangledown geometry of \mathcal{V}_1
- 2 global results for valuations in V_1
- fixed point thm
- desingularization of polynomial maps.