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The setting
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Introduction

The setting

P : C? — C? polynomial
@ dominant < P(C?) =C?\ Z, Z alg. curve < Jac(P) # 0
@ Not necessarily proper
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Introduction

Dynamical problem

@ Describe {P"(z)}n>o for all z
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Introduction

Dynamical problem

@ Describe {P"(z)}n>o for most z
@ Describe B = {z, P"(z) — oo}
@ Speed: {|P"(2)|}nen
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0 Introduction

9 Behaviour at oo (no iteration)
Q Dynamical heuristic

e Statements

e A first approach

e Action on valuation space

@ Next
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Behaviour at oo (no iteration)

@ P=Py+Py+---+ Py,
P; : C? — C? homogeneous of degree i.
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Behaviour at oo (no iteration)

@ P=Py+Py+---+ Py,
P; : C? — C? homogeneous of degree i.

© [|z] == 1+ max{|x], |y}
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Behaviour at oo (no iteration)

@ P=Py+Py+---+ Py,
P; : C? — C? homogeneous of degree i.

® |lz|| := 1+ max{|x], |y[}
@ ||P(2)|| < Cz||z||? everywhere
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Behaviour at oo (no iteration)

@ P=Py+Py+---+ Py,
P; : C? — C? homogeneous of degree i.

® 2] := 1+ max{|x|,|y[}
@ ||P(2)|| < Cz||z||? everywhere
@ Ci||z||? < ||P(2)|| on the cone Q := {z, |Py(2)| > ¢|z|9}
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Behaviour at oo (no iteration)

Examples

° P=Py=(x.y),

amics and valuations
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Behaviour at oo (no iteration)

Examples

e P— (xd,yd—1),

Iyl
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Behaviour at oo (no iteration)

Examples

@ P=(x9y9 "), Py =(x9,0),

Iyl
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Behaviour at oo (no iteration)

Examples

‘”‘ @ P=(x9y9 "), Py =(x9,0),

Q=C?

Q= {|x| = elyl}
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Behaviour at oo (no iteration)

Examples

[ e P— (deyd—1)’ Pd _ (Xd,O),

Q= {|x| = elyl}

0 P =((x+y)x? 1 (x+y)yd"),
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Behaviour at oo (no iteration)

Examples

[ e P— (deyd—1)’ Pd _ (Xd,O),

Q= {|x| = elyl}

0 P =((x+y)x? 1 (x+y)yd"),

Q=A{lx+yl=elxyl}
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Dynamical heuristic

A few iterations

e nfixed, d, := deg(P")
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Dynamical heuristic

A few iterations

e nfixed, d, := deg(P")

d
C1,nHZH°'”i < P2 < Canllz]® -

n inC
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Dynamical heuristic

A few iterations

e nfixed, d, := deg(P")

d
C1,nHZH°'”i < P2 < Canllz]® -

n inC

o dn+m S dn X dm
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Dynamical heuristic

A few iterations

e nfixed, d, := deg(P")

d
C1,nHZH°'”i < P2 < Canllz]® -

n inC

o dn+m S dn X dm

Definition (Dynamical degree)

oo = limpdp/" > 1
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Dynamical heuristic

A few iterations

e nfixed, d, := deg(P")

d
C1,nHZH°'”i < P2 < Canllz]® -

n inC

o dn+m S dn X dm

Definition (Dynamical degree)

dw = limpd}/™ > 1

Ooo(¥1 0 Potp) = du(P), ¥ : C? — C? birational.




Dynamical heuristic

Our hope

@ dy~dl?
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Dynamical heuristic

® dy~dn?

0 Q= #0?
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Dynamical heuristic

@ dy~dl?
e Q=N #0?
@ Uniform constant Cy p, Co n?
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Dynamical heuristic

@ dy~dl?

e Q=N #0?

@ Uniform constant Cy p, Co n?
If YES, then
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Dynamical heuristic

@ dy~dl?

e Q=N #0?

@ Uniform constant Cy p, Co n?
If YES, then

(CillzI)? < [P"(2)]| < (Callz]l)= .
inQ in C2
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Dynamical heuristic

Examples

@ P=(x%y% +1lo.t,
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Dynamical heuristic

Examples

@ P=(x9%y9) + Lot dy=d",
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Dynamical heuristic

Examples

@ P=(x9%y9) + Lot dy=d",

(Cillz)”" < IP"(2)Il < (Callz]))"
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Dynamical heuristic

Examples

@ P=(x9%y9) + Lot dy=d",
(CillzT < IP"(2)] < (Callz])*

C? \ Q compact
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Dynamical heuristic

Examples

@ P=(x9%y9) + Lot dy=d",
(CillzT < IP"(2)] < (Callz])*

C? \ Q compact
@ P=(x>+y+c x),
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Dynamical heuristic

Examples

@ P=(x9%y9) + Lot dy=d",
(CillzT < IP"(2)] < (Callz])*

C? \ Q compact
@ P=(x2+y+cx),d,=2",
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Dynamical heuristic

Examples

@ P=(x9%y9) + Lot dy=d",
(CillzT < IP"(2)] < (Callz])*

C? \ Q compact
@ P=(x2+y+cx),d,=2",

C2\ Q unbounded
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Dynamical heuristic

Monomial maps

a ¢
[y ° M: (b d)

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

a ¢
[y ° M: (b d)

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

-3 9
@ P'(z)=zM",

@ dy =max{a+ b,c+d}
°

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

o M= (2 2)
@ P'(z)=zM",

("] dn — maX{an + bn, Cn + dn}
o

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

a c
° M= (b d)
@ P'(z)=zM",
@ d., = p(M) (quadratic)
@ M- (vq,v2) = dw(vy, Vo)

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

a c
° M= (b d)
@ P'(z)=zM",
@ d., = p(M) (quadratic)
o M- (vi,v2) = dso(vy, V2)
Q= {|x["]yl"> > 1}

When d2, > [det(M))]
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Dynamical heuristic

Monomial maps

@ d., = p(M) (quadratic)
o M- (vi,v2) = dso(vy, V2)
Q= {|x["]y["> > 1}
x| ly|*2 o P = (|x|"|y|*2)%

When d2, > [det(M))]
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Dynamical heuristic

Skew products

Definition
P is a skew product iff it preserves a rational fibration of P?
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Dynamical heuristic

Skew products

Definition

P is a skew product iff ¢~' o Po ¢(x, y) preserves {x = cte}
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Dynamical heuristic

Skew products

Definition
P is a skew product iff ¢~' o Po ¢(x, y) preserves {x = cte}

® P=(Q(x),R(x,y))
o
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Dynamical heuristic

Skew products

Definition
P is a skew product iff ¢~' o Po ¢(x, y) preserves {x = cte}

o P = (xk+o(xk),A(x)y' + ox(y"))
o
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Dynamical heuristic

Skew products

Definition
P is a skew product iff ¢~' o Po ¢(x, y) preserves {x = cte}

° PT= (an +1Lot, [T A(Q(x)) y" + 1.0.t>
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Dynamical heuristic

Skew products

Definition
P is a skew product iff ¢~' o Po ¢(x, y) preserves {x = cte}

° Pr= (an +1Lot, [T A(Q(x)) y" + 1.0.t>
e d., = max{k, I}
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Dynamical heuristic

Skew products

Definition
P is a skew product iff ¢~' o Po ¢(x, y) preserves {x = cte}

° Pr= (an +Lot, [T75 A(QI(x) y" + 1.0.t>
e d., = max{k, I}
k#1 = dy~dl

— ~ n
ke[ — deg(A)) =0 dp~dl
deg(A)) >1 dp~ndl
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Statements

Statements

Theorem (Favre-Jonsson, 2004)

P . C? — C? polynomial, dominant.
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Statements

Theorem (Favre-Jonsson, 2004)

P . C? — C? polynomial, dominant.
Thend? = ad,, + b, a,b € Z.
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Statements

Statements

Theorem (Favre-Jonsson, 2004)

P . C? — C? polynomial, dominant.
Thend? = ad,, + b, a,b € Z.

@ Eitherd <d, < C-d
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Statements

Statements

Theorem (Favre-Jonsson, 2004)
P . C? — C? polynomial, dominant.
Thend? = ad,, + b, a,b € Z.

@ Eitherd <d, < C-d

@ Or P is a skew product
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Statements

Statements

Theorem (Favre-Jonsson, 2004)

P . C? — C? polynomial, dominant.
Thend? = ad,, + b, a,b € Z.

@ Eitherd <d, < C-d
@ Or P is a skew product

Theorem (Speed estimates)

-
Gh = an log [|P"(2)]| — g #0.
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Statements

Statements

Theorem (Favre-Jonsson, 2004)

P . C? — C? polynomial, dominant.
Thend? = ad,, + b, a,b € Z.

@ Eitherd <d, < C-d
@ Or P is a skew product

Theorem (Speed estimates)

-
Gh = an log [|P"(2)]| — g #0.

(9(2) - ) < IP"(2)] S (9(2) + &)™ , onQ = {g > 0} .




Statements

Remarks

@ Outside Q, pts may tend to infinity,
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Remarks

@ Outside Q, pts may tend to infinity, at different speed
(Dinh-Dujardin-Sibony)
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Statements

Remarks

@ Outside Q, pts may tend to infinity, at different speed
(Dinh-Dujardin-Sibony)
@ g continuous = Q2 is open
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Statements

Remarks

@ Outside Q, pts may tend to infinity, at different speed
(Dinh-Dujardin-Sibony)

@ g continuous = Q2 is open

@ T = dd®g current ~ construction of invariant measure.
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A first approach

Main idea

Look at the action of F on the set of valuations on Cl[x, y|
centered at infinity
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A first approach

Main idea

Look at the action of F on the set of valuations on Cl[x, y|
centered at infinity

@ Explain why this is the right thing to do!
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A first approach

Main idea

Look at the action of F on the set of valuations on Cl[x, y|
centered at infinity

@ Explain why this is the right thing to do!
@ Have to desingularize the map at infinity!
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A first approach

Sequence of degrees

Why dpsm < A X dim?
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A first approach

Sequence of degrees

Why dhim < dy X dm?
@ Compactification: P? = C?2 U L,
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A first approach

Sequence of degrees

Why dhim < dy X dm?
@ Compactification: P? = C?2 U L,
P:C?--»C?
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A first approach

Sequence of degrees

Why dhim < dy X dm?
@ Compactification: P? = C?2 U L,
P:C?--»C?
° Pl —=diL...
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A first approach

Sequence of degrees

@ Compactification: P? = C2 U L,
P:C2--»C?
0 Pl =diLo... (P?) Lo # P*P*Lo0?
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A first approach

Sequence of degrees

Why dhim < dp X dm?
@ Compactification: P? = C2 U L,
P:C2--»C?
0 Pl =diLo... (P?) Lo # P*P*Lo0?
® P(x,y) = (y2.x°),
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A first approach

Sequence of degrees

Why dhim < dp X dm?
@ Compactification: P? = C2 U L,
P:C2--»C?
0 Pl = dile.... (P?)*Loo # P*P*L.0?
@ P(x,y)=(¥?x%), dy =3, db =6
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A first approach

Sequence of degrees

Why 0him < dp X dm?
@ Compactification: P? = C?2 U L,
P:C?--»C?
0 Pl = dile.... (P?) Loy # P*P*Lo0?
@ Plx:y:tl=[y’t:x3:t%, dy =8, db=6
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A first approach

Sequence of degrees

Why 0him < dp X dm?
@ Compactification: P? = C?2 U L,
P:C?--»C?
0 Pl = dile.... (P?) Loy # P*P*Lo0?
@ Plx:y:tl=[y’t:x3:t%, dy =8, db=6
Ip={[0:1:0]}
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A first approach

Sequence of degrees

Why dpim < dn X dm?
@ Compactification: P? = C?2 U L,
P:C2--5C?
0 Pl = chLoo... (P2)*Lo # P*P*Lo0?
@ Plx:y:tl=[y’t:x3:t%, dy =8, db=6
Ip={[0:1:0]}
P{t=0}=1[0:1:0]

Charles Favre Dynamics and valuations



A first approach

On surfaces

e XLy 9. 7z5¢C
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A first approach

On surfaces

exLvLz5c
@ f*g*C = (gof)*Coutside f ;U
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A first approach

On surfaces

exLvLz5c
@ f*g*C = (gof)*Coutside f ;U
° Codimf71lg:2:>
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A first approach

On surfaces

exLvLz5c
@ f*g*C = (gof)*Coutside f ;U
@ Codimf~'ly=2= f*g* = (gof)*
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A first approach

On surfaces

oxLyvyLzsc

@ f*g*C = (gof)*Coutside f ;U

@ Codimf~'ly=2= f*g* = (gof)*

@ Otherwise f(C) € I, for some curve C.
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
P*n — Pn*
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
P*n — Pn*
@ 7. (P*)"m* Lo
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),

P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
P*n — Pn*
@ 7 (P*)'m* Lo = M P™1* Lo
o
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),

P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
pxn — pnx
@ 1. (P*)"m* Lo = deg(P") L
°
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),

P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
pxn — pnx
@ 1. (P*)"m* Lo = deg(P") L
® ds €Q,
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
P*n — Pn*
@ 1. (P*)"m* L = deg(P") L
° do€Q
dp ~ nkdl,
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A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
P*n — Pn*
@ 1. (P*)"m* L = deg(P") L
° do€Q
dp ~ nkdl,

It works...

Charles Favre Dynamics and valuations



A first approach

Strategy |

Suppose there exists 7 : X — P2 s.t. VC € 7" (Lyo),
P"(C) ¢ Ip.
@ P*: Pic(X) — Pic(X) ~ H3(X,Z)
P*n — Pn*
@ 1. (P*)"m* L = deg(P") L
° do€Q
dp ~ nkdl,

It works... only for birational maps! (Diller-Favre)
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A first approach
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A first approach

2 c

amics and valuations



A first approach

Conclusive remarks

Understand the dynamics of P on the set of irreducible curves
C centered at infinity 7 : X — P2, C € 77" (Lwo)
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Action on valuation space

@ Identify C ~~ divg : C[x,y] = R
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Action on valuation space

@ Identify C ~~ divg : C[x,y] = R
Ly ~~ —deg

Charles Favre Dynamics and valuations



Action on valuation space

@ Identify C ~~ divg : C[x,y] = R
Ly ~~ —deg
@ V4iv = {Divisorial valuations on C|x, y] centered at infinity
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Action on valuation space

@ Identify C ~~ divg : C[x,y] = R
Ly ~~ —deg

@ V4iv = {Divisorial valuations on C|x, y] centered at infinity
i.e. v(¢) < 0 for some ¢}
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Action on valuation space

@ Identify C ~~ divg : C[x,y] = R
Ly ~~ —deg

@ V4iv = {Divisorial valuations on C|x, y] centered at infinity
i.e. v(¢) < 0 for some ¢}

® P.(¢) =v(poP)

Charles Favre Dynamics and valuations



Action on valuation space

Monomial maps

P(x,y) = (x3yP, x¢y9)
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Action on valuation space

Monomial maps

P(x,y) = (x2yP, xcy)
@ v5 monomial with
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Action on valuation space

Monomial maps

P(x,y) = (xy®, x°y)
@ vs: monomial with vg (X) = s, vs¢(y) = t
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Action on valuation space

Monomial maps

P(x,y) = (xy®, x°y)
@ vs: monomial with vg (X) = s, vs¢(y) = t

@ vst € Viy & S/t Q \/
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Action on valuation space

Monomial maps

P(x,y) = (x3yP, x¢y9)

@ vs: monomial with vg (X) = s, vs¢(y) = t

(*] VSVtEVdiv@S/tEQ

o s\ P. as + bt
t cs + dt

Charles Favre

Dynamics and valuations

centered at infinity



Action on valuation space

Definition of the valuation space

Vi = {v:Clx.y] - R,)
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Action on valuation space

Definition of the valuation space

Vi ={v:Clx,y] — R, V¢, v(¢) < 0}
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Action on valuation space

Definition of the valuation space

Vi ={v:Clx,y] — R, Vo, v(¢) <0, A(v) < 0}
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Action on valuation space

Definition of the valuation space

Vi ={v:Clx,y] — R, Vo, v(¢) <0, A(v) < 0}
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Action on valuation space

Definition of the valuation space

Vi ={v:Clx,y] — R, Vo, v(¢) <0, A(v) < 0}

Define P.v(¢) = v(¢ o P). Then P.(Vy) C V4

Charles Favre Dynamics and valuations



Action on valuation space

Eigenvaluation

Theorem (Eigenvaluation)
P.v = \v for some v € V;
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Action on valuation space

Eigenvaluation

Theorem (Eigenvaluation)
P.v = \v for some v € V;

Suppose v € V;
@ Eijther Ci(—deg) < v < Co(—deg)
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Action on valuation space

Eigenvaluation

Theorem (Eigenvaluation)
P.v = \v for some v € V;

Suppose v € V;
@ Eijther Ci(—deg) < v < Co(—deg)
@ Orv is associated to a rational fibration.
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Action on valuation space

First consequences

@ v associated to a rational fibration
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Action on valuation space

First consequences

@ v associated to a rational fibration = P is a skew product
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Action on valuation space

First consequences

@ v associated to a rational fibration = P is a skew product
@ Ci{P](—deg) < Plv < CoP](—deg)
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Action on valuation space

First consequences

@ v associated to a rational fibration = P is a skew product
@ CiP](—deg) < \"v < CoP](—deg)
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Action on valuation space

First consequences

@ v associated to a rational fibration = P is a skew product
o CiPJ(—deg)(x,y) < Aw(x,y) < CoP}(—deg)(x,y)
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Action on valuation space

First consequences

@ v associated to a rational fibration = P is a skew product
@ Ci(—deg)(xoP" yoP") < \Nu(x,y) <
Co(—deg)(xo P" yoP™
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Action on valuation space

First consequences

@ v associated to a rational fibration = P is a skew product
@ Ci(—deg)(xoP" yoP") < \Nu(x,y) <
Co(—deg)(xo P" yoP™

n
< deg(P") <C vn .

C< =<
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Action on valuation space

Geometry of V;

V, is a tree
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Action on valuation space

Geometry of V;

V, is a tree
@ First theorem:
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Action on valuation space

Geometry of V;

V, is a tree
@ First theorem: fixed pt theorem on tree
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Action on valuation space

Geometry of V;

V, is a tree
@ First theorem: fixed pt theorem on tree
@ Second theorem:
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Action on valuation space

Geometry of V;

V, is a tree
@ First theorem: fixed pt theorem on tree

@ Second theorem: structure result for valuation in V;
Based on Key Polynomials
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Action on valuation space

Geometry of V;

V, is a tree
@ First theorem: fixed pt theorem on tree

@ Second theorem: structure result for valuation in V;
Based on Key Polynomials

@ d., quadratic integer?...
monomialization result < desingularization of dynamical
system
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Plan of next talk

@ geometry of V;

© global results for valuations in V;

© fixed point thm

© desingularization of polynomial maps.
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