Use Weierstrass Theory to give a detailed geometric description of germs of analytic subsets in \(\mathbb{C}^n \).
(local parametrization lemma).

\[\text{Analytic Nullstellensatz.} \]

\[\mathfrak{a} \subseteq \mathcal{O}(\mathbb{C}^n, 0) \quad \text{ideal} \]

\[\mathcal{I}(V(\mathfrak{a}), 0) = \sqrt{\mathfrak{a}} \]

\[\text{Cauchy coherence Theorem} \quad \mathcal{I}_{A, x}^7 \]
is coherent.

\[\text{Singular locus} \]

\[\text{Sing}(A) = A \setminus \text{Reg}(A) \quad \text{is analytic.} \]
We fix, once and for all, a prime ideal \(\mathfrak{a} \subseteq \mathcal{O}(\mathbb{C}^n) \). We let \(A = V(\mathfrak{a}) \). Put \(\mathfrak{a} \) into "normal form" so that \(A \) can be viewed as an "analytic cover" over some polydisk.

\(\mathfrak{a} \subseteq \mathcal{O}(\mathbb{C}^n) \) is prime. (Assumption for now)

Construction of adapted coordinates
\((z_1, z_2, \ldots, z_n)\) with

\[\mathfrak{a}_k = \mathfrak{a} \cap \mathcal{O}(z_1, \ldots, z_k) \]

and depends only on the first \(k \) variables.

\(\exists d \geq 0 \) such that

* \(\mathfrak{a}_d = (0) \)

* For each \(k \) in the range
 \(d + 1 \leq k \leq n \),

\(\mathfrak{a}_k \in \) Weierstrass poly., in \(\mathbb{Z}_k \):

\[
P_k(z_1, \ldots, z_{k-1}, z_k) = \mathbb{Z}_k^{d_k} + \sum a_{jk}(\mathfrak{a}) z_k^{d_k-j}
\]
Proof: induction on \(n \).

\[\alpha_n = (0) \text{, then done} \]

Otherwise pick \(P_n \in \mathcal{Q} \) \((= \alpha_n)\)

Weierstrass Prep. theorem \(\Rightarrow\) \(P_n = \text{Weierstrass poly., in } \mathbb{Z}_n \)

If \((\alpha_{n-1}) = (0) \), then done \(\checkmark\)

otherwise apply the induction hypothesis.

\[\boxed{\text{B: Noether Normalization Lemma}} \]

\[\mathcal{O}_d = \mathbb{C}[z_1, \ldots, z_d] \xrightarrow{\phi} \mathcal{O}_n/\alpha \]

is a finite integral extension.

\[\mathcal{O}_n = \mathcal{O}_n(\mathbb{C}^{(n)}) \]

\(\mathcal{O}_n/\alpha \) is a finite type \(\mathcal{O}_d \)-module.

Proof: Want to find \(h_1, \ldots, h_n \in \mathcal{O}_n/\alpha \)

such that \(f \in \mathcal{O}_n \), \(\exists g_1, \ldots, g_n \in \mathcal{O}_d \) with \(f = \sum g_i h_i \mod \alpha \).
Let $f \in \mathbb{R}_n$. Use WEIERSTRASS division to write:

$$f = q_n \cdot P_n + r_n$$

where $r_n = \text{poly of degree } \leq d_n - 1$ with coeff $\in \mathbb{Z}_1, \ldots, \mathbb{Z}_{d_n-1}$.

Divide all coeff. by P_{n-1}, etc.

End up with:

$$f = \text{poly. in } (\mathbb{Z}_{d+1}, \ldots, \mathbb{Z}_{d_n}) \text{ mod } \mathbb{A}$$

with coefficients in \mathbb{Q}_d of degree

$$\leq \max 3d_k - 1, \quad k = d + 1, \ldots, n.$$

Take as a family of generators for \mathbb{Q}_n/\mathbb{A} the image in \mathbb{Q}_n/\mathbb{A} of $1, Z_{d+1}, \ldots, Z_{d_n}$.

Observation: any element $f \in \mathbb{Q}_n/\mathbb{A}$ integral over \mathbb{Q}_d, $\exists q \geq 1, \ f^q = \sum_{i=0}^{\infty} a_i \cdot f^i \text{ mod } \mathbb{A}$.
Let \(M = \text{Frac}(O_n / \alpha) \) is well-defined since \(O_n / \alpha \) is a domain (as \(\alpha \) is a prime ideal),

\[M_d = \text{Frac}(O_d). \] We have \[q = [M : M_d] \]

\[1 \leq q < \infty \]

\[E(z_1, \ldots, z_n) = (z_1, \ldots, z_d, z_{d+1}, \ldots, z_n) \]

\[(z_i) \]

1. \(M = M_d \lceil z_n \rfloor \)

2. \[P_n(z_n) = z_n^q + \sum_{j=1}^{q-1} a_{j,n}(z') z_n^q \]

\[a_{j,n}(0) = 0. \]

3. \[P_k(z_k) = z_k^{d_k} + \sum_{j=1}^{d_k-1} a_{j,k}(z') z_k^{d_k-j} \]

\[a_{j,k}(0) = 0 \]

holds for \(d+1 \leq k \leq n, \ d_k \leq q. \)

Obs. \(A = V(\alpha) \)

"\(O_n / \alpha \)"

= \(\{ \text{hol. functions on } A \} \)
Proof: \(\frac{\mathbb{O}_n}{\alpha} \rightarrow \frac{\mathbb{O}_n}{\alpha} \) its image in the quotient.

\(M = M_d[z_{d+1}, \ldots, z_n] \)

The primitive element theorem \(\Rightarrow \) for a generic (open dense)

\(c \in \mathbb{C}^{n-d}, \quad \sum_{i=d+1}^{n} c_i \bar{z}_i \) generates

\(M \) over \(M_d \). We may assume that \(M = M_d[z_n] \). This proves \(\triangle \).

Take the minimal poly. of \(\bar{z}_n \) \(/ M_d \)

\(P = T^q + \sum_{j=0}^{q-1} b_j(z') T^j \) \quad \(b_j \in M_d \).

\(\mathbb{O}_n/\alpha \cong \bar{z}_n \) is integral over \(\mathbb{O}_d \).

\(\alpha(T) = T^{q'} + \sum a_j(z') T^j \) \quad \(a_j \in \mathbb{O}_d \)

\(\alpha'(\bar{z}_n) = 0 \).

\(\Rightarrow P | \alpha. \)
\[\mathcal{Q} = P \circ R \quad \text{all monic!} \]

Since \(\mathcal{O}_d \) is factorial domain, Gauss lemma implies that \(P \) has its coefficients in \(\mathcal{O}_d \).

- **Weierstrass preparation theorem**: (applied to \(P \))
 \[P = \text{unit} \circ \text{Weierstrass poly}, \]
 \[(T, z') \]
 \[z' = z_1, \ldots, z_d \]
 \[\text{(lemma } \Rightarrow \text{ unit } \in \mathcal{O}_d[T]) \]
 \[\implies \text{unit } \equiv \text{constant}. \]
 \[\Rightarrow b_j \in \mathcal{O}_d, \ b_j(0) = 0. \]

This proves the statement \(\Box \).

Exactly the same argument is used to prove statement \(\Box \).
Write $\hat{p} = p_n$. Consider:

$\delta(\hat{p}) = \text{discriminant of } \hat{p}$.

$\in O_d$ that measures whether or not \hat{p} has double roots.

Let k be the splitting field of \hat{p} over \mathbb{Q}_d. Then

$\hat{p}(T) = \prod_{i=1}^{2}(T - u_i)$ over k.

$\delta(\hat{p}) = \prod_{i \neq j} (u_i - u_j)^2$

belongs to O_d, because it is Galois-invariant (under $\text{Gal}(K/\mathbb{Q}_d)$).

$\delta(\hat{p})(z') \neq 0 \iff \exists p_{z'}(T) = 0 \ 	ext{has only 2 simple solutions}.$
For any $\mathbf{t} \in Q_{n}$, $\delta \cdot \mathbf{t} \in D_{d}[\mathbb{Z}/n]$

Here $\delta = \delta(\mathbf{p})$ is the discriminant.

This is existence of universal denominator.

Proof: $\mathbf{f} = \sum b_j \mathbf{z}^j$ by Θ, $b_j \in M_d$.

Write $u_1 = \mathbf{z}^1$, u_2, \ldots, u_q Galois conjugates $G K(M_d)$

$f_1 = \mathbf{f}_1, f_2, \ldots, f_q$

$\mathbf{f}_1 = \sum_{j=0}^{q-1} b_j u_j^1$

$\mathbf{f}_2 = \sum_{j=0}^{q-1} b_j u_j^2$

\vdots

$\mathbf{f}_q = \sum_{j=0}^{q-1} b_j u_j^q$

$$
\begin{pmatrix}
\mathbf{f}_1 \\
\mathbf{f}_2 \\
\vdots \\
\mathbf{f}_q
\end{pmatrix} = \begin{pmatrix}
1 & u_1 & \cdots & u_1^{q-1} \\
1 & u_2 & \cdots & u_2^{q-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & u_q & \cdots & u_q^{q-1}
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_q
\end{pmatrix}
$$

Multiply both sides again by $b_j \in \mathbb{Z}[u_1, u_2, \ldots, u_q]$

$\prod_{i=1}^{q} u_i$ multiply both sides again by $b_j \in \text{det}(M)$

$\Rightarrow \delta \cdot b_j$ is integral over Θ_d.

Since Θ_d is factorial, we get that $\delta \cdot b \in \Theta_d$.

$\Rightarrow \delta \cdot f \in \Theta_d[z_n]$

\[\delta z_{d+1} = B_{d+1}(z', z_n) + \alpha \]

\[\delta z_{n-1} = B_{n-1}(z', z_n) + \alpha \]

\[\text{deg} (B, z_n) \leq q-1 \]

\[\Box \quad B = < \hat{P}, \delta z_j - B_j(z', z_n) >_{j=d+1}^{n-1} \]

\[\exists \mu, \delta^\mu \alpha c B \subseteq \alpha \]

Proof of \Box: Let $f \in \alpha$.

Make successive division to get:

W. -division theorem

\[f = q \hat{P} + \delta z_{j+1} \]

\[\delta = 0, \ldots, z_{n-1} \]

\[\sum_{j=0}^{q-1} C_j z_n^j \]

\[f = \sum_{j=0}^{q-1} C_j z_n^j \]
Repeat this process to get

\[f = \sum_{d+1}^n p_i \cdot q_i^d + R^d \}

of degree \(\leq q-1 \).

\(\delta \) \(\delta' \), \(\forall \in \mathcal{B} \)

\(\delta^{(n-d)(q-1)} \quad R \in \mathcal{B} \)

\(\delta^{(n-d)(q-1)} \quad R = \sum a_i(z') \left((\delta_i - B_j) + B_j \right)^I \)

\(\delta^{(n-d)(q-1)} \quad R = \sum a_i(z') \beta_{d+1} \cdots \beta_{i-1} \beta_{i} \quad \text{mod} \mathcal{B} \quad \epsilon \in \mathcal{B} \)

Hence, \(\Phi \) divides the right hand side.

because \(\Phi \) is the minimal polynomial.
\(P_k \in \mathfrak{a}, \quad P_k(\bar{x}_k) = 0 \)

(minimal poly. of \(\bar{x}_k / M_d \))

\[
z_k = \frac{B_k(z, \bar{z}_n)}{\delta} + \text{element of } \mathcal{B}
\]

\(\deg \leq q \).

\[
P_k(z_k) = \left(\frac{B_k}{\delta} \right)^{d_k} + \sum \delta a_{i,j,k}(z)
\]

\(B_k \) only depends

on \(z_n \).

\[
\delta \cdot P_k \quad \text{similar argument as before.}
\]

in \(\Omega_n / \mathfrak{a} \), \(\delta^q P_k(\frac{B_k}{\delta}) = 0. \)
Local Parametrization Lemma (but really, it is a theorem)

\(\mathfrak{a} \leq 0^{(c^n,0)} \) is a prime ideal.

Set \(A = V(\mathfrak{a}, 0) \) closed analytic subset of \(\Delta^n \)

In a polydisk: \(\Delta = \{ (z', z'') \mid z' = z_1, \ldots, z_d \} \)
\(z'' = z_{d+1}, \ldots, z_n \) (for suitable coordinates).

- \(\pi : A \rightarrow \Delta^d \), \(\pi(z', z'') = z' \) is ramified covering of degree \(q \geq 1 \),
 whose ramification locus is included in \(\delta = 0^q \).

\(S = 3 \delta = 0^q \leq \Delta^d \)

\[A \setminus \pi^{-1}(S) \rightarrow \Delta^d \mid S \]
 is an unramified covering map of degree 2
 (this is the usual notion of covering in topology).

\[a \] \(A \setminus \pi^{-1}(S), A \) are both connected
 and \(\overline{A \setminus \pi^{-1}(S)} = A \).
\[p \in \Delta^d \Rightarrow \#\pi'(p) \leq q \] with equality if \(p \notin S' \).

\[A \leq \frac{1}{2}z''1 \leq C1z'1^2 \] for some \(C > 0 \).

Proof: We produced \(\hat{P}(z', z_n) = z_n + \sum_{j} a_j(z')z_n^{q-j} \)
and \(S = \text{discriminant of } \hat{P}(z', 0) \)
\[d+1 \leq j \leq n-1 \quad \delta_j z_j = B_j(z', z_n) + \alpha \]
\[B = \langle \hat{P}(z', z_n), \delta(z'), z_j - B_j(z', z_n) \rangle \leq C \]
\[\exists m \text{ s.t. } \delta^m \alpha \leq B \leq \alpha. \]
\[V(B) \triangleright V(\emptyset) = A \]
\[V(B) \setminus (pr')^{-1}(S') = A \setminus \pi'(S) \]

* Pick \(z' \notin S \). We consider \(\pi'(z') \leq A \)

\[(z', z'') \in A \iff (z', z'') \in V(B) \]

\[\Leftrightarrow \hat{P}(z', z_n) = 0, \quad \text{and} \quad \delta(z') z_j = B_j(z', z_n) \] for \(d + 1 \leq j \leq n - 1 \).

Since \(\delta(z') \neq 0 \), \(\hat{P} \) has exactly \(q \) solutions

\[z_n^{(1)}, z_n^{(2)}, \ldots, z_n^{(q)} \]

\[\pi'(z') = \left\{ (z', B_l(z', z_n^{(l)}), z_n^{(l)}) \middle| \frac{\delta(z')}{\delta(z')} \right\} \]

Consists of \(q \) distinct points.

[We also need * \(|a_j(z')| \leq O(1z'^1j) \)

* all solutions of \(\hat{P}(z', \cdot) = 0 \) are included in a fixed polydisk]
Claim: \(z' \rightarrow z_n^{(e)}(z') \) are holomorphic consequence of the analytic implicit function theorem applied to the polynomial \(\hat{P} \), which can be applied as \(\frac{\partial \hat{P}}{\partial z_n} \neq 0 \). This proves the statement \(\square \).

- \(|a_j(z')| = O(1|z'|^j) \)

Otherwise, we could perturb the coordinates \(z_n' = z_n + \text{linear}(z') \), such that \(\text{deg}(\hat{P}) \) drops.

- Continuity of roots \(\rightarrow \square \)

Lemma: \(P(T) = T^q + a_1 T^{q-1} + \ldots + a_q \)

\(\implies \) solution to \(|_{P(T) = 0} \leq q \max |a_j|^{1/j} \)

\(\implies \) solutions to \(\hat{P}(z', z_n) = 0 \)

\(|a_j| \leq \frac{1}{q^j} \) we would get a contradiction.

\(P(w) = 0, \quad -1 = \frac{a_1}{w^3} + \ldots + \frac{a_q}{w^q} \leq \frac{1}{q^3} \leq \frac{1}{q^j} \)
Lemma: \(P_n = T^q + a_1^{(n)} T^{q-1} + \ldots + a_i^{(n)} \to P \)

If \(P(0) = 0 \), then \(P_n(0) \) s.t. \(w_n \to w \).

Proof of connectedness in \(\mathbb{D} \):

\(A \setminus \pi^{-1}(S') \) is connected \(\iff \) we want to show this. \(A_1, A_2, \ldots, A_N \) connected components of \(A \setminus \pi^{-1}(S') \).

\[
P^{(e)}(z', T) = \prod_{(z', z'') \in A_e} (T - z_n)
\]

\(\delta(z') \neq 0 \)

for \(e = 1, \ldots, N \)

\(P^{(e)} \) polynomials in one variable, and

coefficients in \(O(\Delta_d \setminus S') \) bounded.

(lemma: If \(f \in O(\Delta_d \setminus S') \) \(\iff \) \(f = 0 \) on \(S' \) and \(f \) extends hol. to \(\Delta_d \).

So, all these \(P^{(e)} \in O(\Delta_d)[T] \)

\[
\prod_{e=1}^{N} P^{(e)}(z', T) = \hat{P}(z', T) \quad \text{when } \delta(z') \neq 0
\]

for all \(z' \) by continuity.
But \(\hat{\mathbf{P}} \) is irreducible, so \(\sqrt{\lambda} = 1 \) and so \(A \setminus \pi'(S') \) is connected.

Claim: \(A \setminus \pi'(S) = A \) (density).

- **Case:** \(d = n - 1 \), \(B = \langle \hat{\mathbf{P}} \rangle \)

 \((z', z_n) \in A \), \(\delta(z') = 0 \).

Pick \(z'_\varepsilon \to z' \) as \(\varepsilon \to 0 \), and assume that \(\delta(z'_\varepsilon) \neq 0 \).

\[\pi'(z'_\varepsilon) = \left\{ (z'_\varepsilon, w_n) \mid \hat{\mathbf{P}}(z'_\varepsilon, w_n) = 0 \right\} \]

\[\hat{\mathbf{P}}(z'_\varepsilon, \ast) \]

By continuity of solutions, \(\hat{\mathbf{P}}(z', z_n) = 0 \) exists \(z_n(\varepsilon) \to z_n \) such that \(\hat{\mathbf{P}}(z'_\varepsilon, z_n(\varepsilon)) = 0 \).

So, \((z'_\varepsilon, z_n(\varepsilon)) \to (z', z_n)\), which proves the density.
Case: $d < n - 1$. Use analytic Nullstellensatz.

Let's prove the analytic Nullstellensatz.

Thm: $\mathfrak{a} \leq 0_{(\mathbb{C}^n, 0)}$, $I(V(\mathfrak{a}), 0) = \sqrt{\mathfrak{a}}$

Proof: $\sqrt{\mathfrak{a}} \subseteq I(V(\mathfrak{a}), 0)$ easy.

Suppose first that \mathfrak{a} is prime. In this case $\sqrt{\mathfrak{a}} = \mathfrak{a}$, and so the claim is that $I(V(\mathfrak{a}), 0) \leq \mathfrak{a}$ ($= \sqrt{\mathfrak{a}}$).

Let $f \in I(V(\mathfrak{a}), 0)$, $f \in \mathcal{O}_n / \mathfrak{a}$.

We want to show that $f = 0$.

Since $\mathcal{O}_n / \mathfrak{a}$ is finite \mathcal{O}_d-module.

\[f + a_1 f + \ldots + a_r = 0 \text{ in } \mathcal{O}_n / \mathfrak{a} \]

(Here, $a_j \in \mathcal{O}_d$ (so depends only on first d variables, i.e. on z').

\[f + a_1(z') f + \ldots + a_r(z') = 0 \in \mathfrak{a} \]

\[\Rightarrow a_r(z') \big| A = 0 \text{. By } \mathfrak{a}, \text{ } a_r = 0 \text{ on } \Delta^d \]

(\(\pi(A) = \Delta^d \)).
But then we get to deal by either induction on r or a proof by contradiction (pick r minimal, ...).

$\lambda(z'')$ = linear form in z_{d+1}, \ldots, z_n

so it is of the form $c_{d+1}z_{d+1} + \ldots + c_n z_n$.

So generic

\[p_{\lambda(z', t)} = \prod_{(z', t'') \in \mathcal{A}} (t - \lambda(z'')) \]

[coefficients $\in O(\Delta d/5) + $ bounded

\Rightarrow so extends to Δd]

$= T^q + \ldots$ where coefficients are in $O(\Delta d) [T^q]$

Claim: $p_{\lambda} | A = 0$.

Argument 1: redo previous argument

$\otimes \oplus$ with $z_n = \lambda(z'')$

Argument 2: $\gamma(A, 0) = 0$

$\prod_{\lambda \mid A} \prod_{\lambda' \mid \mathcal{A}^{\otimes}} = 0$

$\delta \cdot p_{\lambda} | A = 0$
\[\delta P_{\lambda} \alpha \Rightarrow P_{\lambda} \alpha \text{ prime} \]

Proceed by contradiction \(A \setminus \pi'(s) \neq A \).

Local near the origin, get \(z_j = (z_j', z_j'') \to 0 \) s.t. \(z_j \in A \)

but \(z_j \notin A \setminus \pi^{-1}(s) = A_0 \)

(here \(A_0 := A \setminus \pi^{-1}(s) \)).

\[z_j'' \notin F_j := \text{pr}'' (\overline{A_0 \cap \pi^{-1}(z_j')}) \]

finite of cardinality \(\leq 9 \).

Roots of \(P_{\lambda}(z_j', T) \in \lambda (F_j) \)

continuity of roots.

should be true for any \(\lambda \). Now, choose \(\lambda \) s.t.

\[z_j'' = (z_j'', d_j, \ldots, z_j'' n) \]

\[P_{\lambda}(z_j', z_j''n) = 0, \quad z_j''n \in \lambda (F_j) \]
Cartan's Coherence Theorem → next Tuesday

A is a complex manifold.

Then \(\text{Sing}(A) = A \setminus \text{Reg}(A) \) is an analytic subset of \(A \) such that for \(x \in A \): \(\dim(\text{Sing}(A), x) \leq \dim(A) - 1 \).

Claim: Suppose \(A \) is irreducible germ of an analytic subset in \((\mathbb{C}^n, 0) \).

\(\mathfrak{I}(A, 0) = \alpha \), \(\alpha \) is prime.

\(\dim(A, 0) = d \)

\(\dim(A \cap \pi^{-1}(s), 0) \leq d - 1 \).

\(\dim(A, 0) = \limsup_{x \to 0} \dim(A, x) \)

By @, \(A \cap \pi^{-1}(s) \in \text{Reg}(A) \)

It is a local biholomorphism near any point in \(A \setminus \pi^{-1}(s) \), but \(\dim(A \setminus \pi^{-1}(s)) = 0 \)
\[\Rightarrow \dim_c(A \setminus \tilde{\pi}(s)) = d \Rightarrow \dim(A, o) \geq d. \]

A \(\pi^{-1}(s) \) analytic \(y \sim 0 \)
\(y \in \text{Reg}(A \pi^{-1}(s)) \).

\(k = \dim(A \pi^{-1}(s), 0) = \dim(A, \pi^{-1}(s), y) \)

\(\pi : (A \pi^{-1}(s), y) \rightarrow A_d \)

Perturbing \(y \), if necessary, we can assume that \(\text{rank}(d\tilde{\pi}) \) is locally constant.

\[\dim(A \pi^{-1}(s), y) \]

\[= \dim(\tilde{\pi}(A \pi^{-1}(s)), y) + \dim(\text{fib of } \pi) \]

\[\leq d-1 + 0 \]

\[= d-1. \]
Proof:

\[\text{Obs: } \text{Sing}(A) \subseteq A \cap \overline{\pi^{-1}(S)} \]

proper nowhere dense analytic subset of \(A \).

\[\text{Obs: } d = n - 1, \text{ exercise.} \]

We need Cartan's Coherence Theorem.

Cartan's Coherence Theorem:

\[\exists f_1, \ldots, f_N \in \mathcal{O}(\Delta^n) \text{ such that} \]

\[\forall x \in \Delta^n, \exists (A, x) = \langle f_1, x \rangle, \ldots, \langle f_N, x \rangle \]

\[\subseteq \mathcal{O}(\Delta^n, x) \]

\[x \in \text{Reg}(A) \iff A \text{ is locally defined by } n - d \text{ equations} \]

\[(g_1, g_2, \ldots, g_{n-d}) \]

such that \(\partial g_i(x) \) are linearly independent.
Here, \(g_i \in \mathcal{I}(A, x) \).

\[\iff \exists \mathbf{i} = (i_1, \ldots, i_{n-d}) \subseteq \{1, \ldots, N\} \text{ such that } df_{i_1}(x), \ldots, df_{i_{n-d}}(x) \text{ are linearly independent.} \]

\[\text{Sing}(A) \ni x \iff \det(df_{\mathbf{i}}(x)) = 0 \text{ for all } |\mathbf{i}| = n-d. \text{ analytic!} \]