ANALYSIS IN SEVERAL COMPLEX VARIABLES: SUBHARMONIC AND PSH FUNCTIONS

CHARLES FAVRE

Exercice 1. Let Δ be the unit polydisk in \mathbb{C} . Pick any sequence of distinct points $z_n \neq 0$ such that $\{z_n\}$ is dense in Δ .

- (a) Construct a sequence of positive number $\alpha_n > 0$ such that $\sum_n \alpha_n \log |z_n| > -\infty$. (b) Prove that the sequence $u_n(z) = \sum_{j \le n} \alpha_j \log(\frac{1}{2}|z-z_j|)$ is decreasing to a subharmonic function u on Δ .
- (c) Prove that $\{u = -\infty\}$ is dense (consider sublevel sets $\{u < -N\}$ and use Baire theorem).

Exercice 2. Prove that a function $u: \Omega \to [-\infty, \infty)$ such that u and -u are both subharmonic is harmonic.

Exercice 3. Let $u_n: \Omega \to [-\infty, \infty)$ be any sequence of subharmonic functions such that $u_n \leq 0$. Define the functions $u(z) = \sup_n u_n(z)$, and

$$u^*(z) = \limsup_{w \to z} u(w) \; .$$

Prove that u^* is subharmonic.

PIMS

Email address: charles.favre@polytechnique.edu

Date: March 10, 2020.