ANALYSIS IN SEVERAL COMPLEX VARIABLES: ANALYTIC SETS. EXERCICES FOR THE CHAPTER 2

CHARLES FAVRE

Exercice 1.

- Show that the unit sphere S^2 can be endowed with a structure of complex manifold.
- Prove that no sphere of odd dimension can be endowed with a structure of complex manifold.

Comment: it is a theorem of Borel and Serre that if S^n can be endowed with a structure of complex manifold, then $n \in \{2, 6\}$, and it is still open whether S^6 can be endowed with a structure of complex manifold, see https://mathoverflow.net/questions/101888

Exercice 2 (Hopf manifold). Pick any $\lambda \in \mathbb{C}^*$ such that $0 < |\lambda| < 1$, and consider the linear map $\Lambda(z_1, \dots, z_n) = (\lambda z_1, \dots, \lambda z_n)$.

- Prove that Λ acts properly discontinuously on $\mathbb{C}^n \setminus \{0\}$ (ie for any compact set K, the set $\{n \in \mathbb{Z}, \Lambda^n(K) \cap K \neq \emptyset\}$ is finite).
- Prove that the quotient space $S := (\mathbb{C}^n \setminus \{0\})/\langle \Lambda \rangle$ can be endowed with a unique structure of complex manifold such that the canonical projection map $\pi : (\mathbb{C}^n \setminus \{0\} \to S$ is holomorphic. Here we identify two points $p, p' \in \mathbb{C}^n \setminus \{0\}$ iff $p' = \Lambda^n(p)$ for some $n \in \mathbb{Z}$.
- Show that S is compact.
- Prove that S is homeomorphic to $S^1 \times S^{2n-1}$.

Comment: it is possible to endow any product $S^{2m-1} \times S^{2n-1}$ with a structure of complex manifold (Calabi-Eckmann manifolds).

Exercice 3. A lattice Λ in \mathbb{C}^n is an additive subgroup which is discrete.

- Prove that the quotient space $T = \mathbb{C}^n / \Lambda$ can be endowed with a unique structure of complex manifold such that the canonical projection map $\pi \colon \mathbb{C}^n \to T$ is holomorphic.
- Prove that for any integer $k \in \mathbb{Z}$, the linear map $\phi_k(z) = kz$ from \mathbb{C}^n to \mathbb{C}^n induces a holomorphic self-map $\Phi_k \colon T \to T$.

Exercice 4. Let Ω be any open subset of \mathbb{C}^n and let $f: \Omega \to \mathbb{C}^k$ be any holomorphic function. Prove that for any $l \leq \min\{n, k\}$ the set of point $z \in \Omega$ such that the rank of dF(z) is $\leq l$ is an analytic subset.

- Construct an example with k = n = 2 where {rank dF(z) = 0} is a point, and {rank $dF(z) \le 1$ } is a line.
- Construct an example with k = n = 2 where {rank dF(z) = 0} is a line, and {rank dF(z) = 1} is empty.

Exercice 5. Let $f: \Omega \to \mathbb{C}$ be any holomorphic function defined on an open subset of \mathbb{C}^n .

Date: February 11, 2020.

C. FAVRE

- Suppose that $\{f = 0\}$ is included inside $\{z_1 = z_2 = 0\}$. Using Hartog's Kugelsatz, prove that $\{f = 0\} = \emptyset$.
- Suppose that the holomorphic function $\frac{\partial f}{\partial z_1}$ is not vanishing on any connected component of $\{f = 0\}$. (Hard) Prove that the singular locus of $\{f = 0\}$ is equal to the set

$$f = \frac{\partial f}{\partial z_1} = \dots = \frac{\partial f}{\partial z_n} = 0$$
.

- Determine the singular locus of the Whitney's umbrella {x² = y²z} ⊂ C³.
 Determine the singular locus C := {y³ + 2x²y x⁴ = 0} ⊂ Show that the real trace of this curve C ∩ R² is actually smooth. \mathbb{C}^2 . See https://mathoverflow.net/questions/98366.
- Exercice 6. • Prove that $\mathcal{O}_{\mathbb{C},0}$ is a principal ideal domain (i.e. every ideal is a power of the maximal ideal).
 - Prove that $\mathcal{O}_{\mathbb{C}^n,0}$ is not a principal ideal domain for any $n \geq 2$.

Exercice 7. Let f be a holomorphic map defined in a neighborhood of $0 \in \mathbb{C}^n$ with values in \mathbb{C} such that f(0) = 0 and $df(0) \neq 0$.

- Prove that f is a distinguished polynomial of degree 1 in one of the variables z_1, \cdots, z_n .
- Using Weierstrass preparation theorem, prove that $\{f = 0\}$ is a submanifold in a neighborhood of 0.

Exercice 8. Suppose that $f \in \mathcal{O}_{\mathbb{C}^n,0}$ is a Weierstrass polynomial in the variables z = (z', w). Prove that if f is irreducible in $\mathcal{O}_{\mathbb{C}^{n-1},0}[w]$ then it is irreducible in $\mathcal{O}_{\mathbb{C}^n,0}$.

Exercice 9. Let Z be any analytic subset of a complex manifold X.

A continuous function $f: Z \to \mathbb{C}$ is said to be holomorphic if for any $x \in Z$ there exists a open neighborhood $x \in V \subset X$ and a holomorphic function $F: V \to \mathbb{C}$ such that $F|_Z = f.$

For any open subset Ω of V, we let $\mathcal{O}_V(\Omega)$ be the set of all holomorphic functions on Ω .

- Prove that \mathcal{O}_V is a sheaf of local \mathbb{C} -algebras (i.e. each stalk $\mathcal{O}_{V,x}$ is a local ring).
- Prove that for each $x \in V$, the stalk $\mathcal{O}_{V,x}$ is isomorphic to $\mathcal{O}_{X,x}/\mathcal{J}_{V,x}$.
- Deduce that $\mathcal{O}_{V,x}$ is Noetherian, and that it is a domain iff the germ (V,x) is irreducible.
- Suppose $Z = \{x^2 = y^3\} \subset \mathbb{C}^2$. Using the normalization map $t \in \mathbb{C} \to (t^3, t^2) \in Z$ show that $\mathcal{O}_{Z,0}$ is not isomorphic to $\mathcal{O}_{\mathbb{C},0}$ as a \mathbb{C} -algebra (consider the quotient $\mathcal{O}_{Z,0}$ by its maximal ideal).

Exercice 10. Let \mathcal{F} be any sheaf of \mathcal{O}_V -modules on a complex manifold V. Prove that the support of \mathcal{F} (defined as the set of points for which $\mathcal{F}_x \neq (0)$) is an analytic subset whenever \mathcal{F} is of finite type.

Exercice 11. Let $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ be sheaves of \mathcal{O}_V -modules on a complex manifold V. Suppose that we have a morphism $\rho: \mathcal{F}_1 \to \mathcal{F}_2$.

- Prove that $\ker(\rho)$ is a coherent sheaf if \mathcal{F}_1 and \mathcal{F}_2 are coherent.
- Prove that $\Im(\rho)$ is a coherent sheaf if \mathcal{F}_1 and \mathcal{F}_2 are coherent.
- Suppose that we have an exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$. Prove that if any two of the sheaves are coherent then the third one is also coherent.

Exercice 12. Consider the sheaves $\mathcal{F} = \mathcal{O}_V^{\oplus 3}$ and $\mathcal{G} = \mathcal{O}_V$ on $V = \mathbb{C}^3$, and define the morphism

$$\varphi \colon \mathcal{F} \to \mathcal{G}, (f_1, f_2, f_3) \mapsto z_1 f_1 + z_2 f_2 + z_3 f_3$$

Show that φ is a surjective sheaf morphism, and compute ker(φ) (the difficulty is in computing the stalk over 0).

Exercice 13 (Hilbert syzygies theorem). Let V be any complex manifold of dimension n, and let \mathcal{F} be any coherent analytic sheaf of \mathcal{O}_V -modules.

• Using Oka's theorem, prove that there exists an exact sequence of sheaves of \mathcal{O}_{V^-} algebras

$$\cdots \mathcal{O}_V^{\nu_n} \xrightarrow{\sigma_n} \mathcal{O}_V^{\nu_{n-1}} \xrightarrow{\sigma_{n-1}} \cdots \xrightarrow{\sigma_2} \mathcal{O}_V^{\nu_1} \xrightarrow{\sigma_1} \mathcal{F} \to 0$$

• Fix a point $x \in V$, and choose local coordinates (z_1, \dots, z_n) centered at that point. For each $j = 1, \dots, n$, let $\mathfrak{m}_j \cdot \mathcal{O}_{V,x}$ be the ideal generated by z_1, \dots, z_j , and denote by $S_k \subset \mathcal{O}_{V,x}^{\nu_k}$ the kernel of σ_k (at x).

We shall prove that

$$S_k \cap \mathfrak{m}_j \mathcal{O}_{V,x}^{\nu_k} = \mathfrak{m}_j \cdot S_k \text{ for all } 1 \le j \le k$$

- Prove the inclusion \subset .
- Prove the statement for k = 1.
- Proceed by induction on j, and pick

$$F = z_1 G_1 + \dots + z_{j+1} G_{j+1} \in \mathcal{S}_k \cap \cap \mathfrak{m}_{j+1} \mathcal{O}_{V,x}^{\nu_k}$$

for some $k \ge j+1$. Prove that $\sigma_k(G_{j+1}) = z_1G'_1 + \cdots + z_jG'_j$ for some other $G'_1, \cdots, G'_j \in \mathcal{O}_{V,x}^{\nu_k}$.

- Apply σ_{k-1} to the previous equality and show there exist $H_1, \dots, H_j \in \mathcal{O}_{V,x}^{\nu_k}$ such that $G_{j+1} - (z_1H_1 + \dots + z_jH_j) \in S_k$.
- Conclude the induction step.
- Let F_1, \dots, F_r be a minimal set of generators of S_{n-1} , and consider the natural morphism $\rho: \mathcal{O}_{V,x}^r \to S_{n-1}$ they induce.

Let \mathcal{K} be the kernel of ρ . Show that $\mathcal{K} \subset \mathfrak{m}_{V,x} \cdot \mathfrak{O}_{V,x}^r$, and use (1) to conclude that $\mathcal{K} = \mathfrak{m}_{V,x} \cdot \mathfrak{O}_{V,x}^r$.

- Apply Nakayama's result to prove that $\mathcal{K} = 0$.
- What did we prove about coherent sheaves?

PIMS

Email address: charles.favre@polytechnique.edu