ANALYSIS IN SEVERAL COMPLEX VARIABLES: ANALYTIC SETS. EXERCICES FOR THE CHAPTER 2

CHARLES FAVRE

Exercice 1.

- Show that the unit sphere S^{2} can be endowed with a structure of complex manifold.
- Prove that no sphere of odd dimension can be endowed with a structure of complex manifold.
Comment: it is a theorem of Borel and Serre that if S^{n} can be endowed with a structure of complex manifold, then $n \in\{2,6\}$, and it is still open whether S^{6} can be endowed with a structure of complex manifold, see https://mathoverflow.net/questions/101888

Exercice 2 (Hopf manifold). Pick any $\lambda \in \mathbb{C}^{*}$ such that $0<|\lambda|<1$, and consider the linear map $\Lambda\left(z_{1}, \cdots, z_{n}\right)=\left(\lambda z_{1}, \cdots, \lambda z_{n}\right)$.

- Prove that Λ acts properly discontinuously on $\mathbb{C}^{n} \backslash\{0\}$ (ie for any compact set K, the set $\left\{n \in \mathbb{Z}, \Lambda^{n}(K) \cap K \neq \emptyset\right\}$ is finite).
- Prove that the quotient space $S:=\left(\mathbb{C}^{n} \backslash\{0\}\right) /\langle\Lambda\rangle$ can be endowed with a unique structure of complex manifold such that the canonical projection map π : $\left(\mathbb{C}^{n} \backslash\right.$ $\{0\} \rightarrow S$ is holomorphic. Here we identify two points $p, p^{\prime} \in \mathbb{C}^{n} \backslash\{0\}$ iff $p^{\prime}=\Lambda^{n}(p)$ for some $n \in \mathbb{Z}$.
- Show that S is compact.
- Prove that S is homeomorphic to $S^{1} \times S^{2 n-1}$.

Comment: it is possible to endow any product $S^{2 m-1} \times S^{2 n-1}$ with a structure of complex manifold (Calabi-Eckmann manifolds).

Exercice 3. A lattice Λ in \mathbb{C}^{n} is an additive subgroup which is discrete.

- Prove that the quotient space $T=\mathbb{C}^{n} / \Lambda$ can be endowed with a unique structure of complex manifold such that the canonical projection map $\pi: \mathbb{C}^{n} \rightarrow T$ is holomorphic.
- Prove that for any integer $k \in \mathbb{Z}$, the linear map $\phi_{k}(z)=k z$ from \mathbb{C}^{n} to \mathbb{C}^{n} induces a holomorphic self-map $\Phi_{k}: T \rightarrow T$.

Exercice 4 . Let Ω be any open subset of \mathbb{C}^{n} and let $f: \Omega \rightarrow \mathbb{C}^{k}$ be any holomorphic function. Prove that for any $l \leq \min \{n, k\}$ the set of point $z \in \Omega$ such that the rank of $d F(z)$ is $\leq l$ is an analytic subset.

- Construct an example with $k=n=2$ where $\{\operatorname{rank} d F(z)=0\}$ is a point, and $\{\operatorname{rank} d F(z) \leq 1\}$ is a line.
- Construct an example with $k=n=2$ where $\{\operatorname{rank} d F(z)=0\}$ is a line, and $\{\operatorname{rank} d F(z)=1\}$ is empty.

Exercice 5 . Let $f: \Omega \rightarrow \mathbb{C}$ be any holomorphic function defined on an open subset of \mathbb{C}^{n}.

- Suppose that $\{f=0\}$ is included inside $\left\{z_{1}=z_{2}=0\right\}$. Using Hartog's Kugelsatz, prove that $\{f=0\}=\emptyset$.
- Suppose that the holomorphic function $\frac{\partial f}{\partial z_{1}}$ is not vanishing on any connected component of $\{f=0\}$. (Hard) Prove that the singular locus of $\{f=0\}$ is equal to the set

$$
f=\frac{\partial f}{\partial z_{1}}=\cdots=\frac{\partial f}{\partial z_{n}}=0 .
$$

- Determine the singular locus of the Whitney's umbrella $\left\{x^{2}=y^{2} z\right\} \subset \mathbb{C}^{3}$.
- Determine the singular locus $C:=\left\{y^{3}+2 x^{2} y-x^{4}=0\right\} \subset \mathbb{C}^{2}$. Show that the real trace of this curve $C \cap \mathbb{R}^{2}$ is actually smooth. See https://mathoverflow.net/questions/98366.

Exercice 6. - Prove that $\mathcal{O}_{\mathbb{C}, 0}$ is a principal ideal domain (i.e. every ideal is a power of the maximal ideal).

- Prove that $\mathcal{O}_{\mathbb{C}^{n}, 0}$ is not a principal ideal domain for any $n \geq 2$.

Exercice 7. Let f be a holomorphic map defined in a neighborhood of $0 \in \mathbb{C}^{n}$ with values in \mathbb{C} such that $f(0)=0$ and $d f(0) \neq 0$.

- Prove that f is a distinguished polynomial of degree 1 in one of the variables z_{1}, \cdots, z_{n}.
- Using Weierstrass preparation theorem, prove that $\{f=0\}$ is a submanifold in a neighborhood of 0 .

Exercice 8. Suppose that $f \in \mathcal{O}_{\mathbb{C}^{n}, 0}$ is a Weierstrass polynomial in the variables $z=\left(z^{\prime}, w\right)$. Prove that if f is irreducible in $\mathcal{O}_{\mathbb{C}^{n-1}, 0}[w]$ then it is irreducible in $\mathcal{O}_{\mathbb{C}^{n}, 0}$.
Exercice 9. Let Z be any analytic subset of a complex manifold X.
A continuous function $f: Z \rightarrow \mathbb{C}$ is said to be holomorphic if for any $x \in Z$ there exists a open neighborhood $x \in V \subset X$ and a holomorphic function $F: V \rightarrow \mathbb{C}$ such that $\left.F\right|_{Z}=f$.

For any open subset Ω of V, we let $\mathcal{O}_{V}(\Omega)$ be the set of all holomorphic functions on Ω.

- Prove that \mathcal{O}_{V} is a sheaf of local \mathbb{C}-algebras (i.e. each stalk $\mathcal{O}_{V, x}$ is a local ring).
- Prove that for each $x \in V$, the stalk $\mathcal{O}_{V, x}$ is isomorphic to $\mathcal{O}_{X, x} / \mathcal{J}_{V, x}$.
- Deduce that $\mathcal{O}_{V, x}$ is Noetherian, and that it is a domain iff the germ (V, x) is irreducible.
- Suppose $Z=\left\{x^{2}=y^{3}\right\} \subset \mathbb{C}^{2}$. Using the normalization map $t \in \mathbb{C} \rightarrow\left(t^{3}, t^{2}\right) \in Z$ show that $\mathcal{O}_{Z, 0}$ is not isomorphic to $\mathcal{O}_{\mathbb{C}, 0}$ as a \mathbb{C}-algebra (consider the quotient $\mathcal{O}_{Z, 0}$ by its maximal ideal).
Exercice 10. Let \mathcal{F} be any sheaf of \mathcal{O}_{V}-modules on a complex manifold V. Prove that the support of \mathcal{F} (defined as the set of points for which $\left.\mathcal{F}_{x} \neq(0)\right)$ is an analytic subset whenever \mathcal{F} is of finite type.
Exercice 11. Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ be sheaves of \mathcal{O}_{V}-modules on a complex manifold V. Suppose that we have a morphism $\rho: \mathcal{F}_{1} \rightarrow \mathcal{F}_{2}$.
- Prove that $\operatorname{ker}(\rho)$ is a coherent sheaf if \mathcal{F}_{1} and \mathcal{F}_{2} are coherent.
- Prove that $\Im(\rho)$ is a coherent sheaf if \mathcal{F}_{1} and \mathcal{F}_{2} are coherent.
- Suppose that we have an exact sequence $0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{F}_{2} \rightarrow \mathcal{F}_{3} \rightarrow 0$. Prove that if any two of the sheaves are coherent then the third one is also coherent.

Exercice 12. Consider the sheaves $\mathcal{F}=\mathcal{O}_{V}^{\oplus 3}$ and $\mathcal{G}=\mathcal{O}_{V}$ on $V=\mathbb{C}^{3}$, and define the morphism

$$
\varphi: \mathcal{F} \rightarrow \mathcal{G},\left(f_{1}, f_{2}, f_{3}\right) \mapsto z_{1} f_{1}+z_{2} f_{2}+z_{3} f_{3}
$$

Show that φ is a surjective sheaf morphism, and compute $\operatorname{ker}(\varphi)$ (the difficulty is in computing the stalk over 0).

Exercice 13 (Hilbert syzygies theorem). Let V be any complex manifold of dimension n, and let \mathcal{F} be any coherent analytic sheaf of \mathcal{O}_{V}-modules.

- Using Oka's theorem, prove that there exists an exact sequence of sheaves of \mathcal{O}_{V} algebras

$$
\cdots \mathcal{O}_{V}^{\nu_{n}} \xrightarrow{\sigma_{n}} \mathcal{O}_{V}^{\nu_{n-1}} \xrightarrow{\sigma_{n-1}} \cdots \xrightarrow{\sigma_{2}} \mathcal{O}_{V}^{\nu_{1}} \xrightarrow{\sigma_{1}} \mathcal{F} \rightarrow 0 .
$$

- Fix a point $x \in V$, and choose local coordinates $\left(z_{1}, \cdots, z_{n}\right)$ centered at that point. For each $j=1, \cdots, n$, let $\mathfrak{m}_{j} \cdot \mathcal{O}_{V, x}$ be the ideal generated by z_{1}, \cdots, z_{j}, and denote by $\mathcal{S}_{k} \subset \mathcal{O}_{V, x}^{\nu_{k}}$ the kernel of σ_{k} (at $\left.x\right)$.

We shall prove that

$$
\begin{equation*}
\mathcal{S}_{k} \cap \mathfrak{m}_{j} \mathcal{O}_{V, x}^{\nu_{k}}=\mathfrak{m}_{j} \cdot \mathcal{S}_{k} \text { for all } 1 \leq j \leq k \tag{1}
\end{equation*}
$$

- Prove the inclusion \subset.
- Prove the statement for $k=1$.
- Proceed by induction on j, and pick

$$
F=z_{1} G_{1}+\cdots+z_{j+1} G_{j+1} \in \mathcal{S}_{k} \cap \cap \mathfrak{m}_{j+1} \mathcal{O}_{V, x}^{\nu_{k}}
$$

for some $k \geq j+1$. Prove that $\sigma_{k}\left(G_{j+1}\right)=z_{1} G_{1}^{\prime}+\cdots+z_{j} G_{j}^{\prime}$ for some other $G_{1}^{\prime}, \cdots, G_{j}^{\prime} \in \mathcal{O}_{V, x}^{\nu_{k}}$.

- Apply σ_{k-1} to the previous equality and show there exist $H_{1}, \cdots, H_{j} \in \mathcal{O}_{V, x}^{\nu_{k}}$ such that $G_{j+1}-\left(z_{1} H_{1}+\cdots+z_{j} H_{j}\right) \in \mathcal{S}_{k}$.
- Conclude the induction step.
- Let F_{1}, \cdots, F_{r} be a minimal set of generators of \mathcal{S}_{n-1}, and consider the natural morphism $\rho: \mathcal{O}_{V, x}^{r} \rightarrow \mathcal{S}_{n-1}$ they induce.

Let \mathcal{K} be the kernel of ρ. Show that $\mathcal{K} \subset \mathfrak{m}_{V, x} \cdot \mathcal{O}_{V, x}^{r}$, and use (1) to conclude that $\mathcal{K}=\mathfrak{m}_{V, x} \cdot \mathcal{O}_{V, x}^{r}$.

- Apply Nakayama's result to prove that $\mathcal{K}=0$.
- What did we prove about coherent sheaves?

PIMS
Email address: charles.favre@polytechnique.edu

