ANALYSIS IN SEVERAL COMPLEX VARIABLES: EXERCICES FOR THE CHAPTER 1

CHARLES FAVRE

Exercice 1. Let $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^m$ be open sets and suppose $f: U \to V$ and $g: V \to \mathbb{C}^k$ are smooth maps. Write $z = (z_1, \cdots, z_n) \in U$ and $w = (w_1, \cdots, w_n) \in V$. Show that

$$\frac{\partial g \circ f}{\partial z_j} = \sum_{l=1}^m \left(\frac{\partial g}{\partial w_l} \circ f \frac{\partial f_l}{\partial z_j} + \frac{\partial g}{\partial \bar{w}_l} \circ f \frac{\partial \bar{f}_l}{\partial z_j} \right)$$
$$\frac{\partial g \circ f}{\partial \bar{z}_j} = \sum_{l=1}^m \left(\frac{\partial g}{\partial w_l} \circ f \frac{\partial f_l}{\partial \bar{z}_j} + \frac{\partial g}{\partial \bar{w}_l} \circ f \frac{\partial \bar{f}_l}{\partial \bar{z}_j} \right)$$

Prove that the composition of two holomorphic (resp. anti-holomorphic) maps remains holomorphic.

Exercice 2. Let $f: U \to \mathbb{C}^n$ be any holomorphic map defined on an open set $U \subset \mathbb{C}^n$. Write $z = (z_1, \dots, z_n) \in U$, $z_j = x_j + iy_j$ and $f_j = h_j + ig_j$, and define the real map $F(x_1, y_1, \dots, x_n, y_n) = (h_1, g_1, \dots, h_n, g_n)$. Show that

$$|\det(df)|^2 = \det(dF)$$

Indication: treat the case n = 1 first.

Exercice 3. (a) Let $F: \Delta^n \to \mathbb{C}$ be any holomorphic function on the unit polydisk $\Delta^n = \{z \in \mathbb{C}^n, |z_i| \leq 1\}$. Prove that for any multi-index $\alpha = (\alpha_1, \cdots, \alpha_n)$, and for any r < 1 one has

$$\sup_{\Delta^n(r)} |\partial^{\alpha} F| \le \frac{(\alpha!) \sup_{\Delta^n} |F|}{2\pi (1-r)^{|\alpha|}} ,$$

where $\alpha! = \alpha_1! \cdots \alpha_n!$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$, and

$$\left|\partial^{\alpha} F(0)\right| \le \frac{(\alpha!) \sup_{\Delta^n} |F|}{2\pi}$$

(b) Prove the following generalization of the previous statement. Let K be any compact subset of a connected open subset $\Omega \subset \mathbb{C}^n$. Show that for any multi-index $\alpha \in \mathbb{N}^n$, there exists a constant C > 0 such that

$$\sup_{K} |\partial^{\alpha} F| \le C \sup_{\Omega} |F| ,$$

for any holomorphic map $F: \Omega \to \mathbb{C}$.

(c) Let $F_n: \Omega \to \mathbb{C}$ be any sequence of holomorphic maps converging uniformly. Show that the limit function $F = \lim_n F_n$ is holomorphic.

Date: January 14, 2020.

C. FAVRE

(d) Let $F_n: \Omega \to \mathbb{C}$ be any sequence of holomorphic maps with locally uniformly bounded image, i.e. $\sup_n \max_K |F_n| < +\infty$ for any compact set $K \subset \Omega$. Show the existence of a subsequence F_{n_k} which converges uniformly on compact sets of Ω (use Arzelà-Ascoli theorem).

Exercice 4. Let $F: \Omega \to \mathbb{C}$ be any holomorphic function on a connected open set $\Omega \subset \mathbb{C}^n$. Suppose that |F| locally attains its maximum at some point $p \in \Omega$. Show that F is constant.

Deduce that there exists no non-constant holomorphic map from the unit disk Δ in \mathbb{C} to the (2n-1)-dimensional sphere in \mathbb{C}^n .

Exercice 5. Let $\mathcal{O}(\Omega)$ be the set of holomorphic functions on a connected open subset $\Omega \subset \mathbb{C}^n$. Determine all units of the ring $\mathcal{O}(\Omega)$.

Exercice 6. Consider the following two holomorphic maps $F_1, F_2: \Delta^2(1) \to \mathbb{C}^2$.

- (a) Show that $F_1(x, y) = (x^2 + y^2, xy)$ is an open map. To do so compute $det(dF_1)$; and argue that F_1 is locally open at a point (x_0, y_0) by solving $F_1(x, y) = (x_1, y_1)$ for all (x_1, y_1) close to $F_1(x_0, y_0)$.
- (b) Show that $F_2(x, y) = (x, xy)$ is not an open map (compute the image of a polydisk).

Exercice 7 (Hartog's figure). Consider the following Reinhardt domain:

$$H_n = \left\{ z \in \Delta^n(1), |z_1| \le \frac{1}{2} \Rightarrow |z_j| \le \frac{1}{2} \text{ for all } j \right\}$$

Show that any holomorphic function on H_n extends to the unit polydisk.

Exercice 8. Show that $\mathbb{C} \times \{0\} \subset \mathbb{C} \times \mathbb{C}$ has a fundamental system of neighborhoods that are logarithmically convex complete Reinhardt domains. Generalize the construction to treat the case $\mathbb{C}^n \times \{0\} \subset \mathbb{C}^n \times \mathbb{C}^m$.

Exercice 9 (Krantz p.79). Prove that $\Omega_a = \{(z, w) \in \mathbb{C}^2, |z| \cdot |w|^a < 1\}$ is a domain of holomorphy for any $0 < a < \infty$. Is every bounded holomorphic function on Ω_a a constant? One might consider parameterized curves of the form $t \mapsto (e^{-t}, ce^{t/a})$ with |c| < 1.

- *Exercice* 10. (a) Use Cauchy estimates to prove that any holomorphic function $f : \mathbb{C} \to \mathbb{C}$ such that $|f(z)| \leq C(1+|z|)^k$ for some C > 0 and some integer $k \geq 0$ is necessarily a polynomial of degree $\leq k$.
 - (b) Show that any biholomorphism $f: \mathbb{C} \to \mathbb{C}$ is an affine map, i.e. a polynomial of degree 1. Indication: consider 1/f(1/z) near z = 0.
 - (c) Prove that $H(x,y) = (y, x + y^2)$ is a biholomorphism $H \colon \mathbb{C}^2 \to \mathbb{C}^2$.
 - (d) Show that for any $n \ge 2$ and for any $d \ge 1$ one can find a biholomorphism $H: \mathbb{C}^n \to \mathbb{C}^n$ whose components are polynomials, one of each has degree d.

Exercice 11. The aim of this exercice is to prove the following theorem of Rothstein. Recall that a map $f: X \to Y$ is proper if $f^{-1}(K)$ is compact for any compact $K \subset Y$. Let $B_2 = \{|z_1|^2 + |z_2|^2 < 1\}$ be the unit euclidean ball in \mathbb{C}^2 , and $\Delta_2 = \{\max\{|z_1|, |z_2|\} < 1\}$ the polydisk of polyradius 1.

Any proper holomorphic map $f: \Delta_2 \to B_2$ is a constant.

(a) Let $f: \Delta_2 \to B_2$ be any continuous map. Show that f is proper iff for any $p_k \to \partial \Delta_2$ we have $f(p_k) \to \partial B_2$.

 $\mathbf{2}$

- (b) Suppose $f: \Delta_2 \to B_2$ is holomorphic and proper. Take $e^{i\theta} \in S^1$, and any $w_k \to e^{i\theta}$.
 - Define $g_k(\zeta) = f(\zeta, w_k)$. Prove that any subsequence of g_k admits a subsubsequence converging uniformly on compact subsets to a holomorphic map g.
 - Show that the image of g is included in ∂B_2 .
 - Prove that the sequence of derivatives g'_k converge uniformly to 0 on compact subsets.
 - Prove that for a fixed ζ , the function $\frac{\partial f}{\partial z_1}(\zeta, z_2)$ tends to 0 when $|z_2| \to 1$.

 - Conclude that \$\frac{\partial f}{\partial z_1} = 0\$.
 Prove Rothstein's theorem.
- (c) Prove that there exists no biholomorphism between Δ_2 and B_2 .
- (d) Extend the argument to any dimension: for any $n \ge 2$, any proper holomorphic map $f: \Delta_n \to B_n$ is a constant.

PIMS, UBC, VANCOUVER

Email address: charles.favre@polytechnique.edu