Construction of solutions to the subcritical
gKdV equations with a given asymptotical
behavior.
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Abstract
We consider the sub-critical generalized Korteweg-de Vries equation :
i + (Uge +ut)e =0, t,zcR.

Let Rj(t,x) = Qc;(x —x; —c;t) (j = 1,...,N) be N soliton solutions
to this equation. Denote U(t) the KAV linear group, and let V be in an
adequate weighted Sobolev space.

We construct a solution u(t) to the generalized Korteweg-de Vries
equation such that :

t—oo H1

lim Hu(t) U@V - i Rj(t)H —0.

1 Introduction

1.1 General setting

We consider the following sub-critical generalized Korteweg-de Vries equation :
up + (Uge +ut)y =0, t,x€R. (1)
It is a special case of the generalized Korteweg-de Vries equation :
ug + (Uge +uP) =0, t,x€R, (2)

where p > 2. The case p = 2 corresponds to the original equation introduced by
Korteweg and de Vries [9] in the context of shallow water waves. For both p = 2
and p = 3, this equation has many applications to Physics : see for example
Miura [21], Lamb [11].

There are two formally conserved quantities for solutions to (2) :

[0 = [ (@2 mas) 3)

1
E(u(t)) = 5 /ui(t) 71 uP*H(t) = E(u(0))  (emergy).  (4)
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The local Cauchy problem for (2) has been intensively studied by many authors.
Kenig, Ponce and Vega [7] proved the following existence and uniqueness result
in HY(R) : for up € H*(R), there exist T = T(|lug||z:) > 0 and a solution
u e C([0,T], H (R)) to (1) satisfying u(0) = ug, which is unique in some class
Yr C C([0,T], H*(R)). For such a solution, one has conservation of mass and
energy. Moreover, if 77 denotes the maximal time of existence for u, then either
T; = +oo (global solution) or T < oo and |[u(t)||gr — oo as t T T1 (blow-up
solution).

In the case 2 < p < 5, all solutions to (2) in H! are global and uniformly
bounded thanks to the conservation laws and the Gagliardo-Nirenberg inequal-

ity - 3 .
e @, [P <co) (/) (f2)" ©

The case p = 5 is L2-critical, in the sense that the mass remains unaffected by
scaling. If
us + (Urz + uo)x = O; t,z, € IR? (6)

then uy (¢, 2) = A'/%u(\t, \/3z) is also a solution to (6), and |lux||z> = |jul|z>-
In this case, the local existence result of |7 is improved to initial data in L2
(instead of H'). However, existence of finite time blow-up solutions was proved
by Merle [20] and Martel and Merle [17]. Therefore p = 5 also appears as a
critical exponent for the long time behavior of solution to (2).

A fundamental property of (2) is the existence of a family of explicit traveling
wave solutions. If @ denotes the only solution (up to translation) of :

1

Q > 07 Q € Hl(R)’ Q.K:C + Q;D = Q7 ie. Q(l‘) = <p_|—1> : y

2 cosh? (21 2)
then for ¢ > 0 the soliton
Rey = 71 Q(v/e(x — mo — ct)) is a solution to (2).

For p = 2 and p = 3, equation (2) is completely integrable, and thus has
very special features. The inverse scattering transform method allows to solve
the Cauchy problem in an appropriate space (for example if ug € H* and
rug € L') and the qualitative behaviour of solutions is well understood. For
example, given ug smooth and with rapid decay, there exist N solitons R, .,
such that

C
Hu(t) =2 Ry, (t)HL“’(xZ—tl/a) < i (ast—o0).

j=1

See for example Schuur [23], Eckhaus and Schuur [5], Miura [21].

However, if p # 2 or 3, the inverse scattering transform method does not
longer apply, and the description of solutions in the general, non-integrable case
is an open problem. It can be decomposed in two types of problems.

Problem 1 : Asymptotic behaviour. Given an initial data ug, does the out coming
solution u(t) to (2) exists for all time ? If it does (for example in the subcritical
case), can its behavior be described, as t — oo ? If blow up happens, can the
blow up rate and profile be determined ?



Problem 2 : Non-linear wave operator. Given some reasonable behaviour as
t — oo, can we find a solution u(t) to (2) defined for large enough t, with
this behaviour ? Is there uniqueness for u(t) ¢

1.2 Recent results on Problems 1 and 2

Let us now develop some recent results which will be the base to our result. We
denote U(t) the linear operator for KdV equation, i.e. v(t) = U(t)V satisfies
Vg + VUgge = 0, v(0) = V.

The first result deals with scattering for small initial data, a problem studied
by many authors (see for example [24], [22], [2], [6]). Let us remind the result
of Hayashi and Naumkin [6]. Introduce the following weighted Sobolev spaces :

H*"™ = {¢ € ' |[gllrem = (1 +[a)"/2(1 = 02)*/2] 12 < 00} (7)

Scattering operator. Let p > 3. Given ug small enough in HY', the out-coming
solution u(t) to (2) is global in time, and there is scattering, in the sense that
there exists a function V € L? so that :

lu(t) —=U@)V]z2 =0 as t— oco.

Furthermore, ||u(t)| =~ < Ct=/3 (linear decay rate).

This is the description of solutions with initial data around 0 (in H%!), a
result which can be understood as stability around 0.

The second type of results we want to focus on is that which describes the
solutions around solitons or a sum of solitons. The following result of Martel,
Merle, Tsai [18] solves the problem of stability in H! of a sum of N decoupled
solitons (see also Martel and Merle [14]).

Stability of the sum of N solitons. Suppose p = 2,3 or 4. Let N € N, and
0<c <...<cn. There exist vo and g (small) and A, Ly (large), so that the
following is true. Assume that there exist L > Lo, a < ag and 29 < ... < 2%
such that :

<a, with ) >z} |+ L, forj=2,...,N.

’U,(O) - Z ch(' - l‘?)

‘Hl

Then there exist x1(t),...,zn(t) € R such that :

vt > 0,

H!

N
u(t) - Z ch(~ — .’tj(t) — Cjt)H < A(OL + 6*’YOL).

These results are related to Problem 1. Let us now turn to results concerning
Problem 2. First, Martel [12] proved the existence and uniqueness of N-solitons
in the cases p=2,3,40r 5 :

Ezistence and uniqueness of the N-soliton. Let p € [2,5]. Let N € N, 0 <
c1<...<cn, and x1,...,xN € R. There exist Ty € R and a unique function



u € C([Ty, +0),R), which is a H' solution to (1), and such that :

N
u(t)_Zch('—xj—Cjt)H =0 as t— oo.
Jj=1 H?!

Furthermore, u € C*([Ty,00) x R) and convergence takes place in H® for all
s > 0, with an exponential decay :

< Age 0t
Hl

Iy >0, Vs > 0,345 /

N
u(t) = > Qe (- — x5 — cjt)‘
j=1

This result appears as a development of monotonicity properties and a dy-
namical argument, ideas which where used by Martel and Merle [14] and Martel,
Merle and Tsai [18].

However, it is a surprise that the method could be adapted even to the critical
case p = 5, although it is well known that solitons are unstable in H*(RR) : there
is in fact blow-up for a large class of initial data and the blow-up profile is stable,
see [15], [17], [20], [16]. Another surprise is uniqueness of the N-soliton.

Notice that in view of this result, the stability of a sum of N solitons can be
interpreted as stability of the N-soliton (solution to (2)).

The last result solves the case of a linear behavior, that is the existence of a
wave operator :

Large data wave operator. Let p > 3, and V € H?2. There exist Ty € R and
u € C([To, 00), HY) solution to (2) such that :

lu®) —U@E)V]|g — 0 as t— oo.

Furthermore u is unique in an adapted class.

In the same way that the result of Martel [12] was based on considerations of
Martel, Merle and Tsai 18], this result strongly relies on the analysis of Hayashi
and Naumkin [6].

1.3 Statement of the main result

Our goal is to construct solutions which behave like a sum of a linear term
U(t)V, and of N solitons, in the subcritical p < 5 case. Notice that in [3]
such solutions are constructed in the critical case p = 5. More precisely, given
0<c1 <...<cpand zq,...xxy € R, we would like to construct solutions u(t)
to (2), defined for large enough times and such that

N
Hu(t) ~ UV =3 Re,a, (t)HHl 0 as t— oo
j=1
In this article, we construct such solutions in the case p = 4 (that is, for equation
(1)), provided that V is smooth enough, with sufficient decay on the right. From
now on and throughout the rest of the article,

we focus on the sub-critical case p = 4. (8)



Let us first remind the functional setting which will be used throughout the
proofs. Fix once for all the three constants :
2y

v e(0,1/3), a:%—’ye(o,l/Z) and § = —21

5 0. (9)

(v is arbitrary). These constants are those of [6] in the case p = 4.
Again as in [6], we will use the notation D = 0, = -2 for the partial
differentiation with respect to the space variable z, and

Daf — f—lgae—(iﬂ/2)(l+o¢)f’

along with the two following operators
JUF = U)aU(—t)f = (x — 3t02)f, and I'¢ = v6 + 3t/ ,f (L) dy.

We write J¢ and I! so as to emphasize that we will always consider norms at a
fixed time ¢ although J* and I! are space-time operators.
Our working spaces will be defined through the time dependent M¢ norm :

He = {f € L*(R)| My(f) = Ifllers + |DI fll g2 + | DT £l 12 < 00}

J* only appears in the norm, as it is convenient to do linear estimates (see [6],
Lemma 2.3). But we introduced I* because it is easier to handle when doing
energy methods estimates. Notice that M is very similar to || - ||g1.1.

We will finally use the following notation for weighted spaces : for a positive
function h,

191y = [ 104 827 @)h(a)da.

Following a usual convention, different positive constants might be denoted
by the same letter C.
Our main result is the following.

Theorem 1 (Nonlinear wave operator). Let V € H>' N H??2 be such that :
2DV er?,  2BVeH,

(where x4 = max{0,z2}). Let N € N, 0 < ¢; < ... <c¢n and z1,...,zn € R.
Denote Rj(t,x) = Q. (x — xj — c;t) N solitons.

Then there exists u* € C([Ty, +00), H* N'HE), for some Ty € R, solution to
(1), such that if we introduce :

we have
lw* ()|l s + M(w*(t)) =0 as t— oc.

Furthermore, we have the following decay rate :

lw* @)l as < O3, Mi(w*(1) < Ct°.



Remark 1. This result allows to work with large data (V large in L?), which
is both surprising and satisfactory. However, it deals with smooth and decaying
data. A natural setting would be a result with V € H!, and some decay on the
right to ensure low interaction with the solitons. Theorem 1 should be viewed
as a step in the solving process of Problem 2.

An important change in the method of proof when considering [12] is the
following. Solitons have an exponential decay, and so integrability (in time) is
always automatic. Here the linear term U (¢)V will interfere with the solitons to
produce a polynomial decay in time, and this will require taking care of.

Similarly, when handling the linear term U(¢)V (following the framework of
[4]), we will have to take care of the interference of the solitons.

Remark 2. This result is similar to [3], where a non-linear wave operator is
constructed in the L? critical case p = 5.

In both cases, the scheme of proof first dwells on the interaction with the
solitons, and in a second step uses arguments from the linear scattering theory
to control the interaction with the linear term (along with the results obtained
in the first step). The argument for the soliton interaction is very similar in the
case p = 4 and in the case p = 5. However, the second step is very different.

For p = 5, the linear scattering theory of Kenig, Ponce and Vega [§] is
available : it is done in L2, and so requires much less smoothness and decay on
V. The main difficulty is to mix both approaches, as the soliton theory relies
on an analysis in C)H], and the natural space in the theory of [8] is L3L;% :
in particular, solitons do not belong to this space (nor to L2L1Y,. for any T).
The problem is then to separate the linear analysis from the non-linear one, and
when considering the interference of one over the other, to be able to interchange
integrals in time and in space in an adequate way. This can be done with a small
loss in the decay, with respect to the optimal result one can expect using this
method.

In the non-critical case, the scattering analysis of [8] is no longer available,
and we have to relie on the theory of Naumkin and Hayashi [6]. Their method
break down at some point, when taking care of the interference between the
solitons and the linear term. However, we manage to recover the leap by energy
method arguments, and this is why we have to reinforce the assumptions on V,
and obtain a stronger convergence (H*). Our method could be adapted also to
the critical case, but would give a much less sharp result than what is obtained
in [3].

The problem of the uniqueness of solutions behaving as the sum of a linear
term and N soliton is an open question, in both the critical and sub-critical case.
Remind that if V = 0, one has uniqueness in H! (see [12]) : this result is linked
with very fast convergence of the constructed solution to its profile not only in
H' but in H*. However, it seems that one can not derive easily from this work
a proof for V # 0.

Remark 3. Theorem 1 is valid only for p = 4 for two main reasons. First, it
contains the existence of a scattering operator, so that p > 3. Second, it also
contains the existence of a N-soliton, which is only true for p < 5. The fact that
our setting only deals with integer p comes from our crucial use of the regularity
of the non-linearity function x — xP and also from better integrability properties
(if p > 4 instead of p > 3).



However, one can prove an analoguous result for p = 5, but that one would
be much less precise than we is stated in [3].

Remark 4. There are some analogous results for the (critical) non-linear Schré-
dinger equation. See Bourgain and Wang [1], Krieger and Schlag [10], Merle [19].
In [1], a solution to the critical NLS equation with a given blow-up behaviour
is constructed : due to the conformal transform, this is in fact equivalent to
construct a solution to the critical NLS equation which behaves like the sum
of a soliton and a linear term. High smoothness and low interaction with the
soliton are required on the linear term.

In Section 2, we give a detailed outline of the proof of Theorem 1, decompos-
ing it into steps : each of these step is summarized in a proposition. In Section
3, we give some preliminary results and each of the following sections is devoted
to the proof of one of the propositions stated in Section 2.
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2 Outline of the proof

Let V € H>' N H*? such that 28 D°V € L? and xi/gV € H' . Let 0 < ¢1 <
...<cn and z1,...,2n € R. Denote the soliton with speed c; and shift x; :

R;(t,x) = Q¢ (x — x5 — cjt).

Define also R(t) = Z;\f:1 R;(t).
Let S, be an increasing sequence of time, so that S, — oo as n — oo. For
n > 0, we define u,,(t), the solution to

Ung + (Ungg + ui)x =0,
{ Un(Sn) = U(Sn) + R(Sy). (10)

Equivalently, we introduce the error term
wn(t) = un(t) = UV — R(t),
so that wy, (t) satisfies the equation
{ Wnt + Wy + (qu - Zjvzl R;*)x =0, (11)
wp(Sy) = 0.
As u,(S,) € HY, upn € Cp(R,H') ; the same thing is true for w,,(t).
The heart of the proof of Theorem 1 is the following result.

Proposition 1 (Uniform estimates). There exists Ty such that for all n such
that S, > To, the solution un(t) to (10) and the solution wy(t) to (11) belong
to C([To, Sn), HE N H*). Furthermore, we have

Vit € [Ty, Snl,  |wn(@)]|ge < Cot™Y3,  ME(wn(t)) < Cot~°, (12)

for some constant Cy not depending on n (recall 6 > 0 is introduced in (9)).



The proof of this proposition requires several steps.

The first remark allows us to further assume smallness on w, (t), in order to
get the decay (12).

Proposition 1’ (Reduction of proof). There exist eg > 0, Cy, and Ty > 1
with QC’OTO_‘s < gg such that the following is true, for all n € N. Suppose that
there exists I, € [Ty, Sn] such that

Vt € [In,Sn),  wa(®)llgs + Mg(wa(t)) < eo.
Then in fact
Vit € [I, 8], |wn(t)||gs < Cot™3,  ME(w,(t)) < Cot™°.

Proof of Proposition 1 assuming Proposition 1’. Let To = max{1, C’é/éeo}, and
define

I = ) iﬁfs ]{t*| Vt € [t*,Sn],  |lwn ()] ge + ME(w,(t)) < o}
*e[1,5,

As w, (S, = 0), by upper semi-continuity of the norm of the flow (see [4, Ap-
pendix B|), we obtain that the set on which we do the infimum is non-empty,
so that I} < S,.

Then of course, for all t € (I}, S,], ||wn (t)]| m2 + M{(w,(t)) < 9. This allows
us to apply Proposition 1’ so that

vt € (I, Sy, wn ()| s < Cot™3,  ME(wn(t)) < Cot™0.  (13)

If I} > 1, we also get that limsup, | . [|[wn ()| gs + M(wn(t)) > o (from the
minimality of I}}). In particular, this gives

g0 < limsup [|lwy, (£)|| s + ME(wn(t)) < 2CoI5°.
tII*

n

So that I* < &0/(2Cp))~/%. In any case, we get that I < T, : (13) allows us

n —
to conclude. O

Thus, our goal is now to prove Proposition 1°.
Proof of Proposition 1°.

Step 1 : Monotonicity and non-linear tools. We obtain H' estimates on the
right. Let us intoduce the cut-off speed

oo € (0,min{cy,co —c1,...,cy —cN-1}), (14)

to be determined in the proof of the following Proposition 2, and the cut-off
function

¥(z) = 2 arctan (exp (—‘/Q‘T%D L welta) = (@ — oot — 2Jza). (15)

s

1o (t) allows us to separate the solitons interaction from the U(¢)V interaction.



Proposition 2 (Interaction with the solitons). There exist o1 > 0, ;1 > 0,
C1 and Ty such that the following is true. If o9 < 01, €9 < €1 and Ty > T1,
then, for alln € N and all t € [I,,,S,],

_50v70
ol 1oy < Cre™ T+ CLIT @OV 1oy
Sn
+ C1(Sn =t + DUV | L2(1=po(5,)) + C1 / NU )V ]z (1= (1)) AL
t

Observe that this proposition in fact holds for all p € [2,5] ; however, we
will only do it for p = 4.

Essentially we obtain a polynomial decay on ||wy, ()| g1 (1w, (t)) (instead of
an exponential decay in the case of solely soliton). However the good point is
that we can choose this polynomial decay to be as fast as we want by lowering
the interaction of U (¢)V with the solitons, that is, by requiring sufficicient decay
on the right for V.

Now we would like to complete the M{ estimate. But it happens that the
construction of [6] relies on a very nice cancelation involving the operators J*
and I', which allows a bootstrap in H}. Here, this nice clockwork breaks down
because of the interaction with the solitons R; (the precise term that arise will
be treated in full detail in the proof of the final step 4). We therefore are forced
to work in H? which is the more natural space where all the computations of [6]
are done (of course in H?, the bootstrap of [6] doesn’t work anymore because
of a lack of information).

We need a good control on the interaction with the soliton at the H3
level : more precisely (this will be done in full detail in subsection, we need
tllwn || 3 (1—wo(¢)) be integrable in time. This can not be achieved by improving
Proposition 2 to H3, as its proof is done through considerations at H' level.
This is why we go up to H* : with a weak control on ||w,| 7+, and a strong
control on ||wy[| g1 (1—y(t)), We obtain by interpolation the desired control on
|wn | 73 (1—po (1)) Indeed, we have the following corollary to Proposition 2, in
which we estimate some quantities which we will need later on.

Corollary 1. Suppose V € H>' N H?2 is such that
2DV e L?, and 3V e H'.
Then for some C1 > 0, we have, for all n € N and for all t € [I,,, Sp],

tllwn ()13 (1—yoe)) + U BV ] 21— g0 1))

U

C
HINUOV s a—yoe)) + NTE) (@ V)l 1 (1= po)) < 7547/13-

Proof. We combine the result of Proposition 2 and Lemma 3. First observe that
from Lemma 3, our assumptions translate to

ID U )V |22 (1—yo(ey) < Ct*2, (16)
U@V L21—yo(e)) + 1T VallL2a—yor)) < C°. (17)
So that by interpolation of (16) and (17),

IU @V s (1o () < CE43.



Again by interpolation, we get

A

U@V | mr2(—yoy) < IU(E )VHH1(1 1;,0(,5))”[]( )VHH5(1 —to(t))
¢ c < C <£

< -
i tr

ol
\
~
Ju
L=
~
w
\
~
3
o~
w

Now, by Proposition 2 and (17), we get

¢

||wn(t)HH1(1f¢0(t)) < 7

Now recall that ||w,(t)|| 7+ < €0, so that by interpolation

1/3
(Ol 1—sn(e) < Clwn O e ONL o

2/3 _ C
< t7/3||w7l( )||H4 = t7/3

For the zV,, estimate : first notice that

/ 14/3 /OO V2 143y
0

— / Vipwa Vez "4 3dz — / Viyu VeV 3dx
0

0o 1/2
< ( / V2 da / V§x20/3dx)
— \Jo 0
oo [eS) 1/2
+ (/ szxs/?’dx/ Vfacm/?’dac)
0

VVorall 2232 Va | 12 + |12%®

7/3
< |l Va2 |2y Vi 2.

AsV € H*2 2V, € H', and moreover,

/((wa)2 +|D(xV,)?) 2% da < / (V2 +V2) 1+ de,
so that
11+ 27 ) @V 120 < I+ 2 )WVl (1 + 24 *)V ) s
From our H® estimate and (1 + 2%)V € H', we get

1@ @Vl a-soey < O+ L)@Vl <CE2 O

Step 2 : Energy method estimates. Now that we have assumed H* control, we
have to obtain H* uniform decay.

Proposition 3 (Interaction with the linear term, H* bounds). There
exists Co such that Yn € N, Vt € [I,, Sy],

Cs
||w7l( )HH4 — t1/3

10



First consider L? and H' estimates. We want to control what happens in the
zone x < opt, that is the interaction with the linear term U(¢)V : we follow the
framework of [4]. The crucial point is to use our a priori control on M¢(w(t)).
We have

These, along with Proposition 2 allow to obtain the H' decay estimate, in
a very similar way to [4].

For the higher order estimates, i.e. H2, H? and H*, the pointwise control
that we have on w,, and w,,, is not enough. If we wanted to improve our control
to M¢(wh,), we would always face the same problem for the higher order deriva-
tives. The path that we will follow to avoid this is to use almost conservation
quantities at level H? etc. For example, let u be a solution to (1), then

2 : 2.3 5 / 3,5

Three elements are to be noticed. First, there is a corrective term [ uZu® to
prevent the apparition of [ uZ,u,u?, which we could not control, as noted in
[12]. Second, [u3u® comes from the corrective term, and will never be harmful,
as it has a better integrability than the others (power 8 instead of 5). Third,
f u3 has a more than quadratic term in u, (when u, appear less than twice, we
can use directly our control on ||u,||2 already obtained). To control this kind
of terms, we use the Gagliardo-Nirenberg inequality :

g+2 ~ g—2
Va2, Yo e H', [ulld, < C@lolE llodl - (5)

As the maximal exponent on the term with highest derivatives is 5 or less,
exponent on |[vg|| 2 will always be less than 2, which means that we will always
be in the position to apply Lemma 4. Assume for now that, when estimating
the derivative in time of the H**! norm (squared) of w,(t), all terms have
appropriate control except for (5 € [0, 3])

/ |Dswn|2+ﬁ|Ds_1wn\3_ﬁ.

Further assume that all previous estimates gave a decay ||wy|/zs < Ct~=1/3.
Thus, as our term has power 5, from (5) we would get a control :

”wn”?{sﬂ

5_
< w3 lwall e < =537

d
ol

With = 3/2, A = (5 — 3)/3, Lemma 4 gives the decay ||w||gs+: < Ct™", with

1(6-8)/3-1 1
O R ey, RS

11



This means that the rate of decay t~/2 is likely to propagate as the regularity
index s increases (in fact, for p > 4, similar computations show that the rate of
decay t~(P=3)/3 propagates). p integer is interesting regarding the regularity of
the non-linearity function : to obtain the H? formula quoted, we already need
a C* regularity, which translates to p > 4. In any case, our assumption p = 4 is
now crucial. Of course we will need the estimate of Corollary 1 to handle some
interaction terms.

Observe finally that this decay rate of t~/3 is the best one can expect, due
to the slow decay of the linear term U(t)V.

Step 8 : Linear tools from scattering theory. We can now complete the decay
estimate, by controling the remaining of the M{ norm.

Proposition 4 (Interaction with the linear term, M} bound). There
exists C3 such that Yn € N, t € [I,,, S,]

Remind that M{(w,(t)) = ||wn )|z + | DYTtw,(t)| 2 + || DI wn ()] 2.
lwn (¢)||z1 has already been estimated, so we only need to focus on the last two
terms. We follow the framework of [6] and [4]. First, we estimate || D*I*w,, (t)|| .z
and ||I*w,,(t)||z2. For this, we use the usual 14| f||2, = (Lf, f), and plug in
Lf the equation satisfied by f : here f = D*I'w,(t) or DI'w,(t).

When doing the computations on (LI w,, . (t), I'wy,,(t)), we encounter a term
of the type

[utwre (13)

This is localized term in space, but in H? regularity instead of H' regularity.
This fact explains that we needed to get decay for higher regularity norms than
just H'. Ideally, we would try to obtain directly H?> on the right decay. However,
this seems not to be possible. One easy way is to obtain low decay rate for the
global space norms H*, which we did up to H*. Corollary 1 allows us to bound
this troublesome term (18).

This explains how to obtain

1D I wy (t) | 22 + [T wn (t)]| 2 < CL°.

It remains to go back to J¢, which is done in a similar way as in [6] and [4], and
does not raise more difficulties than those treated earlier.
This concludes the proof of Proposition 1’, and thus of Proposition 1. O

We can now conclude :

Proof of Theorem 1.
Step 1 : A compactness result. From Proposition 1, we dispose of a sequence
U (t) defined on [Ty, S, ], solution to (1), such that

N
u(Sn) = U(Sn)V + > R;j(Sn) = U(S,) + R(Sy),
j=1

12



and that the uniform estimates hold (wy,(t) = un(t) —U(t)V — R(1)) :

C
3Ty > 1,300 > 0, Vn €N, Vi€ [Ty, 8], Nun(®)lrs + My () < 27

Let us prove the following compactness result on the sequence uy, (Tp).

Claim. We have

lim sup/ u? (T, x)dx = 0.
A= neN Jiz|>A

Proof. Indeed, let ¢ > 0, and T'(¢) such that CoT(¢)~° < \/e. Then
/(Un(T(é‘)) —U(T(e)V — R(T(e))* < e.

Let A(e) be such that [, y(U(T(e)V + R(T(¢)))*(x)dx < € ; we get

z|>Ae
/ u? (T(e), z)dx < 2e.
|z|>A(e)

Let g € C? a function such that g(z) = 0 if z < 0, g(z) = 1 if x > 2, and
furthermore 0 < ¢’(z) < 1,0 < ¢"'(z) < 1.
Remind that if f € C® does only depend on z, we have

d 2 2 2 8/ 5
G [ir==s fuifr [t g [ui.

(See Lemma 7 and its proof). For C(e) to be determined later, we then have :
£ ()t i ()
e [ (o) s [0 (o)

Ast > Ty > 1, u, satisfies ||u, ()| g1 < Co+ ||V |g + Zjvzl 1Qc, |1 < C°. So
that :

i f e ()

< o5 (3 [0+ [0+ Sl [20)
- (3002 + §23/2c°5> .

Now choose C(e) = max {17 M (3002 + %23/2005) }, from which we de-

4 [ (D) <

And after integration in time between Ty and T'(¢) :

/55220(5)+A(s)

13



Now considering % [u2(t,x)g (7‘40((66))71), we get in a similar way

/ u? (Ty, ) < 3e.
z<—-2C(e)—A(e)

So that if we denote A, = 2C(¢/6) + A(/6), we obtain :

Vn € N, / u? (T, r) < e,
|z|>A.

as claimed. |

Step 2 : Construction of u*. u,(Tp) is a bounded sequence in H* N HOTO, S0
that it converges weakly to po € H*(R) NHg°(R) (up to a subsequence). The
previous compactness result ensures that the convergence is strong in L?(IR).
Indeed, let € > 0, and A such that flx\>A 2(z)dr < e and

wmeN, [ wmo<e
|z|>A

The injection H!([—A, A]) — L?([—A, A]) is compact, so that Jizj<a ltn(To, 2)—
¢o(z)|?>dz — 0. We thus derive that

hm?;]lp l|un(To) — SOOHQLQ(]R) < 4e.

ne

As this is true for all € > 0, u,(Tp) — ¢o in L?(R). By interpolation, u,(Tp)
converges strongly to g in H3. Denote u*(t) the solution to

{1@+m;+u“n=m
u* (To) = $0-

*

The Cauchy problem being globally well-posed in H', u* is well defined. Now
the flow is continuous in H3, so that for all t € R, u,(t) — u*(¢) in H3, and we
can pass to the limit in the H? estimates, to get

VtER,  |lu*(t) = UMV — R(t)|lm < Cot™ 2.

Denote w*(t) = u*(t) — U(t)V — R(t). w,(t) — w*(¢) in H! so that w*(¢) is the
only possible weak limit of w,,(¢) in H* NHY. In particular, the convergence is
strong in H> and

« o G . o C
" (8) 1+ < limin [fwn (D)l sre < 575, Mi(w™ (1) < liminf Mg(wn (1) < 3.
This completes the proof of Theorem 1. O

This scheme of proof is similar to that of [12], [4]. Steps 2, 3 and 4 of the
proof of Proposition 1’ remain to be completed.

In Section 3, we present some preliminary results. In Section 4, we prove
Proposition 2. In Section 5, we prove Proposition 3. Finally, in Section 6, we
prove Proposition 4. This completes the proof of Proposition 1’, and thus, the
proof of Theorem 1.
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3 Preliminaries

3.1 Cut-off functions and notation for localized quantities

We already introduced o¢ € (0,1/2min{e;,co — c1,...,¢xy — ¢n—1}), and the

cut off function )
Y(x) = — arctan (exp <—\/2070x)> . (15)
™

We can check that lim;. ¢ = 0, lim_, ¢ = 1, ¢ is decreasing. Furthermore,
by direct computations :

’ _ Voo o _ 00 B 2
vie)= 27rcosh(‘/;7(’gc)7 v 4¢($)<1 cosh(\/gi(]ac)>7

so that

g0

9" (@) < = ¢ ()- (19)
We introduce, for j =1,...,N — 1,
mj(t): J 2j+1t+ 1 2]+1, mo(t)zdot—2|l‘1|.

So that we can define, for j = 0,..., N — 1,
Vit @) = ¥z —m;(t), Yn(t,z) =1
Then we set, for j = 1,.... N — 1,
Go(t) =vo(t), ¢;(t) =v;(t) —¥;1(t), on(t) =1—tn-a(t).

By construction, Zi:l ¢r = ;. Finally, we define some local quantities related
to mass and energy :

w0 = [0o0, B0 = [ (520 - 500) o0
Fy(6) = By(0) + 155 My ).
3.2 'H} estimates
Remind our notations
ye<o,;), a:%—y, 5:1;2V>0, (9)

the operator J'f = xf — 3t0%f = U(t)2U(—t)f, and our working norm
Mo(f) = Il + (ID*T* fll 2 + 10 ]| 2.

First a few remarks on M{. Of course MY (f) < C||f| g1.1- Second, note that
JUU )V = U(t)zV (and U(t) is a H® isometry), so that if V € H! we have
the uniform control in ¢ :

MUV < OVl (20)

We now remind the linear results obtained in [6] (Lemma 2.2), in a slightly
improved form.

15



Lemma 1 ([6]). Lett > 0 and f be a function so that M{(f) is bounded. Then

forr >4,
¢ ¢
)1/3—1/(37-) Mo (f)-

(1+t¢

And one also has the point wise inequalities

CM;(f) T [\74 CMG(f) T [\1
o U asl) T 1s@ls =55 1+ [E])

As a simple consequence, for V € H'!, we have similar decay estimates on
U@)v.

[fllzr <

|f(2)] <

Proof. See [6], Lemma 2.2 and its proof (especially inequalities (2.16), (2.17)
and (2.18)). The proof of refinement can be found in [4], Appendix A. O

We will also need the polarized version of Lemma 2.3 of [6] (in the case
p=4):

Lemma 2. Let p > 3 and g,h : R — R. Then the following inequalities are
hold if their right-hand side is bounded :

_ 1/2 3 1-3 2
1D || < Cllg? Moz (l9ga 2 + 19122 1992|772,

_ -3
1D%1glP~ hallzz < CUD* e + hallz2) (917l 9gsll L=
—3-2 2 —342 1—
gl Mgl lggall o + gl z="" 199z 11.2)-

Proof. See [6], Lemma 2.3 and its proof (case o = 0). O

3.3 Estimates of U(¢)V on the right

Recall our definition of ¢y (¢) (15), given o¢ > 0. We will often need estimates of
the type [|U()V || g1 (1—yo@t))» as it is a measure of the interaction between the
linear term U(¢)V and the solitons.

Let us denote 4 = max{z,0}.

Lemma 3 (U(t)V estimates on the right). Let f € L?, then

NIU@) flleza—vort)) < 1fllLz(1—yo(e/2)) — 0 as t— oc. (21)

Assume in addition that (1 + z%)f(z) € L?, for some q¢ > 0. Then there exists
a constant C' = C(og,x1) independent of f such that

C
V21 U0 oy < 0+ 2 f @) (22
We will apply this result to V' and its derivatives (see Corollary 1).

Proof. The key remark is that U(t) “pushes” the L?-mass on the left. We com-
pute :

= [wer - o5Pu)
—2 [(Wer - 0p),Uer - 0w + [ UG -0, (0)
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=4 [ UG = 01U = O in() + [ U@ =07 Pun.(7)
— 1 [ U(r — )12V (2r ~ ) futolr) + 4 [ U2r = 0127 = b0, (1)
+ [1oeer =007
=6 [ W(2r ~ 04 Punn(r) ~ 4 [ U = 0£U@r = 0 bo.. (1)
+ [1oezr =)0
=6 [ 1027 = O£Pb0,(r) + [ 106 = @) +0,(7).

AS Ppae < 4 W}z| 1pO‘r = UOwOIJ and 9, < 0, we have that,

ﬂjox(T) <0 and 2w0mmr(7-) + 7/’07(7') > 0.

So that 7 — [U(27 — t) f(z)?1o(7, z)dz is an increasing function of 7. In par-
ticular, when comparing for 7 =t and 7 =t/2 (¢ > 0), we have :

vt >0, /|U )P0 (t) /fzwot/Q

As the flow U(t) preserves the L?-mass, we get
JIOP@0 - wads < [P0 w2 @)

Suppose that for some ¢ > 0, (14 2%)f(x) € L. Then for t > 1,

/ﬁa—wﬁm»=/;tMﬁu-wﬁm»+/>tMﬂa—wﬁm»

—2q
t
< sup (1 —wo(t/Q,ac))/f2 + (az) / x4 f2
z<oot/4 z>o0t/4

_90V%0 _
< C(zo)e™ 5 Y| fll22 + Cloo)t 2|z 2.
And we get
C q
V21 U@ Fll2a-sew) < 55 |0 +20)"llze
which is (22). O

3.4 An ODE lemma

Lemma 4 (Booster). Let k > 0, A > 1, p € (0,1), and f € L*([a,b]) (0 <
a < b< +00) be a non-negative upper semi-continuous function satisfying

b oru(r
1o,

vielab, f(t)< %+c/

Define v = min{x, 3 1} Then there exists k = k(C, K, \, 1) not depending on b
such that ”

vielabl, )< o

17



Remark 5. Of course, if instead we have

<—+ZO/ fﬁl, dr,

the final decay estimate is still valid, with v = min{x, ( ) } being the least
favorable exponent.

Proof. Let k > 1 to be determined later. Let us consider

kC
T:inf{rZa Vi e [r,b], f(t) < t”}'

Observe that T is in fact minimal for the property. As b > 0, f(b) < = < TU’
so that by upper semi continuity, 7' < b. Then, if ¢ € [T, b], we have (t 2 a>0)
C C(kC)

OES pa——ul

S T A — Lt e

Ifl/:%7)\_1+'uy:()\—1) (1_9_&) :ﬁ:y. Else v = K, 2 1=

sothat A—1> (1 — p)v and A — 1+ pv > v. In any case, we get

A=l >
=

(kCH*
14+pv

1+ 55
f(t) < 0—3
Let us now choose k such that 2 (1 + )\(kﬂ ) < k, which is possible as p <

1 (notice that k > 2). We get finally f(t) < 2tv' By a standard continuity
argument, we deduce that T = a. O

4 Estimates on the right : proof of Proposition 2
We follow the framework of [12]. The hypothesis we will use in this section is :

Vit € [In,Sh],  |wn(®)|lar < eo.

4.1 Modulation close to asymptotic profile
Let us remind that Q.(z) = 71 Q(\/cx).

Lemma 5 (Modulation of w,(t)). There exist Ty and o such that if I, > Ts
and g9 < €2, the following is true. For allt € [I,,, Sy], there exist y;(t) and ~;(t)
such that if we denote

N
Rj(tvx) = Q’Yj(t)(‘r - yj(t))v R(t’x) = ZRj(t €

Wy (t) = un(t,x) — U)V — R(t, z),

we have for allj=1,..., N,

/zbn(tw)]:ljw(t,x)dx =0 and /ﬁ}n(t, z)R;(t,z)dz = 0.

18



Moreover, there exists C} such that :

N N
1@ (Ol + Y 1 (1) = el + Y Jy; (8) = 2 — ¢5t] < Ceo,
=1 =1

__ 9090
95 (1) = cjl + 1] < CRe™ = + CEIU OV [l 22 (1o 1))

1/2
+C? (/uv,%(t)e—ﬁx—cﬂl) .

Proof. The construction of the modulated parameters (and the first estimate)
essentially relies on the implicit function theorem by a standard arguement : we
refer to [25] and [26].

Let us focus on the second estimate (local estimate). We begin by computing
the equation satisfied by w,. The equation satisfied by Ry (using —ck Riq +

Ry + Ry = (=Y (t) + ci) Riey + 3:8 (ng(t) + (- yk(t))Rk;(t)>

- ckka + Rk;ﬂxw

— (30 + cu) oy + 2 (R’;(t) - yk(w)R’“;(t)) - (B

So that @, = un(t) — U(t)V — R(t) satisfies

N

~ ~ / s al Rk? ékaj
k=1

k=1

B

N
— ((wn +U#)V + R)* - ZR;) . (29)
k=1

x
Now, if we express R; in terms of R; :

2 L () [ Ry, (1) R, (1) Ry, (1)
Rjact = _yJ(t)RJ;cac + ’Yj(t) ( 3 + (.23 - y](t)) + > :

And keeping in mind that % [@nR;, = [W,R;, =0, we get
/

[k, =~ [wny, = [ (y;-os) - 18 9”‘5“”) Ry

We multiply (24) by ij and integrate in z, and do integration by parts :

w0 e [ 2 =—gt0) [oks,, + 20 [ ook,
0O = 3 =it [ By, P

k,k#j
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>~

. i i

Z%/ (R; * <x—yk<t>>R§x>
N

_ / (0 +UBV + R) = Rﬁ) R .
k=1

First consider the 3 first terms. Remind that for all j =1,..., N :
|Ry(t,2)| + | Ry, (t, )] < Cem Vool

Furthermore, as Q.. = @ — Q*, we can express ij and ijm in terms of
powers of R;. Hence, the integral part of these term is bounded by

1/2
/Iwn(t)l(l + o — ejt|)e vl < © (/ Iwn(t)IQe‘m””‘c-”Q :

2090
2

For the fourth term, [|R; Ri,| < e~
for k # j, and for k = j :

[ R (i " <x—yj<t>>R;w> ~0.

And for the non-linear last term, when developing, the large terms cancel one
another, so that we can control the rest by

t. This also apply to the fifth term

¢ [ (o) + eV e v

Finally, we have altogether

400 (esonemn)”

(0) — o <0(1+

o, d - Z ; t
0 HS 0) —al + oo S D)
2 W ()
_c0ymg
+Ce” T CIUMV | 210 (1)) - 25)

Now, we have to do the same kind of argument on v;. Let us multiply (24) by
R;, using

[ a0 =~ [ a0 0 = -320 [0y oha,,

12 ;(t 275 (¢)
N N
D D fyl P, Rk Rk?:v
_;(ck_yk(t))/Rijﬁk#jv:/Rj <3+(f€—yk(t)) 5 )



—/ (@ + UMV +R)* = > Ri | Ry,

k.k#j

Let us notice again that the only possibly large term (in the first sum) is in fact
J R;R;_ = 0. If we argue like before, we get

oo 29) (o)

oo 07 ! (¢t
+Ce TN () — el e Y Vk(t)’
Rt oy ()
_ of
+Ce L CIUBV I z2(1-go () (26)

We can now do some computations. Let us sum our 2N estimates (25) and (26)
together :

N (1) N N ()
> (ke —eal+ 25 ) < € (1 o+ 3| 25 ) ol
w0 0
k=1 k=1 k=1
o077, [ ;. (1) 7075
# O (SO + | ) + e OOV o
k=1

So that for ¢ small enough, as ||, ||z < €o , and ¢ large enough, we get

N
Z lys,(t) — cx| +
k=1

Let us now go back to (25) : we get exactly what we want on [y} (t) — ¢;|. In the
same way, as Y > og for g9 small enough (first estimate), we get the result for

[7;(t)| (plugging in (26)). O

Let us remind that by construction

(t)

z’c(t)‘ <c

W(Sn) =w(Sn) =0, y;(Sn) =x; + ¢S, 7;(Sn) = ¢j, Rj(Sn) = Rj(S?)~ )
27
Naturally, the geometric parameters y;(t) and +;(t) control the distance between

R;(t) and R;(t) :
1R; () = R (&) Fr < C()(ly; (1) — 25 — ¢t + |5 (8) — ¢; (1)),
For simplicity of notation, let us denote
O (t) = Wy (t) + UV = un(t) — R(t).

Lemma 6 (Main terms in M; and E;, j > 1). We have, for allt € [I,,,S,],

0~ ([ @2 [ om0+ [2000)| < cte =5,

B(0) - |5 [ 020 AR 0)050) 2500 [ 2,050

(2)
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ort

E(Qw(t))H < Cie” +C1€0/ n(1)d;(t),
® |(B0+2200) - (5@,0+ %2 [ @) - 310

r+0/ 2(1)65(0),

< CYe

where H;(t) = /(Um( ) — 4R3( )0 ( )+ ()0 ( ))e;(t).

Proof. (1) We compute (u, = 0, + R) :

Mj(t)=/ui¢j(t)=/<v 25,1 i R )

As ¢;(t) is localized in the interval [m;_,(t), m;(t)] like R;(t), we get for k # j

/RQ( )6;(t) < Ce= ¥t and ‘/R2 )o;(t) /Qw(t)

_%0v%0,;
2 .

(2) In the same way,
1 N L
By(0) = [ (50,200 + 200a(0Re + B = 50a(6) + RO ) 0500
1 1- 1=~
= [Gudo 285w+ [GR - SR80
= [ 5t + B0~ [ R0,
(—(Bn(t) + R)® + R)
+f -
We keep the first integral untouched. The second one is E(Q7 )) up to an

exponential correction. For the third one, recall that Q.. + Q* = @, so that
again

+ On () R* + 2}?3@3@)] ;.

UOV"'Ot
2

/ 3n(t) (R + R = ;1) / Bt Ry (1) + O(e= “¥71),

The fourth one is exponentially small (with R and ¢;,)- Finally the fifth is of
order at least 3 in v, so that we control it by

/ B(t) 65(t) < 5 (8) | = / 3 (1)265(1).

This gives the desired result.

(3) is the sum of (1) and (2). Notice that the scalar product [ 9, (t)R;(t) cancels
in Hj : the linear combination has been constructed for this. O

As usual, we now need definite positiveness on the quadratic form linked to
the linearized operator of (1) around the soliton R,.
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Proposition 5 (Positivity of a quadratic form, sub-critical case). There
exists o1 > 0 small enough so that the following is true. For og < o1, there exist
T3 = T5(0p) and Ay > 0 (not depending on og), so that for all t > Ts, for all
j=1,...,N, and for allv € H',

/ (02 — AR (1) + 7;(£)0%) 5 (1)

>N\ /(vi + ), (1) — Ail ((/ ij(t))2 + (/ ijm(t)>2> .

Proof. A similar result can be found in [18, Lemma 4], [17, Appendix A] and
[3, Appendix], to which we refer for the proof. O

From now on and throughout the rest of the proof, oy < o is fixed.

4.2 Monotonicity properties
The next step is a surprising and crucial almost-monotonicity lemma.

Lemma 7 (Monotonicity property [13]). There exists Ci > 0 such that for
allj=0,...,N andt € [I,,S,],

3 (Mi(Sn) — Mi(t)) > —Cle 571,
k=0
J 7070
S (Fi(Sn) = Fi(t) > —Cle= "5,
k=0

Proof. This lemma is very similar to the monotonicity Lemma of [18] and [12].
The only difference is the presence of the term U (t)V : this will be taken care of
essentially due to the smallness of ||[U(¢)V|| . Let us now do the computations.
First notice that

i i . -
S = [ w0, S50 = [ (Gmi0)- 5io) v

k=0

For j = N, the result is the conservation of mass and energy. Otherwise we
compute for f(t,z) € C3 :

9 [war [usi=2 [uns =2 [ tubdns

_ / (_3un§ + iuz) o2 / Un i fra
:/(_

8

So that we get

d 14
G [0 = [ (su2mind - ) v+ [,
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But m/(t) > o so that by (19), and ¢; <0 :

d 2 2 30’0 8 5
il (4) > 20_°2 .

It remains to bound the third term. We consider two cases : let Ry > 0 be
chosen later. When = € [c;t + 2; + Ro, cj41t + 211 — Rol, ¥;,, is big but R(t)
is small so that u, too. More precisely,

8 f f
‘51632(1%%) < O(lwa @)l + UV (2 + R, 2)[)
< O(eg +171 e Vool < %, (28)

if Ry and T, are large enough, and g¢ is small enough. On this interval, the
second term is larger than the third.

When « is not on the previously considered interval, then = ¢ [m;(t) —
oot, m;(t) + oot] (for Ty large enough), so that

70/90
[, (t,x)| < Ce™ L,

Now by interpolation between L? and H', we have a uniform control [ |u,|> <
C. So that finally

d 20v90

B - A 2, 90 2, e -
g [ = [ (302 + Fa) o, 0] - ce " Fz o

70V/70 4
2 .

(29)

We integrate this last estimate between ¢ and S,,, and this gives the estimates
on Mj.

For the estimates on F};, we compute in a similar way
% (Ungzc - i“Z) f— / (Un?c - ?UZ) ft
=2 [ (nacting = bt} = =2 [ tniltna + ud)f =2 [, f
== / (tnae + 1) fa + 2 / (tne + tp)ating f
=- / ((Unae +1p)* + 2unz, — Suniu,) fo — 2 / Unagting foa
= _ / (naw +up)® + 2un2, — Sup2ul) fu + /unifxzx

So that
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Again m/j(t) > o and [m/(t)| < e, so that [un2ep;, . () — % [un2;,(t)
and

d 2ud 3
g [ (2= 20 w022 [uivg, 0
-/ <sunz|un|3 2"’N|un|5) ey ()] (30)

To bound [ un2|un ¥, (t)], we proceed like before and get

70V70 4
2 .

8 [ w15, 01 = =% [ unls,0) - Ce (31)

However for 2¢¥ [u?|¢; (t)|, some L? norm is needed (which is why we intro-
duced F}, as in [12]). Choosing e; small enough and R, large enough, we can
improve (28) to 0(/400, and so obtain :

26N __%0V/%0
2 [z g [, 0] - ce (32)

Now adding up (30) and 1/50-(29), and using (31) and (32), we get
d 2 2 1 2 700\/ﬁt
N ny n x t)| — .
i [ (w2 Ruts ) w02 G [unliont] - co
And the estimate on F; comes by integration between ¢ and S5,,. O

4.3 Abel transform and conclusion of the proof of Propo-
sition 2

Proof of Proposition 2. We can now conclude the H' estimates on the right for
wy,. First let us obtain some estimates for w,,(t). We compute

(e ><<>2>

N-1 o J
e <; (”yjl(t) - ”yj+11(t)> (1 - 578 (%‘1( t) vl kz )
N N
; 27N ( 5OCN> 21

All the terms in the right hand side are positive, so that we can apply Lemma

7
_ @) ) Yo
(Ej<t>+ ! Mms)) >

Jj=1

N
2 Y3 (t)

Jj=1
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Now we use fact 3. of Lemma 6 at time ¢ and at time \S,, (remind that |;(¢) —
¢;j| < Ceg, so that cn + €9 > 7;(t) > 00)

N N
1 _ 20y . ;
S s H(t) < Cem P 4 Gy / (1) + 52(Sn)) D 5(1)
=i (t) i=1
_ooyem .
< Cem T F 4 Ceollin (1321 —yore))
+ CeollU(SIV (1221 s,- (33)

By Proposition 5, we have for j =1,... N,

Hi() = 0 [(320) + 5,20)05(0) - 5 (( / an<t>c2)2 T ( / f}n(t)czm)Q) |

So that if we sum up those N inequalities, there exists A\g > 0, neither depending
on gg nor g, such that

N
; ’7]2(t) Hj(t)
> Aollin(t)) 12 1y (/ (t)é-<t>)2+ (/ ()R, <t>)2
= A0||Un H'(1—19(t)) o = n J n Jx
N 2 2
2 2ollon O 1vay ~ 1 O (( Juewr) + ([oove.) )
2 2oll3n )iy ~ IOV a1y (34)

Note that our control is only on the right because we summed up for j > 1,
which is coherent : we do not expect to obtain somme control in the domain
x < oot, where U(t)V has its L?-mass.

Combining (34) and (33), provided that ¢ is small enough so that Cseq <
Ao/2, we deduce :

1 - _ 20V%0
5||U7L(t))”%—11(1—w0(t)) Se 2 t"’HU(t)V”%Q(l—wo(t))_"HU(S'H)VHQL?(I—wO(Sn))'

Finally, recall 0, (t) = @, (t) + U(t)V, thus

1 )1 (1o 0y < 2O (- ey + 2T OV (-9
__90V%0
< Cem T ONUDV T2 powy + CNTS)VIE (1-pos,7)- (39)

Now that we have an appropriate estimate on @y, (t)|| g1 (1—y,(t), We have only

to go back to wy(t) = w,(t) + R(t) — R(t). As we noticed after the proof of
Lemma 5 :

lwn Ol 1ot < IRE) = RO+ 10a ()11 (- o0

g0V90 4
4

N
<O yi(t) — x5 — est| + [y () — ¢j] + Ce™
k=1
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+CNUB)V Iz (1—gor)) + CIU@V I L2(1=p0(5,))-  (36)

2

i estimate of Lemma 5, and then the estimate 35 :

Now, using the L

_90v%0
95 (t) = il + ;0] < Coe™ 2+ Co UMV || 21— o 0))

1/2
+Cy (/ mi(t)e—ﬁlx—cﬂ>

_o0vTE
< Ce™ Tt L UV it (1o ()

+ CNUSn)V | L2 (1= (S0)) -

Let us integrate this between ¢ and S,,. Remind the initial conditions y;(S,) =
2j + ¢;Sn, v;(Sn) = ¢j, we obtain

S'Il

90/70

HE 0 [T IOV i
t

+ C(Sn = DUV |22 (1 —(5.))-
This, together with (36), concludes the proof of Proposition 2. O

ly;(t) — x5 — cit| + ;) — ¢] < Ce™

5 Global estimates : proof of Proposition 3

We now want to control what happens in the zone x < ggt, that is the interaction
with the linear term U(¢)V. We follow the path of [4]. As our a priori estimates
only concern w,, we cannot use w,, which has a better H' decay on the right :
we don’t have any available control on M{(w,). The second point is that it
appears to be difficult to control only |[wy || gy (t)), and this is why we do
computation on the whole space, to obtain the decay estimate :

C
l|wn ()] £+ < 73

(Some terms that appear in the integration by part behave badly, but vanish
when integrating on the whole space).
Recall our pointwise estimates on wy, () (M¢(w,(t) < o) : we have

C (L T
[wn(t, )] < 5175 (1+ i My (wn(t)),
c 2| 1/4
na(t0)| < g5 (14 51) MG )
We proceed in two subsections : one for the H! estimate, which is very similar
to that of [6] or [4], and one for H*, s > 1, which requires high integrability and
smoothness of the non-linearity (p > 4).

5.1 H' estimate

Proof of Proposition 8, H' estimate. L? estimate.

Here, no monotonicity is involved (it is essentially a linear theory). We bound
the absolute value of the derivative in time of the L? norm of w,(t), and then
integrate our estimate backward in time, with w,(S,) = 0.
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We use the equation for w,

N
Wt + Wnpms + (ui -y R;*) —o. ()
j=1 /=

We multiply by w,, and integrate in x. After an integration by part, we get

1d 2 4 - 4
2 w;, = un—ZRj W,
j=1

= /(wn + UV 4+ R)* — R(t)* — (wp + U V) wn,

-/ <R4 - ﬁ:R;%)mwn - [+ OV,

Let us develop
3
(wn + UV + R)* = R* — (w, + U)V)* = Cf(wn + U)V) R,
k=1

So that

‘/((wn + UV 4+ R)* — R — (w, + U)V)) wny

3
<y ¢k / i + UV FRY |,
k=1

3
< Cllwne 2 wn + U@V 2oy Y 1(wn + TEOV) R 1
k=1
< Ceollwyn + U@V || L2 (1—po(1))-

Note that our control is essentially ||wy||z2||wn + U(E)V||L2(1—yp(t)), and so
relies on a priori estimate on ||w, || 1 to control the L? level. In fact this problem
will only be acute for H*, but let us explain now how to avoid it. We need to
fully develop the term (w, + U(t)V + R)*. We do integration by part in this
way :

L wH U () VIR,

TUMVIRY  w,, = ————
[uiv wne == [

so that all derivatives go on R or on U(¢)V. It is then clear that in the L? case,
our control improves to :

CllwlZeq—yo + Clwll 2 lUOV Il -o)-

The point being that the estimate only involves ||wy| 12, and we are safe if
we assume enough regularity and decay on V. For now, the direct method is
simpler, so we will use it up to the H> estimate. Let us now go back to rest of
the terms.
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Of course, the purely solitons-interaction is exponentially small :

N N
‘/(R‘*—ZR;*) W, gHR4—ZR§
j=1 © j=1

And to complete, we have to treat the purely linear interaction, which we control
as in [4] :

_ Z90v%0
[wnlz2 < Ce™ 5 flwn (8)]] -

H!

‘4 / (wp + UV ) (wn + U V) gwy,

< |(wn + U@V ) (wn + U@ V)| Lo |wn + U ) V] Lo
X |Jwy, + U#)V || 2 |lwn]| 2
C
< @HwnHL?'

So that we get

d C _ ~90V%0
dt||wn<t>|i2s<t4/3+e ; ) ]z + Cllwn () + UV 220—vo ey,

We integrate between ¢ and S,,, and obtain (w,(S,) = 0)

C
@2 < 73 (37)

as soon as ||wy, () + U(6)V || 21—y ) < Ct%/2.

H' estimate.
We differentiate (11) with respect to x :

N
j=1

T

Now we multiply by wy,, and integrate in z. After an integration by parts, we

get
N
1d 2 4 4
=1 /=

= /(wn +UBV + R)* = R — (w, + UO)V))) 2o
N
— / <R4 - ;Rﬁf) m'wnz - /((wn +UBV))atn g

Let us first treat the second line. As in the L? case,
N
[ (m-X )
j=1 xTx
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And for the purely linear interaction term,
[+ UOV)itnzs =1 [ sl + VOV + VOV
=<6 [ wA(wn + UOV ), + UOV)?
4 [0 U@)Veawn + UV’
- 12/wm(wn + UV (w,, + U (t)V)2

Now, we control each of the terms with ||wy.| L2, ||(wn + U )V )| L2 (first and
third term), ||w, +U(t)V||2 (second term) and the rest in L>, noticing for the
second term that :

C 12| 1/4
UOVer(w)| < 75 (15 55) - Vel
So that as previously

C

< ﬁ”wanL%

\ [+ VOVt

We now turn to

/(wn + UV + R)* — R* — (w, + UHOV))) sWnpw

3
=> kCY /(wm + U)V,) (wn + U)V)EIR Fw,, 0
k=
(4

1
F (=) [ (wn VOV R

k=1
Hence this interaction term is controlled by

Cllwn + UV 51 (- () Wzl L2 < Cllwnll g -, 0))-
(remind that w,U(t)V, R, R, € L*). Again, we obtain

d 1 _ —20v%0
el < (g + ) unallis + ol 1o

We integrate between t and S,,, and derive (w,(S,) = 0)

C
[wne(®)lz2 < PYER (38)

as soon as |[wy, () || 11—y (1)) < Ct2/3. O

Notice that this proof extends to the case p > 3.
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5.2 H* estimate

Proof of Proposition 8. We only present here the proof for the H? estimate, as
the higher estimate will be treated in the same way, and will raise in fact less
difficulties. The H® and H* estimates are done in full detail in the Appendix.
The proof goes in two steps : the first step is to derive a satisfactory H? type
relation, the second step is to do the appropriate estimates on this relation
Step 1. Obtaining the relation (40). We now derive a satisfactory relation on
4 [w,2,. As before, we use (11), twice differentiated :

N
j=1

g

We multiply it by w,,,,, and do an integration by parts, to obtain
N
1d
j=1 xx
N
_ / <u;§ - 34) Wn sz +/ (R4 - ZR§> o
xT j=1 TTT

The second integral is harmless. Let us develop the first term :

(up — RY) = 4(unyot) — ReaR®) + 12(un2u — R2R?)
= 4w, goud +4(U)V + R)ppud — Ry R?)
+ 12(un2u? — R2R?).

We put in front the factor wy,,,, in view of an integration by parts. Indeed, we
want to get rid of the 3 derivative term w;, ;.. We compute :

(=R e =6 [
za
4 [V + Ryl = Rer Rt =12 [ (10208~ 2R 0,
=—6 / W 2 g Un Uy — 4 / (U)V 4 R)goatit — Rupga R Wn s
- 12 [(UOV + R, Res BB
- 24/(unwum — Ruw R R)wypy — 24/(unxun R3R)wy, .
Let us focus on the first term on the last line, to get :
=30 / W2 g — 4 / (U)V + R)awatiy — RogaR*)Wn
=36 [(UOV + Rastins ~ ReoRu B

- 24/(unwun RER)wpyy.
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The first term [ W2, Uun,u? is troublesome, as when developing it contains
Ik wy2, R, R%, which we do not control yet. This is why we will correct this by
considering :

d
T wniui :2/wnxtwnxui+3/wniuntui
= —Q/wnmmwmu /( ZR4) Wy U

2 2 2 5
_3/wng;unzxwun - 12/wn7;unwun'
Remark that :

n
4 4 3
/(un E Rj) W, U,

= 7/(“% - R4)rzwnz / <R4 ZR4> wnz“?ﬂ

where the second integral will be treated as usual. Two terms are to be rear-
ranged in the previous expression : those with high derivative. The first one
is

3
_Q/U}n:crmmwnxun
=92 3 6 2
- wnmmzwnmzun + wnazxmwnxunzun

2
= _9/wng;g;unz 6/wnzwwnzunmw 12/wnmmwnmun$un

—15/wnmumu —|—6/wnm )V + R(t))zu
_|_

and the second one
=3 [
=6 [ wnetnstingt +6 [ 02
= G/wnmumlﬁ G/wnm(U( W+ R)u?

+ G/wnmwm(U( \4 +R)mu 12/wnmwmuniun.

So that we get

d
—/u)ni i: —9/wnmumu2 —24/wnmwmuniun
dt
_/(ui_R4)manI /<R4 ZR4) WUl
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- 12/wniunxufl. (39)

If we put everything together, we obtain the desired equality, on which we will
do all our estimates :

d (1 9 20 9 3
— —4/((U(t)V + R)pzatt? — Ryppa Ry 40

— 36 / (U@)V + R)pptingt® — RpwRe R w10

— 24 /(uniun — RiR)wnm + 40 / wnmwmuniun
20 [ ,

+ 3 (u,, — R4)mwnxui + 80/wniumui

N n
2
+ / <R4ZR§> wm+§0 / (R‘*ZR;*) Wwnpud.  (40)
j=1 xxTT j=1 xT

Step 2. Estimating terms in (40). We now estimate separately every term ap-
pearing in the right hand side of (40).
o First let us bound the 2 terms of (40) with R* — 37, R}.

N
‘/ <R4 —ZR?> Wnne| < Ce ™ o 2. (41)
j=1 TITT
e And (remind ||up|p= < C) :
- _20v/C%0
‘/ (R =3 Ri)aatwngil| < Ce™ 5 gy 2. (42)
j=1

e Let us now consider the terms with exponent 8 in (40).
4
/(ufl — RY) ppwpud = /wnx(z C¥(w, + U(t)V)kR4_k) ul.
k=1 oz

So that all terms are at least quadratic in w or (w+U (¢)V). We do an integration
by parts on the (unique) term with wy, ;,wy, . Thus, all the terms with at least
one R are controlled by

CllwllF (1o + CIUGOV 21— o o)
It remains to treat

/((wn + U(t)V)4)www7w(wn + U(t)V)S.

Again, the term containing w,, ., is treated with an integration by parts, to have
3 terms with 1 derivative. The term with U(¢)V,, is in some sense the worst,
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although the fact V € H?? allows to bound it (this is similar to what happens
in the purely linear case [4]) :

C

1T () Vaa(wn + U@V )| [ wng (wn + UV | oo llwn + U@V 74 < YRR

For the terms with three terms with one derivative, one of these is controlled in
L?, which gives the same decay rate Ct~8/3. Finally, we get

C

’/( 2= B aawn ol | < Cllwllin gy T CIUGOV 20— o)) RTER (43)

Arguing similarly allows us to bound the second term

2
‘/ wnmunw

We will now consider each of the 4 remaining terms of (40) separately. However,
one constant in the treatment will be that the term w,,,, always appear exactly
once, and will be controlled in L?. The second point will be that all terms where
only w, and U(¢t)V appear (not R) will be controlled by

C

1473 10n zall 22

C
< w1 gote) + 7575 (44)

All the terms that do not fall in this category will be bounded by a control of
the type “estimates on the right”, as they contain both R and w, +U(¢)V (there
is no terms with only R).

To do this, we develop each term in a “purely linear” part and a “linear-non
linear” interaction part.

° /((U(t)V + R)paatt — Rppw R?)Wy .. We develop our main term :
(U(t)v + R)zzrui - RmzzRS

= U(t)Vage(wn + UB)V)2 + U (t)Vege R - Z C¥(w, + U(t)V)*R2F
k=0

3
+ Raga(w+ UV) - Y Ch(wn + UR)V)F T RIF,
k=1

Remember V € H3! so that V,, € H"!, and we get

< C(IIU( Waze (W + U@)V)|| Lo |wn + U @)V Loo [[wn + U (H)V]| L2
HINUOV 31 —yo(r)) + ||w||H1(1—wo(t))> |wn e || 12

1
< O(t4/3 FNU OV [ 31— (0)) + |w||H1(1wo(t))> wWnaallL2 (45)
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L /((U( )V + R)m:vuna: — R,z R, R? )W - We develop as before

(U(t)V + R)agtingtiy — Rya Ry R

= U(t)Vau(wn + UV )2 (wy + UR)V)? + U(t) Vo Roti?
+ Row(w + UVt + U)Vae(wn +U®)V)2(2(w, + U)V) + R)R
+ Ryo Ry (w, + U)V) (wy, + U()V + 2R).

So that :

< (U(t)VmHmH(wn +U )V )z (wn +U)V)|| Lo Jwn + U )V | L
+ CIUBV a2 —po)) + ||wn||H1(1—wo(t))> Wz |l 22 (46)

The last two terms are the hardest : the assumption of high integrability (p>
4) is crucially used. Indeed, these terms contain the information on [u2uP=* =
—4 [ ugpuduP=3.

° /(unzun R3R)w, .. We develop as usual
Upou, — RER

= (wp +UOV)3 (wy, + UBV) + (wn, + UBOV)ER + R (w, + U)V)

+ (wp + U)V) 4Ry - (Z Ch (wn, + U(t)V)§1R2k> Uy

k=1

First let us forget the first term with no soliton term, and focus on the last
three. Remind that w,,,U(t)V, € L*>. All these term have R and w,, + U(t)V
(with at most 1 derivative) in factor, so that they are bounded by

Cllwn ||z (1=vo ) 1 Wnaal 22

Let us now turn to the remaining term
[+ UV, + UV
— [ o + VOV R (0 + VOVt
+ [ U@Vl + VOV (wn + UOV) @ + VOV st

We use our previously obtained decay |w,,||zz < Ct~'/3, and the a priori
estimate ||wp,|/z~ < €o in the first integral, and ||U(t)Vy| =~ < Ct~1/3 (as
V. € HY1) for the second integral, to get the bound

iﬂw+vwmyw+vwmmm
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< Nwaz || 22 lwe || 2 [[(wn + U @)V)e || Lo [[(wn + U @)V )e(wn + U@)V)]| 2
+ lwae || 2l wng + U @) Vel 2| (wn + UG)V)a(wn + UGV)| Lo U (#) Vel Lo

C

< M”wnwc”l?'

So that we obtain in the end

‘/(unzun - RiR)wnxx

1
< C<t4/3 + ||wn||H1(1—1/10(t))> ||U)nmg||L2 (47)

O/wnmwmuniun. We develop as usual

[ tnastnatntion = [wnagnaw, + VOV + UOV)
—I—/wnmwm(wn + U(t)V)iR—!—/wnmmequun.
The last two terms are clearly controlled as in the previous case by

||wn||H1(17wo(t)) ||wnm HL?-

And for the term on the first line :

‘ [ st + UOV 2+ U(tm}

[Wnaal 2 [wne || L2 ][ (wn + U@)V)e | L [[(wn + U@V )e(wn + UEV)]
C

ﬁ”wnxz”LQ

IN

IN

And we get for this last term :

2
’/wnzmwnzunzun

Step 3. Conclusion of the H? bound. All the terms on the right hand side in
(40) were estimated. As we would like to have a bound on ||wy, 4. ||zz (without
the corrective term), we have to use an integral form for these bounds, and we
have to estimate the corrective term [ w,2u’. When developing u, treating
the term with R on one side and the purely “linear” term on the other side, we

get
[

1
< C(t‘l/ig‘ + wnIHl(l—wo(t))) Hwnzzng (48)

< wnl2n ey + / w2 [w, + UV

2
< Nwnllg g —yoy + FEyER
If we put everything together, for this H? estimate, starting from the equation

(40), and the bounds for each term (41), (42), (43), (44), (45), (46), (47), and
(48), we get

d 1 2 2.3
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||wn||H2 2 9 (1 4 HV”H?»?)
=¢ (eWt Fllwnllz (1 —goy) T IOV 20 -p000y) + s

L+ [[Vi[gsa
+( s T wnllma—vew) HIUOVIasa-ype) | lwnezllze ) -

Let us integrate in time between ¢ and S,,, so that as soon as

C
||wn||H1(171/10(t)) + ||U(t)VHH3(1ﬂbo(t)) = #4/37

we get, for all t € [I,, Sp],

C (5 fnaa(lles
e s < 55+ [ e ar

With Lemma 4, we derive :

C
Ve DSl wnae®)lle < o -

6 M| estimate : proof of Proposition 4

We now want to conclude the proof of Proposition 1, that is to prove that for
t € [In, Snl,

o c
Mg (wn(t)) = lwa ()2 + 1D Jwn (t) || 12 + | DTwn ()] 2 < I

§ < % : it remains to estimate || D*J'wy| 2 and [[DJ w,||r2. As in [6] and [4],
we do the computation on the dilation operator

Itfzxf—l—?)t/ frdz,

as it is easier to compute with. So we will proceed in two lemmas, one concerning
I'w,, and then coming back from I*w,, to J'w,. Let us first do a short reminder
of commutation properties of these operators. Let us note L = 0; 4+ Oyur the
linear KdV operator. Then

I'f—J'f = 3t/ Lfdx.
We have the following commutation relations :

[L7 Jt] = 07 [Lalt]f = 3/Z Lfd:l?, [Jt7ar} = [Ityar} = —Id.

Notice that I*U(t)V — JIU(¢)V =3t [*_ LU(t)Vdax = 0, hence

ID*I'U)V |2 + [DI'UV g2 < ClV |11
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6.1 I'w, estimates
Let f so that the following has a sense and ® : R — R a C' function. Then we

have the chain rule relation :

I'(®(f)a) = 2®(f)a + 3R(f)r = 20 (f) fo + 3t (f) fe = @' (NI for (49)

We will use this formula for ®(z) = z* and f = u, or f = R.

Let us start with ||[I*w,,||z> as the result obtained will then be used for
| D*Tw,,|| 2. We proceed in a very analoguous way as for the H? estimate, in 3
similar steps.

Ity L2 estimate.

Step 1. Notice that (LI'f, f) = 34| f(t)||z2, which is why we compute :

1
2 dt

N N
LI'wy, = I'Lwy, + Lw, = —I' ((u;t - ZR;*) ) - <u;§ -3 R§>
j=1 xTx j=1 x
= *It(ui - R4)M) - (ui - R4)m
N N
+1 <R4 — ZR?) —~ (34 — ZR;%) : (50)
j=1 Tx j=1 x
Let us can focus on
_It(“i - R4)M) — (uy, "= R4) = (It(u4 - R4)m)m - 2(“?1 - R4)x
= —4(udI'uy, — R*I'R,), — 2(ul — RY),
= —12(unu> I'uy,, — Ry R2I'R,)
- 4(ui(ltunw)x - RS(ItRz)r) - 8(unw - R, RB)
So that
LI'w,, = — 12(up,u> I'u,, — Ry R*I'R,)
—4(ud (I'ung)e — RP*(I'Ry) ) — 8(ungu’ — Ry R?)
N
+1 <R4 -y R;*) - <R4 - ZR;*) : (51)
j=1 Tx j=1 x

This expression of LI'w,,, is the one will develop.

Step 2. As previously, for every term in (51), we take the “purely linear” term
apart, and all the remaining terms contain both w,, + U(t)V and R, and so will
be bounded using estimates “on the right” obtain in Section 4.

e Of course the terms on the last line will be negligible :

N
|/ (11(- ZR4) - (R R) | < Gl U
zT j=1 x

e Then consider

Upgts — Ry R = (wy, + UV )z (w, + U (t)V)?
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+ (wn + U)V)R (ch wy, + Ut )V)kR2k>

k=0

3
+ Ry(wn, + U )V - (Z O% (wn + U(t)V)k‘1R3‘k>.
k=1

The last two lines have both a localizing term R or R,, and w, + U(t)V with
at most 1 derivative ; for the first term we use the argument of the linear case,
the L? norm going on one (w, + U(t)V), so that

‘/(umui — Ry R)I'w,,

< (I(wn +U)V)z(wn +U@)V) ||z Jwn + U )V || oo |wr + U () V| 2
+ C|lwn + U(t)VIIHluwou))) [T w22

1
< (s + ol o ) 1wl (52)

For the two other terms, we have to be a little more careful.
e We develop

Uy (IMing)e — R*(I'Ry )y = (w + UMV)* (I'wng)e + (I'U()V)2)
+ (wn + UV (I'Ry)z + R((I'wn)x + (I'U (1) Vi ))
+ 3(wn + UOV)R(w + U )V + R)((I'wng)e + (THU )V + R)2)a)-
First, split all the terms between those containing (Iw,,), and those with

(IU(t)Vz)z or (IU(t)Vy)z. Now multiply all by Iw,,, and integrate in x. For
the terms containing (Jws,)., further integrate by parts. We get

J@ ) = R R,
=5 [+ UOV)wn + VOV (1w,

+ /(wn + UMV ITU()Vy) o I wn g + /(wn + UMV (I'Ry) o T wp

_1 / (R*),(I'wy,)? / R} (I'U()V,) o I w0y
5 [ Al [ AT WOV 5 R

where A = 3(wy, + U (t)V)R(wy, + U (t)V + R). Then the first line is bounded as
a regular “linear” term by

C

t4/3 — t4/3
Observe that (I'U(#)V,)e = (JIUt)Ve)e = (U(t)xVy)e. As V € H*2 2V, €
H' and (U(t)zV,), has the “almost t~2/3” decay of Lemma 1. So that the first
term of the second line is bounded by

C
e

1 wn 172 < g 1 wne |22

||ItwanL2~
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Notice that uniformly for ¢ > 1,
I'R(z) < CH(1 — wo(t, 2)). (53)

And the same is true with derivatives on R etc. So that the second term of the
second line is bounded by

Ctllw + UGV £2(1—po (1) 1w | £2-
We now have to bound | R?*(I*w,,)?. This is the key point where we need some
result on a H3 decay on the right for w,. Indeed, remind that by definition
N
Iy, = 2Wpy + 3twy, = Wy, — Wy, 4y — St (ufZ — Z R?) .
j=1 z
Proceeding as previously, we naturally obtain (¢t > I, > 1)

[RI W,z < Ctllwn |l s —yo(r))- (54)

‘ [ R,

We go on treating our terms :

'/R3 Ilt wmc

And for the last line, we have the bound

So that :
< Ctllwnll s (1o () 1 W 22

<NU @) (@Va) |l 2 (1o () 1w [l 22

Cll(wn + UOV) Rl [ I'wng |72
+ Cll(wn + UGV Rl (|(TU ) Va)all L2 + (I Ra)a | 22) [ wn |-

But [(I'U#)Va)ellze = U (@Ve)allLz = 1(2Va)z 22, and [[(I'Ry). |22 < Ct.
And of course

[(w +U@V)Rwr < Cllwnllzzq-voy) + 1TV 5200 1))

so that our bound for this last line rewrites

Cllwnllmz-yo(e) + 1TV 1 2(1-p00)) (V| 122 + £+ D[ T wng |-

And for the second term of our main expression, we get (¢ > 1)
‘/ Iy )e — RP(I"Ry ) o ) T'wn,,

< (s + thunllsa-sn + AUV s ) 1wz, (55)

e We can now turn to the last term :

UpgU2 Uy, — Ry R*T'R,
= (wn + U V) (wn + U@ V)2 (wy + U()V),
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+ (wp + U V) (w, + UV I'R,

+ (wp + U V) R(2(wn, + U()V)R) - T,

+ Ry R* I (w, + Ut)V)z + Re(wy, + UR)V)2(wn +U®)V) + R) - Iy,
Multiply by I*w,,, and integrate in z. Remember that ||I*w, |2 < € by as-

sumption on [I,, S,], [I'U#)Ve||z2 < C||V||g1r and I'R,||L2 < Ct, so that
[Tt un |2 < Ct. We obtain

/ (UnguZ Iy — Ry R2T' Ry ) 'y,
< [(wn + U@V )e(wn + U@ V) ||z [ wn + UE) V]| oo
X N (wy + UV )|l L2 [T w2
+lwn + U@V [ Lol (wn + U @)V )od Rl 2] 1 wn g || 22
+ Cl[(wn + U6V )o Rl o= [ tne || 2 [ T w00 || 2
+ [ Re R (wy + U@V gl 22 [ w2
+ C|l(wn +U)V) R || 22 [ T tng || 22 | T w2

The only non straightforward term is R, R?I*(w,, + U(t)V),. Now, analogously
to (54), we have

IR R T w2 < Ctllwn| s (1o ) -
And we directly get
R R T'U () Ve || 12 < CU ) (Vi) || L2 (1 (1)) -

So that when rewriting the previous estimate, we obtain
/ (Unpu2 Uy e — Ry RPI' R, ) 'w,,
= M”ﬁwnw”” + O w1 1 - o) |1 w0 2
+ Ct(lwall z2 (1 —o (1) + 1T OV | 512 (1o (1)) 1 W] 22
+ Ctlwall 31—ty + 1T (@ V)l 22 (1 g (1) H Wi || 2
+ Ctllwn + UV | 21— o () 1 0| 2 (56)

Step 3. Let us now conclude the I*w,, estimate : we add up the results of
(52), (55), and (56), plug them in (51), and get

Sl w17,

1d
2dt

1
< (s + thunllsa s + 0OV 2 enc
IOV ) 1Tl
So that after integration in time between ¢ and S,,, we have

c
[ wnllze <
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as soon as
C
thwnllmsa—pow) + U OVImza-pow) + 1V (@Va)allz20-vow) < 1175
Notice that thanks to DItw, = I*w,, + w,,, we also have

||DIt’lUn||L2 S m

This will be useful for the following of the proof.

| D Itwy,| 2 estimate.
Step 1 and 2. Let us compute

LI'w, = I'Lw, + 3/Lwn =—I'(u ZR4 (uf — ZR4
= —4(udI'uy, — R*I'R,) — 3(ut — R4)

N
4(RI'R, ZR3F j.) = 3(R* =Y R). (58)
j=1

What we want is then to apply operator D® to our equation, multiply both
sides by D*I'w, and integrate in z : we get %[ D“I'w, |2, on the left hand
side, and we are to do some estimations on the right hand side. As we already
have an estimate on DI*w, we can avoid a discussion on the behavior of D®
with respect to a product of functions. Indeed, apart from the purely “linear
term” which is treated as in [4], we will use

(D%, D*I'wy)| = |(h, D** I'wy)| < [h]| 2 (|1 D I'wy | + | DI'wy | 2). - (59)

(as a < 1/2). Now, let us bound the terms in (58).
e First :

H A(R*I'R, —ZRP’F ) ZR‘*

j=1

< Cte= =Tt (60)

e Second :

3
ut — R = (w, + U®)V)* + (wn + U)V)R - (Z C¥(wn + U(t)V)“R“).

k=1

From this we get (using (59) on the second term)

(D (uy, = RY), D*I'wy,)| < [(D*(wn + U (H)V)*, D*I'wy,))|
+ 1w + U V) 2oy (ID T wn 2 + | DIfwy | 2).-

Now, thanks to the first estimate of Lemma 2 with g = w,, + U(¢)V, we get

« 1/2 1—-3 2
1D° (w, + UV >||Lz<||g||m(||gzg||/ T gl gegl s ”/)
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< C 1 1 1 < C
Sia\gte =) s e
So that

(o34 [e3 C
(D% (uy, = BY), D I'wn)| < 7 llw]l i -woce)

C «
* <t4/3'y/2 + ”w|Hl(1—¢0(t)))D I"wy 2. (61)

e And for the last remaining term (the first in the expression of LItwy,),
(up T, — R*I'R,)
=(wn + UV I (w, + UOV)s + (wn + UR)V)?I'R,
+ R T (wy, +U)V) 4 R(w, + U@ V) (wy + UV 4+ 2R)I'R,.
Consider the fist term of the right hand side. Using the second estimate of

Lemma 2 in an analogous way as for (61), with ¢ = w, + U(¥)V and h =
Itw, +U(t)V, we have

1D (wn + U@ V)’ I (wn + U )V )zl 12

<C 1 1 1 1 1 1 < C
=C\am it ws s i ) Sasans
For all the other terms, we use (59), so that we are looking for an L? control.

[(wn + U@ V)T Ryl 2 < Ctllw + UV | 21— yo 1))

HR : (écg(wn + U(t)V)kRQ"“) T w, + UV ),

L2

< Cllwnllgsa—yor)) + ClIUG)Z Vel L2 (1- g0 (1))

HR(wn +U)V) - (é%(wn + U(t)V)k‘lRQ‘k) -I'R,.

L2
< Ctl(w+ U@V L2(1—po(t))-

And for this last term, we get (using 57))
|(D*(u2 Ty, — RPT'R,), DTt w,,,)|
1
< (t4/3—27/3 + t”wn”HI(l*wo(t) + HwnHHS(lfwo(t)) + ||U(t)$Vx|L2(1wo(t))>
1 (o7
< C (g + 10 Tl ) (62

Step 3. We can now sum up the results of (60), (61) and (62), and obtain

d (0%
e

1
<C 14/3—2v/3 +t||wn||H1(l—wo(t)) + ||wn||H3(1—¢0(t))

1 «
+ ||U(t)$vx||L2(1_,¢,0(t))) (tl/3 + ||D [twnHLz) .
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So that after integration in time between ¢ and 5, we get

c C
| D*I'w, ||z <

_W:F;a (63)

as soon as
C
tlwnllzrsa—poce) + U@V lr2a-o(e) + IUO@V) It a-voe) < 175
(condition for both estimates (57) and (63)).

6.2 J'w, estimates

We only need to go from our previous estimates (63) and (57) to estimates on
J'w,. First remind that I* f(z) — J'f(x) = 3t [*__ Lf. Thus

1D T wn | g2+ DT wnll 2 < | DT wy |l g2+ wng |2 +t| D, — DYRY|| 12

N
4 4
+tHD(R - Rj>
j=1

N
+t|Dul — DRY|| 2 + tHDa <R4 - ZR;%)

j=1

L2 L2
From (57) and (63), we have

| DT w, || g2 + [T wng |2 < Ct2.
Obviously, we also have

N
o )

Jj=1

_90V/%0
< Cte & L.

L2

+ tHD <R4 - i R}*)
L2 =1
Now consider
HIDul — DR + | Dl — DR 12 < tlul — (wy + U@®V)! — R |
+ ] D% (wn + U@V |2 + 4tll(wn + UO)V)a(wn + UOV)? | 2.
Using again the first estimate of Lemma 2 with g = w,, + U(¢)V (see (61)) :

c c
AB AR S B S

1D U (OV) 12 <

And also,
(w0 + UOV ) (wn + U@V 12 < Ctl(wn + U(OV)(wn + UV 1
<+ OOV [z + U OV 12 <

Finally

3
ut — (w, +UV) = R* = (w, +U(t)V)R- < > Cr(wn+ U(t)V)’“R“)
k=1
= (w, + U(t)V)RA,
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where ||A||g1 < C. As H! is an algebra,
[t = (wa +UO)V)* =R 2 < [(wn +U@)V) Rl Al 1 < Cllwnll 1 (1-goe))-

And we are done as soon as ||w || g1 (1—y (1)) < Ct=4/3,
Finally we obtained

| DY T w, || 2 + | DT w,|| 2 < Ct°.

This concludes the proof of Proposition 1’, and thus of Proposition 1.

Appendix. H? and H? uniform decay estimates on w,(t)

We complete the proof of 3, by giving the detailed proof of the H? and H*
estimates.

Proof of Proposition 3, H®> and H* cases. H® estimate.
Step 1 : deriving the H? almost conservation law. Let us differentiate (11)
three times :

TTrrx

N

’ R} =0

Wn et + Wnrrrrrs + un - J - Y.
j=1

We multiply it by wy ..., and do an integration by parts, to obtain

1d al
2 _ 4 4

Trxr

= / <u;41 - R4> wnwmwx / <R4 ~ Ta Z R4> Wngrq-

The second integral is harmless. Let us develop the first term :
(up — RY) . = 4(Ungaatiy — RozaR®) + 36(Uppptingus — RyyRoR?)
+ 24(un3u, — R3R)
= 4wn;mca:u3 +4((U@)V + R)Mun R, R )
+ 36(Un gz Ungt> — Rpp Ry R?) 4 24(up>u, — R2R).

rrx

We try to get rid of the w,, ;5. terms, by integration by parts.
J =B
=6 [ w2t 4 [ s UV + Rasssh ~ Rras B
12 [ VOV + Rt~ R Rel?) =36 [ w02,
=36 [ Wnaaa VOV + R)artn s~ Rens B F?)

_36/wnzmm(unim n R2 RQ) 144/wnzzz(unzzunmun RIQJRQR)
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_24/wnmxa:(unz R4)

We now get the troublesome term —42 [ w,,2, u,,u?. We thus introduce

d
2 3 _ 3 2 2
% Wnggly = 2 WngatWn g Uy, +3 W g UntUp,

n
— 3 4 4 3
= _2/wna:a::rwww7l;vmun - / (un - E R]) Wy gqUny
=1 zTT
2 5
_B/wnxggunzww 12/wnwggunwu

n
4 4 3 4 4 3
= _/(un - R )wﬂfl’wnaxcvu’n - / <R - E R]) Wn gz,
j=1 TTT

where the second integral will be treated as usual. Now we rearrange the term
with high derivatives (more than 3) through integrations by parts.

3
72/wnxzzmrwnmmun
=92 3 46 2
- WngzrzWnrzaUn WnpgreWngsUng Uy,
- 2 _g 2 _12 2
- wna::rmunxu wnzzanzzunzzun wnzzanzmunzun'
So that we get

d 23

% W,z U,

- 2 4 4 3
= _g/wnmgunw 24/wnwwwn:punxun - /(un - R )wzwnwun

n
SJ (R -Xm) itz [
j=1

We derived the desired relation on wy,,, at level H3 :

d (1 ) 28 s 3
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+ 104/wnxmzwnmxuniun +28/wnixunzxmu$z

28
— 112/’11)”236’11/”9:’&2 + ? /(Ui - R4)zwwwnzwu§z

n N
(R4 -3 R;%> Wl + / <R4 -3 R?) Whppe- (64)
j:1 Txrxr j:].

TTXTxT

Step 2. Estimating terms in (64). There are 10 lines to consider. From now
on, A;, Ai, A, ... will denote a polynomial in w,,, U(t)V, R and their derivatives
(involved for the term on line i), defining a function whose properties are given
right after we introduced it.

. / Whaze (UG + R)ppottd — RyzaRY).
(U@®)V + R)mzzui - RmzzRB”Lz < NU @) Vagaa(wn + U )V )3||L2

+ U () VazoaRAL 12 + || Reaa (wn + U(t)V)A/1||L2~

with ||A1]|ze + ||A}]| L~ < C. Using that V € H!, that is V., € HY?, we get

1
< C<t4/3 F UV 1@ —yowy + ||wn||L2(1—wo(t))> [WngasllLz- (65)

U(t)Vaaa (wn + U( )V)x(wn + U( )V)2 + U(t)Vaga(wn + U#)V)sRA,

with || A1l pe + [|A}]|z~ < C. For the “linear”, we bound U (t)V,,, in L? and
the rest using the point wise estimates of 1emma 1, and obtain

1
< C(t4/3 FNUOV 13 4oy + ||wn||H1(1—wo(t))> [WngasllL2- (66)

./wnrrr(uniz niRz RQ)

47



2 w2 — R2 R? = (w, + U)V)2,(wn + U(t)V)?

unmm n

+ (wn + UV )mRAS +2(w, + U (2 )V)aermun + Rix(wn + U(t)V)Ag,

with ||As||Le + || A4||L= < C. The second line is bounded in L? norm by ||wy, +
U(t)V||Hz(1,w0(t)). The first term needs some attention, and the use of the

estimate ||wy z,|/z2 < Ct~1/3 obtained earlier.
[ rzaatin 4 UOV R+ VOV
< Ollwn e | 2 | wae |74 llwn + U@V |7
+ Cllwngae | 221U () Vaa | 22 |U (8) Vaw (wa + U@)V) || [ wn + U @)V L~
<cwmmm(wmmmnmm”£m+§Q

C C 3/2

< t4/3l|wnxa¢x”lz + t7/6||wmmxH :

(we used V € H*!). And for this term :

2 2
‘/WMMMn R?,R?)

1 3/2
S C<t4/3 + ||wn + U( )V||H2(1 Yo t))> ”wngcxa:HLZ =+ t7/6 ”wnacx:c” ! . (67)

L4 /wnzza: (unwzunwun Ra:sz R)

Ungglinytn — Reo RIR

= (wp + U0V )z (wn + UG)V)3 (wn + UH)V)
+ (Wn + U V) g (wn + U()V)2RA,
+ (Wn + U(t)V) 2o Ra(2(wn + U(H)V)o + Ra)un + Roa R (wy + U()V) A}
+ Row(wn + U V) 2wy, + U)V)y + Ry,

with ||A4||pe +1|| 44|z~ < C. Let aside the first term, all the others are bounded
in L? norm by ||wy, + U()V)all m2(1—ypo(t))- Now for the remaining first term

[(wn + U )V )z (wn + U(t)V)i(wn +U#)V)]| L2
< Hw+ U@V )aal 2 [[(wn + U@ V)al Lo |[(wn + UGV )a(wy + UE)V)][Loe.

Now |[wpy|lp < CtY/3 by interpolation, and as V € H*2, V, € L' so that
|U(t)Vy|lL= < Ct=1/3. So that our term bounded by

Ct= 371 < ot=4/3,

and we get
2 2
‘/wnrxx(unrrunmun - RzszR)
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< (s + w4 UOV sy ) el (65

Ry = (wp + U)V); + (wn + U)V)3 Ry As,
where As has factors with 1 derivative. As |[(wn, + U#)V)g|lpe < |lwn +
Ut)V| gz < C, ||A5||> < C. With the same estimate, we get that the last

two terms are bounded in L? norm by |[w, + U )V gr1(1—po(t))- For the very
first term, notice that

’UJnI

c . c

l(wn +TOV)zlrz < Cllwnallzs + IUOVall2IUOVa ]z < 375 + o

Indeed, we interpolate ||wy,||rs between ||wn,||r2 and ||wp eyl n2, which both
get decay rate of Ct~1/3, so that ||w,,||rs < Ct~'/3. Furthermore,

C C
IUOVE e < TMIUOVMIU V) < SV,

hence the second estimate. And we have

1
C( 75 +llwn + U )V||H2(1—wo(t>)> [WnaasllL2- (69)

2
./wnxzanzxunzxun'

+ (wn +U)V) g RAg + Ryzu?,

with [|Ag||r~ < C. Then we compute :

IN

100 | 221 Wn e 74 lwn + U@V 7

C 3/2 . C 3/2
annwww”L2 = t7/6||wn:rzw|| .

‘/MWMMM+WWV

(lwngzllLe < Hwnm||3/4|| nwm||1/4) For the second term, as V,, € Hb1,

V@mmwwvwwm%+Umw2

< N Wnazell 22 [0nae |22 |U (@) Vi (wn + U @)V )| Lo [|wn + U () V][
C
< ﬁ”wnzszLQ
And for the last two terms, as ||wp | pe < ||wnm|\1/2|| na::rz||1L/22’

2
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< Nwngaell 2 (lwnzellzellwn + UV 520 -powy) + 122 1wneall 20— 0)))
3/2
< ||U)n + U(t)VHHZ(l—TZJo(t))Hw’ﬂzxx”[,/’é’ + ||wn:vz||L2(1—wo(t))Hwnsz”Lz'

Therefore, for the whole term :

1
‘/wmmwnmunmui < C(t(g)/g + |wnza:|L2(1¢0(t))> ”wnwszL2

! 3/2
+ C(t7/6 + |lwn + U(t)VHHZ(l—wO(t))) ||UJM,M||L/2 . (70)

2
./wnzmmwnzmunmun'

U2ty = (wn + U ) V)2(w, +U)V)
+ (wn + U V)2RA; + (wy, + U(t)V) e Rptty, + R2uy,

with ||Az]|lpe < C. As ||(wy, + U)V)z]lLe < C we get

\ [ neastnsa i + DOV + UOV)

S Nwnawall L2 lwnae | 2| (wn + UGV)e [ o< [[(wn + UV )e(wn + UEV)| L~
C

< W ||wn:mvw||L27

and for the remaining terms, we clearly have

< ||wnwaw;||L2||wn;cxHL2(1—wo(t))-

So that

1
‘/wnwmmwnwzuniun < C(t4/3 + |wna:w||L2(11b0(t))> ||wnza;a:||L2 (71)

2 5 4 4 3

Unpttd = (W + UB)V)p(wn + U V)® + (w, + U(t)V),RAg + Ryul,

with ||As||ze < C. So that we get directly
‘/wnimumu5

Now for the right term

C
< YRS EwYEI lwnaallL2(—vo @) llwn + UGV L m1a—yo))

+ C”wnzz H%2(1*¢0(t))'

50



/( i - R4):r:v:cwnm:cu?1 = - /(Ui - R4)zzwnmzzuz
— 3/(ufl — RY) oW gy U g U2
As
(ud — RY) o = 4(Ungotd — RpwR?) +12(un2u? — R2R?),

we get that :

(168 = Rty = (4(Wnza(wn + U@OV)? + UO)Vaa(wn + UWV)?

+ (wy + U(t)V) e RAG + Ry (wn, + U(t)V)Ag)

+12((wn + UR)V) 2 (wn + U)V)? + (wy, + U()V)2RAY

+ 2wy + UV )o Ryl + B2, (wn + UOV)AL) ) (AL R+ (w, + U V),

where all the A}~ are bounded in L>°. Now when developing carefully, we get
that :

C
‘/(Ui — RY)aaWnaatiy | < SRS + CllwnllFra— oy + CIU GOV 21— o o))

(72)

n N
./ <R4 - Z R?) wnwwui and / <R4 o Z R?) Wnaza-
j=1 TTT j=1 TTTT

We obviously have exponential decay :

n N
‘ / (R“—ZR?) - ’ / (34 ZR?> T
j=1 TTT j=1 TTITIT

0

< Ce= ™ wy||gs.  (73)

And finally :
® wnixui .

As ud = (w, + U(t)V)3 + RA1q, with ||A1]| L=~ < C, we have :

2,3
’/wnzxun <

C 2 ¢ 2
< gt T Olwnaallzza o) < 7 HONWnea 20—y (T4)

Step 3. We can now conclude our estimate of 64. Let us sum all our estimates
(65)-(73). Then let us integrate in time between ¢ and S,,, and plug in (74). We
get

C , St (| wWn e (T35
< 575+ Cllonaalag iy + € [ e

S,
!
+C/t <t4/3 F llwnll 21wy + U )V||H3(1—¢o(t))>”wnxzm(T)”LZdT'
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Now, (% - 1) . ﬁ = %, so that from Lemma 4, we get

C

||w’ﬂz$a:||L2 < tlﬁ’
as soon as V € H¥' N H*2 and
C
lwnllz2(1—yo(t)) T IUOV [ H11 -0 (1)) < 173
This conclude the H3 estimate.

H* estimate
Let us summarize what we obtained until now. We dispose of the global
estimates

C
lwn (@)l ms + Mo(wa(t)) < €0, and Jun(®)]las < =75

along with the following decay on the right estimates (from Corollary 1) :

C
twnll s (1—pot)) + NGV 5 (1-p0 (1)) < 1473

Step 1 : deriving the H* conservation law. Let us differentiate (11) four

times :
N
4 4 _
Wngzeet T Wnrazzzeer T (un - E :Rj> =0.
i=1

Trrxrx

We multiply it by w22, and do an integration by parts, to obtain

1d al
2 _ 4 4
2 dt Wngrre = / (un - ; R]) Wnrrrze

TTXT

N
rrTT j=1 rTTTT

The second integral is harmless. Let us develop the first term
(tn = BY) 0 = 4 niaastin, = Ravoa R) + 48(tn g ting s, — Raao R R?)
+ 36(up2,uz — R2,R?) + 144(up gy tin 2ty — Rep R2R)
+ 24(u, 2 — RY)

= 4 4000us + 4(UE)V 4 R)puattd — Rpps R?)
+ 48(Un ppg Una iy, — RogaRoR?) + 36(unspus — R2,R?)
+ 144(Up gptin 2t — Ryz R2R) + 24(upiu, — RAR).

Trxrx

We try to get rid of the ws, .., terms, by integration by parts.

/ (ui - R4)’E’EI$ Wngrrre
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=6 [t 4 [ s VOV + Rt Rerea )
=60 | Wnazee (U(E)V + R)eoaztingtiy — Rezze RaR?)

— 48 [ waZypptnguy — 120 / Wn oz (UngosUnasty — Reze Rex R?)
240 — Ryze R2R)

— 360 Wngrrx unxxunLun RmeﬁfR)

7240/wnxxxx(unxxunx R%TRS)

We now want to get rid of the troublesome term —54 [w;,2, u,,uZ. We thus
introduce

d
2 3 2 2
% Wngggn = =2 WngzetWngzs Uy +3 WnggzUntly

n
— 3 4 E 4 3
- _Q/wnﬂtlza,anllivun _/<U’n - R]) Wnggaln
j=1

Trrxr

2 5
73/w":c;cacunmcx Up, 12/wnxxmunxu

- /(ui - R4)rzzmwnzmc / <R4 ZR4) wnxmzui

4 4 3 4 4 2
= /(Un -R )zzmwnmmxa:un + 3/(un - R )mxzwnmzmunmun

n

4 § : 4 3

_/<R - RJ) Wn gz,
j=1 TTITT

where the third integral is immediately controlled. Now we rearrange the term
with high derivatives (more than 3) through integrations by parts.

3
_2/wnxzxxmzwnmmxun
_ 2 3 +6 2
— WngrrreWnzrzsUn WngrresWngzsUng Uy,
_ 2 2 2
- _g/wnwzma:unzun - G/wnwwzanzxa:unza:un

2

So that we get :

d 2 3

— [ wypi . u
dt TTrTr 'n
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_ 2 2

= _9/w’nxmzxunmu _6/wnxmczwnxmxunmzun
—12/w w uu—3/w U 2—12/wQuu5
nrxrrxr “nrrr“nge“n Nxxx nazel Nxxx ~'NTn

4 2

n
4 § : 4 3
_/(R - R]) Wn ggaln
j=1 TTTIT

And we obtain the following (and last) relation, at level H* :

d (1 )
Z (= 12 w2 ud | =

4 [ Vi (UOV + Fazrastlh — Revars B

=60 [ Caaasl COV + Brsastins i~ Ross B )
— 120 / W przs (UnpeelnsUs, — Rezs RegR%)

200 [ gzt Fn ~ Rrsa FER)

=360 [ Wttt = B RoR) =200 [ 0 (tngtn — R FER)
72 / W g Wn g it + 144 / W g Wn g tin 2l

+ 36/

2 2 2 4 3
Wn ppaUngre Uy + 144/wnzmmunz 12/( — R%) 200 Wn gazzty,

_ 36/(u;ﬁ — RY) poeWnpppling U2 + 12/ <R4 = R;*) W e Us
j=1

TXTTT

N
+ / <R4 -3 R§> T (75)
j=1 TTTTT

Step 2. Estimating terms in (75). There are 13 lines to consider, and as for
the H? norm, we will do them one by one. We now note B; in place of A; in
the previous lemma : all B; are bounded in L®. For the lower order (ie L? or
H') estimates on the right, we will systematically bound it by [[ws|| g1 (1—y(t))
as [U)V a1 1—vow)) < l[wnllara—yow)-

+ U(t)Vazzza RB1 + Rygaae(wn + U(t)V)By.
So that as V € H*!, we obtain :
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1
< c(tm lnln s + 1OV ) nsazeliz. (76)

(UV + R)azaating s — RegeaRe R

= U(t)Vazee (Wn + UBV) o (wn + UB)V)? + U(t)Varzee (wn + U#)V) . RBs
+ U(t)Vawa Rotily, + Rozwa(wn + U )V ) pu,
+ Ruvza Re(wn + U(t)V) By,

And as V € H*, we simply get :

1
SC(t4/3 +Ut V”H‘*(lwo(t)>+||wn||H1(1wo(t)))|wnmm||m- (77)

2

UngrgUngz W RrrrRzsz

= (wy + U( W)z (Wn + UV )z (wn + U(E)V)?
+ (wn 4+ UV )aae(Wn + U#)V) 2o RBs + (wn + U(t)V ) aga Ragtil
+ Ruga (W + U6)V)aztiy + Rogy Ruw(wn + U(8)V) By,

Then only considering the first term :

‘ / Whazes(Wn + UV see(Wy + UV ge(w, + U(E)V)?

< Cllwngarallzs ([@nprall 2 [ oo o + U@V
+ ngae |2 [TV Yo (wn + UGV
MOV ) (w0 + U@V |z n + UGVl ) |wn + UV 3

C C C
m + M + W ”wnmcxx”L2

(where we used V., € H'1). So that for this term :

2

1
< C<t4/3 + ||wn, + Ut )V||H3(1_¢O(t))> W pwzellzz.  (78)
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ummumun RIMR R

= (W, + UV ) gz (W, + UV (w0, + U(t)V)
+ (W + U V) aw (W, + U#)V)2RBy + (wy, + U(t)V) g R Bhui,
+ Ryza R2(wy + U(t)V)BY + RywoRo(w + U(H)V) . BY u,,

Now, we have :
C
lwne +U@VollLe < lwnllmz + IUOVallze < 75,

as V, € L'. So that :
[(wn + U)V)zza (wn + U(t>V)§(wn +UV) |l < a3

And we get :

‘/wnxxxx(unxxxunxun Ryzo R R)‘

1
< (s + lun + VOV ) insaaelir: (79

2 2

Up 2 U gty — R2, R R
= (wn + UWV)5(wn + UOV)o(wn + UH)V)
+ (wy, + U)V)2, (wy, + U#)V)RBs + (w, + U#)V)2, Ryuy,
+ (wn + UO)V ) za Ry Bytnpun + B2, (wn + U®)V)zun
+ R2 R, (w, + U(t)V)BY.

As previously as V, € HV! :

C
[+ UOV)sall e < l[wallirs + 10 Vel 2 < 5

So that

[(wn + U )V )z (W + UGV )a(w + U)V)] 2
< Cll(wn + U(t)V)MCHL? : t%% < #%-

And we get
2 2
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1
< €5+l + VOV is-su ) nsaaalin: 60

3 3
‘/wnxxa:x(unxa:unx - RxacRx)'

UnpoUns — Ryz RS =Wn o (Wn + U V)2 + Ut)Vagwn,Bs + U(t) Vo UV,
+ (wy, + U(t)V)zeRe Bg + Ryw(wy, + U(4)V) . B,
where || Bg| -~ < Ct=2/3 (it is a homogeneous polynomial of degree 2 in w;,,

and U(t)V,), and B§, Bf are bounded in L>. Now (the L? norm goes to a
wy,-type term when possible, and V,, € H>) :

c C
e (wn + UV llLe < 75—
c Cc C
HU(t)VJZIwTLQ;BGHL2 < tl? . tl? . ﬂ?’
c C
3
U@Vl (V22 < 5 75

So that the “linear term” is bounded by Ct~*/3, and we have

3 3
‘/wnxxx;c(unxxunx - Rﬂcme)

1
< C<t4/3 + [Jwn + U(t)VHHQ(lwo(t))) lwnaszallez (81)

2

Una:mu?z = (wn + U@V )aa(wn + U(t)V)Q + (wn +U(t)V )2z RBs + Rmu%
No as ||wp sl < Ct~1/3 and :

2 C

1(wn + UV )za(wn + UOV) |l < —,

we get

2
‘ / WngrreWnrresUnzsUn

1
< C(tm + llwnllzs @ —ygowy) + ||U(t)V||H2(1wo(t>)) [Wnaoae Lz (82)

2
® | WngrazaWnrzasUngUn-

It is almost like the previous one.

U2y = (wy + U)V)2(wy, + UV + (w, + U(t)V)2RBy + RByu,,.
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Now along with ||wy zus |2 < Ct~1/3, we have :

C C
[l (wn + U(t)V)i(wn +U@)V)|[L= < 13 = PryER

So that

1
‘/wnmzwmwnwmazuniun < C(t5/3 + |w’ﬂH3(1w0(t))) Hwnazaﬂww”L2 (83)

2 2
hd / wnzcxxu’na:wzun'

+ (Wn + U)V) 2o RB10 + Ryzau?.

Now as V € H>!, we have

c
|V @ Vass (wn + UVl < S

Then, of course
‘/wnizz((wn + UV )aze RB10 + Rawatiy)| < [|wnllFrs (1o
And for the first term, we have to be a bit more foxy :
[ ndeatwn + VOV = =3 [ waatvnec o + VOV ) + UOV),
This last term is bounded by

[Wngaaall L2 [Wneee | L2 [Wnaae | Lo [|(wn + U @)V )e (wn + UE)V)| L
C

< mnwnwmx”Lz'

And we get

C C
'/wiwa:u”wxmui < 155? + W”wnwwxﬁHL? + ||w7l||%13(1—w0(t))' (84)

2 5
./wnxwmunxun

U2 = (wy + UB)V)p(wn +U@)V)® + (0, + U(t)V)pRB11 + Rpud.

We can use directly the usual L bound for the first term and get a Ct~7/3

decay, so that
5 C C||w ||H1 1— t

< el + 273 . (85)
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(ui - R4)mmanxmzzu?z .

The only trouble with this 8-power integral is the expression of the differen-
tiated term.

(Ui - R4)zm
= (U gzatls — Ruwa R?) + 36(tnpptin2R? — Ryw R2R?) 4 24(up3u, — R2R)
= 4(Wngaa (Wn + UO)V)? + U(t)Vaga(wn + UH)V)?

+ (wy, + U(t)V ) zex RB12 + Rype(wy, + U(1)V)Bis)

4+ 36((wy, + U )V ) gz (wp, + U ()V)2(w,, + U(t)V)?

+ (W + U V) gz (wn + U(H)V)3RBYy + (wn + U(t)V)2n RBi5us,

+ RuxRE(w,, + U)V)BYY + Ryw(wy +U)V) By u2

+ 24((wy, + U V)2 (w0, + U)V) + (w, + U)V)2RB"

+ (wn, + U)V) o RBYY up + RE(w,, + U)V) By (86)

Now along with u3 = (w,, + U(t)V)? + RB}{"", we develop the product (uf —

R*),.,u. Looking only on terms without R, we have the L? bound on these
terms :

+ +tEtan) ES

C C C C C < C
t%—‘rl t1+1/3

On the other side, for any of the terms containing R, we have the following
on-the-right bound
CH’LUn + U(t)v||H3(1—wo(t))-

So that finally

‘/(ui - R4)wmanmajxwui

< (5 + o+ UOVlssoy ) Mmool 67

4 4 2
(un - R )xmmwnxmzunxun

We reuse the development (86), along with
Unpus = (Wn, + U@V )o(wn + UE)V)? + (wp + U(t)V)o RB1s + Roug,

to have L? bounds on the product (u: — R*),,,un,u2. For the terms with no
R, we get

R SR

( C C C C ) C C
il . <
N R s S

And as for the previous integral, for any of the terms containing R, we have the
on-the-right bound :
C’Hwn + U(t)V||H3(1—wo(t))~

Then ||wyyaslz2 < Ct~1/3 gives the estimate :

Hwn +FU@V [ 3 (1-got))
< C’< i (88)

‘/(Ui - R4)zmmwn'prrunr
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n

N

o/ <R4 — Z R;*) Whpzats and / <R4 — Z R?) Wnyzra-

j=1 TTITT j=1 TTTTT
We obviously have exponential decay :

n N
[ (r$m) wnt]o| [ (- Sm) e
j=1 TTT j=1 TTITT

< Cem ™ | e (89)

And finally :

2 3
b wnza:a:u’n .

As u? = (wy, + U(t)V)3 4+ RBy5, we have

C 2 C 2
Saat Cllwnaezllzzq-voe) < 1575 + Clneaallz2a—poc)-

(90)
Step 3. Let us sum all our estimates (76)-(89) (aside from 86). Then we
integrate in time between ¢ and S,,, and plug in (90). We get

C Sn
||w7waxH%2 < tQ? + C/t ||w71(7|‘§13(1—’¢10(t))d7 + CHwTwaxH%?(l—l/JO(t))

S
" 1
0 [ (s + lunllas-sge + 10OV L) ) Wonszasl0)ldr

(Notice that we don’t have an exponent greater than 1 on ||wy 4z (7)|L2). SoO
that we obtain o

”wnzmxHLZ < W

as soon as V € H>' N H%?2 and :

c
lwnllrs (1—yo ey + U@V Il a0 < 775+

This is follows from Corollary 1, and completes the proof of Proposition 3. [
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