COLLOQUIUM, HEIDELBERG, 18/06/2009

HIDDEN CONVEXITY IN SOME NONLINEAR PDEs
FROM GEOMETRY AND PHYSICS

YANN BRENIER

CNRS, FR 2800, Université de Nice-Sophia-Antipolis,

Web site: http://math1.unice.fr/~brenier
HIDDEN CONVEXITY IN SOME NONLINEAR PDEs
FROM GEOMETRY AND PHYSICS

1. THE MONGE-AMPERE EQUATION
 (solving the Minkowski problem and playing a key role in Optimal Transport Theory since the 90’s)

2. THE EULER EQUATION
 (describing the motion of inviscid and incompressible fluids, interpreted by Arnold as geodesic curves on infinite dimensional groups of volume preserving diffeomorphisms)

3. THE BORN-INFELD EQUATION
 (a non-linear electromagnetic model introduced in 1934, with a strong revival in high energy Physics in the 90’s)
I) THE MONGE-AMPERE EQUATION

Given two positive smooth functions α and β of same finite integral over \mathbb{R}^d, find a smooth convex function Φ such that:

$$\beta(D\Phi(x))\det(D^2\Phi(x)) = \alpha(x)$$

Assuming $D^2\Phi(x)$ to be uniformly bounded away from zero and infinity (in the sense of symmetric matrices) makes this PDE well-posed. The Monge-Ampère equation is usually related to the Minkowski problem, which amounts to find hypersurfaces of prescribed Gaussian curvature.
A WEAK FORM OF THE MONGE-AMPERE EQUATION

When \(D^2\Phi(x) \) is uniformly bounded away from zero, then \(x \in \mathbb{R}^d \rightarrow D\Phi(x) \in \mathbb{R}^d \) is one-to-one. Using the change of variable \(y = D\Phi(x) \), we deduce

\[
\int f(y)\beta(y)dy = \int f(D\Phi(x)))\beta(D\Phi(x))\det(D^2\Phi(x))dx = \int f(D\Phi(x)))\alpha(x)dx
\]

for all suitable test function \(f \)

Thus, a possible WEAK FORMULATION of the MA equation is

\[
\int f(y)\beta(y)dy = \int f(D\Phi(x)))\alpha(x)dx, \quad \forall f
\]

In other words \(\beta(y)dy \) AS A MEASURE IS \(\alpha(x)dx \)

“TRANSPORTED” BY \(x \in \mathbb{R}^d \rightarrow D\Phi(x) \in \mathbb{R}^d \) AS A MAP.
A CONVEX VARIATIONAL PRINCIPLE FOR THE MONGE-AMPERE EQUATION

Any solution to the Monge-Ampère equation

\[\beta(\nabla \Phi(x)) \det(\nabla^2 \Phi(x)) = \alpha(x) \]

minimizes the CONVEX functional

\[\Phi \Rightarrow \int \Phi(x) \alpha(x) dx + \int \Phi^*(y) \beta(y) dy \]

among all suitable convex functions \(\Phi \), where \(\Phi^* \) denotes the Legendre-Fenchel transform

\[\Phi^*(y) = \sup_{x \in \mathbb{R}^d} x \cdot y - \Phi(x). \]
A CONVEX VARIATIONAL PRINCIPLE
FOR THE MONGE-AMPERE EQUATION 3

Proof

\[\int \Psi(x) \alpha(x) dx + \int \Psi^*(y) \beta(y) dy = \int (\Psi(x) + \Psi^*(D\Phi(x))) \alpha(x) dx \]

(since \(D\Phi \) transports \(\alpha \) toward \(\beta \))

\[\geq \int x \cdot D\Phi(x) \alpha(x) dx \]

(by definition: \(\Psi^*(y) = \sup_{x \in \mathbb{R}^d} x \cdot y - \Psi(x) \).)

\[= \int (\Phi(x) + \Phi^*(D\Phi(x))) \alpha(x) dx \]

(Indeed, in the definition of \(\Phi^*(y) = \sup x \cdot y - \Phi(x) \), the supremum is achieved whenever \(y = D\Phi(x) \), which implies \(\Phi^*(D\Phi(x)) = x \cdot D\Phi(x) - \Phi(x) \))

\[= \int \Phi(x) \alpha(x) dx + \int \Phi^*(y) \beta(y) dy \]

CONCLUSION: \(\Phi \) IS A MINIMIZER
AN EXISTENCE AND UNIQUENESS RESULT FOR THE WEAK MONGE-AMPERE PROBLEM

THEOREM

Whenever α and β are Lebesgue integrable, with same integral, and bounded second order moments,

$$\int |x|^2 \alpha(x) dx < +\infty, \quad \int |y|^2 \beta(y) dy < +\infty,$$

there is a unique map with convex potential $x \to D\Phi(x)$ that solves the Monge-Ampère problem in its weak formulation.

$x \to D\Phi(x)$ IS CALLED THE OPTIMAL TRANSPORT MAP BETWEEN α AND β
Using the optimal map to prove
the isoperimetric inequality

Let Ω be a smooth bounded open set and B_1 the unit ball in \mathbb{R}^d.

THE ISOPERIMETRIC INEQUALITY READS:

$$|\Omega|^{1-1/d}|B_1|^{1/d} \leq \frac{1}{d} |\partial \Omega|$$

A PROOF USING THE OPTIMAL MAP:

Let $D\Phi$ the optimal transportation map between

$$\alpha(x) = \frac{1}{|\Omega|}, \quad x \in \Omega, \quad \beta(y) = \frac{1}{|B_1|}, \quad y \in B_1.$$

So that

$$(\Omega, \alpha) \rightarrow (B_1, \beta), \quad \beta(D\Phi(x))\det(D^2\Phi(x)) = \alpha(x)$$

i.e. $$\det(D^2\Phi(x)) = \frac{|B_1|}{|\Omega|}, \quad x \in \Omega.$$

NB: version “quantitative” avec exposant optimal par Figalli-Maggi-Pratelli, CVGMT Pisa 2007
The isoperimetric inequality 2

Proof (adapted from Gromov): Since the range of $D\Phi$ is the unit ball, we have:

$$|\partial \Omega| = \int_{\partial \Omega} d\sigma(x) \geq \int_{\partial \Omega} D\Phi(x) \cdot n(x) d\sigma(x) = \int_{\Omega} \Delta \Phi(x) dx$$

(using Green’s formula)

$$\geq d \int_{\Omega} (\det(D^2 \Phi(x)))^{1/d} dx$$

(using that $(\det A)^{1/d} \leq 1/d$ Trace(A) for any nonnegative symmetric matrix A)

$$= d|\Omega|^{1-1/d}|B_1|^{1/d}$$

since $\det(D^2 \Phi(x)) = \frac{|B_1|}{|\Omega|^d}$, $x \in \Omega$. So

$$|\Omega|^{1-1/d}|B_1|^{1/d} \leq \frac{1}{d} |\partial \Omega|$$

follows and equality holds only when Ω is a ball as it can be easily checked.
II) THE EULER EQUATION

GEOMETRIC DEFINITION
OF THE EULER EQUATIONS:

The Euler equations, introduced in 1755, describe the motion of inviscid incompressible fluids. They have a very simple geometric interpretation. For a fluid moving inside a bounded convex domain D in R^d, we get:

$$\frac{d^2g_t}{dt^2} \circ g_t^{-1} + \nabla p_t = 0,$$

where $t \rightarrow g_t$ is a curve valued in the (formal) Lie group $SDiff(D)$ of all volume preserving diffeomorphisms of D and p_t is a time dependent scalar function defined on D and called the 'pressure field'.

Such a curve is just a geodesic, with respect to the L^2 metric on the Lie Algebra of $SDiff(D)$.

A CONVEX PRINCIPLE FOR THE EULER EQUATION

A MAXIMIZATION PRINCIPLE FOR THE PRESSURE FIELD

For each time interval \([t_0, t_1]\) small enough, the pressure field \(p\) maximizes the CONCAVE functional

\[
p \Rightarrow \int_{t_0}^{t_1} \int_{\mathcal{D}} p_t(x) dtdx + \int_{\mathcal{D}} J_p[g_{t_0}(x), g_{t_1}(x)] dx,
\]

with

\[
J_p[x, y] = \inf \int_{t_0}^{t_1} (-p_t(z(t)) + \frac{|z'(t)|^2}{2}) dt,
\]

where the infimum is taken over all curves \(t \to z(t) \in \mathcal{D}\) such that \(z(t_0) = x \in \mathcal{D}, z(t_1) = y \in \mathcal{D}\.\)
A CONVEX PRINCIPLE FOR THE EULER EQUATION...

Proof: For all test function q, by definition of J_q:

$$\int_D J_q[g_{t_0}(x), g_{t_1}(x)]dx \leq \int_{t_0}^{t_1} \int_D \left(\frac{1}{2} |\frac{dg_t}{dt}|^2 - q_t(g_t(x))\right) dtdx.$$

Because $[t_0, t_1]$ is short and g_t solves the Euler equation:

$$\int_D J_p[g_{t_0}(x), g_{t_1}(x)]dx = \int_{t_0}^{t_1} \int_D \left(\frac{1}{2} |\frac{dg_t}{dt}|^2 - p_t(g_t(x))\right) dtdx.$$

Since $g_t \in \text{SDiff}(D)$ is volume preserving, we have:

$$\int_D (q_t(x) - q_t(g_t(x)))dx = \int_D (p_t(x) - p_t(g_t(x)))dx = 0.$$

Thus

$$\int_{t_0}^{t_1} \int_D q_t(x)dtdx + \int_D J_q[g_{t_0}(x), g_{t_1}(x)]dx$$

$$\leq \int_{t_0}^{t_1} \int_D p_t(x)dtdx + \int_D J_p[g_{t_0}(x), g_{t_1}(x)]dx$$

CONCLUSION: p IS A MAXIMIZER
EULER EQUATIONS AND MINIMIZING GEODESICS

THEOREM

Whenever g_0 and g_1 are given volume preserving Borel maps of D (not necessarily diffeomorphisms),
1) There is a unique pressure field (up to an additive constant) that solves the Maximization problem (in a suitable weak sense) and $p \in L^2([t_0, t_1], \text{BV}_{\text{loc}}(D))$.
2) There is a sequence g^n_t valued in $\text{SDiff}(D)$ such that
\[
\frac{d^2 g^n_t}{dt^2} \circ (g^n_t)^{-1} + \nabla p_t \to 0,
\]
in the sense of distributions and $g^n_0 \to g_0$, $g^n_1 \to g_1$ in L^2.
3) When g_0 and g_1 are diffeomorphisms and $d \geq 3$, all minimizing geodesics behave as in 2). This is not true when $d = 2$.
III) THE BORN-INFELD SYSTEM

(cf.G. Boillat, CIME 1994-Springer lecture notes 1640)

\[\partial_t B + \nabla \times \left(\frac{B \times (D \times B) + D}{\sqrt{1 + D^2 + B^2 + (D \times B)^2}} \right) = 0, \quad \nabla \cdot B = 0, \]

\[\partial_t D + \nabla \times \left(\frac{D \times (D \times B) - B}{\sqrt{1 + D^2 + B^2 + (D \times B)^2}} \right) = 0, \quad \nabla \cdot D = 0, \]

This system is a nonlinear correction to the Maxwell equations, which can describe strings and branes in high energy Physics. Global smooth solutions have been proven to exist for small localized initial conditions (Chae and Huh, J. Math. Phys. 2003, using Klainerman’s null forms). The additional conservation law

\[\partial_t h + \nabla \cdot Q = 0, \]

where

\[h = \sqrt{1 + D^2 + B^2 + (D \times B)^2}, \quad Q = D \times B. \]

provides an ’entropy function’ h which is a convex function of the unknown \((D, B)\) ONLY in a neighborhood of \((0, 0)\).
THE AUGMENTED BORN-INFELD (ABI) SYSTEM

The 10×10 augmented Born-Infeld system (ABI) is made of the original BI system augmented by adding the 4 'energy-momentum' conservation laws (provided by Noether’s theorem):

$$\partial_t Q + \nabla \cdot \left(\frac{Q \otimes Q - B \otimes B - D \otimes D}{\hbar} \right) = \nabla \left(\frac{1}{h} \right), \quad \partial_t h + \nabla \cdot Q = 0$$

to the 6 original BI evolution equations

$$\partial_t B + \nabla \times \left(\frac{B \times Q + D}{\hbar} \right) = \partial_t D + \nabla \times \left(\frac{D \times Q - B}{\hbar} \right) = 0, \quad \nabla \cdot B = 0, \quad \nabla \cdot D = 0$$

while DISREGARDING THE ALGEBRAIC CONSTRAINTS

$$h = \sqrt{1 + D^2 + B^2 + (D \times B)^2}, \quad Q = D \times B,$$

which define the 6 dimensional BI MANIFOLD in the space $(h, Q, D, B) \in \mathbb{R}^{10}$.

For smooth solutions, THE BI SYSTEM IS JUST EQUIVALENT TO THE AUGMENTED SYSTEM RESTRICTED TO THE BI MANIFOLD.

Surprisingly enough, the 10 × 10 augmented ABI system has an extra conservation law:

\[\partial_t \eta + \nabla \cdot \Omega = 0, \]

where

\[\eta(h, Q, D, B) = \frac{1 + D^2 + B^2 + Q^2}{h}, \]

is CONVEX, which leads to the GLOBAL hyperbolicity of the system. The ABI system looks like classical MHD equations and enjoys classical Galilean invariance:

\[(t, x) \rightarrow (t, x + U t), \quad (h, Q, D, B) \rightarrow (h, Q - hU, D, B), \]

for any constant speed \(U \in \mathbb{R}^3 \)!
SECOND OCCURRENCE OF CONVEXITY IN THE BI SYSTEM

The 10×10 ABI (augmented Born-Infeld) system is *linearly degenerate* (in the sense of Lax) and stable under weak-* convergence: weak limits of uniformly bounded sequences in L^∞ of smooth solutions depending on one space variable only are still solutions. (This can be proven by using the Murat-Tartar ‘div-curl’ lemma.)

⇒ CONJECTURE: THE CONVEX HULL OF THE BI MANIFOLD IS THE NATURAL CONFIGURATION SPACE OF THE BI THEORY
(As a matter of fact, the differential constraints $\nabla \cdot D = \nabla \cdot B = 0$ must be taken into account.) (YB, Arch. Rat. Mech. Analysis 2004)

The convex hull is entirely defined by the following inequality:

\[h \geq \sqrt{1 + D^2 + B^2 + Q^2 + 2|D \times B - Q|}. \]

ON THE CONVEXIFIED BI MANIFOLD...

1) The electromagnetic field \((D, B)\) and the 'density and momentum' fields
\((h, Q)\) can be chosen \textit{independently} of each other, as long as they satisfy the
\textit{required inequality} \(h \geq \sqrt{1 + D^2 + B^2 + Q^2 + 2|D \times B - Q|}\).

The AUGMENTED system describes a field/matter coupling while the
original Born-Infeld model is purely electromagnetic.

2) 'Matter' may exist without electromagnetic field: \(B = D = 0\), which
leads to the Chaplygin gas (a possible model for 'dark energy' or 'vacuum
energy')

\[
\partial_t Q + \nabla \cdot \left(\frac{Q \otimes Q}{h} \right) = \nabla \left(\frac{1}{h} \right), \quad \partial_t h + \nabla \cdot Q = 0,
\]

3) 'Moderate' Galilean transforms are allowed

\[
(t, x) \rightarrow (t, x + U t), \quad (h, Q, D, B) \rightarrow (h, Q - hU, D, B)
\]

(which is impossible on the original BI manifold). This is left from special
relativity under weak completion ('subrelativistic' conditions.)