On the Characterization of Pseudodifferential
Operators (old and new)

Jean-Michel Bony

Abstract In the framework of the Weyl-Brmander calculus, under a condition of
“geodesic temperance”, pseudodifferential operators can be characterized by the
boundedness of their iterated commutators. As a corollary, functions of pseudodif-
ferential operators are themselves pseudodifferential. Sufficient conditions are given
for the geodesic temperance. In particular, it is valid in the Beals-Fefferman calcu-
lus.

Introduction

The first historical example of a characterization of pseudodifferential operators is
due to R. Beals [1] for the following class of symbols

o= {ae C™(R" x R™)

agaxﬁa(x,g)] <ca7,3} .

An operatorA can be writtenA = a(x,D) with a € S, if and only if A and its
iterated commutators with the multiplications kyand the derivationd /dx; are
bounded ori.2.

The aim of this paper is to give an analogous characterization for the more gen-
eral classes of pseudodifferential operators occurring in the Beals-Fefferman calcu-
lus and the Weyl-ldrmander calculus. Such a characterization has important conse-
guences:

e The Wiener property: if a pseudodifferential operator (of order 0) is invertible as
an operator i, its inverse is also a pseudodifferential operator.

e The compatibility with the functional calculu€® functions of pseudodifferen-
tial operator are themselves pseudodifferential.
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e Itis a good starting point for a general theory of Fourier integral operators. We
refer to [4] for that point which will not be developped here.

This paper gives a new presentation, with some simplifications and complements,
of the results of [3] where it is shown that the characterization of pseudodifferential
operator is valid under an assumptiongefodesic temperance

The new point of this paper is the section 3 which gives a sufficient condi-
tion, easy to check, for thgeodesic temperancén the framework of the Beals-
Fefferman calculus, this condition is always satisfied, and so are its consequences.

1 Weyl-Hormander calculus

We will denote by small latine letters (such@spoints of the configuration space
R", by greek letters (such &9 points of its dual spacéR")* and by capital letters
(X = (x,£)) points of the phase spack’ = R"x (R")*. The spaceZ” is equipped
with the symplectic forno defined by

O-(XaY):<n7X>_<'§ay> for X:(Xaé) andY:(Vaﬂ)

The Weyl quantization associates to a function or distribuéi@m 2" an operator
a"(x,D) acting inR" defined by

a"(x,D)u(x) = /:/é<xfy~5>a(&2y,5) u(y) dydé /(2)" .

Considered in a weak sense, e .#/(2"), this formula defineg"(x,D) as an
operator mapping the Schwartz spag&R") into the space””’(R") of tempered
distributions. Conversely, for any such operaipthere is a uniquac .’ (2"), the
symbolof A, such thaA = a¥(x, D).

Definition 1. The Hbrmander classes of symb8(M, g) are associated to

¢ a Riemannian metrigon 2", identified with an applicati0|(1X — gx(-)), where
eachgx is a positive definite quadratic form o#’,
e aweightM, i.e. a positive function o#?".

They are defined by
SM,g) = {aecw(%)] Oy .- 7,b(X)| < GM(X) for k > 0 andg(T)) <1} .

We use the notatiodr f (X) = (df (X), T) for the directional derivatives.

Example 1(Beals-Fefferman class¢2]).
ForQ,q € R and®, ¢ positive functions orZ’, these classes are defined by

ac ) =

8gafa(x7§)‘ < caﬁgp()(’§>Qf\a\¢(x’é)qflﬁ\ ]
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They are actually class&M, g) with

dx? dé?
P(X)?  P(X)?

gx (dx,d€) = and M= 9. (1)

In the particular case:

B(x.8) = (L+|E)P%, p(x.&) = (1+]5) %2,

one recovers the dtmander clasgg"_a withm=Qp —qd :

acs; =

08 3a(x,E)| < Cyp(1-+|E )™ PIel oI,

1.1 Admissible metrics

Before stating the conditions which guarantee that the clé&$ég) give rise to a
good symbolic calculus, we should recall some well known properties of quadratic
forms in symplectic spaces.

Reduced form. For eachY € .27, one can choose symplectic coordinat€sé’)
(depending oY) such that the quadratic forgy takes the diagonal form:

dx;? 4 d&/?
gv(d%,dé’)—ZW- @

]

The A; are positive and are independent of the particular choide/of’). An
important invariant, which will characterize the “gain” in the symbolic calculus,
is the following:

AY) = mjinlj Y).

Inverse metric. It is the Riemannian metrig° on 2", defined for eacty by

(T) = sup"éYT(’g;z. If 2 is identified with its dual via the symplectic form,

g¢ is nothing but the inverse quadratic fogp* a priori defined on2™". In the
symplectic coordinates above, one has

oy (0K, dg") = 3 4;(Y) (@ * +d&f?) .

Geometric mean of g and’g It is a third Riemannian metrig on .2". For each
Y the quadratic formg{ is the geometric mean afy and g (the geometric
mean of two positive definite quadratic forms is always canonically defined and
is easily computed in a basis which diagonalizes the two quadratic forms). In the
symplectic coordinates above, one has
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o (X, dg") = ¥ (X * + ) .

Definition 2. The metricg is saidwithout symplectic eccentricifyVSE) if for any
Y, all the1;(Y) are equal td. (Y). It is equivalent to say tha® = 1%g.

Example 2Metrics of Beals-Fefferman (1) are WSE, with= ®¢.

Definition 3. The metricg is saidadmissibléf it satisfies the following properties:

(i) Uncertainty principle: A(Y) > 1.

(i) Slowness:3C, gy(X—Y)<C = % <C.

. T
(i) Temperance:3C,N, % <C(1+gs(X-=Y)N.

A weightM is said admissible fog (or ag-weight) if it satisfies

iy 3C, gy(X—Y)<C 1= M(Y)/M(X)<C.
(ii")y IC,N, M(Y)/M(X) <C(1+g3(X-Y)N.

As a consequence of (iii), one has
(1+0%(X=Y)) <C(1+gg(X—Y))" "™, 3)

and thusx (T)/gv(T) is also bounded by the right hand side of (iii) (with different
values ofC andN).

Remark 1For an admissible Beals-Fefferman metric (1), condition (i) means that
@(X)p(X) > 1 while (i) and (iii) express bounds of the rati®(Y) /P (X))** and

(@(Y)/@(X))*.
The classegg‘_a correspond to an admissible metridif< p <1 andé < 1.

1.2 Symbolic calculus

In this paragraphg will denote an admissible metric arid a g-weight. Let us
denote by O%(M, g) the class of operators whose symbol belongS(id, g) and
by # the composition of symbols which corresponds to the composition of operators,
ie.

(auttaz)"(x,D) = ay'(x,D) o ay (x,D) .

The following properties are classical [6].

e Operators in Of(M,g) map.#(R") into itself, .’ (R") into itself and, foM =
1, L2(R") into itself.

e The formal adjoint o&"(x,D) isa¥(x,D).

e If M1 and M, are twog-weights, thenM1M5 is also ag-weight and one has
S(My, 9)#S(M2,9) C S(M1M2,9).
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e Foraj € SMj,g), one has the asymptotic expansion

N—-1 1

ayttay(X) = Z —{(%c(ay7az))kal(Y)a2(Z)}

& K

+Ru(X),

| Y=Z=X

where thek™ term in the sum belongs tS(MlMZ)r",g) and Ry belongs to
S(M;M2A~N g). The first two terms are the usual product and the Poisson
bracket:

affay = aqap + %{al,az} +---

1.3 Can one use only metrics without symplectic eccentricity?

As remarked above, Beals-Fefferman metrics are WSE and one can say that, since
the introduction of the Weyl-Brmander calculus thirty years ago, almost all the
metrics which have been used are WSE. It is not uniquely because they are simpler
to use, a result of J. Toft [7] shows that there is a good mathematical reason for this
limitation.

Theorem 1 (J. Toft). (i) If g is an admissible metric, one has
ACN,  (ex(T)/av(T)* <C(1+gf(x—V))" . (4)

(i) The metric § is admissible.

The second point is an easy consequence of the first one. The right hand side of (4),
which controls the rati@x /gy, controls also the ratio of the inverse meigit/ g9
and thus the ratio of their geometric megdy &f;, which proves thag* is tempered.
It controls also the ratid. (Y) /A (X).

Let us introduce a new metrig = A ~'g”. The ratiogy /gx is then controlled
by the right hand side of (4) (with different consta@@andN) and a fortiori by a
power of(1+ 4 (Y)g{ (X —Y)). This proves the temperance®becausg® = Ag".
The slowness being evident, the mefyits admissible. Moreover, it is WSE: in the
coordinates (2), one has

dx,2 4 d&/? a2 1 gE2
R e L AR

] J

Let us now compare thg-calculus and thg-calculus.

(). If M is ag-weight, thenM is ag-weight.
(i)). One has the®M,g) C SM, Q).
(iii). Moreover, the Sobolev spaces are the saf{d1,g) = H(M, 7).
(iv). Any A€ OpS(M,g) mapsH (M;) into H(M1/M).
(v). The “gain” A of the symbolic calculus is the same fpandg.
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The first point is a consequence of Toft's theorem, the fétf ) /M (X) being also
controlled by the right hand side of (4). The second point is evident. The Sobolev
spaceH (M, g) can be defined as the spaceuaf .7/ (R") such thag"(x,D)u € L?
for anya € S(M, g), which makes (iv) evident. Equivalent definitions can be found
in [5], where the theorem 6.9 proves (jii).

Itis thus difficult to imagine a situation where it would be more advantageous to
use thag-calculus instead of thg-calculus.

2 Characterization of pseudodifferential operators

2.1 Geodesic temperance

Let us denote byl°(X,Y) the geodesic distance, for the Riemannian maific
betweenX andY.

Definition 4. The metricg is saidgeodesically temperei it is tempered and if,
moreover, the equivalent following conditions are satisfied:

ov(T)
ox(T)
IC,N; CLA+d°(X,Y)YN < (14+g9(X-Y)) <C(A+d°(X,Y)N . (6)

3C,N; <C@+d°(xX,Y)V, (5)

The left part of (6) is always true. Actually, one has
CL1+g3(X —Y)¥N < 1+ g% length of segmenXY < C(1+gZ (X —Y)N |,

which is a simple consequence of (3) and thus of the temperamgétdd clear that
the right part of (6) imply (5).

Assume now (5), and lete [0,L] — X(t) be a unit-speed geodesic frofto X.
One has

L L
ov (X —)V2 < ["gu($)M < [ (10 <C' 1+ LN,
0 0

which gives the right part of (6).

Remark 2The geodesic temperance requires both the temperance and (5) (or (6)). A
metric can satisfy (5) without being tempered (exampldxe+ e *dé?). However,

if g satisfies (5) and (3), it is tempered: the rajjg/gy is estimated by some power

of theg®-length of the segmeXY which is itself estimated, as remarked above, by

a power ofgg (X —Y).

Remark 3There is no known example of a tempered megniehich is not geodesi-
cally tempered, but proving that a particular metric is geodesically tempered can be
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a challenging task. Theorem 5 below proves that this is not an issue for the Beals-
Fefferman metrics.

2.2 Characterization

We shall use the classical notations
adB-A=[B,A|=BoA—AocB

for the commutator of two operators. The following definition is of interest only for
metrics WSE.

Definition 5. Let g be a metric WSE. The cla,g) is the set of function® €
C>(Z") which satisfy, for an,

3Cq; I ... onb(X)| <CA(X) for gx(Tj) < 1.
We refer to [3] for the proof of the following theorem, and just add some comments.

Theorem 2.Let g be an admissible metric WSE whichgsodesically tempered
Then A belongs t®pS(1, g) if and only if the iterated commutators

adb?...adb¥-A, k>0, bje3A,09), (7)
are bounded on.

Remark 4lt is easy to see that, fdre S(A,g) anda € (1,g), the Poisson bracket
{b,a} belongs toS(1,g). The “only if” part of the proof comes from the fact that
b#a— a#b (a non-local integral expression whose principal patiigb, a}) belongs
also toS(1,9).

It would not be sufficient to require the boundedness of the commutators with
b; € S(4,9). For instance, ify is the euclidean metric o2, the classS(1,9) is
nothing but?&o, and one had = 1. Forb; € S(1,9) = §(1,9) the corresponding
operators are bounded @A and (7) would be valid for anj bounded orL.2. On
the other hand3(A, g) contains in that case the functiogsand&; and the theorem
reduces to the criterium of Beals.

Remark 50ne can realize the importance of the geodesic temperance in this way.
An essential ingredient in the proof of the “if” part is to prove a “decaj olutside

the diagonal of2™, namely that, given ball8y = {X |gy(X—Y) <r?} and a
family, bounded ir§(1, g), of functionsey supported irBy, one has

|0 0 Ao 0| 1 2) < Cn(1+0¢ (By —Bz)) ™,

wheregy (By — Bz) means in§g (Y —Z’) for Y/ € By andZ’ € B;.
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It turns out that, from the estimate on the commutators itk OpS(1,g), one
can gain only the variation df betweenBy andBz. But functions in§(/l,g) are
Lipschitz continuous fog®, the variation ob cannot exceed the geodesic distance
of the balls and one cannot obtain a better bound @@ +d° (By,Bz)) N in the
right hand side. The geodesic temperance asserts precisely that such a bound can
compensate the ratmy /gz.

The characterization can be extended to some cases \ghisreot WSE, the
spaceS(A,g) being accordingly modified (see [3]). However, some extra conditions
on g should be added; if not, [3] contains an example where the characterization
fails.

Corollary 1. Under the same assumptions on g, let M angd @ two g-weights.
Then an operator A belongs ®pS(M, g) if and only if A and its iterated commu-
tators with elements d®pS(A,g) map continuously KM, g) into H(M1/M,g).

Let us chooseB € OpS(M3,g) having an inversé8=! ¢ S(Mfl,g) (see [5, cor.
6.6.]), and another invertible operatdre OpS(M;/M,g). Then, A’ = CAB™! sat-
isfy the assumptions of Theorem 2, one Bas OpS(1,g) and thusA = BAC™1 ¢

OpS(M, 9).

Corollary 2 (Wiener property). Assume g admissible, WSE and geodesically tem-
pered.

(i) If A€ OpS(1, g) is invertible in.Z (L?) then its inverse Al belongs tdOpS(1,g).

(i) If M and M, are two g-weights and if A OpS(M, g) is a bijection from HM1, g)

onto H(M; /M, g), then A1 € OpS(M~1,g).

Forb; € S(A,0) one hasC = adbY - A~1 = —A~(adb}’ - A)A~1 which is bounded
onL?. Next

adby.C = —(adby - A1) (adb} - A)A! — AL (adb¥ - adb? - A)AL
—A Y(adb? - A)(adby - A1)

and the three terms are bounded.8nBy induction, one gets that all iterated com-
mutators are bounded @ and thus thaA~! belongs taS(1,g).

Remark 6. The Wiener property is actually valid for some metricg/hich are not

WSE, including cases where the characterization is not valid. One has just to assume
that the metri@= A ~1g” of the paragraph 1.3 is geodesically tempered. One knows
then thatA—! € OpS(1,d), and proving that its symbol actually belongssd., g)

is just a matter of symbolic calculus. The second part of the proof of [5, th. 7.6] can
be reproduced as is.

2.3 Functional calculus

Given a selfadjoint operatgk (bounded or unbounded) drf, the functional cal-
culus associates to any Borel functibndefined on the spectrum &f an opera-
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tor f(A). When f belongs toC®, it can be computed via the formula of Helffer-
Sjostrand:

f(A):fn‘l//ng(z)dexdy, z=x+iy, ®)
whereR, = (z—A) L is the resolvant, anfl is an almost analytic extension bf

Theorem 3. Assume g admissible, WSE and geodesically tempered.4 &Hg)
be real valued and let f be @Cfunction defined in a neighbourhood of the spectrum
of a¥. Then f(@") belongs tdOpS(1, g).

In that casef can be choosen with compact supportdrand the meaning of (8)

is clear. This theorem is actually a particular case of the following one, where the
assumptionA self-adjoint with domairH (M), should be thought of as a condition

of ellipticity. WhenC~1AYN <M <CAN, itis equivalent to & |a(X)| > C IM(X)

and also to the existence of a paramefix OpS(M~1,g) such thatAE — | and
EA—1 belong to OS2 %, 9).

Theorem 4.Under the same assumptions on g, leM be a g-weight. Let &
S(M, g) be real valued such that A a% is self-adjoint with domain KM, g). Let
f € C*(R) be a “symbol of order p”, i.e. such that

d<F (t)

g | <G+ t))P* fork>0.

Then f(@") belongs tadOpS(MP, g). Moreover, if ¢ is the symbol of(&"), one has
c—foae S(MPA2g).

The result is evident for & A% and, dividing f if necessary by a power of 412,
one may assump < 0. One can then choose, fior large enough,

M

f(x+iy) = x (%) k;f(k)(x) (il)(/!)k |

wherey € C*(R) satisfyx(s) = 1 [resp. 0] fors< 1/2 [resp.s > 1]. One has
‘gf(x—kiy)‘ <CA+ )P N2y forN<M -1, 9)

and the integral in the right hand side of (8) is thus convergent.

For Oz # 0, we know thatR; is a bijection ofL? onto the domairH (M) and
thus, as a consequence of Corollary 2, Rat OpS(M~1). Let us denote by, its
Weyl symbol. We hav§iR;|| 4 2) < 1/|0z. From the resolvant equatid® — R =
(i— )RR, one gets|Ry|| 4121wy < C(1+|2)/[02. The iterated commutators
can be written

[1(adb)-R. = 5 £RKiR;... RKpR,

where the sum is finite and eakhis an iterated commutator é&fwith some of the
bj. Thus||Ki || & (1 w),L2) is bounded independantly aaindl, and one has
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N N+1
_ (1+12)™"
2wznmy = I:' [Pilhisn. |OzN

N N
. (1+]2)
2(2) < CU b HI;§()L,g) 07N+

H ﬁ (adb?)-R,

N
H [](adb) R,
1
with C=C(N), | =1(N), denoting by|- || g the semi-norms of a Frechet spdee

The proof of Theorem 2 shows that there exist const@nendN such that

(1+]2)™ (1+ |7+
[rzllisng) < CkW v rzllesm1,g) < QW

Let us denote by the symbol off (A). Using the estimates above, foe= 0, one
gets from (8) and (9)

(LN (T4 XD\ N+2 _N-2

< p

c(9)] <C | Npi ming 1, M(S Iy (1+]X]) dxdy
[yl <(1+(x])

<c /(1+x>lein{1, 141X

M(S)

} dx < C'M(9)P.

The estimates of the derivativgpar, ¢(S) for gs(Tj) < 1 are analogous, which ends
the proof.

3 Sufficient conditions for the geodesic temperance

Theorem 5. (i) Admissible Beals-Fefferman metrics are geodesically tempered.
(if) More generally, let2" = 21 ®© 2> @ --- ®© Zp be a decomposition of” as a
vector space, and note % (Xg,...,Xp) the components of a vector. Let g be an
admissible metric such thafgan be written

g% (dX) = a1 (Xe, X)T1(dX1) + ap(Xa, %) I2(dXo) + 8g(Xe, X2, X3)I3(d %)
+ aa(X1, X2, X3, Xa) [3(dXg) + - - +ap(X)I[p(dXp)

wherel is a positive definite quadratic form o} and g is a positive function of
its arguments. Then g is geodesically tempered.

Remark 7We keep the notations which are of interest for us, but (ii) could be stated
for an affine space?” on which a Riemannian metrg® is given. The symplectic
structure and) itself play no role, the temperance reduces to

(@7 ()/g% () <C@+gF (X —Y)N

and one has to prove the right part of (6).
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The particular role played b, andX, should be noted. It is only foX;, j > 3,
that a “triangular structure” af® is required.

3.1 Proof of Theorem 5 (i)

We havegg = @ (X)2dx? + ¢(X)2d&2. The temperance and (3) can be formulated
as follows:

(99 (-)/9%(-)) % < Cmax{1; ®(Y)|x—y| ; @(Y)|& — |}V,
1+®(X) [x—y|+@(X)|& —n| < Cmax{1; D(Y)[x—y]; o(Y)|E —n[}". (10)

The value ofk > 0, € > 0 andRy > 1 will be fixed later, depending only & and
N above. Other constants, such@sC”,C; ... may vary from line to line, but can
be computed depending 6fandN.

We have to prove that any curve [0, T] — X(t) joining a point (which we take
as origin) to a point of the boundary 8{Bx(R) x B¢ (R)) has a length> C RS,
with § > 0 andC’ independent oR. Here,

Bx(R) = {x| x| <R/®(0)} , B;:(R)={&]I§|<R/9(0)} .

The result is evident iR < Ry: in that case, one hag > CSlgg pourX € By(R) x
B¢ (R) (with a constant depending d®). Thus, we will assum& > Ry. We may
assume thal is the first instant wheiX(t) reaches the boundary. Exchanging if
necessary andé, we may assume tha(0) [x(T)| = R. SetR = max] ¢(0) |&(t)]
and letT’ be the first instant wheR' is reached.

We distinguish two cases.
e Case I: R< Rf. — SetY(t) = (0,&(t)). By temperance, one has(Y(t)) >
C''R"N*®(0) and, using (3),

(1+ DX () [x(V)]) > C 1+ (Y () X))V .

Let us consider the lengthof the curve between the last insténivhen®(0) |x(t)| =
R/2 andT. Fort > 6, one has the(X(t))/®(0) > C'*R-1+/N-x and

LZ-/QT @(X(t))\x/(t)!dtzc/flRfm/Nf,c/eT B(0)[X ()]t = CRIN-¥

We may now fixk = 1/(2N) and the result is proved, with = 1/(2N), in the
first case.

e Case II: R > R, — We distinguish three subcases.

Subcase (lla)— ®(X)/®(0) > R-1¢ everywhere inBy(R) x Be(R). Then, the
length of the curve is greater than
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T T
/ D(X(1)) [X (1)t > R*HS/ D(0) X (1)|dt > RE |
0 0

which ends the proof, witld = €, in this subcase.

Subcase (IIby— @(X)/@(0) > R~ everywhere irB,(R) x Be (R). This is sim-
ilar, the length is larger than
T .
P(X(1))[&'(t)|dt > R" > R,
0

and the theorem is proved with= ke, in this subcase.

Subcase (lic)— It is the remaining case and we will prove that it cannot occur
provided thate and Ry be conveniently choosen. There should eXist (x1,&1)
andYz = (xz,&2) in Bx(R) x B¢ (R) such that

D(Y1)/P(0) <R and (¥2)/p(0) <R .
Let us consider the poit = (xp,&;1). One hasb(Y;) X, — x| < 2R¢ and thus
@(Z) <CRYdp(Y;) < CR HF(NHeg () (11)
Then, assumingN + 1)e < 1,

1-(N+1
) (@00 pel M <€ ((0) ) M

@(0
D(2) ol << (1R
The same computation, whelRds replaced byR, shows that

0(2)1&1] <C (p(0) &) ™MHe .

Applying (10) between 0 and, we get

(1+@(0) x| + @(0) [&1]) < C(L+ D(Z) [%e| + 9(2Z) &1 )"
< C'(14@(0) x| + @(0) |2 NN HHe .

Now, fix e = Wlﬂ) The inequality imply the existence of a const@ntsuch that
(1+ @(0) |x2| + @(0) |&1]) < Cy. By temperance, one has(0)/®(Z) < Cp, which
is to compare with (11). One gets

@(0)

Rl—(N+1)£ <C ( <cc
> 7(15(2 > )

~—

which is impossible foR > R, if we choose, for instanc&y = 2(C’Cg)2.
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3.2 Proof of Theorem 5 (ii)

The proof of part (i) is also the proof of the cage-= 2 (and also of coursp = 1).
As remarked above, the symplectic structure plays no role. 'Iij},lﬁ{ig and their
canonical quadratic forms can be replaced®y; 2>, I1 andI>.

For p > 2, the theorem is a consequence, by induction, of the following lemma.

Lemma 1. AssumeZ” = % © % and let @ be a Riemannian metric off” of the
following form
G°(X,dX) =g°(Y,dY) +a(Y,Z)["(dz),

where @ is a Riemannian metric o#/, a is a positive function o2” andI" is
a positive definite quadratic form of¥’. Assume the temperance of @nd the
geodesic temperance of gThen the geodesic temperance is valid f6r. G

If we denote byd® the geodesic distance fgf on ¢ and byD° the geodesic
distance foiG° on 2, there exists thus constai@sandN such that
(G5, /G%,) " < C(1+GE (X — X)) , (12)
(9%,/9%) " < C(1+g%(a—Y2)" (13)
ClA+d° (VYo )) YN < (140 (V1—Y2)) <C(A+do(V, )N . (14)
Let us consider two point¥, andX; and a curvg0,1] >t — X(t) = (Y(t),Z(1))

joining these two points. Let us denote hythe G°-length of this curve, and set
R? = G§‘<O(X1 —Xp). We want to prove that there exiSt andé > 0, depending just
of C andN above, such thdt > C'~1R%. We will assume, as we may, thet> 1.
The value ofk, 0 < k¥ < 1, will be fixed later and we distinguish two cases.

e Case I:¥t, g7 (Y(t) —Yo)*/? < R*/2. — One has theria(Xo)I"(Z1 — Zo))"/2 >

R/2. Let us consider the cunte— P(t) = (Yp,Z(t)). We can apply the cage= 1

of the theorem to the metria(Yp,Z)I"(dZ) on the affine spacéYps} x 2. These
metrics depend oM, but they are tempered with the same const@asdN, and
thus they are geodesically tempered with uniform constants. One has thus

/01 (a(P(t))I"(Z(t)))"?dt > C1R®

with o > 0 andC’ depending just of andN.
The temperance @&° imply a(X(t))¥2 > C'~1R"N*a(P(t))"/2 and thus

L> /Ol(a(X(t))F(Z(t)))l/zdt > iR /01 (P (Z(1) 2t
2C//flRog—NK .

Fix now k = a/(2N) and the lemma is proved with= «/2 in this first case.
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e Case Il:3to, g (Y (to) — Yo)*/? > R¥/2. — Let us consider the curve,to] >t —
Y(t) in . By (14), one gets

to . 12
L2 /0 (g\c(y(t)(Y(t)))l dt > C (1499 (Y (to) — Yo)) N > CIRRW/N |

which ends the proof of the lemma and of Theorem 5.
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