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Abstract In the framework of the Weyl-Ḧormander calculus, under a condition of
“geodesic temperance”, pseudodifferential operators can be characterized by the
boundedness of their iterated commutators. As a corollary, functions of pseudodif-
ferential operators are themselves pseudodifferential. Sufficient conditions are given
for the geodesic temperance. In particular, it is valid in the Beals-Fefferman calcu-
lus.

Introduction

The first historical example of a characterization of pseudodifferential operators is
due to R. Beals [1] for the following class of symbols

S0
0,0 =

{
a∈C∞(Rn×Rn∗)

∣∣∣∣ ∣∣∣∂ α

ξ
∂

β
x a(x,ξ )

∣∣∣≤Cα,β

}
.

An operatorA can be writtenA = a(x,D) with a ∈ S0
0,0 if and only if A and its

iterated commutators with the multiplications byx j and the derivations∂/∂x j are
bounded onL2.

The aim of this paper is to give an analogous characterization for the more gen-
eral classes of pseudodifferential operators occurring in the Beals-Fefferman calcu-
lus and the Weyl-Ḧormander calculus. Such a characterization has important conse-
quences:

• The Wiener property: if a pseudodifferential operator (of order 0) is invertible as
an operator inL2, its inverse is also a pseudodifferential operator.

• The compatibility with the functional calculus:C∞ functions of pseudodifferen-
tial operator are themselves pseudodifferential.
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• It is a good starting point for a general theory of Fourier integral operators. We
refer to [4] for that point which will not be developped here.

This paper gives a new presentation, with some simplifications and complements,
of the results of [3] where it is shown that the characterization of pseudodifferential
operator is valid under an assumption ofgeodesic temperance.

The new point of this paper is the section 3 which gives a sufficient condi-
tion, easy to check, for thegeodesic temperance. In the framework of the Beals-
Fefferman calculus, this condition is always satisfied, and so are its consequences.

1 Weyl-Hörmander calculus

We will denote by small latine letters (such asx) points of the configuration space
Rn, by greek letters (such asξ ) points of its dual space(Rn)∗ and by capital letters
(X = (x,ξ )) points of the phase spaceX = Rn×(Rn)∗. The spaceX is equipped
with the symplectic formσ defined by

σ(X,Y) = 〈η ,x〉−〈ξ ,y〉 for X = (x,ξ ) andY = (y,η) .

The Weyl quantization associates to a function or distributiona on X an operator
aw(x,D) acting inRn defined by

aw(x,D)u(x) =
∫ ∫

ei〈x−y,ξ 〉a
( x+y

2 ,ξ
)

u(y)dydξ/(2π)n .

Considered in a weak sense, fora ∈ S ′(X ), this formula definesaw(x,D) as an
operator mapping the Schwartz spaceS (Rn) into the spaceS ′(Rn) of tempered
distributions. Conversely, for any such operatorA, there is a uniquea∈S ′(X ), the
symbolof A, such thatA = aw(x,D).

Definition 1. The Hörmander classes of symbolS(M,g) are associated to

• a Riemannian metricg onX , identified with an application
(
X 7→ gX(·)

)
, where

eachgX is a positive definite quadratic form onX ,
• a weightM, i.e. a positive function onX .

They are defined by

S(M,g) =
{

a∈C∞(X )
∣∣∣ ∣∣∂T1 . . .∂Tkb(X)

∣∣≤CkM(X) for k≥ 0 andgX(Tj)≤ 1
}

.

We use the notation∂T f (X) = 〈d f (X),T〉 for the directional derivatives.

Example 1(Beals-Fefferman classes[2]).
ForQ,q∈ R andΦ ,ϕ positive functions onX , these classes are defined by

a∈ SQ,q
Φ ,ϕ ⇐⇒

∣∣∣∂ α

ξ
∂

β
x a(x,ξ )

∣∣∣≤Cα,β Φ(x,ξ )Q−|α|
ϕ(x,ξ )q−|β | .
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They are actually classesS(M,g) with

gX(dx,dξ ) =
dx2

ϕ(X)2 +
dξ 2

Φ(X)2 and M = ϕ
q
Φ

Q . (1)

In the particular case:

Φ(x,ξ ) = (1+ |ξ |2)ρ/2 , ϕ(x,ξ ) = (1+ |ξ |2)−δ/2 ,

one recovers the Ḧormander classSm
ρ,δ with m= Qρ −qδ :

a∈ Sm
ρ,δ ⇐⇒

∣∣∣∂ α

ξ
∂

β
x a(x,ξ )

∣∣∣≤Cα,β (1+ |ξ |)m−ρ|α|+δ |β | .

1.1 Admissible metrics

Before stating the conditions which guarantee that the classesS(M,g) give rise to a
good symbolic calculus, we should recall some well known properties of quadratic
forms in symplectic spaces.

Reduced form. For eachY ∈ X , one can choose symplectic coordinates(x′,ξ ′)
(depending onY) such that the quadratic formgY takes the diagonal form:

gY(dx′,dξ
′) = ∑

j

dx′j
2 +dξ ′j

2

λ j(Y)
. (2)

The λ j are positive and are independent of the particular choice of(x′,ξ ′). An
important invariant, which will characterize the “gain” in the symbolic calculus,
is the following:

λ (Y) = min
j

λ j(Y) .

Inverse metric. It is the Riemannian metricgσ on X , defined for eachY by

gσ
Y (T) = supσ(T,S)2

gY(S) . If X is identified with its dual via the symplectic form,

gσ
Y is nothing but the inverse quadratic formg−1

Y a priori defined onX ′. In the
symplectic coordinates above, one has

gσ
Y (dx′,dξ

′) = ∑λ j(Y)(dx′j
2 +dξ

′
j
2) .

Geometric mean of g and gσ . It is a third Riemannian metricg# on X . For each
Y the quadratic formg#

Y is the geometric mean ofgY and gσ
Y (the geometric

mean of two positive definite quadratic forms is always canonically defined and
is easily computed in a basis which diagonalizes the two quadratic forms). In the
symplectic coordinates above, one has
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g#
Y(dx′,dξ

′) = ∑(dx′j
2 +dξ

′
j
2) .

Definition 2. The metricg is saidwithout symplectic eccentricity(WSE) if for any
Y, all theλ j(Y) are equal toλ (Y). It is equivalent to say thatgσ = λ 2g.

Example 2.Metrics of Beals-Fefferman (1) are WSE, withλ = Φϕ.

Definition 3. The metricg is saidadmissibleif it satisfies the following properties:

(i) Uncertainty principle: λ (Y)≥ 1.

(ii) Slowness:∃C, gY(X−Y)≤C−1 =⇒ gY(T)
gX(T) ≤C.

(iii) Temperance:∃C,N, gY(T)
gX(T) ≤C(1+gσ

Y (X−Y))N.

A weightM is said admissible forg (or ag-weight) if it satisfies

(ii ′) ∃C, gY(X−Y)≤C−1 =⇒M(Y)/M(X)≤C.

(iii ′) ∃C,N, M(Y)/M(X)≤C(1+gσ
Y (X−Y))N.

As a consequence of (iii), one has

(1+gσ
X(X−Y))≤C(1+gσ

Y (X−Y))N+1 , (3)

and thusgX(T)/gY(T) is also bounded by the right hand side of (iii) (with different
values ofC andN).

Remark 1.For an admissible Beals-Fefferman metric (1), condition (i) means that
Φ(X)ϕ(X)≥ 1 while (ii) and (iii) express bounds of the ratios(Φ(Y)/Φ(X))±1 and
(ϕ(Y)/ϕ(X))±1.

The classesSm
ρ,δ correspond to an admissible metric ifδ ≤ ρ ≤ 1 andδ < 1.

1.2 Symbolic calculus

In this paragraph,g will denote an admissible metric andM a g-weight. Let us
denote by OpS(M,g) the class of operators whose symbol belongs toS(M,g) and
by # the composition of symbols which corresponds to the composition of operators,
i.e.

(a1#a2)w(x,D) = aw
1 (x,D)◦aw

2 (x,D) .

The following properties are classical [6].

• Operators in OpS(M,g) mapS (Rn) into itself,S ′(Rn) into itself and, forM =
1, L2(Rn) into itself.

• The formal adjoint ofaw(x,D) is aw(x,D).
• If M1 and M2 are twog-weights, thenM1M2 is also ag-weight and one has

S(M1,g)#S(M2,g)⊂ S(M1M2,g).
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• Fora j ∈ S(M j ,g), one has the asymptotic expansion

a1#a2(X) =
N−1

∑
k=0

1
k!

{(
1
2i σ(∂Y,∂Z)

)k
a1(Y)a2(Z)

}∣∣
Y=Z=X

+RN(X) ,

where thekth term in the sum belongs toS(M1M2λ−k,g) and RN belongs to
S(M1M2λ−N,g). The first two terms are the usual product and the Poisson
bracket:

a1#a2 = a1a2 + 1
2i{a1,a2}+ · · ·

1.3 Can one use only metrics without symplectic eccentricity?

As remarked above, Beals-Fefferman metrics are WSE and one can say that, since
the introduction of the Weyl-Ḧormander calculus thirty years ago, almost all the
metrics which have been used are WSE. It is not uniquely because they are simpler
to use, a result of J. Toft [7] shows that there is a good mathematical reason for this
limitation.

Theorem 1(J. Toft). (i) If g is an admissible metric, one has

∃C,N, (gX(T)/gY(T))±1 ≤C
(
1+g#

Y(X−Y)
)N

. (4)

(ii) The metric g# is admissible.

The second point is an easy consequence of the first one. The right hand side of (4),
which controls the ratiogX/gY, controls also the ratio of the inverse metricgσ

X/gσ
Y

and thus the ratio of their geometric meang#
X/g#

Y, which proves thatg# is tempered.
It controls also the ratioλ (Y)/λ (X).

Let us introduce a new metric:̃g = λ−1g#. The ratiog̃Y/g̃X is then controlled
by the right hand side of (4) (with different constantsC andN) and a fortiori by a
power of

(
1+λ (Y)g#

Y(X−Y)
)
. This proves the temperance ofg̃, becausẽgσ = λg#.

The slowness being evident, the metricg̃ is admissible. Moreover, it is WSE: in the
coordinates (2), one has

gY(dx′,dξ
′) = ∑

j

dx′j
2 +dξ ′j

2

λ j(Y)
; g̃Y(dx′,dξ

′) = ∑
j

dx′j
2 +dξ ′j

2

λ (Y)
.

Let us now compare theg-calculus and thẽg-calculus.

(i). If M is ag-weight, thenM is ag̃-weight.
(ii). One has thenS(M,g)⊂ S(M, g̃).

(iii). Moreover, the Sobolev spaces are the same:H(M,g) = H(M, g̃).
(iv). Any A∈OpS(M, g̃) mapsH(M1) into H(M1/M).
(v). The “gain” λ of the symbolic calculus is the same forg andg̃.
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The first point is a consequence of Toft’s theorem, the ratioM(Y)/M(X) being also
controlled by the right hand side of (4). The second point is evident. The Sobolev
spaceH(M,g) can be defined as the space ofu∈S ′(Rn) such thataw(x,D)u∈ L2

for anya∈ S(M,g), which makes (iv) evident. Equivalent definitions can be found
in [5], where the theorem 6.9 proves (iii).

It is thus difficult to imagine a situation where it would be more advantageous to
use theg-calculus instead of thẽg-calculus.

2 Characterization of pseudodifferential operators

2.1 Geodesic temperance

Let us denote bydσ (X,Y) the geodesic distance, for the Riemannian metricgσ ,
betweenX andY.

Definition 4. The metricg is saidgeodesically temperedif it is tempered and if,
moreover, the equivalent following conditions are satisfied:

∃C,N;
gY(T)
gX(T)

≤ C(1+dσ (X,Y))N , (5)

∃C,N; C−1 (1+dσ (X,Y))1/N ≤ (1+gσ
Y (X−Y))≤C(1+dσ (X,Y))N . (6)

The left part of (6) is always true. Actually, one has

C−1 (1+gσ
Y (X−Y))1/N ≤ 1+gσ-length of segmentXY≤C(1+gσ

Y (X−Y))N ,

which is a simple consequence of (3) and thus of the temperance ofg. It is clear that
the right part of (6) imply (5).

Assume now (5), and lett ∈ [0,L] 7→ X(t) be a unit-speed geodesic fromY to X.
One has

gY(X−Y)1/2 ≤
∫ L

0
gY(dX

dt )1/2dt ≤C′
∫ L

0
(1+ t)N/2dt ≤C′′(1+L)N/2+1 ,

which gives the right part of (6).

Remark 2.The geodesic temperance requires both the temperance and (5) (or (6)). A
metric can satisfy (5) without being tempered (example: exdx2+e−xdξ 2). However,
if g satisfies (5) and (3), it is tempered: the ratiogX/gY is estimated by some power
of thegσ -length of the segmentXY which is itself estimated, as remarked above, by
a power ofgσ

Y (X−Y).

Remark 3.There is no known example of a tempered metricg which is not geodesi-
cally tempered, but proving that a particular metric is geodesically tempered can be
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a challenging task. Theorem 5 below proves that this is not an issue for the Beals-
Fefferman metrics.

2.2 Characterization

We shall use the classical notations

adB·A = [B,A] = B◦A−A◦B

for the commutator of two operators. The following definition is of interest only for
metrics WSE.

Definition 5. Let g be a metric WSE. The clasŝS(λ ,g) is the set of functionsb∈
C∞(X ) which satisfy, for anyk≥ 1 ,

∃Ck;
∣∣∂T1 . . .∂Tkb(X)

∣∣≤Ckλ (X) for gX(Tj)≤ 1 .

We refer to [3] for the proof of the following theorem, and just add some comments.

Theorem 2.Let g be an admissible metric WSE which isgeodesically tempered.
Then A belongs toOpS(1,g) if and only if the iterated commutators

adbw
1 . . .adbw

k ·A , k≥ 0, b j ∈ Ŝ(λ ,g) , (7)

are bounded on L2.

Remark 4.It is easy to see that, forb∈ Ŝ(λ ,g) anda∈ S(1,g), the Poisson bracket
{b,a} belongs toS(1,g). The “only if” part of the proof comes from the fact that
b#a−a#b (a non-local integral expression whose principal part is−i {b,a}) belongs
also toS(1,g).

It would not be sufficient to require the boundedness of the commutators with
b j ∈ S(λ ,g). For instance, ifg is the euclidean metric ofX , the classS(1,g) is
nothing butS0

0,0, and one hasλ = 1. Forb j ∈ S(λ ,g) = S(1,g) the corresponding

operators are bounded onL2 and (7) would be valid for anyA bounded onL2. On
the other hand,̂S(λ ,g) contains in that case the functionsx j andξ j and the theorem
reduces to the criterium of Beals.

Remark 5.One can realize the importance of the geodesic temperance in this way.
An essential ingredient in the proof of the “if” part is to prove a “decay ofA outside
the diagonal ofX ”, namely that, given ballsBY =

{
X | gY(X−Y)≤ r2

}
and a

family, bounded inS(1,g), of functionsαY supported inBY, one has

‖α
w
Y ◦A◦α

w
Z ‖L (L2) ≤CN(1+gσ

Y (BY−BZ))−N ,

wheregσ
Y (BY−BZ) means infgσ

Y (Y′−Z′) for Y′ ∈ BY andZ′ ∈ BZ.
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It turns out that, from the estimate on the commutators withbw ∈OpŜ(λ ,g), one
can gain only the variation ofb betweenBY andBZ. But functions inŜ(λ ,g) are
Lipschitz continuous forgσ , the variation ofb cannot exceed the geodesic distance
of the balls and one cannot obtain a better bound thanCN(1+dσ (BY,BZ))−N in the
right hand side. The geodesic temperance asserts precisely that such a bound can
compensate the ratiogY/gZ.

The characterization can be extended to some cases whereg is not WSE, the
spacêS(λ ,g) being accordingly modified (see [3]). However, some extra conditions
on g should be added; if not, [3] contains an example where the characterization
fails.

Corollary 1. Under the same assumptions on g, let M and M1 be two g-weights.
Then an operator A belongs toOpS(M,g) if and only if A and its iterated commu-
tators with elements ofOpŜ(λ ,g) map continuously H(M1,g) into H(M1/M,g).

Let us chooseB ∈ OpS(M1,g) having an inverseB−1 ∈ S(M−1
1 ,g) (see [5, cor.

6.6.]), and another invertible operatorC ∈ OpS(M1/M,g). Then,A′ = CAB−1 sat-
isfy the assumptions of Theorem 2, one hasA′ ∈OpS(1,g) and thusA = BA′C−1 ∈
OpS(M,g).

Corollary 2 (Wiener property). Assume g admissible, WSE and geodesically tem-
pered.
(i) If A∈OpS(1,g) is invertible inL (L2) then its inverse A−1 belongs toOpS(1,g).
(ii) If M and M1 are two g-weights and if A∈OpS(M,g) is a bijection from H(M1,g)
onto H(M1/M,g), then A−1 ∈OpS(M−1,g).

For b1 ∈ Ŝ(λ ,g) one hasC = adbw
1 ·A−1 = −A−1(adbw

1 ·A)A−1 which is bounded
onL2. Next

adbw
2 ·C =−(adbw

2 ·A−1)(adbw
1 ·A)A−1 − A−1(adbw

2 ·adbw
1 ·A)A−1

−A−1(adbw
1 ·A)(adbw

2 ·A−1)

and the three terms are bounded onL2. By induction, one gets that all iterated com-
mutators are bounded onL2 and thus thatA−1 belongs toS(1,g).

Remark 6.The Wiener property is actually valid for some metricsg which are not
WSE, including cases where the characterization is not valid. One has just to assume
that the metric̃g= λ−1g# of the paragraph 1.3 is geodesically tempered. One knows
then thatA−1 ∈ OpS(1, g̃), and proving that its symbol actually belongs toS(1,g)
is just a matter of symbolic calculus. The second part of the proof of [5, th. 7.6] can
be reproduced as is.

2.3 Functional calculus

Given a selfadjoint operatorA (bounded or unbounded) onL2, the functional cal-
culus associates to any Borel functionf , defined on the spectrum ofA, an opera-
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tor f (A). When f belongs toC∞, it can be computed via the formula of Helffer-
Sjöstrand:

f (A) =−π
−1

∫ ∫
∂ f̃ (z)Rzdxdy , z= x+ iy , (8)

whereRz = (z−A)−1 is the resolvant, and̃f is an almost analytic extension off .

Theorem 3.Assume g admissible, WSE and geodesically tempered. Let a∈ S(1,g)
be real valued and let f be a C∞ function defined in a neighbourhood of the spectrum
of aw. Then f(aw) belongs toOpS(1,g).

In that case,̃f can be choosen with compact support inC and the meaning of (8)
is clear. This theorem is actually a particular case of the following one, where the
assumption:A self-adjoint with domainH(M), should be thought of as a condition
of ellipticity. WhenC−1λ 1/N ≤M ≤Cλ N, it is equivalent to 1+ |a(X)| ≥C−1M(X)
and also to the existence of a parametrixE ∈ OpS(M−1,g) such thatAE− I and
EA− I belong to OpS(λ−∞,g).

Theorem 4.Under the same assumptions on g, let M≥ 1 be a g-weight. Let a∈
S(M,g) be real valued such that A= aw is self-adjoint with domain H(M,g). Let
f ∈C∞(R) be a “symbol of order p”, i.e. such that∣∣∣∣dk f (t)

dtk

∣∣∣∣≤Ck(1+ |t|)p−k for k≥ 0 .

Then f(aw) belongs toOpS(Mp,g). Moreover, if c is the symbol of f(aw), one has
c− f ◦a∈ S(Mpλ−2,g).

The result is evident for 1+ A2 and, dividing f if necessary by a power of 1+ t2,
one may assumep < 0. One can then choose, forM large enough,

f̃ (x+iy) = χ

(
y2

1+x2

) M

∑
k=0

f (k)(x)
(iy)k

k!
,

whereχ ∈C∞(R) satisfyχ(s) = 1 [resp. 0] fors≤ 1/2 [resp.s≥ 1]. One has∣∣∣∂ f̃ (x+iy)
∣∣∣≤C(1+ |x|)p−N−2 |y|N+1 for N ≤M−1 , (9)

and the integral in the right hand side of (8) is thus convergent.
For ℑz 6= 0, we know thatRz is a bijection ofL2 onto the domainH(M) and

thus, as a consequence of Corollary 2, thatRz∈ OpS(M−1). Let us denote byrz its
Weyl symbol. We have‖Rz‖L (L2) ≤ 1/ |ℑz|. From the resolvant equationRz−Ri =
(i− z)RiRz, one gets‖Rz‖L (L2,H(M)) ≤C(1+ |z|)/ |ℑz|. The iterated commutators
can be written

∏(adbw
j ) ·Rz = ∑±RzK1Rz. . .RzKpRz

where the sum is finite and eachKl is an iterated commutator ofA with some of the
b j . Thus‖Kl‖L (H(M),L2) is bounded independantly ofz andl , and one has
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∏
1

(adbw
j ) ·Rz

∥∥∥
L (L2,H(M))

≤ C
N

∏
1

∥∥b j
∥∥

l ;Ŝ(λ ,g)
(1+ |z|)N+1

|ℑz|N+1∥∥∥ N

∏
1

(adbw
j ) ·Rz

∥∥∥
L (L2)

≤ C
N

∏
1

∥∥b j
∥∥

l ;Ŝ(λ ,g)
(1+ |z|)N

|ℑz|N+1

with C = C(N), l = l(N), denoting by‖·‖k,E the semi-norms of a Frechet spaceE.
The proof of Theorem 2 shows that there exist constantsCk andNk such that

‖rz‖k;S(1,g) ≤Ck
(1+ |z|)Nk

|ℑz|Nk+1 , ‖rz‖k;S(M−1,g) ≤Ck
(1+ |z|)Nk+1

|ℑz|Nk+1

Let us denote byc the symbol off (A). Using the estimates above, fork = 0, one
gets from (8) and (9)

|c(S)| ≤ C
∫ ∫

|y|<(1+|x|)

(1+ |x|)N

|y|N+1 min

{
1,

(1+ |x|)
M(S)

}
|y|N+1 (1+ |x|)p−N−2dxdy

≤ C′
∫

(1+ |x|)p−1min

{
1,

1+ |x|
M(S)

}
dx≤C′′M(S)p .

The estimates of the derivatives∏∂Tj c(S) for gS(Tj)≤ 1 are analogous, which ends
the proof.

3 Sufficient conditions for the geodesic temperance

Theorem 5. (i) Admissible Beals-Fefferman metrics are geodesically tempered.
(ii) More generally, letX = X1⊕X2⊕·· ·⊕Xp be a decomposition ofX as a
vector space, and note X= (X1, . . . ,Xp) the components of a vector. Let g be an
admissible metric such that gσ can be written

gσ
X(dX) = a1(X1,X2)Γ1(dX1) + a2(X1,X2)Γ2(dX2)+a3(X1,X2,X3)Γ3(dX3)

+ a4(X1,X2,X3,X4)Γ4(dX4)+ · · ·+ap(X)Γp(dXp) ,

whereΓj is a positive definite quadratic form onX j and aj is a positive function of
its arguments. Then g is geodesically tempered.

Remark 7.We keep the notations which are of interest for us, but (ii) could be stated
for an affine spaceX on which a Riemannian metricgσ is given. The symplectic
structure andg itself play no role, the temperance reduces to

(gσ
Y (·)/gσ

X(·))±1 ≤C(1+gσ
Y (X−Y))N

and one has to prove the right part of (6).
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The particular role played byX1 andX2 should be noted. It is only forXj , j ≥ 3,
that a “triangular structure” ofgσ is required.

3.1 Proof of Theorem 5 (i)

We havegσ
X = Φ(X)2dx2 + ϕ(X)2dξ 2. The temperance and (3) can be formulated

as follows:

(gσ
Y (·)/gσ

X(·))±1/2 ≤ Cmax{1; Φ(Y) |x−y| ; ϕ(Y) |ξ −η |}N,

1+Φ(X) |x−y|+ϕ(X) |ξ −η | ≤ Cmax{1; Φ(Y) |x−y| ; ϕ(Y) |ξ −η |}N. (10)

The value ofκ > 0, ε > 0 andR0 > 1 will be fixed later, depending only ofC and
N above. Other constants, such asC′,C′′,C1 . . . may vary from line to line, but can
be computed depending ofC andN.

We have to prove that any curvet ∈ [0,T] 7→ X(t) joining a point (which we take
as origin) to a point of the boundary of∂ (Bx(R)×Bξ (R)) has a length≥C′−1Rδ ,
with δ > 0 andC′ independent ofR. Here,

Bx(R) =
{

x
∣∣ |x| ≤ R/Φ(0)

}
, Bξ (R) =

{
ξ
∣∣ |ξ | ≤ R/ϕ(0)

}
.

The result is evident ifR≤ R0: in that case, one hasgX ≥Cstg0 pourX ∈ Bx(R)×
Bξ (R) (with a constant depending onR0). Thus, we will assumeR≥ R0. We may
assume thatT is the first instant whenX(t) reaches the boundary. Exchanging if
necessaryx andξ , we may assume thatΦ(0) |x(T)|= R. SetR′ = maxT

0 ϕ(0) |ξ (t)|
and letT ′ be the first instant whenR′ is reached.

We distinguish two cases.

• Case I: R′ ≤ Rκ . — SetY(t) = (0,ξ (t)). By temperance, one hasΦ(Y(t)) ≥
C′−1R−Nκ Φ(0) and, using (3),

(1+Φ(X(t)) |x(t)|)≥C′−1(1+Φ(Y(t)) |x(t)|)1/N .

Let us consider the lengthL of the curve between the last instantθ whenΦ(0) |x(t)|=
R/2 andT. For t ≥ θ , one has thenΦ(X(t))/Φ(0)≥C′−1R−1+1/N−κ , and

L ≥
∫ T

θ

Φ(X(t))
∣∣x′(t)∣∣dt ≥C′−1R−1+1/N−κ

∫ T

θ

Φ(0)
∣∣x′(t)∣∣dt ≥C′′R1/N−κ

We may now fixκ = 1/(2N) and the result is proved, withδ = 1/(2N), in the
first case.

• Case II: R′ ≥ Rκ . — We distinguish three subcases.

Subcase (IIa).— Φ(X)/Φ(0) ≥ R−1+ε everywhere inBx(R)×Bξ (R′). Then, the
length of the curve is greater than
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0
Φ(X(t))

∣∣x′(t)∣∣dt ≥ R−1+ε

∫ T

0
Φ(0)

∣∣x′(t)∣∣dt ≥ Rε ,

which ends the proof, withδ = ε, in this subcase.

Subcase (IIb).— ϕ(X)/ϕ(0)≥ R′−1+ε everywhere inBx(R)×Bξ (R′). This is sim-
ilar, the length is larger than∫ T ′

0
ϕ(X(t))

∣∣ξ ′(t)∣∣dt ≥ R′ε ≥ Rεκ ,

and the theorem is proved withδ = κε, in this subcase.

Subcase (IIc).— It is the remaining case and we will prove that it cannot occur
provided thatε andR0 be conveniently choosen. There should existY1 = (x1,ξ1)
andY2 = (x2,ξ2) in Bx(R)×Bξ (R′) such that

Φ(Y1)/Φ(0)≤ R−1+ε and ϕ(Y2)/ϕ(0)≤ R′−1+ε
.

Let us consider the pointZ = (x2,ξ1). One hasΦ(Y1) |x2−x1| ≤ 2Rε and thus

Φ(Z)≤C′RNε
Φ(Y1)≤C′R−1+(N+1)ε

Φ(0) . (11)

Then, assuming(N+1)ε < 1,

Φ(Z) |x2| ≤C′
(

Φ(0)|x2|
R

)1−(N+1)ε
(Φ(0) |x2|)(N+1)ε ≤C′ (Φ(0) |x2|)(N+1)ε .

The same computation, whereR is replaced byR′, shows that

ϕ(Z) |ξ1| ≤C′ (ϕ(0) |ξ1|)(N+1)ε .

Applying (10) between 0 andZ, we get

(1+Φ(0) |x2|+ϕ(0) |ξ1|) ≤ C(1+Φ(Z) |x2|+ϕ(Z) |ξ1|)N

≤ C′(1+Φ(0) |x2|+ϕ(0) |ξ1|)N(N+1)ε .

Now, fix ε = 1
2N(N+1) . The inequality imply the existence of a constantC1 such that

(1+Φ(0) |x2|+ϕ(0) |ξ1|)≤C1. By temperance, one hasΦ(0)/Φ(Z)≤C2, which
is to compare with (11). One gets

R1−(N+1)ε ≤C′ Φ(0)
Φ(Z)

≤C′C2 ,

which is impossible forR≥ R0 if we choose, for instance,R0 = 2(C′C2)2.



On the Characterization of Pseudodifferential Operators (old and new) 13

3.2 Proof of Theorem 5 (ii)

The proof of part (i) is also the proof of the casep = 2 (and also of coursep = 1).
As remarked above, the symplectic structure plays no role. Thus,Rn

x, Rn
ξ

and their
canonical quadratic forms can be replaced byX1, X2, Γ1 andΓ2.

For p > 2, the theorem is a consequence, by induction, of the following lemma.

Lemma 1. AssumeX = Y ⊕Z and let Gσ be a Riemannian metric onX of the
following form

Gσ (X,dX) = gσ (Y,dY)+a(Y,Z)Γ (dZ),

where gσ is a Riemannian metric onY , a is a positive function onX and Γ is
a positive definite quadratic form onZ . Assume the temperance of Gσ and the
geodesic temperance of gσ . Then the geodesic temperance is valid for Gσ .

If we denote bydσ the geodesic distance forgσ on Y and byDσ the geodesic
distance forGσ onX , there exists thus constantsC andN such that(

Gσ
X1

/Gσ
X2

)±1 ≤ C
(
1+Gσ

X1
(X2−X1)

)N
, (12)(

gσ
Y1

/gσ
Y2

)±1 ≤ C
(
1+gσ

Y1
(Y2−Y1)

)N
, (13)

C−1 (1+dσ (Y1,Y2))
1/N ≤ (1+gσ

Y (Y1−Y2))≤C(1+dσ (Y1,Y2))
N . (14)

Let us consider two pointsX0 andX1 and a curve[0,1] 3 t 7→ X(t) = (Y(t),Z(t))
joining these two points. Let us denote byL the Gσ -length of this curve, and set
R2 = Gσ

X0
(X1−X0). We want to prove that there existC′ andδ > 0, depending just

of C andN above, such thatL ≥C′−1Rδ . We will assume, as we may, thatR≥ 1.
The value ofκ, 0< κ < 1, will be fixed later and we distinguish two cases.

• Case I:∀t, gσ
Y0

(Y(t)−Y0)1/2 ≤ Rκ/2. — One has then(a(X0)Γ (Z1−Z0))1/2 ≥
R/2. Let us consider the curvet 7→ P(t) = (Y0,Z(t)). We can apply the casep = 1
of the theorem to the metrica(Y0,Z)Γ (dZ) on the affine space{Y0}×Z . These
metrics depend onY0, but they are tempered with the same constantsC andN, and
thus they are geodesically tempered with uniform constants. One has thus∫ 1

0

(
a(P(t))Γ (Ż(t))

)1/2
dt ≥C′−1Rα

with α > 0 andC′ depending just ofC andN.
The temperance ofGσ imply a(X(t))1/2 ≥C′−1R−Nκa(P(t))1/2 and thus

L ≥
∫ 1

0

(
a(X(t))Γ (Ż(t))

)1/2
dt ≥C′−1R−Nκ

∫ 1

0

(
a(P(t))Γ (Ż(t))

)1/2
dt

≥C′′−1Rα−Nκ .

Fix now κ = α/(2N) and the lemma is proved withδ = α/2 in this first case.
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• Case II:∃t0, gσ
Y0

(Y(t0)−Y0)1/2 ≥Rκ/2. — Let us consider the curve[0, t0] 3 t 7→
Y(t) in Y . By (14), one gets

L ≥
∫ t0

0

(
gσ

Y(t)(Ẏ(t))
)1/2

dt ≥C−1(1+gσ
Y0

(Y(t0)−Y0))1/N ≥C′−1R2κ/N ,

which ends the proof of the lemma and of Theorem 5.
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