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These lecture notes are a preliminary draft, based on courses taught by
M.Vergne at University Paris 7 and N.Berline at Fudan University.

Introduction

By a well-known result of Issai Schur (1923) [22], the diagonal elements
(α1, ..., αn) of an n × n Hermitian matrix A satisfy a system of linear in-
equalities involving the eigenvalues (λ1, ..., λn). In geometric terms, regard-
ing α and λ as points in Rn and allowing the symmetric group Sn to act by
permutation of coordinates, this result takes the form:
α is in the convex hull of the points Sn.λ.

The converse was proved by A. Horn (1954)[10], so that this convex hull
is exactly the set of diagonals of Hermitian matrices A with the given eigen-
values (λ1, ..., λn).

B.Kostant generalized these results to any compact Lie group G in the
following manner [16]. Consider the coadjoint action of G on the dual g∗

of its Lie algebra g. Let H ⊆ G be a maximal torus, with Lie algebra h.
Restriction to h defines a projection g∗ → h∗. The Weyl group W acts on h
and h∗. Kostant’s theorem is

Theorem. Let O ⊂ g∗ be a coadjoint orbit under G. Then the projection
of O on h∗ is the convex hull of a W -orbit.

Schur-Horn’s theorem is the particular case where G is the unitary group
U(n) and H is the subgroup of diagonal matrices. Then g is the Lie algebra
of anti-Hermitian matrices. It is identified it its dual g∗ by means of the
G-invariant scalar product Tr(AB). Then the projection of A ∈ g∗ on h∗ is
given by the diagonal of A.

This convexity theorem has been widely generalized (Atiyah [1], Guillemin-
Sternberg [8], Kirwan [12], etc.). As we will see, the general relevant frame-
work is that of a symplectic manifold M with a Hamiltonian action of a Lie
group H. The projection O → h∗ is a particular case of the moment map

M → h∗.

This moment map plays a key role in topics such as Geometric Invariant
Theory, Geometric Quantization of a classical mechanical system, Moduli
Varietes (which are related to infinite dimensional Hamiltonian spaces), etc..
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1 Setup of Hamiltonian manifolds

To establish notations, we review some basic notions of differential geometry.

1.1 Tangent and normal vector bundle

Let M be a smooth manifold. The tangent bundle is denoted by TM . The
space of smooth sections of TM is denoted by Γ(M,TM). An element of
Γ(M,TM) is a smooth vector field on M . If X is a tangent vector at the
point m ∈M , and φ a smooth function on M defined near m, we denote by
(X.φ)(m) the derivative of φ at m in the direction X. If x(t) is a smooth
curve on M starting at x(0) = m with ẋ(0) = X, then

(X.φ)(m) =
d

dt
φ(x(t))|t=0.

If X is a smooth vector field, then X.φ is again a smooth function. (From
now on, we will often omit the word smooth). Thus, a vector field X on M
defines a derivation of C∞(M), i.e. it obeys the Leibniz Rule

X.(φ1φ2) = (X.φ1)φ2 + φ1 (X.φ2).

Any derivation of C∞(M) corresponds in this way to a vector field X, and it
is denoted by the same letter X. The Lie bracket [X, Y ] of two vector fields
is the vector field which corresponds to the derivation X ◦Y −Y ◦X. In this
way, the space of vector fields on M is a Lie algebra, i.e. the Jacobi Identity
holds

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

The Leibniz Rule also holds for the product of a scalar function φ with a
vector field Y , i.e.

[X,φY ] = (X.φ)Y + φ[X, Y ].

Let f : M → M ′ be a (smooth) map between two manifolds. For each
point m ∈ M , the differential (also called derivative) of f at m is the linear
map dfm : TmM → Tf(m)M

′ defined by composing the curves in M starting
at m with the map f .

Definition 1. Let N ⊆M be a closed submanifold of M . The normal bundle
to N in M is the vector bundle over N with fiber TmM/TmN for every point
m ∈ N . The normal bundle is denoted by N (M/N) or simply N .
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The manifold N is identified with the zero section of the normal bundle
N . We admit the Tubular Neighborhood theorem, due to Jean-Louis Koszul.

Proposition 2. Let N ⊆ M be a closed submanifold of M . Let N be the
normal bundle to N in M . There exists a diffeomorphism from an open
neighborhood of the zero section in N onto an open neighborhood of N in M ,
which is the identity map on N .

1.2 Calculus on differential forms

1.2.1 de Rham differential

The Z-graded algebra of (smooth) differential forms on a manifold M is
denoted by

A(M) = ⊕dimM
k=1 Ak(M).

Here, we consider real-valued differential forms. Elements of Ak(M) will be
called homogeneous of exterior degree k, or simply k-forms. A 0-form is just
a real-valued function on M , and a k-form is a section of the vector bundle
∧kTM , the kth exterior power of TM .

If α and β are homogeneous, the exterior product α∧ β satisfies the sign
rule (called super-commutativity or graded commutativity)

α ∧ β = (−1)degαdeg β β ∧ α.

If α is a k-form and X1, . . . , Xk are k vector fields, then α(X1, . . . , Xk) is a
function onM . It is alternate (α(X1, . . . , Xk) = 0 if two vectorsXi are equal),
hence antisymmetric, and it is multilinear with respect to multiplication of
the vector fields by scalar functions:

α(φX1, . . . , Xk) = φα(X1, . . . , Xk).

The exterior or de Rham differential d is the unique operator on A(M)
such that

(1)If φ ∈ C∞(M) then dφ is the 1-form given by the differential of φ,
dφ(X) = X.φ.

(2) If φ ∈ C∞(M) then d(dφ) = 0.
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(3) d satisfies the graded Leibniz Rule (one also says that d is a graded
derivation of degree 1). If α is homogeneous then

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.

From these rules follows the important relation

d ◦ d = 0.

It also follows that the exterior differential d increases the exterior degree by
1.
In particular, if φ and xi are functions on M , one has

d(φ dx1 ∧ · · · ∧ dk) = dφ ∧ dx1 ∧ · · · ∧ dxk

If α is a k − 1-form and X1, . . . , Xk are vector fields, then

dα(X1, . . . , Xk) =
k∑
j=1

(−1)j−1Xj.α(X1, . . . , X̂j, . . . , Xk)+∑
1≤i<j≤k

(−1)i+j−1α([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk)

where X̂j means that the jth term is omitted. Despite its look, this formula
does define a differential form, i.e. is C∞(M) linear. For instance, for k = 1,
the formula reads

dα(X, Y ) = X.α(Y )− Y.α(X)− α([X, Y ]).

The C∞(M) linearity follows from the Leibniz rule for the Lie bracket.
If dα = 0 then the form α is called closed. If α = dβ then the form α

is called exact. The relation d ◦ d = 0 implies that exact forms are closed.
In other words, for every degree k, one has dAk ⊆ ker d|Ak . The quotient
vector space is called the kth space of de Rham cohomology and denoted by
Hk(M).

Hk(M) = (ker d|Ak)/dAk

If U is an open ball in Rn, then any closed form on U is exact. This is the
Poincaré Lemma, which we will prove later in Section ??.
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1.2.2 Contraction by vector fields

The contraction ι(X) of a k-form α with a vector field X is the (k− 1)-form
defined by

(ι(X).α)(X1, . . . , Xk−1) = α(X,X1, . . . , Xk−1).

Thus ι(X) is the unique operator on A(M) which is C∞(M) linear and which
satisfies the following two rules.
• If α is a 1-form

ι(X)α = α(X).

• The graded -Leibniz Rule. if α is homogeneous, then

(ι(X).(α ∧ β) = (ι(X).α) ∧ β + (−1)degαα ∧ (ι(X).β).

One has
ι(X) ◦ ι(X) = 0,

ι(X1) ◦ ι(X2) + ι(X2) ◦ ι(X1) = 0,

1.2.3 Lie derivative with respect to a vector field. Cartan’s Ho-
motopy Formula

Let X be a vector field on M . The flow gt(m) of X is the one parameter
family of local diffeomorphisms of M defined by the differential equation with
Cauchy condition:

g0(m) = m

and
d

dt
(gt(m)) = X((gt(m)).

For s, t small enough one has

gs ◦ gt = gs+t.

The local diffeomorphisms gt act naturally on the various tensor fields on M
as well as on the differential forms. By differentiating with respect to t at
t = 0, one obtains the Lie derivative L(X). On functions, this is just the
derivative with respect to the vector field itself

L(X).φ = X.φ = dφ(X).
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On vector fields, it is given by the Lie bracket

L(X).Y = [X, Y ].

On tensors and differential forms, L(X) is a derivation (it satisfies the Leibniz
rule).

L(X)(α ∧ β) = L(X)α ∧ β + α ∧ L(X)β

On differential forms, it preserves the degree and commutes with the exterior
differential.

L(X) ◦ d = d ◦ L(X).

If α is a k-form, then

(L(X)α)(X1, . . . , Xk) = X.(α(X1, . . . , Xk))−
k∑
i=1

α(X1, . . . , [X,Xi], . . . , Xk).

Indeed, this formula can be interpreted as a Leibniz rule.
The relation between Lie derivatives and contraction is:

ι(X) ◦ L(Y )− L(Y ) ◦ ι(X) = ι([X, Y ]),

Finally, one has the very useful Cartan Homotopy Formula

L(X) = d ◦ ι(X) + ι(X) ◦ d.

Using the Leibniz rule, it suffices to check that this relation holds when
applied to a function and a 1-form. For a function we have ι(X).φ = 0,
X.φ = dφ(X) = ι(X).φ. For a 1-form, the homotopy formula is just the
above formula for dα.

1.3 Action of a Lie group on a manifold

Let G be a Lie group. The neutral element is denoted by e (or I if G is
a matrix group). The Lie algebra of G is denoted by g. It is the tangent
space TeG. For X ∈ g, exp(tX) is the one-parameter subgroup of G with
derivative at t = 0 equal to X.

If G acts on a set M , we will denote the action by (g,m) 7→ g.m. If G
acts (smoothly) on a manifold M , every element X in the Lie algebra gives
rise to a vector field XM on M , defined by

(XM .φ)(m) =
d

dt
φ(exp(−tX).m)|t=0.
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In other words, the flow of the vector field XM is the one parameter group
of global diffeomorphisms m 7→ exp(−tX).m. The reason for the minus sign
is to make the map X 7→ XM a Lie algebra homomorphism from g to the
Lie algebra of vector fields on M

[X, Y ]M = [XM , Y M ].

Example 3. Let V be a vector space and A ∈ End(V ), where End(V ) is
considered as the Lie algebra of the group GL(V ). Then, with the above
convention, for the natural action of GL(V ) on V , the vector field AV is the
linear vector field AV (v) = −A.v.

The action of G on M gives rise naturally to a linear representation of G
on each tensor space and each space Ak(M). For instance, on functions, the
representation is

(g.φ)(m) := φ(g−1m).

If we consider a vector field as a derivation on C∞(M), the representation of
G on vector fields is given by

(g.X).φ := g.((X ◦ g−1).φ).

On each tensor field, the Lie derivative L(XM) is the operator which corre-
sponds to X by the infinitesimal representation of g on this space.

Thus, a tensor or a differential form α is invariant under the one-parameter
group exp tX if and only if L(XM)α = 0.

1.4 Symplectic manifold. Hamiltonian action

1.4.1 Symplectic vector space

A symplectic vector space is a vector space V over R with a non degenerate
alternate bilinear form B. Then V has even dimension 2n, and there exists
a basis (e1, . . . , en, f1, . . . , fn) such that

B(ei, ej) = 0, B(fi, fj) = 0, B(ei, fj) = δi,j

In other words, the matrix ofB in the basis (e1, . . . , en, f1, . . . , fn) is

(
0 −In
In 0

)
.

The group of linear automorphisms of V which preserve B (symplectic iso-
morphisms) is denoted by Sp(V,B) or simply Sp(V ). It is a closed subgroup
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of GL(V ).

Sp(V ) = {g ∈ GL(V ); B(gv, gw) = B(v, w) for all v, w ∈ V }

The Lie algebra of Sp(V ) is denoted by sp(V ).

sp(V ) = {X ∈ EndV ; B(Xv,w) = −B(v,Xw) for all v, w ∈ V }

Thus X ∈ Sp(V ) if and only if the bilinear form B(Xv,w) on V is symmetric.
In the basis (e1, . . . , en, f1, . . . , fn) , the matrix of X has the form(

A B
C −tA

)
,

where B and C are symmetric (n, n) matrices.

1.4.2 Symplectic form. Darboux coordinates

A symplectic manifold is a manifold M with a closed differential 2-form ω
such that for every m ∈M , the bilinear form ωm on the tangent space TmM
is non degenerate. Such a form is called a symplectic form. Then M has even
dimension.

The simplest example is R2n where ω is the constant 2-form on V with

matrix

(
0 −In
In 0

)
. If we denote the corresponding coordinates by (qi, pi),

we have ω = dq1 ∧ dp1 + · · ·+ dqn ∧ dpn.
By Darboux Theorem, any symplectic manifold M is locally isomorphic

to this standard symplectic vector space. A good reference for the proof (and
for the whole course as well) is the revised edition of the book by Michèle
Audin [2]

Theorem 4 (Darboux Theorem). Around every m ∈M there exists a system
of coordinates (q1, . . . , qn, p1, . . . , pn) such that

ω = dq1 ∧ dp1 + · · ·+ dqn ∧ dpn.

In Hamiltonian mechanics, the manifold M is a cotangent bundle T ∗U ,
the coordinates q = (qi) parameterize a point in U (the position), and the
coordinates p = (pi) a point in the cotangent space TqU at q (the momentum).
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1.4.3 Hamiltonian vector field

A function H ∈ C∞(M) gives rise to a vector field XH on M . This so
called Hamiltonian vector field corresponds to the differential dH under the
identification TM ≡ T ∗M defined by the symplectic form ω. Thus, for every
vector field Y , one has

dH(Y ) = ω(XH , Y ),

or equivalently, in terms of contraction,

dH = ι(XH)ω.

In local Darboux coordinates, one has

dH =
n∑
k=1

∂H

∂qk
dqk +

∂H

∂pk
dpk,

XH =
n∑
k=1

∂H

∂qk

∂

∂pk
− ∂H

∂pk

∂

∂qk
.

In Hamiltonian mechanics, when H ( the Hamiltonian of the system) is the
energy, the flow of the vector field XH describes the movement in the phase
space {(q1, . . . , qn, p1, . . . , pn)}. This flow is the solution of the system of
order one differential equations

q̇k(t) =
∂H

∂pk

ṗk(t) = −∂H
∂qk

Lemma 5. The flow of XH preserves H and ω.

Proof. We have immediately XH .H = ω(XX , XH) = 0. The invariance of ω
is also proved at the infinitesimal level, using Cartan Homotopy Formula.

L(XH)ω = ι(XH)dω + d(ι(XH)ω) = d(dH) = 0.

This result is a particular case of Emmy Noether’s Theorem [15]. It is
basic to the construction of symplectic reduction (Section [?]).
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1.4.4 Moment map. Hamiltonian manifold

Let G be a Lie group with Lie algebra g. The group G acts linearly on g by
the adjoint representation. For g ∈ G and X ∈ g,

exp(g.X) := g expXg−1.

The group G acts on the dual space g∗ by the contragredient representation,
called coadjoint.

〈g.ξ,X〉 = 〈ξ, g−1.X〉,

for g ∈ G, X ∈ g, ξ ∈ g∗.
A G orbit in g∗ is called a coadjoint orbit. We will see later that any

codjoint orbit has a canonical G-invariant symplectic structure.
Assume that G acts on M and preserves the symplectic form ω. Using

again the Cartan Homotopy formula, we obtain for X ∈ g,

d(ι(XM)ω) = L(XM)ω = 0.

Thus, for each X ∈ g, the 1-form ι(XM)ω is closed. The action will be called
Hamiltonian if this form is exact, in other words if XM is the Hamiltonian
vector field of a function µX ∈ C∞(M), and if the primitive µX satisfies an
invariance condition. So we give the following definition.

Definition 6. A moment map for the symplectic action of G on M is a
G-equivariant map

µ : M → g∗

such that, for every X ∈ g, the vector field XM is the Hamiltonian vector field
of the function m 7→ 〈µ(m), X〉. We say that (ω, µ) satisfies the Hamilton
equation

d〈µ,X〉 = ι(XM)ω.

Note that the equivariance condition reads

〈µ(g.m), X〉 = 〈µ(m), g−1.X〉.

Definition 7. A G-Hamiltonian manifold is a symplectic manifold (M,ω)
with an action of G which preserves the form ω, for which there exists a
moment map.
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If H is Lie subgroup of G with Lie algebra h, there is a natural projection
map g∗ → h∗ given by restriction of linear forms. If µ : M 7→ g∗ is a moment
map for G, the composed map M 7→ h∗ is a moment map for H. So if M is
G-Hamiltonian, it is also H-hamiltonian for any subgroup H.

Some important families of Hamiltonian manifolds will be described in
the next section. For the moment, let us just give a very simple example.

Example 8. The manifold is R2 with symplectic form ω = dx ∧ dy. The
group is the one dimensional torus S1 acting on R2 by rotations(

cos θ − sin θ
sin θ cos θ

)
= exp(θJ)

where

J =

(
0 −1
1 0

)
.

The corresponding vector field on M = R2 is JM = y∂x − x∂y. Let

〈µ, J〉 =
1

2
(x2 + y2).

Then µ is a moment map. Indeed,

ι(JM)ω = ydy + xdx = d〈µ, J〉.

14



2 Examples of Hamiltonian manifolds

2.1 Cotangent bundle

Let G be a Lie group and let M be a G-manifold. The group G has a natural
vector bundle action on the tangent and the cotangent bundle. By vector
bundle action, one means a smooth action of G on the total space of the
bundle, such that g ∈ G maps linearly (and bijectively) the fiber above m on
the fiber above g.m. The action on TM is given by g.X = g∗X = dgm(X),
for X ∈ TmM , where we denote also by g the diffeomorphism of M associated
to an element g ∈ G. The action on the cotangent bundle T ∗M is given by
the contragredient action: for Z ∈ TmM and ξ ∈ T ∗mM ,

〈g.ξ, g.X〉 = 〈ξ,X〉.

The [total space of the] cotangent bundle carries a canonical 1-form θ given
by

θ(m,ξ)(Z, η) = 〈ξ, Z〉,
for Z ∈ TmM and ξ, η ∈ T ∗mM . If (qi) is a local coordinate system on M ,
and (qi, pi) the corresponding coordinate system on T ∗M , then one has

θ =
∑
i

pidqi.

Being canonical, the form θ is clearly G-invariant.

Definition 9. The two-form ω = −dθ is called the canonical symplectic form
on T ∗M .

In local coordinates, we have

ω =
∑
i

dqi ∧ dpi.

It follows immediately that ω is non degenerate. There is a moment map;
for X ∈ g, it is given by

〈µ,X〉 = −ι(XT ∗M)θ.

Thus, if XM =
∑

iXi(q)
∂
∂qi

in local coordinates, we have

〈µ(q, p), X〉 =
∑
i

piXi(q).

15



Remark 10. This formula is coherent with the following direct computation
of the vector fields XTM and XT ∗M .

Lemma 11. Let (qi, ui) (resp. (qi, pi)) be the system of local coordinates on
TM (resp. T ∗M) which extend the coordinates (qi) on M . If XM =

∑
iXi

∂
∂qi

in local coordinates, we have

XTM =
∑
i

Xi
∂

∂qi
+
∑
i,j

∂Xi

∂qj
uj

∂

∂ui
, (1)

XT ∗M =
∑
i

Xi
∂

∂qi
−
∑
i,j

∂Xj

∂qi
pj

∂

∂pi
. (2)

Proof. Write the action of the flow g(t) of XM on the tangent and cotangent
bundles and take the derivative at t = 0. The minus sign in XT ∗M reflects
the contragredient action (g(t)∗)−1 on T ∗M .

2.2 Symplectic and Hermitian vector spaces

Let (V,B) be a symplectic vector space of dimension 2n. Thus V has a basis

ei, 1 ≤ i ≤ 2n such that B is the bilinear form with matrix

(
0 −In
In 0

)
.

Let ω be the symplectic form given by the constant differential 2-form equal
to B.

ω = dx1 ∧ dxn+1 + · · ·+ dxn ∧ dx2n.

Lemma 12. The action of the symplectic group Sp(V ) on V is Hamiltonian.
The moment map µV : V → sp(V )∗ is given, for v ∈ V , by the equation

〈µV (v), X〉 = −1

2
B(Xv, v). (3)

Proof. We can write ω = 1
2
B(dv, dv), extending B(., .) to A(V ) ⊗ V by

linearity. We have

d(
1

2
B(Xv, v)) =

1

2
B(Xdv, v) +

1

2
B(Xv, dv) = B(Xv, dv),

as X ∈ sp(V )∗. On the other hand, remembering the convention sign in the
definition of XV = −Xv, we have

ι(XM)Ω =
1

2
B(−Xv, dv)− 1

2
B(dv,−Xv) = −B(Xv, dv).
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Example. For n = 1 and X =

(
0 −1
1 0

)
, then 〈µ(x, y), X〉 = 1

2
(x2 +y2).

A complex structure J on V is called compatible with B if it satisfies the
following two conditions:

1) B is J-invariant, that is B(Jv, Jw) = B(v, w) for all v, w ∈ V .
2) The bilinear form Q(v, w) = B(v, Jw) is positive definite on V , i.e.

B(v, Jv) > 0 for all v 6= 0.
For instance, if B is the standard symplectic form on R2n, the matrix

J =

(
0 In
−In 0

)
defines a B-compatible structure.

If J and B are compatible, the bilinear form h = Q − iB is Hermitian
with respect to the complex structure J . The subgroup U(V ) ⊂ Sp(V ) which
preserves this Hermitian product is a maximal compact subgroup of Sp(V ),
isomorphic to the unitary group U(n). We denote its Lie algebra by u(V ).

Conversely, let (V, h) be a Hermitian vector space of (complex) dimension
n. Then the bilinear form B(v, w) = −=h(v, w) is symplectic (= denotes
imaginary part). The moment map µV : V → u∗ for the unitary group U(V )
is given, for X ∈ u, by

〈µV (v), X〉 =
1

2
=h(Xv, v) = − i

2
h(Xv, v). (4)

Observe that h(Xv, v) is pure imaginary if X ∈ u.

2.3 Complex projective space

Let V be a finite dimensional complex space. The corresponding projective
space (V \ {0})/C∗ is denoted by P(V ). We denote the map V \ 0 → P(V )
by u 7→ q(u) . If V = CN+1, we will also write q(z) = [z1, . . . , zN+1].

We fix a Hermitian scalar product on V . Let U(V ) be the unitary group
and let u(V ) be its Lie algebra.

We denote the unit sphere in V by S(V ). Let T1 = {z ∈ C, |z| = 1}.
We consider T1 as the subgroup of scalar matrices in U(V ). Thus P(V ) =
S(V )/T1. We will also denote the projection S(V ) → P(V ) by q. On this
realization, we see that P(V ) is compact, on the other hand we do not see
the complex structure.

Let (ek, k = 1, . . . , N + 1) be an orthonormal basis of V and let zk =
xk + iyk be the corresponding coordinates on V ' CN . The symplectic form
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on V associated to the Hermitian scalar product is

Ω =
∑
k

dxk ∧ dyk =
i

2

∑
k

dzk ∧ dzk =
i

2
(dz, dz),

where (u, v) :=
∑

k uk∧vk denotes the scalar product of vectors whose entries
are differential forms.

Lemma 13. There exists a unique 2-form ω on P(V ) such that

q∗ω = Ω|S(V ). (5)

The form ω is symplectic and invariant under the action of U(V ) on P(V ).

Remark : this is a particular case of symplectic reduction which will be de-
scribed in Section 3. Consider the following proof as an exercise on Section
3!

Proof. The form Ω is invariant under the unitary group, in particular it is
invariant under the torus. Let us show that Ω|S(V )(Z,Z

′) = 0 if Z or Z ′ in
Tv S(V ) is ”vertical”, meaning tangent to a T1 orbit. (A differential form on
S(V ) with these two properties is called basic with respect to the action of
T1.)

We observe that the orthogonal of the tangent space to the sphere at
a point z with respect to Ωz is i times the orthogonal with respect to the
Euclidean scalar product, that is the line iRz, which is precisely the tangent
space to the orbit under T1.

Thus, if Z and Z ′ in Tv S(V ) project onto q∗(Z) and q∗(Z
′) in the tangent

space of P(V ) at the point q(v), then Ω(Z,Z ′) depends only on the projections
q(v), q∗(Z) and q∗(Z

′), thus ωq(v)(q∗(Z), q∗(Z
′)) is well-defined. It follows

also from the above observation, that ω is non-degenerate. It is clearly U(V )
invariant, since Ω is. Finally, we have q∗(dω) = d(q∗ω) = dΩ|S(V ) = 0, thus
ω is closed.

This symplectic form on PN(C) is sometimes called the Fubini-Study
symplectic two-form, as it is related to the Fubini-Study metric on PN(C).

Let us compute ω in the coordinates z ∈ CN defined by the chart z 7→
[z, 1] = q(z, 1). We factor this map through the unit sphere in order to use
(5). Thus we consider the embedding w : CN ↪→ S(V ) given by

w(z) =
1

ρ
(z, 1),
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where ρ(z) =
√

1 + ‖z‖2. The image W is a submanifold of the sphere and
we have q∗ω|W = Ω|W . By a straightforward computation in the coordinates
z ∈ CN , we obtain the two-form ω.

ω = w∗(Ω|W ) =
i

2
(dw, dw)

=
i

2
(1 + ‖z‖2)−2

(
(1 + ‖z‖2)(dz, dz)− (dz, z) ∧ (z, dz)

)
.

Remark 14 (Kähler potential). On the open subset CN ⊂ PN(C) we have

ω =
i

2
∂∂ ln(‖z‖2 + 1).

The function ln(‖z‖2 + 1) is called the Kähler 1 potential.

On the open subset of PN(C) defined by zN+1 6= 0, a system of Darboux
coordinates is given by the following map from the unit open ball in CN to
PN(C)

z 7→ q(z1, . . . , zn,
√

1− ‖z‖2).

Thus this open subset is isomorphic to CN with its usual symplectic structure,
but beware, the isomorphism does not preserve the complex structure.

Let us compute moment maps under the action of the compact group
U(V ) on V = CN and on P(V ). For X ∈ u(V ), the vector field XV on V
generated by X is XV (v) = −X.v. It follows easily that the moment map
µV : V → u(V )∗ is given by

〈µV (v), X〉 = − i
2

(X.v, v). (6)

1In 1934 Chern came to Hamburg. He writes in ”A tribute to Herrn Erich Kähler”,
in E.Kähler, Mathematical works (R.Berndt and O.Riemenschneider (eds.),de Gruyter,
Berlin, 2003), 1-2.

I arrived in Hamburg in the summer of 1934. The University began in November
and I attended, among other classes, Kahler’s seminar on exterior differential systems.
He had just published his booklet entitled Einfhrung in die Theorie der Systeme von
Differentialgleichungen, which gives a treatment of the theory developed by Elie Cartan.
[For my thesis I] received much advice from Kähler, from whom I learned the subject of
exterior differential calculus and what is now known as the Cartan-Kähler theory. We
had frequent lunches together at the restaurant Curio Haus near the Seminar. He told me
many things, mathematical or otherwise. My gratitude to him cannot be overstated.
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From (5), it follows that a moment map µ : P(V )→ u(V )∗ on the projective
space is given by

〈µ([v]), X〉 = − i
2

(X.v, v)

‖v‖2
. (7)

Let us write these formulas in the case N = 1. 0n C ⊂ P1(C), the symplectic
two-form is

ω =
i

2

dz ∧ dz
(|z|2 + 1)2

=
dx ∧ dy

(|z|2 + 1)2
,

and the moment map is

µ(z) =
1

2

|z|2

|z|2 + 1
.

2.4 Coadjoint orbits

Let G be a Lie group with Lie algebra g and let O ⊂ g∗ be a coadjoint orbit.
The tangent space at ξ ∈ O is the image of g under the map X 7→ XOξ . The
kernel of this map is the infinitesimal stabilizer of ξ,

g(ξ) = {X ∈ g; 〈ξ, [X, Y ]〉 = 0 for every Y ∈ g}.

Therefore, there is a well defined 2-form ω on O such that, for every ξ ∈ O,

ωξ(X
O, Y O) = −〈ξ, [X, Y ]〉. (8)

By construction, ω is non degenerate.

Remark 15. It follows that coadjoint orbits have even dimension.

One checks easily that ω is G-invariant and that the inclusion mapO ⊂ g∗

is a moment map for ω. Note that the minus sign is needed because of the
minus sign in the definition of the vector field XO. Indeed, setting 〈µ(ξ) = ξ〉,
we have

d〈µ,X〉(Y O)(ξ) = Y O.〈ξ,X〉 =
d

dt
〈exp(−tY ).ξ,X〉|t=0

= 〈ξ, [Y,X]〉.

Let us show that dω = 0. It is enough to show that ι(XO)dω = 0. By Cartan
Homotopy Formula and the relation L(XO)ω = 0, we have ι(XO)dω =
−d(ι(XO)ω) = −d(d〈µ,X〉) = 0.

This canonical 2-form is sometimes called the Kirillov-Kostant-Souriau
symplectic form on the coadjoint orbit.
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3 Reduced spaces

3.1 Fiber bundles

3.1.1 Fibration

A fiber bundle over a manifold M with typical fiber E is a manifold which
is locally the product M × E of M with a fixed manifold E.

Definition 16. Let E, E and M be manifolds. A (smooth) map π : E →M
is called a fibration over M with typical fiber E if there exists a covering
of M with open sets Ui for i ∈ I, and for each i ∈ I, a diffeomorphism
φi : π−1(Ui) → Ui × E, such that π : π−1(Ui) → Ui is the composition of φi
with the first projection Ui × E → Ui.

The manifold E is called a fiber bundle over M . For every m ∈ M , the
fiber π−1(m) is isomorphic to E, hence the terminology ”typical fiber”.

Let Ui and Uj be two open sets in the covering with non empty inter-
section. Then the restriction of φj to π−1(Ui ∩ Uj) can be composed with
φ−1
i restricted to (Ui ∩ Uj) × E. The composed map, abusively denoted by
φj ◦ φ−1

i , is a diffeomorphism of (Ui ∩ Uj)× E onto itself of the form

(m,x) 7→ (m, gi,j(m,x)),

where for fixed m, the map x 7→ gi,j(m,x) is a diffeomorphism of E onto
itself.

Definition 17. A fiber bundle π : E → M is called a vector bundle if E
is a vector space and the φi can be chosen in such a way that the maps
x 7→ gi,j(x,m) are linear (hence linear automorphisms of E).

A section s of a fiber bundle π : E →M is a map M → E such that s(m)
belongs to the fiber Em := π−1(m) for all m. In the case of a vector bundle,
the space of sections Γ(M, E) is a vector space for pointwise operations. The
section s(m) = 0 ∈ Em identifies M with a subset of E called the zero section.

Let φ : N 7→ M be a smooth map. A point m ∈ M is called a regular
value of φ is, for every a ∈ φ−1(m), the differential dφa maps TaN onto
TmM . Then E = φ−1(m) is a closed submanifold of N . If moreover φ is
a proper map (the preimage of any compact subset is compact) then, by
the implicit function theorem, there exists an open neighborhood U ⊆ M
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of m and an isomorphism φ−1(U) → U × E such that φ becomes the first
projection. Thus the open subset φ−1(U) ⊆ N is a fiber bundle over U with
typical fiber φ−1(m).

Note that a fibration π : E →M is a proper map if and only if the typical
fiber is compact.

3.1.2 Actions of compact Lie groups, linearization.

Let G be a compact Lie group acting on a manifold M . The compactness of
G implies properties which do not hold necessarily hold if G is not compact.
In particular, there exists a G-invariant Riemannian metric on M . Using
geodesics for an invariant metric, one proves the existence of an equivariant
tubular neighborhood.

Proposition 18 (Koszul). Let G be a compact Lie group acting on a mani-
fold M , and let N ⊂M be a G-invariant closed manifold. Let N be the nor-
mal bundle to N in M . There exists a G-equivariant diffeomorphism from an
open G-invariant neighborhood of N in M onto an open G-invariant neigh-
borhood of N (identified with the zero section) in N which is the identity on
N .

In particular, if m is a fixed point for G, the action of G is linearizable
around m. Let m be an isolated fixed point for a compact one parameter
group exp tX. Then the Lie derivative L(X) induces a linear map in the
tangent space TmM , and this map is invertible. This result is not true if the
group is R.

Example 19. Consider the one parameter group g(t) acting on the circle
S = {z ∈ c; |z| = 1} by

g(t)(z) =
(1 + it)z − it
itz + 1− it

.

The point z = 1 is fixed, and it is the only fixed point. The complement
{z 6= 1} is an orbit. The Cayley transform

z = C(x) =
x− i
x+ i

is an isomorphism of P1(R) = R ∪ ∞ on S which maps R onto the orbit
{z 6= 1} and ∞ on z = 1, and conjugates g(t) to the group of translations
x 7→ x+ t

2
.
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When t increases starting from t = 0, then g(t).z moves towards 1 if z is
in the upper half circle (x ≥ 0), while g(t).z first moves away from 1 if z is
in the lower half circle (x < 0).

This movement is not possible for the flow of a vector field which is lin-
earizable near z = 1, because there would be a diffeomorphism z = h(x) from
an interval ]−a, a[ to a neighborhood of 1 in S, such that g(t)h(x) = h(eλtx).

The vector field on S generated by g(t) is d
dt

(g(−t)(z))|t=0 = i(z − 1)2. It
vanishes at order 2 at the point z = 1, therefore its Lie derivative L(X) acts
by 0 in T(1)S.

If G is compact, the set MG of G-fixed points is a closed submanifold of
M , with tangent space TmM

G = (TmM)G. Indeed, if Z ∈ TmM is fixed by
G, then the geodesic starting at m with tangent vector Z remains in MG.

Consider as above a proper map φ : N → M , where N is also a G-
manifold and φ is G-equivariant. Let m ∈ M be a regular value of φ. Let
G(m) ⊆ G be the stabilizer of m. Observe that the fiber φ−1(m) is pre-
served by G(m). Then there exists a G(m)-invariant neighborhood U ⊆ M
of m such that φ : φ−1(U) 7→ U is a fibration, with a G(m)-equivariant
diffeomorphism φ−1(U)→ U × φ−1(m) which carries the action of G(m) on
φ−1(U) to the product action h.(u, p) = (h.u, h.p) for h ∈ G(m) , u ∈ U and
p ∈ φ−1(m). In particular, if p is fixed by an element h ∈ G(m), then any
curve c(t) starting at m and contained in Mh (the set of points in M which
are fixed by h) lifts to a curve starting at p and contained in Nh.

3.1.3 Free action of a Lie group

Let G be a Lie group acting on a manifold M . For g ∈ G we denote the fixed
points set of g by M g. We denote MG = ∩g∈GM g the set of points which
are fixed by the whole group. For X in the Lie algebra g of G, we denote by
M0(X) the set of zeroes of the vector field XM . Thus M0(X) is the set of
points which are fixed by the one-parameter subgroup exp(tX) ⊆ G acting
on M .

For m ∈ M , we denote the stabilizer of m by G(m). It is a closed
subgroup of G. Its Lie algebra is g(m) = {X ∈ g; XM(m) = 0} and is called
the infinitesimal stabilizer of m. We will use the notations

Mfree /G = {m ∈M ; G(m) = {e}},

Mfree /g = {m ∈M ; g(m) = {0}}.
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Lemma 20. Let G be a compact Lie group acting on a connected manifold
M . Then the subsets Mfree /G and Mfree /g are either empty or connected dense
open subsets of M .

Proof. Let m ∈ M . The compactness of G implies that the G-orbit G.m
is a closed subvariety of M . Therefore there exists a G-equivariant tubu-
lar neighborhood U of G.m. If m′ ∈ U corresponds to (g.m, u) ∈ N , then
G(m′) ⊆ gG(m)g−1. Hence, the subsets Mfree /G and Mfree /g are open. To be

completed. Cf. Bredon "Introduction to compact transformation groups"

The action of G is called free if G(m) = {e} for every m ∈ M , thus
Mfree /G = M . The action is called infinitesimally free if g(m) = {0} for
every m ∈ M , thus Mfree /g = M . In that case, all the orbits in M have the
same dimension, equal to the dimension of G.

Lemma 21. Let G be a compact Lie group acting freely on a manifold M .
Then the space of orbits is a quotient manifold.

Proof. Consider an orbit O = G.m. There exists a G-invariant neighborhood
of O in M which is diffeomorphic to a product G × V , where V is a neigh-
borhood of 0 in the normal space Nm = TmM/TmO, with G acting on itself
by left translations. Then the map V →M/G is a system of coordinates on
M/G around the point O ∈M/G.

If the action is only infinitesimally free, then every point has a finite
stabilizer, and locally the space of orbits M/G is a quotient Rn/Γ where
Γ is a finite group of linear transformations. Such a structure is called an
orbifold.

3.1.4 Principal bundles. Basic differential forms

Let G be a compact Lie group.
A principal bundle P with structure group G is just a a manifold P with

a free G-action. It is usual to write the action on the right: (g, p) 7→ p.g, so
that (p.g1).g2 = p.(g1g2). Thus for X ∈ g, the corresponding vector field XP

on P is now

XP
p =

d

dt
p. exp(tX).

We denote the quotient map by q : P → P/G.
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Let V be a G-manifold where now the action is written on the left. The
product action of G on P × V is also free. Note that if we write it as right
action, it is given by the formula

(p, v).g = (p.g, g−1v).

The quotient V = (P × V )/G is a fiber bundle over P/G with typical fiber
V . It is called the associated fiber bundle. In particular, if V is vector space
with a linear action of G, then the associated fiber bundle is actually a vector
bundle.

For an open subset U ⊆ P/G, the space C∞(U) is identified with the space
c∞(q−1(U))G of smooth functions on q−1(U) which are G-invariant. There
is a useful similar description of differential forms on U . Let α ∈ A(U) be
a differential form on U ⊆ P/G. Its pull-back q∗α is a differential form on
q−1(U) ⊆ P . It is clear that q∗α is G-invariant. Moreover, if X ∈ g, then
the projection q∗(X

P ) is 0, therefore ι(XP )q∗α = 0. (The tangent vector
XP to the orbit p.G is called vertical). Thus q∗α is basic in the sense of the
following definition.

Definition 22. Let β be a differential form on P .
(i) β on P is called horizontal if ι(XP )β = 0 for every X ∈ g.
(ii) β is called basic if it is horizontal and G-invariant.
The subspace of basic differential forms is denoted by Abas(P ).

Proposition 23. The pull-back map q∗ induces an isomorphism of A(P/G)
onto Abas(P ) which preserves the degree and commutes with d.

Proof. Let β ∈ Akbas(P ). Let m ∈ P/G and let V1, . . . Vk ∈ TmP/G. Let
q ∈ P such that m = q(p) and let Wi ∈ TpP such that q∗Wi = Vi. Then the
horizontality of β implies that the value βp(W1, . . . ,Wk) does not depend on
the choice of Wi’s. Moreover, the G-invariance of β implies that this value
does not depend on the choice of p in the fiber of m. Indeed, another point
of this fiber has the form p′ = p.g, and we can take W ′

i = g.Wi to lift Vi.
Then βp(W1, . . . ,Wk) = βp′(W

′
1, . . . ,W

′
k). If β is basic, then dβ is also basic.

This follows from Cartan Homotopy formula.

Remark. On the contrary, the exterior differential d does not preserve hori-
zontality.

Often it will be easier to compute ”upstairs”, in Akbas(P ) rather than
A(P/G). Furthermore, if the action of G is only locally free, so that the
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quotient P/G is no longer a manifold, we will pretend that it is, by considering
functions and differential forms ”upstairs”.

3.2 Pre-Hamiltonian manifold

It is useful to consider manifolds with a closed two-form ω without the
assumption that the bilinear form ωm on the tangent space TmM is non
degenerate. Such a manifold as well as the two-form ω are called presym-
plectic. Although a function on M does not define a unique Hamiltonian
vector field any more, the notion of moment map still makes sense, when a
Lie group G acts on a presymplectic manifold M and preserves the form ω.
If a moment map exists, we say that the action and the G-manifold M are
G-pre-Hamiltonian.

Definition 24. A G-pre-Hamiltonian manifold is a manifold with a G ac-
tion, a closed G-invariant two-form ω and a G-equivariant map µ : M → g∗

such that, for every X ∈ g,

d〈µ,X〉 = ι(XM)ω. (9)

3.2.1 Examples of pre-Hamiltonian manifolds

For example, pre-Hamiltonian manifolds arise in the two following situations.
First, let M be a G-manifold with a G-invariant 1-form θ. The form ω = dθ
is closed, but it may be degenerate. A moment map µ is defined by

〈µ,X〉 = ι(XM)θ.

Indeed, as dω = 0, the Hamilton equation d〈µ,X〉 = ι(XM)ω follows from
the Cartan Homotopy Formula.

Next, let (M,ω, µ) be a G-Hamiltonian manifold and let N ⊂ M be a
G-invariant submanifold. Then N is G-pre-Hamiltonian for the restrictions
of ω and µ to N . Even if ω itself is non-degenerate the restriction of ωm to
TmN may be degenerate. More generally, if f : N → M is a G-equivariant
map and M is G-Hamiltonian ( or only pre-Hamiltonian), then N is G-pre-
Hamiltonian for the two-form and the moment map obtain by pulling back
those of M .

Example 25. Consider Cn with its natural Hermitian scalar product. The
group G is the unitary group U(n). The two-form ω = dx1∧dy1 + · · ·+dxn∧
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dyn on Cn is symplectic and U(n)-invariant. A moment map is given by

〈µ(v), X〉 = − i
2
h(Xv, v)

for X ∈ u(n), i.e. X is an anti-Hermitian matrix.
Now, let S ⊂ Cn be the unit sphere {‖v‖2 = 1}. As S has dimension

2n − 1, the restriction of ω to S must be degenerate. Indeed, the kernel of
ωv|TvS is easy to compute. It is one-dimensional, with basis the vector field
which generates the group of homotheties v 7→ eitv.

3.2.2 Consequences of Hamilton equation. Homogeneous mani-
folds and coadjoint orbits

One can go one step further and drop also the assumption that the two-form
ω is closed in Definition 24. Some consequences of Hamilton equation (9)
hold without assuming that ω is closed.

Lemma 26 (Infinitesimal equivariance). Let f : M → g∗ be a G-equivariant
map. Then for every X, Y ∈ g, we have

XM .〈µ, Y 〉 = 〈µ, [X, Y ]〉,

Proof. This relation is obtained by differentiating the G-equivariance equa-
tion 〈f((exp−tY ).m), X〉 = 〈f(m), (exp tY ).X〉.

Lemma 27. Let M be a G-manifold with a G-invariant two-form ω and a
moment map µ : M → g∗. Then
(i) The restriction of ω to any G-orbit is a closed two-form.
(ii) For every X, Y ∈ g, we have

ω(XM , Y M) = −〈µ, [X, Y ]〉.

(iii) If m ∈ M is such that the differential dmµ : TmM → g∗ is surjective,
then the infinitesimal stabilizer g(m) is 0.
(iv) For m ∈M , we have

ker(dmµ) = {Z ∈ TmM ; ω(XM , Z) = 0 for every X ∈ g}.

In particular, if X ∈ g, then dmµ(XM) = 0 if and only if X is in the
infinitesimal stabilizer g(µ(m) of the element µ(m) ∈ g∗
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Proof. For every X ∈ g, we write once again the Cartan Homotopy Formula.
As ω is G-invariant, we get ι(XM)dω + d(ι(XM)ω) = L(XM)ω = 0. Hence

ι(XM)dω = 0,

Any tangent vector at m to the orbit G.m has the form XM for some X ∈ g,
hence (i).

From Hamilton equation, we get ω(XM , Y M) = Y M .〈µ,X〉, hence (ii)
follows from the infinitesimal equivariance of the map µ (Lemma 26).

Let us prove (iii). Let X ∈ g. For every Z ∈ TmM , we have, (Hamilton
equation), 〈(dmµ)(Z), X〉 = ω(XM

m , Z). Assume that X ∈ g(m). Then
XM
m = 0. So, if the image of dmµ is the whole of g∗, this implies X = 0.

Let us prove (iv). The first statement follows immediately from Hamil-
ton equation. For X ∈ g, the equation dµm(XM

m ) = 0 is equivalent to
〈µ(m), [X, Y ]〉 = 0 for every Y ∈ g. By Lemma 26, this equality holds if and
only if X is in the infinitesimal stabilizer of the point µ(m) ∈ g∗.

As a consequence of this lemma, one gets a description of all homogeneous
G-Hamiltonian manifolds. Let M be a G-manifold which is homogeneous
under G, and let m ∈ M . Then a G-equivariant map µ : M → g∗ exists if
and only if there exists ξ ∈ g∗ such that G(m) ⊆ G(ξ).

Theorem 28 (Kostant). Let M be a G-manifold which is homogeneous under
G. Let m ∈M . Assume that there exists ξ ∈ g∗ such that G(m) ⊆ G(ξ). Let
µ be the G-equivariant map M → g∗ such that µ(m) = ξ.

Then there exists a unique two-form ω on M such that µ is a moment
map. This two-form ω is closed, and it is the pull back of the KKS two-form
of the coadjoint orbit G.ξ ⊂ g∗.

Moreover, ω is symplectic (i.e. non degenerate) if and only if g(m) = g(ξ)
that is to say, if and only if G(m) has finite index in G(ξ), so that M is a
finite covering of a coadjoint orbit.

Proof. By Lemma 27(ii), the map µ determines the restriction of the two-
form ω to any G-orbit G.m ⊆ M , and this restriction is closed and non-
degenerate by the lemma.

Example 29. Consider R2 with the alternate bilinear form B(v, w) = v1w2−
v2w1. The group G = SL(2,R) acts on R2. The open subset M := R2 \ {0}
is an orbit. The map µ : M → g∗ defined by 〈µ(v), X〉 = −1

2
B(Xv, v) is a

moment map for the symplectic form ω = dv1 ∧ dv2.
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Let us identify g with g∗ by means of the pairing K(X, Y ) = Tr(XY ).
Then M := R2 \ {0} is a covering of the orbit of the (nilpotent) matrix

E =

(
0 1
0 0

)
.

3.3 Hamiltonian reduction

In this section G is a compact group.
Consider again (M,ω, µ) where M is a G-manifold with a G-invariant

two-form ω and µ : M → g∗ is a moment map. We do not assume that ω is
closed and non degenerate. Let ξ ∈ g∗ be a regular value of µ. Then µ−1(ξ)
is a submanifold of M which is stable under G(ξ). Moreover the action of
G(ξ) on µ−1(ξ) is infinitesimally free.

Lemma 30. The restriction of ω to µ−1(ξ) is basic with respect to G(ξ).

Proof. Let P = µ−1(ξ). The two-form ω|P is G-invariant. Let us show that it
is horizontal. The tangent space TmP is TmP = {Z ∈ TmM ; dmµ(Z) = 0}.
Let X ∈ g(ξ). Then XP

m = XM
m .

ι(XP
m).ω|TmP = (ι(XM

m ).ω)|TmP = d〈µ,X〉|TmP = 0

Let us assume that the action of G(ξ) on µ−1(ξ) is free. (If it is only in-
finitesimally free, we will compute ”upstairs” as explained previously). Then
there is a smooth quotient map q : µ−1(ξ) → µ−1(ξ)/G(ξ). There exists
a unique two-form ωred,ξ on µ−1(ξ)/G(ξ) whose pull-back to µ−1(ξ) is the
restriction of ω.

Definition 31. The quotient manifold µ−1(ξ)/G(ξ) is called the reduced
manifold of M at ξ. It is denoted by Mred,ξ. The two-form ωred,ξ is called
the reduced two-form.

If ω is closed, then ωred,ξ is also closed. In other words, (Mred,ξ, ωred,ξ) is
a presymplectic manifold.

Lemma 32. If ω is non degenerate, then ωred,ξ is also non degenerate.
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Proof. We denote again P = µ−1(ξ). Let m ∈ P and Z ∈ TmP . Assume that
ω(Z,W ) = 0 for every W ∈ TmP . We have seen that TmP is the orthogonal
of the tangent space to the orbit G.m with respect to ωp. As ωp is non
degenerate, we must have Z = XP

m for some X ∈ g. By Lemma 27 (iv), we
see that X ∈ g(ξ).

Let us now consider the case where a second group H acts on M and the
actions of H and G commutes. The following proposition follows from the
previous discussions.

Proposition 33. Let M be a G×H-manifold with a G×H-invariant two-
form ω, and µ = (µG, µH) : M → g∗ × h∗ a G × H equivariant map which
satisfy the Hamilton equation with respect to G×H. Let ξ ∈ g∗ be a regular
value of µG. Denote by Mred,ξ the manifold reduced with respect to G. Then
Mred,ξ still carries an action of H. The reduced two-form ωred,ξ is H-invariant
The map µH restricted to (µG)−1(ξ) descends to a map µHred,ξ : Mred,ξ → h∗

which is H-equivariant.
The pair (ωred,ξ, µ

H
red,ξ) satisfies the Hamilton equation with respect to the

group H.
If (M,ω, µ) is G × H-pre-Hamiltonian, then (Mred,ξ, ωred,ξ, µ

H
red,ξ) is H-

pre-Hamiltonian. If (M,ω, µ) is G×H-Hamiltonian, then (Mred,ξ, ωred,ξ, µ
H
red,ξ)

is H-Hamiltonian.
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4 Duistermaat-Heckman measure and volumes

of reduced spaces

4.1 Poincaré Lemma

A subset U ⊆ Rn is called star-shaped (centered at 0) if for every x ∈ U
and 0 ≤ t ≤ 1, we have tx ∈ U . For instance, if U is convex and 0 ∈ U
then U is star-shaped. The well-known Poincaré Lemma states that a closed
differential form on a star-shaped open set is exact. Moreover the homotopy
operator gives a particular primitive. We are going to recall the proof in
order to include parameters and also to extend the Poincaré Lemma to the
case of equivariant differential forms.

Since U is star-shaped, it is stable under the homothety mapping

h : U × [0, 1]→ U ; h(x, t) = tx.

Let P (the parameter set) be a manifold. We denote by p the projection
P ×U → P and by j the inclusion map of the zero-section P ×{0} identified
with P .

j : P ' P × {0} → P × U).

Thus if φ is a differential form on P × U , then j∗φ is the restriction of φ to
the zero-section and p∗j∗φ is a form on P × U such that j∗(φ− p∗j∗φ) = 0.
More explicitly, let y be local coordinates on P . We write

φ =
∑
J,I

φJ,I(y, x)dyJ ∧ dxI .

Then
p∗j∗φ =

∑
J

φJ,∅(y, 0)dyJ .

Lemma 34 (Parametric G-equivariant Poincaré Lemma). Let G be a Lie
group with a linear action on Rn. (Here we do not assume that G is compact).
Let U be a star-shaped open subset of Rn Let P be a G-manifold. Let p be
the projection P × U → P and let j be the inclusion map of the zero-section
P ' P × {0} → P × U .
(i) Let φ be a closed k-form on P × U . Let α be the (k − 1)-form on P × U
defined by

α =

∫ 1

0

ι(
∂

∂t
).h∗βdt (10)
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where β = φ− p∗j∗φ. Thus j∗α = 0. We have

φ = p∗j∗φ+ dα. (11)

(ii) Assume that U is G-invariant. If φ is G-invariant, then α is G-invariant.
If φ is G-basic, then α is G-basic.

Proof. Let us first explain the meaning of (10). The pull-back h∗β is a
differential form on P ×U ×R. After contraction with the vector field ∂

∂t
, it

can be considered as a differential form on P ×U with coefficients depending
on t. Thus it makes sense to integrate it on [0, 1].

The result relies on the Cartan Homotopy Theorem applied to the vector
field ∂

∂t
on P × U × [0, 1]. Let us prove directly this particular case in the

form which we need. A differential form ϕ on U × [0, 1] can be written

ϕ = τ + dt ∧ σ,

where σ and τ are differential forms on P × U whose coefficients depend on
t. Thus τ =

∑
I,J τI,J(t, y, x)dyI ∧ dxJ . We write τ = τ(t) to indicate this

dependance. Taking the exterior differential, we have

dϕ = dMτ + dt ∧ τ̇(t)− dt ∧ dM)σ,

where dM is the partial exterior differential with respect to the variable

(y, x) ∈ P × U and τ̇(t) =
∑

I,J
∂τI,J (t,y,x)

∂t
dyI ∧ dxJ . Contracting with the

vector field ∂
∂t

, and substituting σ = ι( ∂
∂t

).ϕ, we get

ι(
∂

∂t
)dϕ+ dM ι(

∂

∂t
)ϕ = τ̇(t).

Assume that ϕ is closed. Integrating with respect to the variable t, we obtain

τ(1)− τ(0) = dM

∫ 1

0

ι(
∂

∂t
).ϕ(t)dt.

We apply this relation to the form ϕ = h∗β. With the previous notations,
we have τ(1) = β = φ− p∗j∗φ and τ(0) = 0. Thus (11) is proven. The other
statements follow immediately from the definition of α.

More generally, instead of just a product P ×U , we can consider a vector
bundle p : V → P with fiber Rn and a starshaped open neighborhood U ⊆ V
of the zero-section.
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Theorem 35. Let φ ∈ Ak(U) a closed differential form. Then there exists
α ∈ Ak−1(U) such that

φ− p∗j∗φ = dα.

Assume that the fiber bundle is G-equivariant and that U is invariant. Then
if φ is invariant, we can choose α to be G-invariant; if φ is G-basic, we can
choose α to be G-basic.

4.2 Pre-Hamiltonian structures on P × g∗.

Let G be a Lie group acting on a manifold P . Let M = P ×g∗, with G acting
on g∗ by the coadjoint action. We will determine all the pre-Hamiltonian
structures on M such that the moment map µ is the projection P ×g∗ → g∗.
Then all points of g∗ are regular values. By ??, a necessary condition is
that G acts infinitesimally freely on any regular fiber of µ. Thus G must act
infinitesimally freely on P . Let us make this assumption.

Let us recall the definition of a connection one-form on P . Recall that
for X ∈ g, we denote by XP the vector field on P defined by

XP (p) =
d

dt
|t=0(exp(−tX).p).

The condition that G acts infinitesimally freely means that X 7→ XP (p) is
a bijection of g with a subspace of TpP . This subspace is called the vertical
subspace and is denoted by VpP .

Definition 36. Let P be a manifold with an infinitesimally free action of the
Lie group G. A connection one-form is an element θ ∈ (A1(P ) ⊗ g)G such
that θ(XP ) = X for every X ∈ g.

Let Hp = ker θp ⊂ TpP . Then (Hp)p∈P is a smooth sub-bundle of TP
with the following properties:

TpP = Hp ⊕ VpP,

Hg.p = g.Hp.

Hp is called the horizontal subspace. Conversely, if these two conditions are
satisfied by a sub-bundle (Hp)p∈P , then the projection TpP → VpP ' g
parallel to Hp is a connection.
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Lemma 37. Let G be a compact group acting infinitesimally freely on P .
Then there exists a connection one-form θ.

Proof. As G is compact, there exists a G-invariant metric on P . We define
Hp to be the orthogonal of VpP .

Given a connection one-form on P , we define a pre-Hamiltonian structure
on P × g∗ in the following way.

Lemma 38. Let γ = 〈ξ, θ〉 be the one-form on P × g∗ defined by

γ(p,ξ)(X, ξ
′) = 〈ξ, θ(X)〉

for X ∈ TpP and ξ, ξ′ ∈ g∗. Then Ω = −dγ is a G-invariant two-form on
P × g∗ such that the projection µ : P × g∗ → g∗ is a moment map.

Proof. The one-form γ is G-invariant because of the G-invariance of the
connection θ. We have seen that in this case, the map defined by µγ(X) =
γ(XM) for X ∈ g is a moment map for Ω = −dγ. We have immediately
γ(p,ξ)(XM) = 〈ξ,X〉, ie µγ is indeed the projection (p, ξ) 7→ ξ.

We can now describe all the G-invariant closed two-forms on P × g∗ for
which P × g∗ → g∗ is a moment map.

Proposition 39 (A particular case of the Normal Form Theorem). Let G
be a Lie group acting infinitesimally freely on a manifold P . Let M = P ×
g∗, with G acting on g∗ by the coadjoint action. Let µ be the projection
P × g∗ → g∗ and let p be the projection on the first factor P × g∗ → P .
Let θ ∈ (A1(P ) ⊗ g)G be a connection one-form on P . Let Ω0 be a closed
basic two-form on P and let α be a basic one-form on P × g∗, such that its
restriction j∗α to P vanishes. Then

Ω = p∗Ω0 − d〈ξ, θ〉+ dα

is a G-invariant closed two-form on P × g∗ for which P × g∗ → g∗ is a
moment map and every such form Ω can be written in this manner, with
Ω0 = j∗Ω.

Proof. The moment condition requires that ιXM .(p
∗Ω0 + dα) = 0 for every

X ∈ g. We have ιXM .p
∗Ω0 = 0 because p∗Ω0 is horizontal and ιXM .dα = 0

because α is basic.
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Conversely, let Ω be a G-invariant closed two-form on P × g∗ for which
P × g∗ → g∗ is a moment map. Then Ω + d〈ξ, θ〉 is a closed basic two-form
on P × g∗. We observe that j∗d〈ξ, θ〉 = 0. Thus we can apply the Poincaré
Lemma with parameters to the form Ω + d〈ξ, θ〉.

Remark 40. The result still holds if we replace g∗ by a G-invariant star-
shaped open subset U ⊆ g∗.

4.3 Push-forward of the Liouville measure.

From now on, we will assume that G is a compact Lie group. Let (M,Ω, µ) be
a pre-Hamiltonian G-manifold. We assume that M is oriented and has even
dimension 2` . Then Ω` has top dimension. If φ is a compactly supported
continuous function on M , the integral

∫
M
φΩ` is defined. We recall how it

is defined. Assume that the support of φ is contained in a coordinate open
subset U with coordinates (x1, . . . , xn). On U , we have Ω` = v(x)dx1 ∧ · · · ∧
dxn, where v(x) is a C∞ function. We choose x1, . . . , xn so that dx1∧· · ·∧dxn
is a positive orientation. Then (with the usual abuse of notations), the
integral is defined by∫

M

φΩ` =

∫
Rn
φ(x)v(x)dx1 · · · dxn.

Definition 41. The Liouville measure β is defined by∫
M

φ(m)dβ(m) =
1

(2π)`

∫
M

φ
Ω`

`!

Let us assume that the moment map is proper. Then the push-forward
µ∗(β) of the Liouville measure is an absolutely continuous measure on g∗. The
following result is quite remarkable. It was first discovered by H. Duistermaat
and G. Heckman in the case of a Hamiltonian action of a torus, [7].

Theorem 42 (Duistermaat-Heckman). Let G be a compact Lie group. Let
M be a pre-Hamiltonian G-manifold with moment map µ. Assume that µ is
proper. Assume that 0 ∈ g∗ is a regular value of µ. Then, on the connected
component of 0 in the set of regular values of µ, the density of the push-
forward µ∗(β) of the Liouville measure is a polynomial function.

35



Example 43. Let M = T1 ×R, with coordinates (θ, ξ) ∈ [0, 2π]×R. A T 1-
invariant two-form on M is of the form Ω = f(ξ)dθ ∧ dξ. A T 1-equivariant
map M → R is of the form µ(θ, ξ) = F (ξ). The Hamiltonian condition with
respect to Ω is

∂µ

∂ξ
= −Ω(

∂

∂θ
,
∂

∂ξ
) = −f(ξ),

hence F ′(ξ) = −f(ξ). Moreover we assume that ξ 7→ F (ξ) is proper. Then
the push-forward of 1

2π
Ω is just −dξ. The density is the constant polynomial

equal to −1. If we insist that the moment map is the projection (θ, ξ) 7→ ξ,
then we must have f(ξ) = −1, ie Ω = −dθ ∧ dξ.

On the other hand, if we do not assume that the projection (θ, ξ) 7→ ξ is
a moment map for Ω = f(ξ)dθ ∧ dξ, then the push-forward of 1

2π
Ω by this

projection is f(ξ)dξ, ie any density.

Proof. Let us denote P = µ−1(0). It is a submanifold of M . The condition
µ proper implies that P is compact.

Let U be a starshaped open neighborhood of 0 contained in the set of
regular values of µ. (Actually, the connected component of 0 in the set of
regular values of µ is itself starshaped). There exists a G-invariant connection
for the fibration µ−1(U)→ U . Then parallel transport along lines defines an
isomorphism

µ−1(U)→ P × U.
We are going to prove that µ∗(β)|U has a polynomial density.

We apply Proposition 39. Thus

Ω = ΩP − d〈ξ, θ〉+ dα

where
ΩP = p∗j∗Ω

and α is a G-basic one-form on P × U such that j∗α = 0. Let

Ωt = −d〈ξ, θ〉+ ΩP + tdα,

so that Ω1 = Ω and Ω0 = −d〈ξ, θ〉 + ΩP . The form Ωt is closed, for every t.
For X ∈ g, we have

ι(XM).Ωt = ι(XM).Ω = 〈dξ,X〉,

since ι(XM).dα = 0, (α is G-basic).
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Let us show that the push-forward µ∗(Ω
`
t) does not depend on t. Let f(ξ)

be a compactly supported smooth function on U . Then

d

dt

∫
U

f(ξ)µ∗(Ω
`
t) =

d

dt

∫
P×U

f(ξ)Ω`
t = `

∫
P×U

f(ξ)Ω`−1
t ∧ dα

= −`
∫
P×U

Ω`−1
t ∧ α ∧ df.

The last equality follows from Stokes Formula.
Let us show that

Ω`−1
t ∧ α ∧ df = 0.

It is enough to prove this when f is a coordinate, say f(ξ) = ξ1, associated to
a basis (Ek) of g. It is equivalent to show that ι((E1)M).(Ω`−1

t ∧α∧dξ1) = 0 as
the vector field (E1)M vanishes nowhere on P ×U , (this follows from the mo-
ment condition), hence ι((E1)M) is injective on the space of maximal degree
differential forms supported in this open set. We have ι((E1)M).α = 0, and
ι((E1)M).dξ1 = (E1)M).〈ξ, E1〉 = 〈ξ, [E1, E1]〉 = 0. We have ι((E1)M).Ω`−1

t =
(`− 1)Ω`−2

t ∧ dξ1, hence

ι((E1)M).Ω`−1
t ∧ α ∧ df = (`− 1)Ω`−2

t ∧ dξ1 ∧ α ∧ dξ1 = 0.

Since µ∗(Ω
`
t) does not depend on t, it is enough to look at t = 0 and show

that µ∗(Ω
`
0) has a polynomial density on U .

Using a basis, we identify g and its dual with Rn. Thus we write 〈ξ, θ〉 =∑
a ξaθa and

Ω0 = (ΩP −
∑
a

ξadθa) +
∑
a

θa ∧ dξa.

Let us write ` = `0 +n. In the expansion of ((ΩP −
∑

a ξadθa)+
∑

a θa∧dξa)`
we must keep only the terms which contain dξ1 ∧ · · · ∧ dξn. So we obtain

Ω`
0

`!
=

(ΩP −
∑

a ξadθa)
`0

`0!
θ1 ∧ dξ1 · · · ∧ θn ∧ dξn.

Hence,
1

(2π)`
µ∗(

Ω`
0

`!
) = υ(ξ)dξ1 ∧ · · · ∧ dξn

with

υ(ξ) = (sign)
1

(2π)`

∫
P

(ΩP −
∑

a ξadθa)`0

`0!
θ1 ∧ · · · ∧ θn. (12)
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It is clear that υ(ξ) depends polynomially on ξ. The sign depends on the
orientations on M and P . In the case where Ω is symplectic, we choose the
orientation on M which is determined by Ω`, so that the Liouville measure
is positive.

Remark 44. Formula(12) shows that near 0, the density υ(ξ) is a polynomial
of degree at most `0. Actually, the degree can be smaller.

4.4 Push-forward of the Liouville measure and volume
of the reduced space

We are going to relate the density υ(ξ) of the push-forward of the Liouville
measure with volumes of the reduced spaces. We begin with the value υ(0).
We have (ignoring the sign)

υ(0) =
1

(2π)`

∫
P

Ω`0
P

`0!
θ1 ∧ · · · ∧ θn.

The value υ(0) does not depend on the connection θ which we choosed for
the fibration P → P/G. It follows from the definition since µ∗(β) does not
depend on θ. We can see it also on the right-hand-side. If θ′ is another
connection, then the forms θa − θ′a are horizontal. The form ΩP is also
horizontal. Being of top degree and horizontal, the form Ω`0

P (θ1 ∧ · · · ∧ θn −
θ′1 ∧ · · · ∧ θ′n) must be 0.

The value υ(0) does depend on the Lebesgue measure λg∗ = dξ1∧· · ·∧dξn
on g∗. So we look at the top degree form υ(0)λg∗ . This is an element of Λmaxg∗

which does not depend on any choice.
Let us assume that G acts freely on P = µ−1(0). Then the quotient P/G

is a manifold, the reduced space, which we denoted by Mred.
The differential form ΩP is basic. It defines a differential form on P/G

which we denote by Ωred. The volume of Mred is defined by the normalized
formula

vol(Mred) =
1

(2π)`0

∫
Mred

Ω`0
red

`0!
. (13)

We choose λg ∈ Λmaxg. This determines a Haar measure on the group G.
We denote by vol(G, λg) the volume of G with respect to this Haar measure.

Corollary 45. We have

〈υ(0)λg∗ , λg〉 = vol(G, λg) vol(Mred).
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Remark 46. This formula is very important. It allows to compute the vol-
umes of reduced spaces.

We apply the following lemma.

Lemma 47. Let P be a manifold with a free action of G and a G-equivariant
connection θ. (Here we do not need to assume that P is compact). Let Φ
be a compactly supported top degree differential form on P/G. Let us denote
the projection P 7→ P/G by π. Then∫

P

π∗(Φ) ∧ θ1 ∧ · · · ∧ θn = vol(G, λg)

∫
P/G

Φ

Proof. The choice of a basis of g determines the top degree element λg. Let
us observe that the product θ1 ∧ · · · ∧ θn depends only on λg.

Using a partition of unity, we can assume that the fibration P 7→ P/G is
trivialized in a neighborhood of the support of Φ. Thus we can assume that
P = U ×G where G acts by left translations on G and U is an open subset
of R`0 . Let λa be the basis of g∗ dual to Ea which we have fixed. We denote
also by λa the right-invariant one form on G associated to λa. Then

θa = λa +
∑
k

ha,k(u, g)duk.

Since Φ has top degree, we have

π∗(Φ) ∧ θ1 ∧ · · · ∧ θn = Φ ∧ λ1 ∧ · · · ∧ λn.

By definition, we have λ1 ∧ · · · ∧ λn = λg, hence the result.

4.5 What is particular about the value 0 ?

Actually, there is a trick to shift the general case to the case ξ = 0. Let
Oξ0 ⊂ g∗ a coadjoint orbit. Let Ωξ0 be its Kirillov symplectic two-form. The

moment map is the injection jξ0 : Oξ0 ↪→ g∗. Thus, the product M̃ = M×Oξ0
is pre-Hamiltonian with respect to the two-form Ω − Ωξ0 and the moment
map µ̃ = µ − jξ0 . Assume that ξ0 is a regular value of the moment map
µ. Then 0 is a regular value of µ̃. It is easy to see that the reduced space
Mred(ξ0) = µ−1(ξ0)/G(ξ0) at the value ξ0 is isomorphic to

M̃red = µ̃−1(0)/G = {(m, η) ∈M ×Oξ0 ; µ(m) = ξ}/G.
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More precisely, the isomorphism is induced by the map µ−1(ξ0)→ M ×Oξ0
which sends m to (m, ξ0). It is clear that this isomorphism is compatible
with the reduced two-forms. So they have the same volumes

vol(Mred(ξ0)) = vol(M̃red).

In a neighborhood of Oξ0 ⊂ g∗, the push-forward µ∗(β) is given by a G-
invariant smooth density

µ∗(β) = υ(ξ)λg∗ .

On the other hand, as we saw in the previous section, the push-forward µ̃∗(β̃)
is given in a neighborhood of 0 by a polynomial density

µ̃∗(β̃) = υ̃(ξ)λg∗ ,

and the volume of M̃red is given by vol(G, λg) vol(M̃red) = υ̃(0)〈λg∗ , λg〉. So
there remains to compare the densities υ and υ̃ of the two push-forward. Let
φ be a test function on g∗ supported in a small neighborhood of 0. We have∫

g∗
φ(ξ)µ̃∗(β̃) =

∫
M×Oξ0

φ(µ(m)− ξ)β(m) βOξ0 (ξ),

where βOξ0 is the Liouville measure of the orbit. This implies, for small η,

υ̃(η) =

∫
Oξ0

υ(η + ξ)βOξ0 (ξ). (14)

In particular, for η = 0 we obtain

υ̃(0) = vol(Oξ0)υ(ξ0),

hence the formula relating the density and the volume of the reduced space

Proposition 48. Let ξ be a regular value of the moment map. Then

vol(G, λg) vol(Mred(ξ)) = vol(Oξ)υ(ξ)〈λg∗ , λg〉.

Remark 49. If G is abelian, then the orbit Oξ is of course just a point.
Thus, on any connected component U ⊂ g∗ of the set of regular values of
the moment map, the manifold (Mred(ξ) does not depend on ξ. However the
reduced two-form Ωred(ξ) depends on ξ. Its volume is given by a polynomial
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function on any connected component U . In other words, vol(Mred(ξ)) is a
piecewise polynomial on g∗.

In their original article [7], Duistermaat-Heckman proved actually a stronger
result: the cohomology class of Ωred(ξ) is a polynomial function of degree
one of ξ, for ξ ∈ U .

Remark 50. There is a nice formula which expresses the Duistermaat-
Heckman measure for the group G in terms of the one for its maximal torus
H. On this formula, one can see that the non abelian D-H measure is not
always locally bounded.
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5 Orbits and moment map for a linear action

of a torus

5.1 Weights

Let V be a complex vector space of dimension n. Let TC = (C∗)r be a complex
torus with a linear action in V . Then the action of TC is diagonalizable, with
weights

(t1, . . . , tr) 7→ tm1
1 · · · tmrr ,

where the exponents mk are integers.

We will study the TC-orbits in V , in particular the closed orbits.

Example 51. Let TC = (C∗)2 act diagonally on V = C3 with weights t1,
t2 and (t1t2)−1. Let z = (z1, z2, z3) ∈ V with zk 6= 0 for k = 1, 2, 3. Then
the orbit of z is closed. Indeed, this orbit is the set of w ∈ C3 such that
w1w2w3 = z1z2z3.

Example 52. Let now (C∗)2 act diagonally on V = C3 with weights t1, t2
and t1t2. Then the only closed orbit is {0} and 0 belongs to the closure of
every orbit.

Let T = Tr. It is a maximal compact subgroup of TC. We denote the Lie
algebra of T by t and its dual by t∗.

We fix a Hermitian scalar product (v, w) on V which is invariant under
the action of T . The space V has an orthonormal basis (ek, 1 ≤ k ≤ n) of
eigenvectors for the action of TC. Let (λk ∈ t∗, 1 ≤ k ≤ n) be the (infinitesi-
mal) weights of T in V , defined by X.ek = i〈λk, X〉ek, expX.ek = ei〈λk,X〉ek,
for X ∈ t.

Definition 53. Let v =
∑n

k=1 zkek. We denote the set of indices k such that
zk 6= 0 by Supp(v), and we denote the sequence of weights (λk, k ∈ Supp(v))
by Φv.

Up to reordering, Φv does not depend on the particular basis of eigenvec-
tors ek. Sometimes Φv itself is called the support of the vector v.

We will see that the closure of the orbit TC.v can be described in terms of
the polyhedral cone c(Φv) ⊆ t∗ generated by the weights λk for k ∈ Supp(v).
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5.2 Polyhedral cones

We briefly recall some facts about polyhedral cones.
Let E be a real vector space. A polyhedral cone c ⊆ E is a finite inter-

section of closed half-spaces bounded by (linear) hyperplanes of E. Thus c
is defined by a finite set of linear inequalities c = {λ ∈ E; 〈fk, λ〉 ≥ 0}. We
denote by lin(c) the sub-vector space spanned by c. The relative interior of
c in lin(c) is denoted by c0.

A hyperplane H is called a supporting hyperplane of c if c is contained
in one of the half-spaces bounded by H, and H ∩ c has non empty relative
interior in H ∩ lin(c).

The intersection H ∩ c is called a facet (face of codimension 1) of c. It is
a polyhedral cone in H.

A facet of a facet of c is called a face of codimension 2 of c etc... A face
of dimension 1 is called an edge. The cone c itself is considered as a face, of
dimension dim(lin(c)).

There is at most one face of dimension 0, namely {0}. Moreover, {0} is
a face if and only if there exist an hyperplane H of lin(c) such that c \ {0} is
contained in an open half-space bounded by H. When this is the case, the
cone is called salient (or pointed).

The cone c is generated (as a cone) by its edges R≥0λk where λk ∈ E.
Conversely, let Φ = (λ1, . . . , λn) be a finite sequence of vectors in E. The

cone generated by Φ is denoted by c(Φ).

c(Φ) =
n∑
k=1

R≥0λk.

Then c(Φ) is a convex polyhedral cone contained in the subspace generated
by Φ. Note that the elements of Φ need not be edges of c(Φ). Similarly, in
the dual description by linear inequalities, all the hyperplanes corresponding
to the linear inequalities need not be supporting hyperplanes. In general, the
computation of the set of edges as well as the set of facets is difficult!

The relative interior of c(Φ) is c0(Φ) =
∑

λ∈Φ R>0λ. Note that the relative
interor of {0} is {0} itself.

We state two easy and useful lemmas. The second one is proven by
induction on the codimension of the face.

Lemma 54. The origin 0 belongs to c0(Φ) if and only if c(Φ) = c0(Φ) =∑
λ∈Φ Rλ .
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Lemma 55. Let f be a face of c. There exists a linear form X on E such
that X vanishes on f and 〈λ,X〉 > 0 for any λ ∈ c \ f.

By means of the moment map µ : V → t∗, we are going to describe the
orbit TC.v of an element v ∈ V in terms of the open cone c0(Φv) ⊆ t∗. Then
we will describe the orbit closure TC.v in termes of the closed cone c(Φv) and
its faces.

5.3 Image of a TC-orbit under the moment map

The moment map µ : V → t∗, for the action of the compact torus T on V , is
given by

〈µ(v), X〉 = − i
2

(X.v, v), for X ∈ t and v ∈ V.

If v is decomposed in the above orthonormal basis of eigenvectors as v =∑d
k=1 zkek, with zk ∈ c, we have

µ(v) =
1

2

d∑
k=1

|zk|2λk.

In the theory of Hamiltonian manifolds, a fundamental problem is to compute
the image of the moment map. The following theorem gives the answer in
the simple and beautiful case where the manifold is an orbit of a complex
torus acting on a Hermitian vector space.

Theorem 56 (Kac-Peterson [11]). Let v ∈ V . The image of the orbit TC.v
under the moment map µ : V → t∗ is the cone c0(Φv). Furthermore, the
moment map induces a homeomorphism TC.v/T ' c0(Φv).

Proof. Let u = exp(X + iY ).v ∈ TC.v with X and Y ∈ t. Then

u =
d∑

k=1

ei〈λk,X〉e−〈λk,Y 〉zkek.

We have Supp(u) = Supp(v). Thus, to simplify the notations in the proof,
we may assume that v =

∑d
k=1 zkek with all zk 6= 0, and that Φ generates t∗.

We have

µ(u) =
1

2

d∑
k=1

e−2〈λk,Y 〉|zk|2λk.
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We see that µ(u) ∈ c0(Φv). Because of our assumption, the map t → TC.v :
Y 7→ exp(iY ).v induces a diffeomorphism from t onto the quotient TC.v/T ,
hence the theorem follows immediately from the next lemma.

Lemma 57. Let Φ = (λ1, . . . , λs) be a finite sequence of linear forms on a
real vector space L such that Φ generates L∗. Let ck > 0 for 1 ≤ k ≤ s. Then
the map m : L→ L∗ given by

m(Y ) =
s∑

k=1

cke
〈λk,Y 〉λk

is a diffeomorphism of L onto c0(Φ).

Proof. We compute the differential of m at the point Y ∈ L and show that
it is injective. We have

dmY (Z) =
s∑

k=1

ck〈λk, Z〉e〈λk,Y 〉λk.

If Z 6= 0, the numbers 〈λk, Z〉 are not all 0, as the sequence λk generates L∗.
Hence,

〈dmY (Z), Z〉 =
s∑

k=1

ck|〈λk, Z〉|2e〈λk,Y 〉 6= 0.

Let us show that m is one to one. Let Y1 6= Y2 ∈ L . Consider the function

f(t) = 〈m(Y1 + t(Y2 − Y1)), Y2 − Y1〉.

Then f ′(t) =
∑s

k=1 ck|〈λk, Y2 − Y1〉|2e〈λk,Y1+t(Y2−Y1)〉. So f ′(t) > 0 for every
t ∈ [0, 1], hence m(Y1) = f(0) 6= f(1) = m(Y2).

So m is a diffeomorphism of L onto its image. There remains to prove
that this image is the cone c0(Φ). Let λ =

∑s
k=1 akλk, with ak > 0. We want

Y ∈ L such that m(Y ) = λ. We consider the function F : L→ R given by

F (Y ) =
s∑

k=1

cke
〈λk,Y 〉 − 〈λ, Y 〉.

Then dFY =
∑s

k=1 cke
〈λk,Y 〉λk − λ. Hence, the equation m(Y ) = λ means

that Y is a critical point of F . We are going to show that F (Y ) is bounded
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from below and reaches its minimum at a point Y0, which has to be a critical
point.

We write F (Y ) =
∑s

k=1(cke
〈λk,Y 〉 − ak〈λk, Y 〉). For c > 0 and a > 0,

the function of one variable y 7→ cey − ay is bounded from below and tends
to +∞ when y → ±∞. It follows that F (Y ) is bounded from below and
tends to +∞ when ‖Y ‖ does. As F is continuous and the space L is finite-
dimensional, this implies that F (Y ) reaches its minimum at a point Y0.

5.4 Image of a TC-orbit closure under the moment map

We study now the image of the orbit closure TC.v under the moment map.
First, we state a corollary of Theorem 56.

Corollary 58. Let u ∈ V be an element of the orbit closure TC.v. Assume
that µ(u) ∈ c0(Φv). Then u ∈ TC.v.

Proof. Let t(v) be the infinitesimal stabilizer of v in t and let h be a sup-
plementary subspace of t(v) in t, so that tC = t ⊕ it(v) ⊕ ih. We can write
u = limn→∞ exp(iXn)hnv, with hn ∈ T and Xn ∈ h. As T is compact, we can
assume that hn has a limit h ∈ T . By replacing u with h−1u we can assume
that u = limn→∞ exp(iXn)v. By Theorem 56, the map X 7→ µ(exp(iX)v) is
a diffeomorphism of h onto c0(Φv). As µ(u) ∈ c0(Φv), it follows that Xn has
a limit X ∈ h, hence u = exp(iX)v belongs to the orbit.

Next, we will show that the orbits which are contained in a given orbit
closure are in one to one correspondance with the faces of the moment cone
c(Φv). By applying Lemma 55 to this cone, we obtain immediately the
following.

Lemma 59. If f is a face of c(Φv), there exists an X ∈ t such that 〈λk, X〉 > 0
if λk /∈ f and 〈λk, X〉 = 0 if λk ∈ f. (If f is the whole cone, then X = 0,
otherwise X 6= 0.)

Theorem 60. Let v =
∑d

k=1 zkek. If f is a face of c(Φv), let

vf =
∑
{k,λk∈f}

zkek.

(i) The image of TC.vf under the moment map is the relative interior f0.
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(ii) The orbit closure TC.v is the union of the various orbits TC.vf, as f runs
over the set of faces of the cone c(Φv). In particular, 0 ∈ TC.v if and only if
the cone c(Φv) is salient.

Proof. (i) is Theorem 56 applied to vf.
Let X ∈ t satisfy the condition of Lemma 59. Then exp(itX).v =∑
k e−t〈λk,X〉zkek tends to vf when t→∞. In particular, vf belongs to TC.v.
Conversely, let u be a point in the boundary of TC.v. As µ(u) ∈ c(Φv),

there exists a face f $ c(Φv) such that µ(u) ∈ f0. Let us prove that u ∈ TC.vf.
By Corollary 58, it is enough to prove that u ∈ TC.vf.

We have u = limn→∞ exp(iXn)hnv with hn ∈ T and Xn ∈ t. By taking
a converging subsequence hn → h and replacing v by h−1.v, we can assume
that u = limn→∞ exp(iXn)v.

We write v = vf + (v − vf), thus v − vf =
∑

k; λk /∈f zkek. Let X ∈ t Then

exp(iXn).(v − vf) =
∑
k; λk /∈f

e−〈λk,Xn〉zkek.

Let X ∈ t be, as above, such that 〈λk, X〉 > 0 if λk /∈ f and 〈λk, X〉 = 0 if
λk ∈ f. Then

〈µ(exp(iXn).vf), X〉 =
1

2

∑
{k,λk∈f}

e−2〈λk,Xn〉|zk|2〈λk, X〉 = 0,

〈µ(exp(iXn).(v − vf)), X〉 =
1

2

∑
{k,λk /∈f}

e−2〈λk,Xn〉|zk|2〈λk, X〉.

By assumption, limn→∞ µ(exp(iXn).v) = µ(u). Since µ(u) ∈ f, we have
〈µ(u), X〉 = 0. Therefore each term in 〈µ(exp(iXn).(v − vf)), X〉 tends to 0,
hence limn→∞ e−〈λk,Xn〉 = 0 if λk /∈ f. Finally we obtain, as desired

u = lim
n→∞

exp(iXn).vf.

In the particular case where u = 0, the face f such that 0 ∈ TC.vf must be
f = {0}, so the cone is pointed. Thus we have completed the proof of (ii).

Corollary 61 (Hilbert-Mumford criterion). Let u ∈ TC.v. Then there exists
g ∈ TC and X ∈ t such that

u = lim
t→+∞

exp(itX)g.v.
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In particular, if 0 ∈ TC.v, then there exists X ∈ t such that

lim
t→+∞

exp(itX)v = 0.

Proof. There exists a face f such that u = g.vf. Take X as in Lemma 59.
Then vf = limt→∞ exp(itX).v, hence u = limt→∞ exp(itX)g.v.

5.5 Closed orbits

Finally, we obtain the characterization of closed orbits.

Theorem 62. (i) The orbit TC.v is closed if and only if 0 ∈ c0(Φv)
(ii) The orbit TC.v is closed if and only if it intersects µ−1(0). Moreover if
two points of µ−1(0) are in the same TC-orbit, then they are already in the
same T -orbit.

Proof. It follows from Theorem 60 that 0 ∈ µ(TC.v). Assume that TC.v is
closed. Then 0 belongs to µ(TC.v) which is equal to c0(Φv), by Theorem 56.
Conversely, assume that 0 ∈ c0(Φv). Then it follows from Lemma 54 that
c(Φv) has no strict face, hence TC.v is closed by Theorem 60.

Since µ(TC.v) = c0(Φv), the first part of (ii) follows from (i). Regarding
the second part of (ii), we already proved in Theorem 56 that the moment
map induces an injection on TC.v/T .

5.6 T -invariant irreducible subvarieties of V

An irreducible subvariety of V is a subset defined by polynomial equations
M = {z ∈ V, pj(z) = 0} M which is connected for the Zariski topology.
Then M is T -invariant if and only if it is TC-invariant. We denote

ΦM =
⋃
v∈M

Φv.

Theorem 63. Let M ⊆ V be a T -invariant irreducible subvariety. Then the
image of M under the moment map µ : V 7→ t∗ is the closed polyhedral cone
c(ΦM) generated by ΦM .

Proof. Let us show that there exists v0 ∈ M such that ΦM = Φv0 . For
v ∈ M , let Uv = {u ∈ M,Φv ⊆ Φu}. Then Uv is a Zariski open subset of
M which is not empty since v belongs to it, There are only finitely many
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distinct such open sets Uv, since there are only finitely many subsets of Φ.
Therefore, as M is irreducible, the intersection

⋂
v∈M Uv is not empty. If v0

belongs to
⋂
v∈M Uv, then ΦM = Φv0 . Hence

µ(M) =
⋃
v∈M

µ(TC.v) =
⋃
v∈M

c(Φv) = c(Φv0) = c(ΦM).
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6 Torus action on projective varieties. Image

of the moment map

Let V be a complex vector space with a Hermitian scalar product (u, v). We
denote the unitary group by U(V ) and its Lie algebra by u(V ). Recall that
the projective space P(V ) has a natural symplectic form ω for which the
action of U(V ) is Hamiltonian, with moment map

〈µ([v]), X〉 = − i
2

(X.v, v)

‖v‖2
. (15)

6.1 The moment map and symplectic coordinates on
the open orbit in P(V )

We fix an orthonormal basis (ek, 1 ≤ k ≤ n + 1) of V . Thus V = Cn+1,
U(V ) = U(n + 1), P(V ) = Pn(C). Let H be the n-dimensional compact
torus which consists of diagonal matrices h with last entry equal to 1,

h =


eiθ1

.
eiθn

1

 .

We denote the Lie algebra of H by h. Let (Jk, 1 ≤ k ≤ n) be the basis of
h, where Jk is the diagonal matrix with (k, k)-entry equal to i =

√
−1 and

other entries all 0. We denote the dual basis of h∗ by (ηk, 1 ≤ k ≤ n). Then
the moment map for the action of H on Pn(C) is

µ([z]) =
1

2‖z‖2

n∑
k=1

|zk|2ηk, for z = (z1, . . . , zn+1).

Its image is the simplex 1
2
En where

En = {
n∑
k=1

tkηk; tk ≥ 0,
n∑
k=1

tk ≤ 1}.

The group HC has an open orbit in Pn(C), namely the open set O of points
[z1, . . . , zn+1] such that zk 6= 0 for all k. Moreover HC acts freely on O. We
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observe that the image of the open orbit O under the moment map is exactly
the interior of the simplex 1

2
En.

Let us construct an isomorphism of H-Hamiltonian spaces between O
and a neighborhood of the zero section in the cotangent bundle T ∗H ' H.
The h∗ part is read out of the moment map, which for the action of H on
T ∗H ' H × h∗ is the projection H × h∗ → h∗.

We will also denote by En the standard simplex in Rn, ie En = {t =
(tk) ; tk ≥ 0,

∑n
k=1 tk ≤ 1}. Its interior is denoted by E0

n.
We define an H-equivariant map O → H × h∗ by

exp(iX)h.m 7→ (h, µ(exp(iX)m)).

The reciprocal is the map H × 1
2
E0
n → O given by

(eiθ1 , . . . , eiθn , t1, . . . , tn) 7→ [z1, . . . , zn+1],

where

z1 =
√

2t1eiθ1 , . . . , zn =
√

2tneiθn , zn+1 =
√

1− 2(t1 + · · ·+ tn).

We check easily that this map is indeed a diffeomorphism H× 1
2
E0
n → O. Let

us show that it is a symplectomorphism. We compute ω in the coordinates
(θk, tk). Recall that the pullback of ω to the sphere is given by q∗(ω) =
Ω = i

2

∑n+1
k=1 dzk ∧ dzk. Let us denote f(θ, t) = (z1, . . . , zn+1) with zk given

by the above formulas. Then we have f ∗(dzn+1 ∧ dzn+1) = 0 since zn+1 =√
1− 2(t1 + · · ·+ tn) is real. In order to compute the other terms, we observe

that if z = eiθ
√

2t, then dz ∧ dz = dt ∧ dθ. Thus

ω =
n∑
k=1

dtk ∧ dθk.

Thus, as expected, the pull back of ω is the canonical symplectic form of
T ∗H and the coordinates (θk, tk) are Darboux coordinates on the open subset
O ⊂ Pn(C).

We have here a particular case of action-angle coordinates, (see for instance[2]):
if there is a Hamiltonian action of a compact torus H of dimension n on a
manifold M of dimension 2n, with a free orbit H.m, then there exists a
H-equivariant symplectomorphism of a neighborhood of H.m onto a neigh-
borhood of the zero section in T ∗H ' H × h∗. The h∗-component of the
isomorphism (the action coordinates) is read out of the moment map, but
the H-component (the angle coordinates) is not so obvious in the general
case.
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6.2 Convexity of the image of the moment map

6.2.1 Image of orbits and orbit closures under the moment map

Let T be a compact torus with a unitary action on V . Let TC be the com-
plexified torus. We study the induced action of TC on the projective space
P(V ).

If Φ is a subset of t∗, we denote the (closed) convex hull of Φ by E(Φ) and
its relative interior by E0(Φ). Thus E(Φ) is a compact convex polyhedron
(polytope). The definitions of supporting hyperplanes, faces, relative interior
etc. which we recalled for polyhedral cones extend to convex polyhedrons.

Let v ∈ V . We write v =
∑n+1

k=1 zkek in the Hermitian basis of V which
diagonalizes the action of T . Let λk be the corresponding weights. Recall
that Φv is the set of λk such that zk 6= 0, (see Section 5).

Theorem 64. Let v ∈ V \0 and let q(v) be the corresponding point in P(V ).
(i) The image of the orbit TCq(v) under the moment map µ is the relative
interior 1

2
E0(Φv) of the polytope 1

2
E(Φv) ⊂ t∗.

(ii) The image of the orbit closure TCq(v) is the polytope 1
2
E(Φv).

(iii) Two points in TCq(v) have the same image under µ if and only if they
are conjugate under T .
(iv) Furthermore, the moment map sets up a one to one correspondence be-
tween the TC-orbits contained in TCq(v) and the faces of the polytope E(Φv).

Proof. We can assume that Φv generates t∗.
For X ∈ t, we have exp(iX).v =

∑
k zke

−〈λk,X〉 ek. Thus

2µ(q(exp(iX).v)) =

∑
k |zk|2e−2〈λk,X〉λk∑
k |zk|2e−2〈λk,X〉

belongs to the convex hull E(Φv).
All we need is the following projective analogue of Lemma 57.

Lemma 65. Let Φ = (λ1, . . . , λs) be a finite sequence of linear forms on a
real vector space L such that Φ generates L∗. Let ck > 0 for 1 ≤ k ≤ s. Then
the map m : L→ L∗ given by

m(Y ) =

∑s
k=1 cke

〈λk,Y 〉λk∑s
k=1 cke

〈λk,Y 〉

is a diffeomorphism of L onto the interior of the convex hull E(Φ).
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Proof. We introduce the vector space L ⊕ R and λ̃k = (λk, 1) ∈ (L ⊕ R)∗.
We consider the map L⊕ R→ L∗ ⊕ R given by

(Y, x) 7→ (
∑
k

cke
〈λk,Y 〉+xλk,

∑
k

cke
〈λk,Y 〉+x).

By Lemma 57, this map is a diffeomorphism of L ⊕ R onto the open cone
generated by the vectors λ̃k. Let uk > 0 such that

∑
k uk = 1. Thus there

exists a unique Y ∈ L and x ∈ R such that∑
k

cke
〈λk,Y 〉+xλk =

∑
k

ukλk

and ∑
k

cke
〈λk,Y 〉+x = 1.

Hence m is one to one from L onto the interior of the convex hull E(Φ).
Similarly, the fact that m is a diffeomorphism follows from Lemma 57.

The other statements of the theorem are deduced from the corresponding
statements of Theorem 60 in a similar way.

6.2.2 Image of a projective variety under the moment map

Let M̃ ⊆ V be an irreducible complex algebraic cone, defined by homoge-
neous polynomial equations. We assume that M̃ is stable under the action of
T , hence also stable under TC. Let M = q(M̃) be the corresponding projec-
tive variety. Then M is stable under the action of the compact torus T . Let
ΦM = ∪v∈M̃Φv. Similarly to Theorem 63, one proves the following theorem.

Theorem 66. The image of M under the moment map µ is the convex hull
E(ΦM) of ΦM .

6.2.3 Fixed points and vertices of the moment polytope

A point q(v) is fixed under T if and only if v is a weight vector for the action
of T . Let V = ⊕kVλ be the decomposition of V in weight spaces for the
action of T . The connected components of the variety of fixed points P(V )T

are the projective subspaces P(Vλ). The image 2µ(P(V )T ) is the finite set
ΦV of weights of T in V .
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Now let M be a T -invariant subset of P(V ). Then µ(MT ) is a subset of
ΦV which is clearly contained in ΦM . However, in general µ(MT ) is strictly
contained in ΦM .

Example 67. Let M̃ = {z ∈ C3 ; z1z2 − z2
3 = 0} and M = P(M̃), and let T

be the two dimensional torus acting on C3 by (t21z1, t
2
2z2, t1t2z3). Thus the set

of weights of t in V is (2η1, 2η2, η1+η1). The set ΦM is also (2η1, 2η2, η1+η1).
The fixed points in P(V ) are [1, 0, 0], [0, 1, 0], [0, 0, 1]. The first two points

belong to M but the third one [0, 0, 1] does not. Thus µ(MT ) = (2η1, 2η2).

On the other hand we have

Lemma 68. If the image of m ∈M is a vertex of 1
2
EΦM), then m ∈MT .

Proof. We know that µ(m) is a relatively interior point of µ(TC).m) ⊆ µ(M).
So if µ(m) is an extremal point of µ(M) = EΦM), then µ(TC).m) must consist
of just one point, hence Φm itself must consist of just one point.

Remark 69. The points in µ(MT ) need not be extremal points of µ(M), as
shown by the previous example where we take now the whole projective space.

In conclusion, the convexity theorem for a projective variety M can be
stated independently of the realization of M .

Theorem 70. Let M be a closed irreducible subvariety of P(V ) which is
stable under the action of a compact torus T . Then the image of MT under
the moment map is a finite subset of t∗ and the image of M is its convex
hull.

6.3 The convexity theorem for a Hamiltonian torus
action on a compact manifold

In the case of a smooth compact manifold with a Hamiltonian action of
a compact torus T , there is a similar convexity theorem, proved (indepen-
dently) by M. Atiyah [1] and V. Guillemin and S. Sternberg [8]. The two
situations have an intersection: the smooth projective varieties, but neither
is contained in the other. Indeed, in the discussion above, we did not assume
that the variety is smooth.

So, let M be a smooth compact manifold with a Hamiltonian action
of a compact torus T . The fixed point set MT is a closed submanifold
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with finitely many connected components MT
a . We saw that the moment

map µ is constant on each MT
a . Thus the image of MT is the finite subset

{λa = µ(MT
a )} of t∗.

Theorem 71. The image of M under the moment map is the convex hull of
the points λa.

We will not give the proof here. Good references are [2] and [3].

Remark 72. For the convexity theorem, it is important that the symplectic
two-form be non-degenerate. An exemple is V = C2 with a modified two-
form. Let θ be the canonical 1-form,

θ =
1

2

∑
k=1,2

xkdyk − ykdxk.

Let Ω = d((‖z‖2 − 1)θ). Then Ωz is non-degenerate except for ‖z‖2 = 1/2.
Indeed, by invariance, it is enough to compute Ωw for w = (u, 0) with u =
‖z‖. Then we have Ωw = (2u2 − 1)dx1 ∧ dy1 + dx2 ∧ dy2, which is non-
degenerate except for 2u2− 1 = 0. The natural action of T2 on V admits the
moment map

µ(z) = (‖z‖2 − 1)(|z1|2η1 + |z2|2η2).

The image of the sphere ‖z‖2 = r is the segment (r − 1)(t1η1 + t2η2), with
t1 > 0, t2 > 0, t1+t2 = r. Thus the image of V is the union of these segments,
the ”butterfly ” with one infinite wing defined by xy ≥ 0, x + y ≥ −1/4, See
Fig. ??.

This example can be modified to become compact, with a butterfly {xy ≥
0, |x+ y| ≤ K} as image of the moment map.
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7 Orbits and moment map for a linear action

of a complex reductive group

There are several equivalent definitions of a complex reductive group, see [6].
A complex reductive group is in particular a complex Lie group. We will
much use the following property: let K be a maximal compact subgroup of
G, then G is the complexification of K. We write G = KC.

Thus some properties of an action of G can be obtained by restricting
the action to K and constructing K-invariants by integration over K. This
method was called the ”unitarian trick” by Herman Weyl. In particular, any
linear action of G on a finite dimensional complex vector space is completely
reducible, hence the word reductive.

In this section, V will be a finite dimensional complex vector space with
a linear action of G.

7.1 Some properties of G orbits in V

We recall some properties, see [4].

• Orbit closures G.v for the usual topology coincide with orbit closures
for the Zariski topology.

• A G-orbit is Zariski open in its closure.

• The algebra of invariants C[V ]G is finitely generated. ( Examples ...).

It follows that for any u ∈ G.v \ G.v, the dimension of G.u is strictly
smaller than the dimension of G.v.

Another consequence is the

Proposition 73. (i) G-invariant polynomials separate Zariski-closed G-invariant
subsets of V , in particular closed orbits: if F1 and F2 are Zariski-closed, G-
invariant and distinct, there exists p ∈ C[V ]G such that p(v1) 6= p(v2).
(ii) The closure of an orbit contains exactly one closed orbit.

Proof. If F1 and F2 are Zariski closed and disjoint, there exists a polynomial
p ∈ C[V ] which takes the value 0 on F1 and the value 1 on F2. Indeed,
let Ii be the ideal of polynomials which vanish on Fi, for i = 1, 2. Then
I1 + I2 = C[V ], by the nullstellensatz. Assume moreover that F1 and F2 are
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G-invariant. Let dk be a Haar measure on K. Then p̃(v) =
∫
K
p(k.v)dk is

a K-invariant polynomial which still takes the value 0 on F1 and the value
1 on F2. Let us show that p̃ is actually G-invariant. (This is an instance
of the unitarian trick). For v ∈ V fixed, the function g 7→ p̃(g.v) − p̃(v) is
holomorphic on G and vanishes on K, hence it is identically 0.

Any invariant polynomial is constant on the closure G.v, therefore, by
(i), there can be at most one closed orbit contained in G.v. Let G.u ⊂ G.v
be an orbit of minimal dimension. Then G.u is closed.

7.2 Stable and semi-stable points

Definition 74. Let v 6= 0 in V .
v is called unstable if 0 ∈ G.v.
v is called semi-stable if 0 /∈ G.v.
v is called stable if G.v is closed.
The set of stable points is denoted by Vs. The set of semi-stable points is
denoted by Vss.

Let N be the set of unstable points. The nilcone N ∪ {0} is the set of
common zeroes of the ideal C[V ]G+ ⊂ C[V ]G of invariant polynomials without
constant term. Let q1, . . . , qr be a set of generators of C[V ]G, homogeneous of
degree > 0. Then N ∪{0} is also the set of common zeroes of q1, . . . , qr. The
set Vss of semi-stable points is Zariski open. A point v is semi-stable if and
only if there exists an invariant polynomial without constant term p ∈ C[V ]G+
such that p(v) 6= 0.

The affine variety with ring of regular functions C[V ]G is denoted by
V//G. Its points are the closed orbits of G in V . It can be seen as the
quotient of V by an equivalence relation which is not the G-action, but an
enlarged equivalence relation: v is equivalent to v′ if there exists a curve
g(t) ∈ G such that limt→∞ g(t).v = limt→∞ g(t).v′. We will see later that the
moment map provides a realization of V//G as a quotient of a submanifold
of V under the compact group K.

We fix a K-invariant hermitian scalar product h(u, v) on V .
Let g = k + ik be the Cartan decomposition of g. Thus ik acts on V

by hermitian operators with real eigenvalues. Let v ∈ V and X ∈ k. Then
limt→+∞ exp(itX).v = 0 if and only if v is a sum of eigenvectors with eigen-
values < 0, with respect to iX. This remark is the basis of Hilbert-Mumford
unstability criterion.
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Theorem 75 (Hilbert-Mumford criterion). A point v ∈ V is unstable if and
only if there exists X ∈ k such that limt→+∞ exp(itX).v = 0 .

More generally, let G.u be the unique closed orbit contained in G.v, then
there exists X ∈ k such that the limit limt→+∞ exp(itX).v exists and belongs
to G.u.

Remark 76. When G is a torus, any orbit G.w ⊆ G.v can be reached by the
action of a one-parameter subgroup, as we saw in Corollary 61. This is no
longer true when G is not commutative. The criterion holds for the closed
orbit contained in G.v.

Example Let G = SL(2,C) and let V = S3(C2) be the space of homogeneous
polynomials in two variables p(x, y. We consider v = xy2.

If g−1 =

(
a b
c d

)
, then (g.p)(x, y) = p(ax+ by, cx+ dy).

ForX =

(
it 0
0 −it

)
, we have exp(itX).v = e−txy2, hence limt→+∞ exp(itX).v =

0. Let gn =

(
n n2

0 1
n

)
. Then g−1

n .v = 1
n
xy2 + y3, hence w = y3 ∈ G.v.

On the other hand, let us show that there is no one-parameter subgroup
exp(tX) such that limt→+∞ exp(tX).v ∈ G.y3.

Indeed, if limt→+∞ exp(tX).v = g.y3, then exp(tX)g.y3 = g.y3 for every t
. Therefore (replacing X with g−1Xg), we have X.y3 = 0. Here we denote by
X.v the infinitesimal action of the Lie algebra. If E,F,H is the usual basis of
sl(2,C), we have E.v(x, y) = −y ∂v

∂x
, F.v(x, y) = x∂v

∂y
, H.v(x, y) = −x ∂v

∂x
+y ∂v

∂y
.

Therefore we must have X ∈ CE. But exp(tzE).xy2 = xy2 − tzy3 does not
have a limit when t→∞.

Proof of Theorem 75, after H.Kraft [17]. Let T ⊆ K be a maximal compact
torus and let t be its Lie algebra. The proof uses the Cartan decomposition
G = KAK where A = exp(it). See for instance [13] or [9]. By Theo-
rem ??, it is enough to prove that there exists k ∈ K such that TC(k.v)
intersects G.u. Indeed, if TC(k.v) intersects G.u, there exists X ∈ t such
that limt→∞ exp(itX)k.v exists and belongs to G.u. Writing exp(itX)kv =
k exp(itk−1.X).v, we obtain the result, as k−1.X ∈ k.

Assume that TC.w does not meet G.u for any w ∈ K.v. Then for every
w ∈ K.v, there exists a TC-invariant polynomial fw on V which takes the
value 0 on G.u and the value 1 on TC.w. Let

Uw = {z ∈ V, fw(z) 6= 0}.
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Then the compact set K.v is contained in
⋃
w∈K.v Uw, therefore it is contained

in a finite union
K.v ⊆ Uw1 ∪ . . . Uwn .

Consider the function f(z) =
∑n

k=1 |fwi(z)|. Then f(z) is TC-invariant, con-
tinuous, positive, > 0 on K.v and equal to 0 on G.u. Therefore there exists
a > 0 such that f(z) ≥ a for z ∈ K.v. Then f(z) ≥ a for z ∈ TCK.v as well,
since f is TC-invariant. Hence, TCK.v does not intersect G.u, hence KTCK.v
does not intersect G.u either.

Now, by the Cartan decomposition, we have KTCK.v = G.v, which con-
tains G.u, thus a contradiction.

Corollary 77. If TC.v is closed for every maximal compact torus T ⊂ K,
then G.v is closed.

Proof. Fix a compact torus T ∈ K. Then every other compact torus in K
is conjugate to T , so T ′ = k−1Tk, for k ∈ K. Thus T ′C.v is closed if and
only if TCkv is closed. If every TCkv is closed, then G.v is closed by Theorem
75.

Remark 78. The converse is false, as shown by the following example. Let
G = SL(3,C) acting on its Lie algebra by the adjoint representation. Let

A =

 0 1 0
1 0 1
0 0 0

. Then A is diagonalizable, therefore its G-orbit is closed

(see Example 82 below). On the other hand, the orbit under the group of
diagonal matrices is not closed.

7.3 Closed orbits and the moment map

A moment map V → k∗ for the K action on V is given in terms of the
K-invariant Hermitian scalar product. For X ∈ k and v ∈ V ,

〈µ(v), X〉 = − i
2
h(X.v, v).

The moment map is the differential of the norm ‖v‖2 along the G-orbit of v,
up to a constant factor. More precisely,
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Lemma 79. Let X ∈ k and v ∈ V . Let f(t) = ‖ exp(itX).v‖2. Then f(t) is
convex, with derivative at t = 0

d

dt
|t=0‖ exp(itX).v‖2 = 2ih(X.v, v) = −4〈µ(v), X〉. (16)

Proof. Let ek be an orthonormal basis of eigenvectors for the action of iX,
with (real) eigenvalues λk. Let v =

∑
k zkek. Let f(t) = ‖ exp(itX).v‖2 =∑

k e2λkt|zk|2. Then f ′′(t) = 4
∑

k e2λktλ2
k|zk|2 ≥ 0, thus f(t) is convex.

Proposition 80. Let O be a closed G-orbit in V and let Omin be the set of
points of O with minimum norm. Then Omin = µ−1(0)∩O. Moreover Omin
is a K-orbit.

Proof. The set Omin (called the orbit core) is not empty if O is closed. If
v ∈ Omin, then t = 0 is a critical point for the function ‖ exp(itX).v‖2 hence
µ(v) = 0 by (16).

Conversely, let v ∈ µ−1(0) ∩ O. We want to show that ‖g.v‖ ≥ ‖v‖ for
every g ∈ G. Any g ∈ G can be written g = exp(iX)k with k ∈ K and
X ∈ ik. As ‖k.v‖ = ‖v‖, we can assume that g = exp(iX).

Let f(t) = ‖ exp(itX).v‖2. We have f ′(0) = 0, hence ‖g.v‖2 = f(1) ≥
f(0) = ‖v‖2. Thus v ∈ Omin.

Assume that exp(iX).v is also in Omin. Then f(1) = f(0) therefore f(t)
must be constant for t ∈ [0, 1]. This implies λk = 0 for all k such that zk 6= 0,
hence exp(iX).v = v. Thus Omin is a K-orbit.

Theorem 81. A G orbit O is closed if and only if it intersects µ−1(0).
Moreover two points of µ−1(0) which are conjugate under G are conjugate
under K.

Proof. Assume that µ(v) = 0. Then for every compact torus T , the moment
map relative to T vanishes at v. As we have seen in Chapter ??, then the
TC orbit TC.v is closed. Hence the G-orbit G.v is also closed, by Corollary
77. The second statement has already been proved in Proposition 80.

In other words, the space of closed orbits V//G is in one to one corre-
spondence with the topological space µ−1(0)/K. Therefore µ−1(0)/K has a
structure of affine variety, with affine algebra C[V ]G.
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Example 82. Let V = kC with G = KC acting by the adjoint action. We take
the Hermitian product given by h(X, Y ) = Q(X, Y ) where Q is the Killing
form. We identify k with k∗ by means of −Q. Then the moment map is

µ(A+ iB) = −[A,B], for A,B ∈ k.

Indeed, we have

〈µ(A+ iB), X〉 =
i

2
Q([X,A+ iB], A− iB) = Q(X, [A,B]).

A and B are semi-simple, (adA and adB are diagonalizable endomorphisms
of kC) . If [A,B] = 0, then A+iB is also semi-simple. So we have shown that
a KC-orbit in kC is closed if and only if it consists of semi-simple elements.

Proposition 83. Let v ∈ µ−1(0). Then the stabilizer Gv of v in G is the
complexification of its stabilizer Kv in K.

Proof. Let g = exp(iX)k be such that g.v = v. We consider again the convex
function f(t) = ‖ exp(itX)k.v‖2. We have µ(kv) = 0, hence f ′(0) = 0. On
the other hand, we have f(0) = ‖kv‖2 = ‖v‖2 = f(1), hence f(t) is constant
on [0, 1]. Let ek be an orthonormal basis of eigenvectors for the action of
iX, with (real) eigenvalues λk. Let k.v =

∑
k zkek Computing f ′′(t) as in the

proof of Proposition 80, we obtain λk = 0 for all eigenvalues of iX such that
zk 6= 0. Thus X.k.v = 0, hence g.v = k.v, and finally v = k.v.

Remark 84. The converse statement is not true. A point v can have can
have a reductive stabilizer although its orbit Gv is not closed, thus v /∈ µ−1(0).
An example is v = xy2 for the action of SL(2,C). The stabilizer is just {1},
but the orbit is not closed, for instance ax(a−1y)2 = a−1xy2 belongs to it for
any a ∈ C.

Proposition 85. Assume that 0 is a regular value for the restriction of µ
to the unit sphere µ−1(0). Then every semi-stable point v ∈ Vss has a closed
orbit and a finite stabilizer.

Proof. Let v ∈ Vss. Let G.u ⊆ G.v be the (unique) closed orbit contained
in G.v. We can assume that µ(u) = 0. By Lemma 27, the point u

‖u‖ has
a finite stabilizer in K. By proposition 83, u has also a finite stabilizer in
G. It follows that the dimension of G.u cannot be strictly smaller than the
dimension of G.v, hence G.u = G.v.
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8 Action of a complex reductive group on a

projective variety: Kirwan-Mumford con-

vexity theorem.

In this section, we will use implicitly some results about actions of algebraic
groups on algebraic varieties. A good reference is the lecture notes by Michel
Brion http://ccirm.cedram.org/cedram-bin/article/CCIRM_2010__1_1_1_0.pdf

8.1 Highest weights of the space of regular functions
on a G-invariant algebraic cone

Let V be a complex vector space. We denote the projective space by P(V )
and the map V \ 0 → P(V ) by u 7→ q(u) or simply u 7→ [u]. The algebra of
polynomial functions on V is identified with the symmetric algebra S(V ∗).
We write S(V ∗) = ⊕∞n=0S

n(V ∗), where Sn(V ∗) is the space of homogeneous
polynomial of degree n.

Let G ⊆ GL(V ) be a connected complex reductive subgroup of GL(V ).
We fix a maximal compact subgroup K of G and a K-invariant Hermitian

scalar product h(u, v) on V .
The Lie algebra of K is denoted by k and its dual by k∗. We recall that

the moment map µV : V → k∗ is given by

〈µV (v), X〉 = − i
2
h(Xv, v),

and that the moment map µ : P(V )→ k∗ is given by

µ([v]) =
µV (v)

‖v‖2
.

In this section, we consider a G-stable algebraic cone C ⊆ V .
By definition, a regular function on the cone C is the restriction to C of

a polynomial function on V . We denote the space of regular functions on C
by R(C). We have

R(C) = ⊕∞n=0Rn(C).

Let T be a maximal torus of K, with Lie algebra t. We fix a system of
positive roots ∆+. For α ∈ ∆+, we denote by Hα ∈ t the corresponding
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co-root, defined by the equation 〈α,H〉 = Q(H,Hα) for every H ∈ t. The
negative Weyl chamber is

t∗− = {λ ∈ t∗, i〈λ,Hα〉 ≤ 0 for every α ∈ ∆+}. (17)

Any K-invariant subset E ⊆ k∗ is determined by its intersection with t∗−,
since we have E = K(E ∩ t∗−). Our goal is to describe in this manner the
image µ(P(C)) under the moment map, by computing µ(P(C))∩ t∗− in terms
of the representation of K in R(C).

Remark 86. It is only to simplify some computations that we consider the
negative Weyl chamber rather than the positive one t∗+. A K-invariant subset
E ⊆ k∗ is determined as well by its intersection with t∗+. The two sets are
related by

E ∩ t∗− = −w0(E ∩ t∗+)

where w0 is the longest element of the Weyl group.

Let K̂ be the set of irreducible representations of K, identified with finite
dimensional rational irreducible representations of G. For π ∈ K̂, we denote
the isotypic subspace of type π of R(C) by R(C)π. We have

R(C) = ⊕π∈K̂R(C)π.

The set T̂ of characters of the torus T is identified with the weight lattice
P ⊂ it∗. For Λ ∈ P , the corresponding character is denoted by eΛ, it is given
by eΛ(expX) = e〈Λ,X〉. The highest weight of π ∈ K̂ is denoted by Λπ, so
that Λπ = iλπ, with λ ∈ t∗+, the positive Weyl chamber.

Definition 87. We denote by Pn(C) the set of highest weights of [irreducible
sub-representations of ] Rn(C).

Let it∗Q ⊂ it∗ be the rational vector space generated by P over Q. We
consider the following subset of it∗Q

p(C) =
∞⋃
n=0

Pn(C)

n
. (18)

Proposition 88. The set p(C) is convex. Moreover it is the convex hull
(over Q) of a finite set.
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Proof. Let iλ be a highest weight in Rm(C) and iµ be a highest weight in
Rn(C). Then there is a polynomial fλ ∈ Rm(C) which is a highest weight
vector of weight iλ and a polynomial fµ ∈ Rn(C) which is a highest weight
vector of weight iµ. The product fλfµ ∈ Rm+n(C) is non zero, hence it is
a highest weight vector of weight i(λ + µ). Let a ∈ Q, 0 < a < 1. Let
iν = a iλ

m
+ (1 − a) iµ

n
. Let us show that iν ∈ p(C). Let a = p

q
with p, q

integers. Then qmn iν = pn iλ + (q − p)miµ is the highest weight of a K-
type of Rqmn(C) = Rpmn+(q−p)mn(C). So we have proved that p(C) is convex.

Next we show that p(C) is the convex hull of a finite set. We deduce this
result from the fact that the algebra R(C)n

+
is finitely generated, which will

be proven below (Theorem 90). Let (fk, k ∈ K) be a finite set of generators
of R(C)n

+
. We can assume that fk is homogeneous of degree nk and is a

weight vector of weight iλk. Let f ∈ Rn(C) be a highest weight vector with
weight iλ . By Theorem 90, we can write f as a polynomial in the generators
fk. Therefore there exist non-negative integers pk such that n =

∑
k∈K pknk

and λ =
∑

k∈K pkλk. Hence λ
n

belongs to the convex hull of the points λk
nk

.

We will now prove that R(C)n
+

is finitely generated.

Remark 89. If a reductive group G acts on an affine algebraic variety A,
then the algebra of invariants R(A)G is finitely generated (see for instance
[6]). In contrast, if N is a unipotent group with a linear action on a vector
space L, then S(L∗)N need not be finitely generated, as shown by M.Nagata
in his famous counterexample to Hilbert’s fourteen’s problem, for an action
of C13 on C32 [21]. More recently, an example where C6 acts linearly on C18

has been given by R.Steinberg [23].

Theorem 90. Let L be complex vector space with a linear action of a complex
reductive group G. Let A ⊆ L be a G-stable algebraic subset of L. Then
R(A)n

+
is finitely generated.

Proof. Let R(G) be the ring of regular functions on G. First we map R(A)
into R(G× A) = R(G)⊗R(A) by the map

Φ(f)(g, x) = f(g.x).

Example. Let G = GL(2,C) with the standard representation on L = C2.

Take f(x) = x1x2 ∈ S2(L∗). For g =

[
a b
c d

]
, we have f(gx) = acx2

1 + (bc +

ad)x1x2 + bdx2
2.
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Let G act on G×A by (gg−1
0 , g0.x). Then Φ is a linear bijection of R(A)

onto R(G×A)G, with inverse map given by f(x) = F (1, x). Furthermore Φ
commutes with the actions of N , where N acts on G× A by acting only on
the first component G on the left, that is (g0g, x). Thus it is enough to prove
that R(G)N is finitely generated.

Any function h ∈ R(G)N can be written as a coefficient of a finite-
dimensional representation W , in the form h(g) = 〈g−1v, w〉, where v ∈ W n+ .
We decompose W as a sum of irreducible representations Vλ with highest
weight λ We decompose each such λ as a sum of fundamental weights λ =
k1ω1+· · ·+krωr. Thus Vλ is a quotient of the tensor product V ⊗k1ω1

⊗· · ·⊗V ⊗krωr ,
the highest weight vector vλ being the image of the product v⊗k1ω1

⊗· · ·⊗v⊗krωr .
In this way, we obtain h as a polynomial in the N -invariant coefficients of
the fundamental representations Vω1 , . . . , Vωr .

8.2 Kirwan-Mumford convexity theorem

Theorem 91 (Kirwan-Mumford). Let C ⊆ V be a G-stable algebraic cone.
Then the intersection µ(P(C)) ∩ t∗Q,− is equal to −ip(C).

Proof. Let w0 be the longest element of the Weyl group W . The highest
weight of π∗Λ is −w0Λ. Let P̃n(C) be the set of weights Λ such that π∗Λ is a
sub-representation of Rn(C). Let

p̃(C) =
⋃
n∈N

P̃n(C)

n
.

In terms of the positive Weyl chamber, the theorem can be rephrased as
follows.

µ(P(C)) ∩ t∗Q,+ = ip̃(C). (19)

We first prove a key particular case of the theorem, in the form (19).

Example 92. let C = V and G = GL(V ) with maximal compact subgroup
K = U(V ) and maximal torus the diagonal. For every n ∈ N, Rn(C) =
Sn(V ∗) is an irreducible representation of G, with highest weight (n, 0, . . . , 0).
The projective space P(V ) is a single K-orbit and its image µ(P(V )) under
the moment map is the K-orbit of the weight (1, 0, . . . , 0).

Example 93. More generally, let V = VΛ be the space of the irreducible
representation of K with highest weight Λ = iλ and let CΛ = G(CvΛ) be
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the G-orbit of the line CvΛ, where vΛ is a highest weight vector. In the next
lemma, we prove that p̃(CΛ) = {Λ}. This is a particular case of Theorem 91.

Lemma 94. (i) CΛ is a closed algebraic cone, equal to K(CvΛ).
(ii) We have µ([vΛ]) = λ. The moment map is an isomorphism between the
projective variety P(CΛ) and the orbit Kλ ⊂ k∗.
(iii) For every n ∈ N , Rn(CΛ) is irreducible and isomorphic to V ∗nΛ as a
G-module.

Proof. We have n+vΛ = 0. Let b = tC ⊕ n+. Let B = exp b, the Borel
subgroup of G associated to ∆+. Then G = KB and BvΛ = C∗vΛ, hence
G(CvΛ) = K(CvΛ). Therefore G(CvΛ) is a constructible set which is closed
for the Euclidean topology, hence it is also closed for the Zariski topology.

Let us prove (ii). By K-invariance of the Hermitian product, we have
h(Zu, v) + h(u, θ(Z)v) = 0, for any Z ∈ g, where θ is the Cartan involution.
Recall that any element of k can be written as a sum X + Y − θ(Y ), with
X ∈ t and Y ∈ n+. If X ∈ t we have

〈µ([vΛ]), X〉 = −ih(XvΛ, vΛ)

‖vΛ‖2
= 〈λ,X〉.

If Y ∈ n+, we have Y.vΛ = 0, hence h((Y − θ(Y ))vΛ, vΛ) = h(Y vΛ, vΛ) +
h(vΛ, Y vΛ) = 0. Hence µ([vΛ]) = λ and the moment map µ induces a surjec-
tive map of P(CΛ) = K.[vΛ] onto Kλ. It can be shown that the stabilizer of
λ in K is always equal to the stabilize of [vλ]. If λ is regular, it is just T .

Let us prove (iii). Let v∗−Λ ∈ V ∗Λ be the lowest weight vector, with weight
−Λ. As a function on V , it does not vanish on CΛ since 〈v∗−Λ, vΛ〉 = 1. Its
power (v∗−Λ)n is a non zero element of Rn(CΛ) and a lowest weight vector of
weight −nΛ. Hence V ∗nΛ ⊆ Rn(Cλ) for every n ∈ N.

Conversely, let F ∈ Rn(Cλ) be a lowest weight vector. Thus in particular,
F (gvΛ) = F (vΛ) for every g ∈ N−. Therefore F (vΛ) 6= 0, since by assumption
F (v) is not identically zero on Cλ. Next, let us show that the weight of F is
−nΛ. For X ∈ t we have (expXF )(vΛ) = F (exp(−X)vΛ) = F (e−〈Λ,X〉vΛ) =
e−n〈Λ,X〉F (vΛ).

Remark 95. B.Kostant [?] has proved that the ideal which vanish on the
algebraic cone CΛ is generated by its homogeneous elements of degree 2.

Let us now prove the theorem in general. First let us show that −ip(C) ⊆
µ(P(C)). Let Λ = iλ be a highest weight of Rn(C). We want to find x ∈ C \0
such that µ([x]) = −λ

n
.
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Since VΛ is a sub-representation of Rn(C), there exists an injective in-
tertwining operator T ∈ HomG(VΛ, Rn(C)). We can consider T as an ele-
ment of HomG(VΛ, S

n(V ∗)) with the property that if v ∈ VΛ), v 6= 0, then
x 7→ T (v)(x) is not identically 0 on C.

Let W = V ⊕ VΛ. For w = (x, v) ∈ W , let Q(w) = T (v)(x). Then Q
is a G-invariant polynomial function on W , homogeneous of degree 1 with
respect to v ∈ VΛ and homogeneous of degree n with respect to x ∈ V . Let
C∗ act on W by t(x, v) = (tx, t−nv). Then Q is invariant under the action of
G×C∗. Let µW : W → k∗⊕R be the moment map for the action of K ×S1.

Let x0 ∈ C be such that Q(x0, vΛ) = T (vΛ)(x0) 6= 0. There exists a point
(x, v) in the closure of the (G × C∗)-orbit of (x0, vΛ) such that µW (x, v) =
0. As Q is constant on orbit closures, we have Q(x, v) = Q(x0, vΛ) 6= 0.
Therefore x 6= 0 and v 6= 0. As C is G-invariant, the point x is in C \ 0.

The vector v belongs to G(CvΛ) which is equal to K(CvΛ) as we saw in
Lemma 94 (i). Up to K-action, we can assume that v = tvΛ. The relation
µW (x, v) = 0 means that µV (x) + ‖tvΛ‖2λ = 0 and ‖x‖2 − n‖tvΛ‖2) = 0,
hence µ([x]) = −λ

n
.

Conversely, let γ ∈ µ(P(C)) ∩ t∗Q,−. We want to find N ∈ N such that
−iNγ is a highest weight of RN(C). First we choose n so that Λ = −inγ is a
dominant weight. We consider as above W = V ⊕VΛ with the action of G×C∗
and moment map µW . Let v0 ∈ C such that ‖v0‖ = 1 and µV (v0) = γ. Let
vΛ ∈ VΛ a highest weight vector with norm ‖vΛ‖ = 1. Then µW (n1/2v0, vΛ) =
0. Hence the (G×C∗)-orbit of (n1/2v0, vΛ) is closed and 6= {(0, 0)}. Therefore
there exists a (G × C∗)-invariant polynomial Q(x, v) on W which takes the
value 0 at (0, 0) and the value 1 at (n1/2v0, vΛ). Then Q has a constant term
equal to 0. Considering the C∗-action, we have S(W ∗)C

∗
= ⊕k∈NSnk(V ∗) ⊗

Sk(V ∗Λ ). Therefore Q has at least one component Qk ∈ Snk(V ∗)⊗Sk(V ∗Λ ), for
some k > 0, such that Qk((n

1/2v0, vΛ)) 6= 0. Observe that Qk is G-invariant.
Let CΛ = G.(CvΛ) ⊂ VΛ as in Lemma 94. The restriction of Qk to the

cone C ⊕ CΛ is non zero. By Lemma 94, it gives a non zero element of
(Rnk(C)⊗V ∗kΛ)G. Thus we have proved that kΛ = −inkγ is a highest weight
of Rnk(C), as wanted.

8.3 An application of the convexity theorem

Proposition 96. Let Λ1,Λ3,Λ3 be dominant weights. Assume that g1Λ1 +
g2Λ2 + g3Λ3 = 0, for some elements gi ∈ K. Then there exists an integer n
such that (VnΛ1 ⊗ VnΛ2 ⊗ VnΛ3)

G is non zero.
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Proof. The space V = VΛ1 ⊗VΛ2 ⊗VΛ3 is a representation of G×G×G with
highest weight (Λ1,Λ3,Λ3). As in Example 92, we consider the cone

C(Λ1,Λ3,Λ3) = (G×G×G)(CvΛ1 ⊗ vΛ2 ⊗ vΛ3).

The graded ring of regular functions on C(Λ1,Λ3,Λ3) is

R(C(Λ1,Λ3,Λ3)) = ⊕n∈N(VnΛ1 ⊗ VnΛ2 ⊗ VnΛ3)
∗.

The projective variety P(C(Λ1,Λ3,Λ3)) is isomorphic via the moment map to
Kλ1 ×Kλ2 ×Kλ3. Let us restrict the action to the diagonal of G×G×G
. The moment map for the diagonal action of K on Kλ1 × Kλ2 × Kλ3 is
µdiag(α1, α2, α3) = α1 + α2 + α3. By assumption, 0 belongs to the image of
the moment map µdiag(C(Λ1,Λ3,Λ3)). By the convexity theorem, there exists
N ∈ N such that 0 is a highest weight of the diagonal representation of G on
(VnΛ1 ⊗ VnΛ2 ⊗ VnΛ3)

∗. In other words, the space ((VnΛ1 ⊗ VnΛ2 ⊗ VnΛ3)
∗)G is

non zero. Therefore (VnΛ1 ⊗ VnΛ2 ⊗ VnΛ3)
G is also non zero.

Remark 97. If the group elements g1, g2, g3 belong to the Weyl group, then
already

(VΛ1 ⊗ VΛ2 ⊗ VΛ3)
G 6= {0}.

This is a hard result due independently to S.Kumar [18] and O.Mathieu [19].
They proved a conjecture of K.R.Parthasarathy, R.Rao and V.S.Varadarajan
which gives a sufficient condition for a module VΛ to appear in the tensor
product VΛ1⊗VΛ2. See also [14] about problems related to the PRV conjecture.
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9 Kirwan-Mumford quotient

9.1 Mumford quotient

Let V be a complex vector space. Let L 7→ P(V ) be the line bundle whose
space of holomorphic sections is V ∗. (As an associated fibre bundle, L corre-
sponds to the character t−1 of C×). Let G ⊆ GL(V ) be a complex reductive
subgroup of GL(V ). Let C ⊆ V be a G-stable algebraic cone. The ring of
polynomial functions on C is a graded ring R(C) = ⊕∞n=0R

n(C). We consider
M = P(C) as a subvariety of P(V ). The bundle L restricts to a holomorphic
bundle on M which we denote also by L. The space H0(M,Ln) of holomor-
phic sections of Ln identifies with Rn(C). We consider the graded ring of
G-invariant polynomial functions

R(C)G = ⊕∞n=0R
n(C)G.

The goal is to construct a variety M//G with a holomorphic bundle L//G
such that R(C)G is identified with

⊕∞n=0H
0(M//G, (L//G)n),

The variety M//G is called the Mumford quotient of M with respect to the
bundle L.

A point x ∈ C is called semi-stable if the closure of its G-orbit does not
contain 0. Equivalently, there exists a non constant homogeneous G-invariant
polynomial which does not vanish at x. The set Css ⊂ C of semi-stable points
is open in C.

Definition 98. The open subset Mss ⊂M of semi-stable points of M is the
image of Css.

This definition depends on the realization of M as a quotient (C\{0})/C∗.
Here is a more intrinsic definition of Mss. Let M be a projective variety with
an action of a complex reductive group G. Let L → M be a G-equivariant
line bundle. A point x ∈ M is called L-semi-stable if there exists an integer
m > 0 and a G-invariant section s of Lm such that s(x) 6= 0.

Example 99. Let C∗ act on M = P1(C) by t[z1, z2] = [tz1, t
−1z2]. Then

every point is semi-stable except the two poles. The qualifying section is
z1z2, a section of L2.
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Definition 100. If v ∈ V be a semi-stable point, let Gvs be the unique
closed orbit contained in the closure of Gv. Two semi-stable points v, v′ are
called projectively G-equivalent if Gvs = aGv′s for some a ∈ C∗. Denote
this equivalence relation on Css by RG. The Mumford quotient M//G of
M = P1(C) by the group G is the quotient Css/RG .

Example 101. Let C∗ act on C4 by t(u1, u2, u3, u4) = (tu1, t
−1u2, u3, u4). Let

C be the cone defined by the equation u1u2 = u3u4. The set of semi-stable
points is Css = {u ∈ C; (u3, u4) 6= (0, 0)}. The map

u 7→ [u2, u3] : Css → P1(C)

defines a bijection of Css/RG onto P1(C).

Thus, as a set, M//G is just the set of closed orbits modulo homothety.
The point is to define a structure of projective variety on M//G. This is
done in the following way. Let P1, . . . , Pr be a set of homogeneous generators
of the ring S(V ∗)G, with degrees n1 > 0, . . . , nr > 0.

Lemma 102. The map V → Cr given by u 7→ (P1(u), . . . Pr(u)) maps the
cone C on a Zariski closed subset Z of Cr, which is invariant by the action
of C∗ on Cr given by tq = (tn1q1, . . . , t

nrqr). This map induces a bijection of
M//G on (Z \ {0})/C∗.

Proof. By definition, the map u 7→ (P1(u), . . . Pr(u)) defines a map from the
set M//G onto (Z\{0})/C∗. As invariant polynomials separate closed orbits,
this map in one-to-one.

The quotient (Z \ {0})/C∗ is compact for the Euclidean topology. It
follows that it is a projective variety.

9.2 Mumford quotient and symplectic reduction

Let K be a maximal compact subgroup of G with Lie algebra k. We fix a
K-invariant Hermitian product on V etc.

Proposition 103. Let µ : P(V ) → k∗ be the moment map. Define Mred =
(µ−1(0) ∩M)/K. Then M//G is isomorphic to Mred.

Proof. This follows from the fact that (µ−1(0) ∩ M)/K parameterizes the
closed G-orbits in C which intersect the unit sphere of V .
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Proposition 104. Assume that the action of K on µ−1(0)∩M is infinites-
imally free. Then every semi-stable G-orbit in C is closed, and the action of
G on Mss is infinitesimally free. Thus M//G = Mss/G.

Proof. Let v ∈ V \ {0} and X ∈ g. Then [exp tX.v) = [v] if and only if
Xv = av with a ∈ C. If v is semi-stable, then a = 0, otherwise 0 would be
in the closure of (expCX)v = C∗v.

Assume now that there exists a semi-stable orbit Gu ⊂ C which is not
closed. Let Gv be the closed orbit contained in the closure of Gu. The
dimension of Gv is strictly smaller than that of Gu, therefore there exists a
non-zero X ∈ g such that Xv = 0. Moreover we can assume that µV (v) = 0,
as every closed orbit meets µ−1

V (0) . We have seen that the G-stabilizer of
v is the complexification of its K-stabilizer (Proposition 83). So there exists
Y ∈ k such that Y v = 0. This contradicts the hypothesis that the action of
K on µ−1(0) ∩M is infinitesimally free.

9.3 G-invariant rational sections

Theorem 105 (Mumford). Let φ be a rational function, homogeneous of
degree k ≥ 0, defined on the open set Css. If φ is G-invariant, then φ is the
restriction to Css of a homogeneous G-invariant polynomial.

It follows that the space of G-invariant rational functions, homogeneous
of degree k ≥ 0, defined on the open set Css, is finite dimensional.

Remark 106. The condition that φ is G-invariant is important. Let us

look at Example 99 with C = C2. Then Css = (C∗)2. The function
zk+1
1

z2
is homogeneous of degree k and defined on Css. However there is only one
invariant function of degree 2k namely zk1z

k
2 .

Proof. Let S ⊂ V be the unit sphere. We are going to show that φ is bounded
from above on S ∩ Css. This implies the theorem .

Let F = µ−1(0) ∩ S ∩ C. Then F is compact and φ is defined at every
point of F . Let A = maxv∈F φ(v). Let u ∈ S ∩ Css. There exists g ∈ G
such that v = gu ∈ µ−1(0). We have φ(u) = φ(v) and ‖v‖ ≤ ‖u‖ = 1. Thus
φ(v) = ‖v‖kφ(v/‖v‖) ≤ A.

If M and M//G are smooth, the bundle Lk restricted to M quotients out
to a line bundle Lk//G on M//G. The theorem reads

H0(M//G,Lk//G) = H0(M,Lk)G.
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In other words ”Quantization commutes with Reduction”. This is a very
important result. It has been proven in the symplectic setup by E.Meinrenken
and R.Sjamaar [20]. In the algebraic setup, C.Teleman [24] and M.Braverman
[5] have generalized the result in every degree in cohomology.
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