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Abstract

We prove uniqueness of the solution of the Euler equations with bounded vorticity for bounded
simply connected planar domains with corners forming acute angles. Our strategy consists in
mapping such domains on the unit disk via a biholomorphism. We then establish log-Lipschitz
regularity for the resulting push-forward of the velocity field, which leads to uniqueness thanks to
a Gronwall estimate involving the Lagrangian trajectories on the unit disk.

1 Introduction

In this paper, we consider the motion of an ideal incompressible fluid in a bounded open set Ω ⊂ R2.
The velocity of the fluid u = (u1(t, x1, x2), u2(t, x1, x2)) satisfies the 2-D Euler equations:{

∂tu+ u · ∇u+∇p = 0,

div u = 0,
(1.1)

where p : Ω → R denotes the pressure. We supplement (1.1) with the initial data and an imperme-
ability condition at the boundary ∂Ω:

u(0, ·) = u0(·), u · n|∂Ω = 0. (1.2)

A natural quantity in the setting of fluids is the vorticity, defined by

ω = curlu = ∂1u2 − ∂2u1,

which satisfies the transport equation

∂tω + u · ∇ω = 0, ω(0, ·) = ω0(·) = curlu0(·).

There is a large variety of results for the 2-D Euler equations in the case of smooth domains or in the
full plane. Global existence and uniqueness of smooth solutions was obtained in 1933 by Wolibner [23]
(see also Kato [14] and Temam [21]). In [24], Yudovich established global existence and uniqueness of
the weak solution with uniformly bounded and integrable vorticity (see also Bardos [3] for a different
approach concerning the existence part). Yudovich’s arguments actually yield uniqueness for a larger
class of initial vorticities (with a logarithmic-type blow up of the Lp norms as p → ∞), see [25] and
more recently [5, 6, 22]. Global weak solutions exist with very few regularity assumptions on the
vorticity [8, 10] or on the boundary [4, 11, 20], while the above-mentioned uniqueness results hold for
C1,1 boundaries and Yudovich-type data. In domains with obtuse angles, uniqueness was obtained by
Lacave [15] for single-signed and bounded vorticity. Recently, a uniqueness result without any sign
condition has been established by Bardos, Di Plinio and Temam [4] when the domain is a rectangle.

The purpose of the present paper is to establish uniqueness for the 2-D Euler equations with bounded
vorticity for a class of domains Ω /∈ C1,1, more precisely:
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(H) Ω is a bounded and simply connected open subset of R2, with ∂Ω belonging to C2,α (α > 0)
except in a finite number of points {xk}k=1,...,N where ∂Ω is a corner of angle θk ∈ (0, π/2].

This means that Ω is locally parameterized close to xk by {z = xk + reiθ, 0 < θ < θk, 0 < r < r0} for
some r0 > 0.

Existence of a global weak solution, with u ∈ L∞(R+;L2(Ω)) and ω ∈ L∞(R+ × Ω), of the 2-D
Euler equations (1.1)-(1.2) was proved by Taylor [20] for convex domains (see also [4] for further refined
results) and by Gérard-Varet and Lacave [11] for more general (possibly not convex) domains.

Here we will establish uniqueness of the weak solution:

Theorem 1.1. Assume that Ω satisfies (H). Let u0 be a vector field such that

curlu0 ∈ L∞(Ω), div u0 = 0, u0 · n|∂Ω = 0.

Then the Euler equations (1.1)-(1.2) have a unique global weak solution such that

u ∈ L∞(R+;L2(Ω)), curlu ∈ L∞(R+ × Ω).

We now give a few words on the main techniques involved in the previous proofs by Yudovich [24]
of uniqueness and the new ingredients used in the present paper.

The usual argument uses the regularity of the velocity u = ∇⊥∆−1ω when ω is a bounded function.
When ∂Ω ∈ C1,1, the Calderón-Zygmund inequality (see e.g. [19]) implies that the solution of

∆ψ = ω on Ω, ψ|∂Ω = 0 (1.3)

verifies for p ∈ (1,∞):
‖D2ψ‖Lp(Ω) ≤ C(p,Ω)‖ω‖Lp(Ω). (1.4)

Moreover, there exists C(Ω) independent of p such that for any p ∈ [2,∞), C(p,Ω) = C(Ω)p in the
above inequality. Hence, if ω ∈ L∞(R+×Ω), the Calderón-Zygmund inequality yields that the velocity
u = ∇⊥ψ belongs to L∞(R+;W 1,p(Ω)) for any p <∞. For a Gronwall type argument, we would need
an estimate in W 1,∞, which we almost have. In his uniqueness proof in [24], Yudovich used the fact
that C(p,Ω) = C(Ω)p in a crucial way to close the Gronwall estimate.

Concerning non-smooth domains, the Calderón-Zygmund inequality (1.4) does not hold in general.
One striking counter-example was constructed by Jerison and Kenig in [13]: the authors exhibit a
smooth function ω and a bounded domain such that ∂Ω ∈ C1 for which the second derivative of ψ
(the solution of the Laplace problem (1.3)) is not integrable. This remark is an important obstruction
to apply this argument for proving uniqueness.

The class of domains satisfying assumption (H) falls into the scope of the elliptic theory for the
Laplace problem (1.3) in domains with corners. This problem has been extensively studied (see e.g.
[7, 12, 17]), and the behavior of ψ close to the corners is well understood. In particular, the velocity
u = ∇⊥ψ is not bounded if θk > π, and if θk > π/2, the velocity does not belong to

⋂
p<∞W

1,p(Ω)
(which is the required regularity for the Yudovich’s argument). For corners θk > π/2, the sign condition
in [15] enables to prove that the support of the vorticity never intersects the boundary, which is the
place where the velocity is not regular (see [15] for more details). On the contrary, when θk ≤ π/2, it
is proved in [12] that (1.4) holds for all 2 ≤ p < +∞ with a constant C(p,Ω) depending only on p and
Ω. However, the estimate (1.4) with C(p,Ω) = C(Ω)p does not seem to be available in the literature.
Bardos, Di Plinio and Temam [4] noticed that the proof of Grisvard [12] yields C(p,Ω) = C(Ω)p2,
which is not sufficient to prove the uniqueness by the Yudovich method. Thanks to a symmetry and
reflection argument (only valid for convex domains with angles θk = π/mk, mk ∈ N,mk ≥ 2), the
authors establish a new BMO estimate yielding (1.4) with C(p,Ω) = C(Ω)p.
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Our strategy is quite different here since it does not rely on the estimate (1.4). Instead we first
map Ω to the unit disk D by a biholomorphism T . Then we establish a log-Lipschitz (also called
almost-Lipschitz) type estimate for the push forward of u to the unit disk:

U(y, t) := DT (T −1(y))u(T −1(y)),

which leads to an alternative proof of uniqueness using the trajectories of the Lagrangian flow of U as
is done in e.g. [16, Theo. 3.1, Chapter 2]. We emphasize that in our proof no estimate for ‖∇u‖Lp ,
for p → +∞, nor the log-Lipschitz regularity for u are needed. Only the log-Lipschitz regularity for
U is used. The authors expect that the methods used therein could deal with uniqueness for other
problems whose solutions are not regular enough for the usual techniques.

Let us mention that the assumption ∂Ω ∈ C2,α away from the corners is a restriction which comes
from a complex analysis result (namely the Kellogg-Warschawski theorem, see Proposition 2.1). It
would be more natural to assume ∂Ω ∈ C1,1 away from the corners, which should be obtain in future
work. Another interesting direction would be to check if our techniques can be applied to more general
(unbounded) Yudovich data, i.e. extending [5, 6, 22, 25] (for instance) where C(p,Ω) = C(Ω)p in (1.4)
is needed.

The remainder of this work is organized in four sections. In the following section, we introduce
the Riemann mapping, namely the biholomorphism mapping Ω to the unit disk D and we establish
some estimates holding in the neighborhoods of the angles of Ω. We then recall the explicit formula of
the Biot-Savart law (giving the velocity in terms of the vorticity) in terms of the Riemann mapping.
Section 3 is the central part of this paper: thanks to the previous explicit formula and to the estimates
on the Riemann mapping, we establish a new log-Lipschitz estimate for U . As the proof of the log-
Lipschitz estimate is rather technical and follows from the same idea as an L∞ estimate for u, we
exemplify our techniques by reproving the latter estimate and we postpone the log-Lipschitz proof to
the last section. The proof of Theorem 1.1 is performed in Section 4, by means of a Gronwall estimate
involving the flow trajectories.

Notations. In the sequel, C will denote a constant depending only on the domain Ω, the value
of which can possibly change from a line to another.

2 Conformal Mapping and Biot-Savart Law

2.1 Conformal mapping

Let Ω be a bounded simply-connected open subset of R2. Identifying R2 with C, the Riemann mapping
theorem states that there exists a biholomorphism T mapping Ω to the unit disk D = B(0, 1) and ∂Ω
to ∂D. In the same spirit of [15, Theo. 2.1], we prove the following

Proposition 2.1. Assume that there exists α > 0 such that ∂Ω is C2,α except at a finite number of
points xk, k = 1, . . . , N, at which ∂Ω is a corner of angle θk. There exists 0 < δ < 1

3 mini 6=j(|xi −
xj |, |T (xi)− T (xj)|), and there exist K > 1 and M > 1, depending only on Ω and δ, such that

• for all x ∈ Ω \ (∪Nk=1B(xk, δ)), all y ∈ D \ (∪Nk=1B(T (xk), δ)) and any k = 1, . . . , N we have:

|DT (x)|+ |D2T (x)| ≤ K,
|DT −1(y)| ≤ K;
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• for any k = 1, . . . , N , all x ∈ Ω ∩B(xk, δ), all y ∈ D ∩B(T (xk), δ) we have:

M−1|x− xk|π/θk ≤ |T (x)− T (xk)| ≤M |x− xk|π/θk ,
|DT (x)| ≤M |x− xk|π/θk−1, |D2T (x)| ≤M |x− xk|π/θk−2,

M−1|y − T (xk)|θk/π ≤ |T −1(y)− xk| ≤M |y − T (xk)|θk/π,
|DT −1(y)| ≤M |y − T (xk)|θk/π−1.

Proof. Even if the estimates concerning T −1 and DT −1 can be found in [18, Theo. 3.9], we provide
here a self-contained proof.

For simplicity, we first assume that there is only one corner with vertex x1 and angle θ1. Thus
∂Ω is smooth except at x1. In this proof we identify R2 and C to write T ′(z), T ′′(z), z ∈ C instead of
DT (x), D2T (x).

We introduce ϕ1(z) = (z − x1)π/θ1 and Ω̃ = ϕ1(Ω) a C2,α bounded open set. Indeed, ϕ1 locally
sends the corner to the half plane. Then, f := ϕ1 ◦ T −1 is a Riemann mapping from D to Ω̃. By
the Kellogg-Warschawski Theorem (see [18, Theo. 3.6]), we infer that f is C2 on D. Moreover, there
exists a positive C1 such that

C−1
1 ≤ |f ′(ζ)| ≤ C1, ∀ζ ∈ D

(see e.g. [18, Theo. 3.5]). Therefore, differentiating the relation Id = T ◦ ϕ−1
1 ◦ f , we compute

1 = f ′(ζ)(ϕ−1
1 )′(f(ζ))T ′(ϕ−1

1 ◦ f(ζ)). (2.1)

Since (ϕ−1
1 )′(f(ζ)) = θ1

π f(ζ)θ1/π−1 = θ1
π (ϕ−1

1 ◦ f(ζ)−x1)1−π/θ1 we finally obtain (with x = ϕ−1
1 ◦ f(ζ))

C−1
2 |x− x1|π/θ1−1 ≤ |T ′(x)| ≤ C2|x− x1|π/θ1−1, ∀x ∈ Ω. (2.2)

In particular, it follows from the mean-value theorem that

|T (x)− T (x1)| ≤ C2 sup
u∈[x1,x]

|u− x1|π/θ1−1|x− x1| ≤ C2|x− x1|π/θ1 ,

which also implies that

C
θ1/π
2 |y − T (x1)|θ1/π ≤ |T −1(y)− x1|.

Next, by (2.2) and the above estimate we have (since 1− π/θ1 < 0)

|(T −1)′(y)| ≤ C2|T −1(y)− x1|1−π/θ1 ≤ C3|y − T (x1)|θ1/π−1.

The mean-value theorem yields

|T −1(y)− x1| = |f(y)|θ1/π = |f(y)− f(T (x1))|θ1/π ≤ C4|y − T (x1)|θ1/π, ∀y ∈ D,

which also implies

C
π/θ1
4 |x− x1|π/θ1 ≤ |T (x)− T (x1)|, ∀x ∈ Ω.

Finally, differentiating (2.1) we obtain

0 = f ′′(ϕ−1
1 )′(f)T ′(ϕ−1

1 ◦ f) + (f ′)2(ϕ−1
1 )′′(f)T ′(ϕ−1

1 ◦ f) + [f ′(ϕ−1
1 )′(f)]2T ′′(ϕ−1

1 ◦ f)

and the various previous bounds imply (with x = ϕ−1
1 ◦ f(ζ))

|T ′′(x)| ≤ C5|x− x1|π/θ1−2, ∀x ∈ Ω.
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The conclusion follows for the estimates in the neighborhood of x1. The first part of the estimates
(away from B(x1, δ) for a fixed δ > 0) is easily deduced from the previous ones.

When Ω has exactly two corners, we set ϕ1(z) = (z − x1)π/θ1 , ϕ2(z) = (z − ϕ1(x2))π/θ2 , Ω̃ =
ϕ2 ◦ ϕ1(Ω) and f = ϕ2 ◦ ϕ1 ◦ T −1. We note that ϕ1(Ω) has only one corner at the point ϕ1(x1) with
angle θ2 (because conformal mappings preserve angles). Therefore, Ω̃ is a C2,α bounded open set and
the Kellogg-Warschawski Theorem can be applied on f . Hence we can follow exactly the same proof
as in the case of one corner. Since ϕ1 (resp. ϕ−1

1 ) is smooth away from x1 (resp. ϕ1(x1)) we obtain
the estimates of Proposition 2.1. For N corners, we proceed in the same way: we apply ϕk which
sends the angle θk to the half plane, passing to N + 1− k corners to N − k corners.

Remark 2.2. This proposition is one key point of our analysis and will be used in several estimates.
The divergence of DT −1 close to the corners is linked with the behavior of ∆−1, and the form of the
divergence will be crucial. Alternatively, we claim that Theorem 1.1 holds for more general corners:
let γ a parametrization of ∂Ω (couterclockwise direction, i.e. Indγ(z) ∈ {0, 1}), then we can consider:

(H’) γ is a C2,α (α > 0) Jordan curve, except in a finite number of points {xk}k=1,...,N of parameter
{sk}k=1,...,N where lim

s→0,s>0
arg(−γ′(sk − s), γ′(sk + s)) = θk ∈ (0, π/2].

Actually, in the previous proof of Proposition 2.1, we would also need a compatibility condition on γ′′

near sk so that (γ(s)− xk)π/θk is C2,α close to sk, in order to use the Kellogg-Warschawski Theorem.
For simplicity, we will further assume that ∂Ω is locally a corner near xk, namely that (H) is satisfied.

Remark 2.3. The assumption ∂Ω ∈ C2,α away the corners comes from the use of Kellogg-Warschawski
Theorem to get estimates on the second-order derivatives, which will be useful in our analysis (in
particular for the log-Lipschitz regularity, see Section 5).

In this article, we only consider acute angles 0 < θk ≤ π
2 . We set

αk := 1− θk
π
, so that

1

2
≤ αk < 1.

In particular, we infer from Proposition 2.1 that

|DT (T −1(y))| ≤ C|y − T (xk)|αk , ∀y ∈ B(T (xk), δ) ∩D; (2.3)

|D2T (T −1(y))| ≤ C|y − T (xk)|2αk−1, ∀y ∈ B(T (xk), δ) ∩D; (2.4)

|DT (T −1(y))| ≤ C, ∀y ∈ D; (2.5)

and

|DT −1(T (x))| ≤ C|x− xk|1−1/(1−αk). (2.6)

Indeed, in the neighborhood of T (xk) we have:

|DT (T −1(y))| ≤M |T −1(y)− xk|π/θk−1 ≤MMπ/θk−1|y − T (xk)|1−θk/π

because π/θk − 1 ≥ 0. Moreover

|D2T (T −1(y))| ≤M |T −1(y)− xk|π/θk−2 ≤MMπ/θk−2|y − T (xk)|1−2θk/π

because π/θk − 2 ≥ 0. Finally,

|DT −1(T (x))| ≤M |T (x)− T (xk)|θk/π−1 ≤MM−θk/π+1|x− xk|1−π/θk .

Remark 2.4. Since T is holomorphic we have

DT (x)DT T (x) = det(DT (x))Id = | det(DT (x))|Id.
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2.2 Biot-Savart Law

In this subsection, we recall briefly the Biot-Savart law on bounded and simply connected open domains
(for more details, we refer to [15] and references therein). Let Ω be such a domain. For any ω ∈ L∞(Ω),
there exists a unique vector field u such that

u ∈ L2(Ω), div u = 0 on Ω, curlu = ω on Ω, u · n = 0 on ∂Ω.

Moreover, this vector field is given in terms of ω by the explicit formula of the Biot-Savart law:

u(x) = KΩ[ω](x) =

∫
Ω
KΩ(x, x̃)ω(x̃) dx̃, (2.7)

with

KΩ(x, x̃) =
1

2π
DT T (x)

(
(T (x)− T (x̃))⊥

|T (x)− T (x̃)|2
− (T (x)− T (x̃)∗)⊥

|T (x)− T (x̃)∗|2

)
= DT T (x)KD(T (x), T (x̃)),

where T is any biholomorphism mapping Ω to D = B(0, 1) (see the previous subsection) and where
KD is the Biot-Savart kernel for the unit disk:

KD(x, x̃) =
1

2π

(
x− x̃
|x− x̃|2

− x− x̃∗

|x− x̃∗|2

)⊥
, x 6= x̃ ∈ D.

Here the star comes from the image method, i.e.

z∗ :=
z

|z|2
,

and

(
z1

z2

)⊥
=

(
−z2

z1

)
(we set KD(x, 0) = 1

2π
x⊥

|x|2 ). For all y ∈ D, changing variable z = T (x̃) in the

integral, one can rewrite the Biot-Savart law as follows:

u(T −1(y)) =
1

2π
DT T (T −1(y))

∫
D

(
(y − z)⊥

|y − z|2
− (y − z∗)⊥

|y − z∗|2

)
ω(T −1(z)) det(DT −1(z)) dz. (2.8)

We next recall the following useful properties for the Biot-Savart Kernel on D:

Lemma 2.5. There exists C > 0 such that:

|KD(y, z)| ≤ C

|y − z|
, ∀(y, z) ∈ D2, y 6= z, (2.9)

and

|KD(y1, z)−KD(y2, z)| ≤ C
|y1 − y2|

|y1 − z||y2 − z|
, ∀(y1, y2) ∈ D2, z ∈ D \ {y1, y2}. (2.10)

Proof. For the first estimate, the case z = 0 is obvious, and we compute for z 6= 0:

|y − z| ≤ |y − z∗|+ |z∗ − z|.

We denote by r = |z| and pD(z∗) the orthogonal projection of z∗ on D. Then, for any z ∈ D \ {0}, we
have |z∗| > 1 and pD(z∗) ∈ [z, z∗]. We compute easily that

|pD(z∗)− z| = 1− r, |z∗ − pD(z∗)| = 1

r
− 1,
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so

|z∗ − z| = (1− r) + (
1

r
− 1).

We observe that, since r > 0, we have that 1− r ≤ 1
r − 1, hence

|z∗ − z| ≤ 2(
1

r
− 1) = 2d(z∗, D) ≤ 2|z∗ − y|, ∀y ∈ D.

Therefore
|y − z| ≤ 3|y − z∗|, ∀(y, z) ∈ D × (D \ {0}) (2.11)

which implies that

2π|KD(y, z)| ≤ 1

|y − z|
+

1

|y − z∗|
≤ 4

|y − z|
,

which ends the proof of (2.9).
The second estimate follows directly from (2.11) and the following equality∣∣∣ a|a|2 − b

|b|2
∣∣∣= |a− b||a||b|

(2.12)

which can be proved by squaring both sides.

Moreover, we have the classical log-Lipschitz regularity:

Lemma 2.6. There exists C > 0 such that for all (y1, y2) ∈ D2:∫
D
|KD(y1, z)−KD(y2, z)|dz ≤ Ch(|y1 − y2|),∫

D
|KD(z, y1)−KD(z, y2)|dz ≤ Ch(|y1 − y2|),

where h : R+ → R+ is defined by

h(r) := r(1 + | ln r|), ∀r ≥ 0. (2.13)

Proof. The first estimate is standard (see e.g. [16, Lem. 3.1, Chapter 2]), but we write this proof
because it will be extended later for Ω.

Let y1, y2 ∈ D, let d = |y1 − y2| and ỹ = y1+y2
2 .

Then we separate the integral in two parts:∫
B(ỹ,d)∩D

|KD(y1, z)−KD(y2, z)| dz +

∫
B(ỹ,d)c∩D

|KD(y1, z)−KD(y2, z)| dz.

When |ỹ − z| ≥ d then |ỹ − z| ≤ d
2 + |y1 − z| ≤ |ỹ−z|2 + |y1 − z| which implies that |y1 − z| ≥ |ỹ−z|2 . In

the first integral above, we use (2.9) whereas in the second one we use (2.10):∫
D
|KD(y1, z)−KD(y2, z)| dz ≤

∫
B(ỹ,d)

C dz

|y1 − z|
+

∫
B(ỹ,d)

C dz

|y2 − z|
+

∫
B(ỹ,d)c∩D

Cddz

|y1 − z||y2 − z|

≤ 2C

∫
B(0,3d/2)

dy

|y|
+ Cd

∫
B(0,2)\B(0,d)

4 dy

|y|2

≤ 6πCd+ 8πCd(ln 2− ln d) ≤ Ch(d),

which ends the proof for the first inequality.
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The second statement is original and will be used only at the end of the article (namely in estimate
F2 in Subsection 4.2). As before, we separate the integral in two parts, the first part of which can be
treated exactly in the same way using (2.9):∫

B(ỹ,d)∩D
|KD(z, y1)−KD(z, y2)|dz ≤

∫
B(ỹ,d)

C dz

|y1 − z|
+

∫
B(ỹ,d)

C dz

|y2 − z|
≤ 6πCd.

Concerning the second part, we write:

|KD(z, y1)−KD(z, y2)| ≤ |y1 − y2|
|z − y1||z − y2|

+
|y∗1 − y∗2|

|z − y∗1||z − y∗2|
=

|y1 − y2|
|z − y1||z − y2|

+
|y1 − y2|

|y1||y2||z − y∗1||z − y∗2|
,

where we have used (2.12) three times. The first term in the right-hand side is exactly the one which
was treated in the first statement. Without loss of generality, we can restrict to the case where d < 1/4.
So for z ∈ B(ỹ, d)c ∩D, we consider two cases:

Case 1: y1 or y2 belongs to B(0, 1/4).
As d < 1/4, it implies that both y1 and y2 belong to B(0, 1/2), hence we have for i = 1, 2:

|yi||z − y∗i | =
∣∣∣|yi|z − yi

|yi|

∣∣∣ ≥ 1− |yi||z| ≥
1

2

because z ∈ D. Therefore, we conclude easily:∫
B(ỹ,d)c∩D

|KD(z, y1)−KD(z, y2)| dz ≤ d
∫
B(ỹ,2)\B(ỹ,d)

( 4

|z − ỹ|2
+ 4
)

dz ≤ Cd(1 + | ln d|).

Case 2: y1 and y2 belongs to B(0, 1/4)c.
By (2.11), we write that

|yi||z − y∗i | ≥
1

4

1

3
|z − yi| ≥

1

4

1

3

1

2
|z − ỹ|

because |ỹ−z| ≥ d (see the proof of the first statement). So, the conclusion is as in the first statement:∫
B(ỹ,d)c∩D

|KD(z, y1)−KD(z, y2)|dz ≤ d
∫
B(ỹ,2)\B(ỹ,d)

(4 + 242) dz

|z − ỹ|2
≤ Cd(1 + | ln d|).

The lemma is proved.

We conclude this section by recalling the following property, which expresses the fact that the
velocity field (DT u) ◦ T −1 is tangent to the boundary ∂D:

Lemma 2.7. Let y such that |y| = 1. Then

KD(y, z) · y = 0, ∀z ∈ D.

Proof. This can be proved from the following basic computation:

2πKD(y, z) · y =
−z⊥ · y
|y − z|2

+
z∗⊥ · y
|y − z∗|2

= z⊥ · y
(|y|2 − 1)( 1

|z|2 − 1)

|y − z|2|y − z∗|2
, ∀y, z ∈ R2, z /∈ {y, y∗}.
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3 L∞, W 1,p and log-Lipschitz regularity

As mentioned in the introduction, it is classical in elliptic theory on domains with acute corners that
if ω ∈ Lp(Ω) then u ∈ W 1,p(Ω) for any p ∈ [1,∞), where u is given by (2.7) (see e.g. [12, Theo.
4.4.4.13]). For sake of self-containedness, we include in the proof of the proposition below the precise
references stating that all the W 1,p norms can be controlled by the L∞ norm of ω. In particular, since
a bounded vorticity solution ω(t, ·) of the Euler equations satisfies ‖ω(t, ·)‖L∞(Ω) ≤ ‖ω(0, ·)‖L∞(Ω) this
will provide uniform in time estimates for the W 1,p norms of the corresponding velocity u(t, ·).

Proposition 3.1. Let Ω satisfy (H). For any p ∈ (1,∞), there exists a constant C(p,Ω) depending
on Ω and p such that for any u given by (2.7) with ω ∈ L∞(Ω),

‖u‖W 1,p(Ω) ≤ C(p,Ω)‖ω‖L∞(Ω).

Proof. In this proof the notation Kj , j ∈ N refers to constants depending only on p and Ω.
As ω ∈ L∞(Ω) then Theorem 4.4.4.13 in [12] states that the solution of the elliptic problem (1.3)

verifies ψ ∈ W 2,p(Ω) for any p ∈ [1,∞). Hence, Theorem 4.3.2.4 for p 6= 2 and Theorem 4.3.1.4 for
p = 2 imply that

‖ψ‖W 2,p(Ω) ≤ K1(‖ω‖Lp(Ω) + ‖ψ‖W 1,p(Ω)). (3.1)

We assume first that p = 2. By performing an energy estimate on (1.3) together with Cauchy-Schwarz,
Hölder and Poincaré inequalities we have

‖∇ψ‖2L2(Ω) ≤ ‖ω‖L2(Ω)‖ψ‖L2(Ω) ≤ K2‖ω‖L∞(Ω)‖∇ψ‖L2(Ω)

so that ‖ψ‖H1(Ω) ≤ K3‖∇ψ‖L2(Ω) ≤ K3K2‖ω‖L∞(Ω). Coming back to (3.1) we obtain the estimate:

‖ψ‖H2(Ω) ≤ K4‖ω‖L∞(Ω).

Then we assume that p 6= 2. Using first the embedding of H1(Ω) in Lp(Ω), then the previous
estimate for p = 2, we infer that

‖ψ‖W 1,p(Ω) ≤ K5‖ψ‖H2(Ω) ≤ K6‖ω‖L∞(Ω),

so that, using again (3.1) we obtain

‖ψ‖W 2,p(Ω) ≤ K6‖ω‖L∞(Ω).

Since u = ∇⊥ψ, the proof is complete.

In particular, the previous estimates also yield that u is bounded, with ‖u‖L∞(Ω) ≤ C(Ω)‖ω‖L∞(Ω).
However, in order to exemplify in a simpler setting our techniques, which will be used for the log-
Lipschitz regularity, we present below an alternative proof of this fact. It is based only on the Biot-
Savart law, without using theorems from the elliptic theory in domains with corners. In the formula
(2.8), we recognize a Biot-Savart type law in D corresponding to a vorticity given by

ω̃(z) = ω(T −1(z)) det(DT −1(z)) ≤ C‖ω‖L∞ |z − T (xk)|−2αk .

In view of (2.9) a natural assumption in order to show that KD[ω̃] is uniformly bounded is that
ω̃ belongs to Lq for some q > 2. However, ω̃ can possibly not belong to Lq, for none of q > 2,
because αk ≥ 1/2. The main idea of the following proposition is to take advantage of DT T (T −1(y)) =
O(|y − T (xk)|αk) in (2.8) to obtain the following uniform estimate on u.
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Proposition 3.2. Let Ω satisfy (H). Let u be a field given by (2.7), with ω ∈ L∞(Ω). Then there
exists a constant C depending only on Ω such that

‖u‖L∞(Ω) ≤ C‖ω‖L∞(Ω).

Proof. After changing variable, we want to prove that for all y ∈ D

|u(T −1(y))| ≤ |DT (T −1(y))|
∫
D
|KD(y, z)| |ω(T −1(z))|det(DT −1(z)) dz ≤ C‖ω‖L∞(Ω).

Let 0 < δ < 1 be defined in Proposition 2.1 and (2.3).

Case 1: y /∈ ∪Nk=1B(T (xk), δ/2).
By (2.5) we have |DT (T −1(y))| ≤ C, so that

|u(T −1(y))| ≤C
∫
D
|KD(y, z)| |ω(T −1(z))| det(DT −1(z)) dz

≤C
N∑
k=1

∫
D∩B(T (xk),δ/4)

|KD(y, z)| |ω(T −1(z))|det(DT −1(z)) dz

+ C

∫
D\∪Nk=1B(T (xk),δ/4)

|KD(y, z)| |ω(T −1(z))| det(DT −1(z)) dz

≤I1 + I2.

Observe that if y /∈ ∪Nk=1B(T (xk), δ/2) and z ∈ B(T (xk), δ/4) then |y − z| ≥ δ/4. Therefore by (2.9)
we obtain

I1 ≤
4CN

δ

∫
D
|ω(T −1(z))| det(DT −1(z)) dz = C‖ω‖L1(Ω),

where we have changed variable back.
Next, using that det(DT −1(z)) is bounded for z ∈ D \ ∪Nk=1B(T (xk), δ/4) we get

I2 ≤ C‖ω‖L∞(Ω)

∫
D
|KD(y, z)| dz,

therefore by (2.9) we get
I2 ≤ C‖ω‖L∞(Ω).

Finally, we have proved that

|u(T−1(y))| ≤ C‖ω‖L∞(Ω), ∀y ∈ D \ ∪Nk=1B(T (xk), δ/2).

Case 2: y ∈ B(T (xk), δ/2) for some k ∈ {1, . . . , N}.
Then we use (2.3) to write

|u(T −1(y))| ≤ C|T (xk)− y|αk

∫
D∩B(T (xk),δ)

|KD(y, z)| |ω(T −1(z))| det(DT −1(z)) dz

+ C|T (xk)− y|αk

∫
D∩B(T (xk),δ)c

|KD(y, z)| |ω(T −1(z))|det(DT −1(z)) dz.

Arguing as before, using that for y ∈ B(T (xk), δ/2) and z ∈ B(T (xk), δ)
c we have |z − y| ≥ δ/2, so

we readily estimate the second integral of the right-hand side by

C‖ω‖L1(Ω).
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Therefore, using the bound for det(DT −1) provided by Proposition 2.1 when z ∈ B(T (xk), δ) we
can actually reduce the problem to prove that

|yk − y|αk

∫
D

1

|y − z|
|z − yk|−2αk dz ≤ C, for y ∈ B(yk, δ/2). (3.2)

Writing that

|y − yk|αk ≤ (|y − z|+ |z − yk|)αk ≤ (2 max(|y − z|, |z − yk|))αk = 2αk max(|y − z|αk , |z − yk|αk)

we prove (3.2) by computing

|yk − y|αk

∫
D

1

|y − z|
|z − yk|−2αk dz

≤ 2αk

∫
D∩{|z−yk|≤|y−z|}

|y − z|αk−1|z − yk|−2αk dz + 2αk

∫
D∩{|z−yk|≥|y−z|}

|y − z|−1|z − yk|−αk dz

≤ 2αk

∫
D
|z − yk|−1−αk dz + 2αk

∫
D
|y − z|−1−αk dz

≤ C,

because αk < 1.
This yields the conclusion of Proposition 3.2.

Remark 3.3. By similar arguments one can also establish the estimate of Proposition 3.1 for a range
of small values of p ∈ (1, pc).

The following proposition concerning the log-Lipschitz type regularity for the field (DT ◦ T −1)u ◦
T −1 is original and will be crucial for the uniqueness result.

Proposition 3.4. Let Ω satisfy (H) and u given by (2.7), with ω ∈ L∞(Ω). Then the map

U : y ∈ D 7→ DT (T −1(y))u(T −1(y))

is log-Lipschitz on D. More precisely, there exists a constant depending only on Ω such that

|U(y1)− U(y2)| ≤ C‖ω‖L∞(Ω)h(|y1 − y2|), ∀(y1, y2) ∈ D2, (3.3)

where h : R+ → R+ is defined in (2.13).

The proof of Proposition 3.4 follows the same idea as the one of Proposition 3.2: we adapt the
classical proof in smooth domains (namely, the first estimate of Lemma 2.6) to the case where we have
a finite number of corners. Close to the corners, we use the precise behavior of DT (see Proposition
2.1) in order to counterbalance the divergence of det(DT −1). We postpone the full proof in Section
5. We stress that we are not able to establish such a log-Lipschitz regularity for u.

4 Proof of Theorem 1.1

Let Ω satisfy (H). Let ω0 ∈ L∞(Ω) and u0 satisfying

u0 ∈ L2(Ω), curlu0 = ω0, div u0 = 0, u0 · n|∂Ω = 0.

By the main result in [20] for convex domains and [11] for more general domains, we know that there
exists a global weak solution on Ω such that

u ∈ L∞(R+;L2(Ω)), ω ∈ L∞(R+ × Ω).
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Let us make a short comment about the tangency condition in [11]. Without any assumption about
the regularity of the boundary, the tangency condition in [11] reads as∫

Ω
u · h = 0 for all h ∈ G(Ω) := {w ∈ L2(Ω) : w = ∇p, for some p ∈ H1

loc (Ω)}. (4.1)

However, in our case, the assumption (H) and the W 1,p estimate of Proposition 3.1 imply that u(t, ·)
is continuous up to the boundary of Ω. With such a regularity, the condition (4.1) amounts to
u(t, ·) · n = 0 on ∂Ω except at the corners. Noticing that the normal vectors on each side at a given
corner span R2, we actually have u(t, ·) = 0 at each corner.

The velocity field u satisfies the regularity properties of Section 3 (Propositions 3.1, 3.2 and 3.4).
In the next subsection we introduce the Lagrangian flow associated to u before turning to the proof
of uniqueness.

4.1 The Lagrangian flow

Let (u, ω) be as above. The purpose of this subsection is to establish the following

Proposition 4.1. There exists X : R+×Ω→ Ω such that for almost every x ∈ Ω, t 7→ X(t, x) belongs
to W 1,∞(R+,Ω) and satisfies

X(t, x) = x+

∫ t

0
u(s,X(s, x)) ds, ∀t ∈ R+.

Moreover, for all t ∈ R+ the map X(t, ·) preserves the Lebesgue’s measure on Ω.
Finally, we have

ω(t) = X(t, ·)#ω0, for a.e. t ∈ R+,

in the sense that for a.e. t ∈ R+ we have
∫

Ω ω(t, x)ϕ(x) dx =
∫

Ω ω0(x)ϕ(X(t, x)) dx for all ϕ ∈ Cc(Ω).

For smooth domains Ω and for velocity fields u satisfying the regularity properties of Propositions
3.1 and 3.2 this was proved by DiPerna and Lions [9] (p. 546). To the authors knowledge, such results
are not available in the literature for non-smooth domains.

In order to prove Proposition 4.1 we will proceed in three steps: first we will establish in Lemma
4.2 the existence of the flow X associated to u such that the flow trajectories never reach the boundary.
Then we will establish in Lemma 4.3 that the extension of ω outside Ω satisfies a linear transport
equation on R+×R2 with a velocity field satisfying the usual assumptions ensuring uniqueness of the
solution. We will finally conclude that ω is constant along the flow trajectories.

Lemma 4.2. There exists X : R+ × Ω → Ω such that for every x ∈ Ω, t 7→ X(t, x) is the unique
function belonging to W 1,∞(R+,Ω) and satisfying

X(t, x) = x+

∫ t

0
u(s,X(s, x)) ds, ∀t ∈ R+.

Moreover, for all t ∈ R+ the map X(t, ·) preserves the Lebesgue’s measure on Ω.

Proof. In view of Proposition 3.2 (implying in particular that U ∈ L∞(R+×D)) and Proposition 3.4,
a classical extension of Cauchy-Lipschitz theorem (see e.g. [16, Chapter 2]) implies that for any y ∈ D
there exists t(y) > 0 and a unique curve t 7→ Y (t, y) in W 1,∞([0, t(y)) such that

Y (t, y) = y +

∫ t

0
U(s, Y (s, y)) ds, ∀t ∈ [0, t(y)).
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Here t(y) > 0 is the maximal time of existence, namely Y (t, y) ∈ D on [0, t(y)) and |Y (t(y), y)| = 1 if
t(y) <∞. Moreover since U ∈ L∞ we have

d

dt
Y (t, y) = U(t, Y (t, y)), for a.e. t ∈ [0, t(y)).

We next show that t(y) = +∞: let assume that t(y) < +∞. Recalling that U
(
t, Y (t,y)
|Y (t,y)|

)
· Y (t, y) = 0

(see Lemma 2.7), we get for a.e. t ∈ [0, t(y)) sufficiently close to t(y), say on [t∗, t(y)) (so that
Y (t, y) 6= 0)

d

dt
|Y (t, y)| =

[
U(t, Y (t, y))− U

(
t,
Y (t, y)

|Y (t, y)|
)]
· Y (t, y)

|Y (t, y)|
so that, by Proposition 3.4, ∣∣∣∣ ddt |Y (t, y)|

∣∣∣∣ ≤ Ch(1− |Y (t, y)|).

Integrating the Gronwall-type inequality above yields

1− |Y (t, y)| ≥ e1−exp (C[t−t∗])(1− |Y (t∗, y)|)exp(C[t−t∗]), ∀t ∈ [t∗, t(y)).

Since |Y (t∗, y)| < 1 we are led to a contradiction, and the claim that Y (t, y) ∈ D,∀t ∈ R+, follows.
Next, we introduce the map

Xt = T −1 ◦ Yt ◦ T

(ft denotes the map f(t, ·)). By definition of T , for all x ∈ Ω, the previous result implies that
X(t, x) ∈ Ω for all t ∈ R+. Moreover we compute for a.e. t ∈ R+

d

dt

(
T −1(Y (t, T (x)))

)
=DT −1(Y (t, T (x)))

d

dt

(
Y (t, T (x))

)
= DT −1(Y (t, T (x)))U(t, Y (t, T (x)))

= u(t, T −1(Y (t, T (x)))) = u(t,X(t, x)).

Finally, the map X(t, ·) preserves the Lebesgue’s measure on Ω for all t ∈ R+ because u is divergence
free.

We now turn to the second step. Since ω ∈ L∞(R+ × Ω), Proposition 3.2 implies that

u ∈ L∞(R+ × Ω),

and from Proposition 3.1 that for p ≥ 1,

u ∈ L∞(R+,W
1,p(Ω)).

Let us consider the stream function ψ of u, namely the function verifying:

u = ∇⊥ψ in Ω, ψ = 0 on ∂Ω.

By the Poincaré inequality, we have

ψ ∈ L∞(R+,W
2,p(Ω)). (4.2)

As Ω verifies (H), we readily check that Ω verifies the Uniform Cone Condition (see [2, Par. 4.8]
for the precise definition). Therefore [2, Theo. 5.28] states that there exists a simple (2,p)-extension
operator E(p) from W 2,p(Ω) to W 2,p(R2), namely there exists K(p) > 0 such that for any v ∈W 2,p(Ω)

E(p)v = v a.e. in Ω, ‖E(p)v‖W 2,p(R2) ≤ K(p)‖v‖W 2,p(Ω).
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For the remainder of this subsection, we fix p > 1 and R large enough such that Ω ⊂ B(0, R).
Then we define χ a smooth cutoff function such that χ ≡ 1 on B(0, R) and χ ≡ 0 on B(0, R+ 1), and
we set for a.e. t ∈ R+

ψ̄(t, ·) = χE(p)ψ(t, ·), ū(t, ·) = ∇⊥ψ̄(t, ·).

Hence we have:
ū(t, ·) = u(t, ·) a.e. in Ω,

and
div ū(t, ·) = 0 a.e. in Ω. (4.3)

We also infer from (4.2) that
ū ∈ L∞(R+;W 1,p(R2)). (4.4)

We set next ω̄ to be the extension of ω by zero outside Ω. Then:

Lemma 4.3. The extension ω̄ is a solution of the transport equation:

∂tω̄ + ū · ∇ω̄ = 0, ω̄(0) = ω0

in the sense of distributions in R+ × R2.

Proof. The weak form of the momentum equation on u (1.1) reads:

for all ϕ ∈ C∞c (R+ × Ω) with divϕ = 0,

∫ ∞
0

∫
Ω

(u · ∂tϕ+ (u⊗ u) : ∇ϕ) = −
∫

Ω
u0 · ϕ(0, ·).

Considering ϕ = ∇⊥ψ with ψ ∈ D ([0,+∞)× Ω) and integrating by parts in the above equation, we
already know that the transport equation holds on R+ × Ω. For any ε, ρ > 0 we consider ηε and χρ
defined on R2 in the following way: χρ is smooth, such that χρ ≡ 1 in ∪Nk=1B(xk, ρ)c and χρ ≡ 0 in
∪Nk=1B(xk, ρ/2), and

ηε(x) = η

(
1− |T (x)|

ε

)
if x ∈ Ω, ηε(x) = 0 if x /∈ Ω,

where

η : R+ → [0, 1] is smooth, non-decreasing, η ≡ 0 on [0, 1/2], η ≡ 1 on [1,+∞). (4.5)

By Proposition 2.1, the functions ηε and χρηε are smooth and compactly supported in Ω.
Let us fix ϕ ∈ C∞c ([0,∞) × R2) such that supp (ϕ) ⊂ [0, T ] × R2. Then χρηεϕ ∈ C∞c ([0,∞) × Ω)

and we have:∫ ∞
0

∫
Ω

(ω∂t(χρηεϕ) + uω · ∇(χρηεϕ))(t, x) dx dt = −
∫

Ω
ω0(x)χρηε(x)ϕ(0, x) dx

therefore∫ ∞
0

∫
R2

χρηε(ω̄∂tϕ+ ūω̄ · ∇ϕ))(t, x) dx dt = −
∫
R2

χρηε(x)ω̄0(x)ϕ(0, x) dx

−
∫ ∞

0

∫
R2

χρ((ūω̄ϕ) · ∇ηε)(t, x) dx dt

−
∫ ∞

0

∫
R2

ηε((ūω̄ϕ) · ∇χρ)(t, x) dx dt.
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We fix ρ > 0 and let ε tend to 0. We first deduce easily from the uniform estimates on u and ω in
R+ × Ω that∫ ∞

0

∫
R2

χρηε(ω̄∂tϕ+ ūω̄ · ∇ϕ)(t, x) dx dt −→
∫ ∞

0

∫
R2

χρ(ω̄∂tϕ+ ūω̄ · ∇ϕ)(t, x) dx dt (4.6)

and ∫
R2

χρ(x)ηε(x)ω̄0(x)ϕ(0, x) dx→
∫
R2

χρ(x)ω̄0(x)ϕ(0, x) dx. (4.7)

Next, by using uniform bounds on ω and u (see Proposition 3.2), we have:

lim sup
ε→0

∣∣∣∫ ∞
0

∫
R2

ηε(ūω̄ϕ) · ∇χρ(t, x) dx dt
∣∣∣ ≤ CT‖ϕ‖L∞‖u‖L∞‖ω‖L∞‖∇χρ‖L1(R2)

≤ CT‖ϕ‖L∞‖u‖L∞‖ω‖L∞Nρ.
(4.8)

We then claim that:

lim
ε→0

∫ ∞
0

∫
R2

χρ((ūω̄ϕ) · ∇ηε)(t, x) dx dt = 0. (4.9)

Indeed, we have for x ∈ Ω \ ∪Nk=1B(xk, ρ/2)

∇ηε(x) = −1

ε
η′
(

1− |T (x)|
ε

)
DT T (x)

T (x)

|T (x)|

therefore

u(t, x) · ∇ηε(x) = −1

ε
η′
(

1− |T (x)|
ε

)
U(t, T (x)) · T (x)

|T (x)|
,

where U is defined in Proposition 3.4.
Setting y = T (x), we have

u(t, x) · ∇ηε(x) = −1

ε
η′
(

1− |y|
ε

)[
U(t, y)− U

(
t,
y

|y|

)]
· y
|y|
− 1

ε
η′
(

1− |y|
ε

)
U

(
t,
y

|y|

)
· y
|y|
.

On the one hand, we have by virtue of Lemma 2.7

U

(
t,
y

|y|

)
· y
|y|

= 0.

On the other hand, by Proposition 3.4 we have∣∣∣∣U(t, y)− U
(
t,
y

|y|

)∣∣∣∣ ≤ Ch (1− |y|) .

We therefore obtain

|u(t, x) · ∇ηε(x)| ≤ C

ε

∣∣∣∣η′(1− |y|
ε

)∣∣∣∣h(ε).

Finally, changing variables yields∫ ∞
0

∫
R2

|χρω̄ϕū · ∇ηε)| dx dt

≤ CTh(ε)‖ϕ‖L∞‖ω‖L∞
∫
D

det (DT −1(y))χρ
(
T −1(y)

) 1

ε

∣∣∣∣η′(1− |y|
ε

)∣∣∣∣ dy

≤ C(ρ)Th(ε)‖ϕ‖L∞‖ω‖L∞
∫ 1

0

r

ε

∣∣∣∣η′(1− r
ε

)∣∣∣∣ dr

≤ C(ρ)Th(ε)‖ϕ‖L∞‖ω‖L∞
∫ 1/ε

0
(1− ετ)

∣∣η′ (τ)
∣∣ dτ ≤ C(ρ)Th(ε)‖ϕ‖L∞‖ω‖L∞‖η′‖L1(R+),
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where we have used the fact that DT −1 is smooth away from the corners together with the support
properties of χρ. The claim (4.9) follows.

To conclude the proof, we let eventually ρ tend to 0 in (4.6), (4.7) and (4.8).

Proof of Proposition 4.1
In view of the assumptions (4.3)-(4.4), the results of DiPerna and Lions [9] on linear transport

equations ensure that ω̄ is the unique solution in L∞(R+, L
p′(R2)) to the linear transport equation

with field ū (where p′ denotes the conjugate exponent of p). For a precise statement, we refer to [9,
Theo. II.2]. We also refer to, e.g., [1] (Section 4) for more recent developments in the theory. On
the other hand, for all t ∈ R+ we have X(t,Ω) ⊂ Ω; hence recalling that X(t, ·) preserves Lebesgue’s
measure we observe that by Fubini theorem, for a.e. (t, x) ∈ R+ × Ω, u(s,X(s, x)) = u(s,X(s, x)).
Hence given the definition of X one can readily prove that the map ω̃(t) := X(t, ·)#ω̄0 is a solution in
L∞(R+, L

p′(R2)) to the same linear transport equation with field ū (see e.g. the proof of Proposition
2.1 in [1]). By uniqueness, we conclude that ω̄(t) = ω̃(t) = X(t, ·)#ω̄0 for a.e. t ∈ R+, as we wanted.

4.2 Uniqueness by a Lagrangian approach

We consider two solutions (u1, ω1) and (u2, ω2) of (1.1)-(1.2) with the same initial datum and denote
by Xk, k = 1, 2, the corresponding flows given by Proposition 4.1.

As

|T (X1(s, x))− T (X2(s, x))| ≤ ‖DT ‖L∞
∫ s

0
|u1(τ,X1(τ, x))− u2(τ,X2(τ, x))|dτ

≤ s‖DT ‖L∞(‖u1‖L∞ + ‖u2‖L∞),

we infer from (2.5) and Proposition 3.2 that there exists t0 depending only on Ω and ‖ω‖L∞(Ω) such
that

sup
s∈[0,t0]

sup
x∈Ω
|T (X1(s, x))− T (X2(s, x))| < min(|Ω|−1, 1). (4.10)

We define next for t ∈ R+

f(t) =

∫ t

0

∫
Ω
|T (X1(s, x))− T (X2(s, x))|dx ds.

We will show that f vanishes identically on [0, t0].
Given the time regularity of T ◦Xi, we can compute for all t ∈ R+

f ′(t) =

∫
Ω
|T (X1(t, x))− T (X2(t, x))|dx

≤
∫

Ω

∫ t

0

∣∣∣DT (X1(s, x))
d

dt
X1(s, x)−DT (X2(s, x))

d

ds
X2(s, x)

∣∣∣ ds dx

≤
∫

Ω

∫ t

0
|U1(s, T (X1(s, x))− U2(s, T (X2(s, x))|dsdx

≤
∫ t

0

∫
Ω
|U1(s, T (X1(s, x))− U1(s, T (X2(s, x))|dx ds

+

∫ t

0

∫
Ω
|U1(s, T (X2(s, x))− U2(s, T (X2(s, x))|dx ds

=: F1 + F2.
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By Proposition 3.4, we have

F1 ≤ C
∫ t

0

∫
Ω
h(|T (X1(s, x))− T (X2(s, x))|) dx ds,

where we recall h(r) = r(1 + | ln r|).
Next, since X2(s, ·) preserves the Lebesgue’s measure on Ω, we have

F2 =

∫ t

0

∫
Ω
|U1(s, T (x))− U2(s, T (x))|dx ds =

∫ t

0

∫
Ω
|DT (x)(u1(s, x)− u2(s, x))| dx ds.

Let s ∈ R+ such that ωi(s) = Xi(s)#ω0. Let x ∈ Ω and ε > 0 such that mink |T (x)−T (xk)| > ε. Recall-

ing that η is the cut-off function defined in (4.5), we have by continuity of x̃ 7→ KD(T (x), T (x̃))η
(
|T (x)−T (x̃)|

ε

)
∫

Ω
KD(T (x), T (x̃))η

(
|T (x)− T (x̃)|

ε

)
ωi(s, x̃) dx̃

=

∫
Ω
KD(T (x), T (Xi(s, x̄)))η

(
|T (x)− T (Xi(s, x̄))|

ε

)
ω0(x̄) dx̄.

Letting ε go to 0 we can use again the previous estimates on KD and DT so that all terms above pass
to the limit, and the Biot-Savart law yields

ui(s, x) = DT (x)T
∫

Ω
KD(T (x), T (x̃))ωi(s, x̃) dx̃ = DT (x)T

∫
Ω
KD(T (x), T (Xi(s, x̄))ω0(x̄) dx̄.

Thus bringing this latter into F2 and changing variables y = T (x), we have

F2 ≤
∫ t

0

∫
Ω

det(DT (x))

(∫
Ω

∣∣∣KD(T (x), T (X1(s, x̄)))−KD(T (x), T (X2(s, x̄)))
∣∣∣|ω0(x̄)| dx̄

)
dx ds

=

∫ t

0

∫
D

(∫
Ω

∣∣∣KD(y, T (X1(s, x̄)))−KD(y, T (X2(s, x̄)))
∣∣∣|ω0(x̄)|dx̄

)
dy ds

≤ ‖ω0‖L∞(Ω)

∫ t

0

∫
Ω

(∫
D
|KD(y, T (X1(s, x̄)))−KD(y, T (X2(s, x̄)))| dy

)
dx̄ ds

≤ C

∫ t

0

∫
Ω
h(|T (X1(s, x̄))− T (X2(s, x̄))|) dx̄ ds,

where we have applied Lemma 2.6 in the last inequality.
For t ∈ [0, t0] we finally apply Jensen’s inequality in the estimates for F1 and F2 using that h is

concave on [0, 1] and (4.10) to obtain

f ′(t) ≤ Ch(f(t)), ∀t ∈ [0, t0].

Therefore f(t) ≤ f(0)exp(−Ct)e1−exp(−Ct) = 0 on [0, t0]. Hence for a.e. x ∈ Ω we have X1(t, x) =
X2(t, x) on [0, t0]. Repeating the argument on the intervals [kt0, (k + 1)t0], k ∈ N we conclude that
ω1 = ω2 a.e. on R+ and Theorem 1.1 is proved.

5 Proof of Proposition 3.4

In this last section, we write all the details to establish the log-Lipschitz regularity of the vector field
U . By Proposition 3.2 and (2.3), we know that U is uniformly bounded on D. Therefore it suffices to
establish the inequality (3.3) when

d := |y1 − y2| ≤
δ

2
< 1
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(we recall that δ > 0 is defined in Proposition 2.1). For two subsets Σ1 ⊂ Σ2 ⊂ D we will split
U(y1)− U(y2) using Remark 2.4 and (2.8):

U(y1)− U(y2) = det
(
DT (T −1(y1))

) ∫
D
KD(y1, z)ω(T −1(z)) det(DT −1(z)) dz

− det
(
DT (T −1(y2))

) ∫
D
KD(y2, z)ω(T −1(z)) det(DT −1(z)) dz

=:[U1 − U2] + [V1 + V2] + [W1 +W2],

(5.1)

where

U1 = det
(
DT (T −1(y1))

) ∫
Σ1

KD(y1, z)ω(T −1(z)) det(DT −1(z)) dz

U2 = det
(
DT (T −1(y2))

) ∫
Σ1

KD(y2, z)ω(T −1(z)) det(DT −1(z)) dz,

(5.2)

V1 =
(

det
(
DT (T −1(y1))

)
− det

(
DT (T −1(y2))

))∫
D\Σ2

KD(y1, z)ω(T −1(z)) det(DT −1(z)) dz

V2 = det
(
DT (T −1(y2))

) ∫
D\Σ2

(
KD(y1, z)−KD(y2, z)

)
ω(T −1(z)) det(DT −1(z)) dz

(5.3)

and

W1 =
(

det
(
DT (T −1(y1))

)
− det

(
DT (T −1(y2))

))∫
Σ2\Σ1

KD(y1, z)ω(T −1(z)) det(DT −1(z)) dz

W2 = det
(
DT (T −1(y2))

) ∫
Σ2\Σ1

(
KD(y1, z)−KD(y2, z)

)
ω(T −1(z)) det(DT −1(z)) dz.

(5.4)

First step: y1 ∈ D \ (∪Nk=1B(T (xk), δ)). It follows that y2 ∈ D \ (∪Nk=1B(T (xk), δ/2)).
We set Σ1 = Σ2 = ∅ in (5.1), so that U1 = U2 = 0 = W1 = W2. Next, since det(DT ◦ T −1) is

smooth and its derivative is bounded away from the points T (xk) we have

|V1| ≤ C|y1 − y2|
∫
D
|KD(y1, z)| |ω(T −1(z))|det(DT −1(z)) dz ≤ Cd‖ω‖L∞(Ω),

where we have used (2.9) to estimate the integral.
For the last term, we have by (2.5)

|V2| ≤ C
N∑
k=1

∫
D∩B(T (xk),δ/4)

|KD(y1, z)−KD(y2, z)| |ω(T −1(z))| det(DT −1(z)) dz

+ C

∫
D\(∪Nk=1B(T (xk),δ/4))

|KD(y1, z)−KD(y2, z)| |ω(T −1(z))|det(DT −1(z)) dz

≤ I1 + I2.

On the one hand, for z ∈ B(T (xk), δ/4) we have |y1−z| ≥ 3δ/4 and |y2−z| ≥ δ/4, hence (2.10) yields

I1 ≤
16C

3δ2
|y1 − y2|

∫
D
|ω(T −1(z))|det(DT −1(z)) dz ≤ Cd‖ω‖L1(Ω).

On the other hand, recall that DT −1 is bounded away from T (xk), so that applying Lemma 2.6 we
find

I2 ≤ C‖ω‖L∞(Ω)

∫
D
|KD(y1, z)−KD(y2, z)| dz ≤ Ch(|y1 − y2|)‖ω‖L∞(Ω).
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So combining the previous estimates we obtain

|U(y1)− U(y2)| ≤ C‖ω‖L∞(Ω)h(|y1 − y2|), ∀y1 ∈ D \ (∪Nk=1B(T (xk), δ)).

By symmetry , we also have

|U(y1)− U(y2)| ≤ C‖ω‖L∞(Ω)h(|y1 − y2|), ∀y2 ∈ D \ (∪Nk=1B(T (xk), δ)).

Second step: y1, y2 ∈ B(T (xk), δ).
We note that g := det(DT ◦ T −1)) satisfies g(y) = O(|y − T (xk)|2αk) in the neighborhood of the

points T (xk). By Proposition 2.1 and (2.3), (2.4), (2.5) we estimate

|∇g(y)| ≤ 4|DT (T −1(y))||D2T (T −1(y))||DT −1(y)| ≤ C|y − T (xk)|2αk−1,

hence, we infer by the mean value theorem that

| det
(
DT (T −1(y1))

)
− det

(
DT (T −1(y2))

)
| ≤ Cd sup

y∈[y1,y2]
|y − T (xk)|2αk−1 (5.5)

with αk ≥ 1/2. We set
Σ2 = D ∩B(T (xk), δ).

By (5.3) we have, using (5.5), (2.9), the fact that DT −1 is bounded away from the xj and that
|y1 − z| ≥ δ when z ∈ B(T (xj), δ) for j 6= k:

|V1| ≤ Cd‖ω‖L∞(Ω)

(∫
D\(∪Nj=1B(T (xj),δ))

|KD(y1, z)| det(DT −1(z)) dz

+
∑
j 6=k

∫
B(T (xj),δ)∩D

|KD(y1, z)|det(DT −1(z)) dz
)

≤ Cd‖ω‖L∞(Ω)

(
C

∫
D
|y1 − z|−1 dz +

C

δ

∑
j 6=k

∫
D

det(DT −1(z)) dz
)

≤ Cd‖ω‖L∞(Ω).

Similarly, Lemma 2.6 and (2.10) yield

|V2| ≤ C‖ω‖L∞(Ω)

(∫
D\(∪Nj=1B(T (xj),δ))

|KD(y1, z)−KD(y2, z)|det(DT −1(z)) dz

+
∑
j 6=k

∫
B(T (xj),δ)∩D

|KD(y1, z)−KD(y2, z)| det(DT −1(z)) dz
)

≤ C‖ω‖L∞(Ω)

(
C

∫
D
|KD(y1, z)−KD(y2, z)| dz +

Cd

δ2

∑
j 6=k

∫
D
| det(DT −1(z))|dz

)
≤ C‖ω‖L∞(Ω)(h(d) + d).

It remains to estimate the parts U1−U2 and W1+W2 for a judicious choice of Σ1 ⊂ D∩B(T (xk), δ).
As in the proof of Lemma 2.6, we introduce

ỹ :=
y1 + y2

2

and we consider the following cases.
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Case 1: T (xk) ∈ B(ỹ, 5d).
We set

Σ1 = D ∩B(T (xk), δ) ∩B(ỹ, 6d) = Σ2 ∩B(ỹ, 6d).

Using the estimates of Proposition 2.1 and (2.3) in the neighborhood T (xk) we get for i = 1, 2

|Ui| ≤ C‖ω‖L∞(Ω)|T (xk)− yi|2αk

∫
Σ1

|KD(yi, z)||z − T (xk)|−2αk dz.

Next, observing that

|T (xk)− yi|2αk ≤ 22αk(max{|yi − z|, |z − T (xk)|})2αk

we compute using (2.9)

|T (xk)− yi|2αk

∫
Σ1

|KD(yi − z)||z − T (xk)|−2αk dz

≤C|T (xk)− yi|2αk

∫
Σ1∩{|yi−z|≤|z−T (xk)|}

|yi − z|−1|z − T (xk)|−2αk dz

+ C|T (xk)− yi|2αk

∫
Σ1∩{|yi−z|≥|z−T (xk)|}

|yi − z|−1|z − T (xk)|−2αk dz

≤C
∫

Σ1∩{|yi−z|≤|z−T (xk)|}
|yi − z|−1 dz +

∫
Σ1∩{|yi−z|≥|z−T (xk)|}

|yi − z|2αk−1|z − T (xk)|−2αk dz

≤C
∫
{|yi−z|≤7d}

|yi − z|−1 dz + (7d)2αk−1

∫
{|z−T (xk)|≤7d}

|z − T (xk)|−2αk dz

≤Cd.

This yields
|U1|+ |U2| ≤ Cd‖ω‖L∞(Ω).

We next estimate W1 and W2. As 2αk − 1 ≥ 0, we have by (5.5)∣∣∣det
(
DT (T −1(y1))

)
− det

(
DT (T −1(y2))

)∣∣∣≤ Cd(|T (xk)− y1|2αk−1 + |T (xk)− y2|2αk−1
)
. (5.6)

Hence

|W1| ≤ C‖ω‖L∞(Ω)d
(
|T (xk)− y1|2αk−1 + |T (xk)− y2|2αk−1

) ∫
Σ2\Σ1

|KD(y1, z)||z − T (xk)|−2αk dz

≤ C‖ω‖L∞(Ω)d
(
|T (xk)− y1|2αk−1 + |T (xk)− y2|2αk−1

) ∫
D\Σ1

|y1 − z|−1|z − T (xk)|−2αk dz.

Now, for i = 1, 2 and z ∈ D \Σ1 we have |T (xk)− yi| ≤ |T (xk)− ỹ|+ |ỹ − yi| ≤ 6d ≤ |z − ỹ|. On the
other hand, as |ỹ − T (xk)| ≤ 5d ≤ 5|z − ỹ|/6 we get |z − T (xk)| ≥ |z − ỹ| − |T (xk) − ỹ| ≥ |z − ỹ|/6
and |yi − z| ≥ |ỹ − z| − |yi − ỹ| ≥ 5|z − ỹ|/6. Therefore

|W1| ≤ C‖ω‖L∞(Ω)d

∫
D\B(ỹ,6d)

|z − ỹ|−2 dz ≤ C‖ω‖L∞(Ω)d(1 + | ln d|).

On the other hand, using again the estimates in the neighborhood of T (xk) and the estimate (2.10)
we obtain

|W2| ≤ C‖ω‖L∞(Ω)d |T (xk)− y2|2αk

∫
D\Σ1

|z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz.
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Then, using the same inequalities as above for z ∈ D \ Σ1, we get

|W2| ≤ C‖ω‖L∞(Ω)d

∫
D\B(ỹ,6d)

|z − ỹ|−2 dz ≤ C‖ω‖L∞(Ω)d(1 + | ln d|).

Case 2: T (xk) /∈ B(ỹ, 5d).
In particular |yi − T (xk)| ≥ |T (xk)− ỹ| − |ỹ − yi| ≥ 4d for i = 1, 2, so that

|y2 − T (xk)|
2

≤ |y1 − T (xk)| ≤ 2|y2 − T (xk)|. (5.7)

We set
Σ1 = D ∩B(T (xk), δ) ∩B(ỹ, 2d) = Σ2 ∩B(ỹ, 2d).

For z ∈ Σ1 we have |z − T (xk)| ≥ |ỹ − T (xk)| − |z − ỹ| ≥ 3d, therefore

|Ui| ≤C‖ω‖L∞(Ω)|T (xk)− yi|2αk

∫
Σ1

|yi − z|−1|z − T (xk)|−2αk dz

≤C‖ω‖L∞(Ω)

(∫
Σ1∩{|yi−z|≤|z−T (xk)|}

(2|T (xk)− z|)2αk |yi − z|−1|z − T (xk)|−2αk dz

+

∫
Σ1∩{|yi−z|≥|z−T (xk)|}

(2|z − yi|)2αk |yi − z|−1|z − T (xk)|−2αk dz
)

≤C‖ω‖L∞(Ω)(2
2αk + (6d)2αk(3d)−2αk)

∫
B(yi,3d)

|yi − z|−1 dz = C‖ω‖L∞(Ω)d.

To estimate W1 +W2 we further decompose Σ2 \ Σ1 in two sets, setting

Σ2 \ Σ1 =
[
Σ2 ∩B(T (xk), 2d)

]⋃[
Σ2 \ [B(T (xk), 2d) ∪B(ỹ, 2d)]

]
.

By (5.6) and (5.7) we have

|W1 +W2| ≤C‖ω‖L∞(Ω)d|T (xk)− y1|2αk−1

∫
B(T (xk),2d)

|y1 − z|−1|z − T (xk)|−2αk dz

+ C‖ω‖L∞(Ω)d |T (xk)− y1|2αk

∫
B(T (xk),2d)

|z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz

+ C‖ω‖L∞(Ω)d|T (xk)− y1|2αk−1

∫
D\[B(T (xk),2d)∪B(ỹ,2d)]

|y1 − z|−1|z − T (xk)|−2αk dz

+ C‖ω‖L∞(Ω)d |T (xk)− y1|2αk

∫
D\[B(T (xk),2d)∪B(ỹ,2d)]

|z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz.

We first estimate the contributions of the integrals on the domainB(T (xk), 2d). For z ∈ B(T (xk), 2d)
we have |yi − z| ≥ |yi − T (xk)| − |z − T (xk)| ≥ 2d ≥ |z − T (xk)|. Therefore |y1 − T (xk)| ≤
|z − T (xk)|+ |y1 − z| ≤ 2|y1 − z|. It follows that

|T (xk)− y1|2αk−1

∫
B(T (xk),2d)

|y1 − z|−1|z − T (xk)|−2αk dz

≤ C
∫
B(T (xk),2d)

|y1 − z|2αk−2|z − T (xk)|−2αk dz.
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Similarly, using that |z − y1| ≤ |z − y2|+ |y1 − y2| ≤ |z − y2|+ d ≤ 2|z − y2|, we obtain

|T (xk)− y1|2αk

∫
B(T (xk),2d)

|z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz

≤ C
∫
B(T (xk),2d)

|y1 − z|2αk−2|z − T (xk)|−2αk dz.

Then we finally obtain, using that 2αk − 2 < 0 and |y1 − z| ≥ 2d,∫
B(T (xk),2d)

|y1 − z|2αk−2|z − T (xk)|−2αk dz ≤ Cd2αk−2

∫
B(T (xk),2d)

|z − T (xk)|−2αk dz ≤ C.

We now turn to the contributions of the integrals on the last domain Σ3 := D \ [B(T (xk), 2d) ∪
B(ỹ, 2d)].

We have on the one hand:

|T (xk)− y1|2αk−1

∫
Σ3

|y1 − z|−1|z − T (xk)|−2αk dz

≤
∫

Σ3∩{|y1−z|≤|z−T (xk)|}
(2|z − T (xk)|)2αk−1|z − T (xk)|−2αk |y1 − z|−1 dz

+

∫
Σ3∩{|y1−z|≥|z−T (xk)|}

(2|y1 − z|)2αk−1|z − T (xk)|−2αk |y1 − z|−1 dz

≤C
∫

Σ3∩{|y1−z|≤|z−T (xk)|}
|z − T (xk)|−1|y1 − z|−1 dz

+ C

∫
Σ3∩{|y1−z|≥|z−T (xk)|}

|y1 − z|2αk−2|z − T (xk)|−2αk dz

≤C
∫
D\B(y1,d)

|y1 − z|−2 dz + C

∫
D\B(T (xk),2d)

|z − T (xk)|−2 dz

≤C(1 + | ln d|).

On the other hand, we use |y1 − z| ≤ d + |y2 − z| ≤ 2|y2 − z| and conversely |y2 − z| ≤ 2|y1 − z| to
compute

|T (xk)− y1|2αk

∫
Σ3

|z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz

≤
∫

Σ3∩{|y1−z|≤|z−T (xk)|}
(2|z − T (xk)|)2αk |z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz

+

∫
Σ3∩{|y1−z|≥|z−T (xk)|}

(2|y1 − z|)2αk |z − y1|−1|z − y2|−1|z − T (xk)|−2αk dz

≤C
∫
D\B(y1,d)

|y1 − z|−2 dz + C

∫
D\B(T (xk),2d)

|z − T (xk)|−2 dz

≤ C(1 + | ln d|).

Combining all the above estimates, we get the required results.
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